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a b s t r a c t

In this work we propose two brain extraction methods (BEM) that solely depend on the brain anatomy and

its intensity characteristics. Our methods are simple, unsupervised and knowledge based. Using an adaptive

intensity thresholding method on the magnetic resonance images of head scans, a binary image is obtained.

The binary image is labeled using the anatomical facts that the scalp is the boundary between head and

background, and the skull is the boundary separating brain and scalp. A run length scheme is applied on the

labeled image to get a rough brain mask. Morphological operations are then performed to obtain the fine

brain on the assumption that brain is the largest connected component (LCC). But the LCC concept failed to

work on some slices where brain is composed of more than one connected component. To solve this

problem a 3-D approach is introduced in the BEM. Experimental results on 61 sets of T1 scans taken from

MRI scan center and neuroimage web services showed that our methods give better results than the popular

methods, FSL’s Brain Extraction Tool (BET), BrainSuite’s Brain Surface Extractor (BSE) gives results

comparable to that of Model-based Level Sets (MLS) and works well even where MLS failed. The average

Dice similarity index computed using the ‘‘Gold standard’’ and the specificity values are 0.938 and 0.992,

respectively, which are higher than that for BET, BSE and MLS. The average processing time by one of our

methods is E1 s/slice, which is smaller than for MLS, which is E4 s/slice. One of our methods produces the

lowest false positive rate of 0.075, which is smaller than that for BSE, BET and MLS. It is independent of

imaging orientation and works well for slices with abnormal features like tumor and lesion in which the

existing methods fail in certain cases.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Magnetic Resonance Imaging (MRI) is one of the non-destructive,
non-intrusive methods and a safe modality for medical diagnosis.
The most important advantage of the MRI is its ability to provide
good contrast between various organs and tissues and the three-
dimensional nature of imaging methods [1]. With its dependence on
the more biologically variable parameters, proton density (PD),
longitudinal relaxation time (T1) and transverse relaxation time
(T2) variable image contrast can be achieved using different pulse
sequences and changing the imaging parameters. Three types of
images, PD, T1 and T2, are produced and their signal intensities relate
to specific tissue characteristics. In each type, images are taken in any
one of the three orientations: axial (neck to head), coronal (front to
back) and sagital (ear to ear).

The removal of non-brain regions like scalp, skull (bone), fat, eyes,
neck, etc., from MRI of head scans is an important area of study as
it helps to improve the speed and accuracy of diagnostic and
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prognostic procedures in medical applications [2]. This procedure is
often referred as Brain-Extraction/Skull-Stripping. Segmentation of
brain region from MRI of head scans plays a vital role in coregistra-
tion, multimodality registration, brain tissue segmentation, patholo-
gies detection, cortical surface modeling and visualization
techniques. Numerous brain extraction tools were developed and
tested on a variety of datasets. But they are limited to specific
orientation or the type or datasets and forced the user to compromise
either on the processing speed or the accuracy. Some of the brain
extraction algorithms (BEA) for extracting brain from single echo T1
images are Statistical Parameter Mapping v.2 (SPM2) [3], FSL’s Brain
Extraction Tool (BET) [4], BrainSuite’s Brain Surface Extractor (BSE)
[5,6], AFNI’s 3dIntracranial [7], FreeSurfer’s MRI Watershed [8],
Model-based Level Sets (MLS) [9], Exbrain [10] and the Simon
Fraser University (SFU) method [11]. Recently Somasundaram and
Kalaiselvi developed a BEA for T1 images [12] and T2 images [13].

Several studies [3,14–18] compared the performance of the most
commonly used BEAs and concluded that the existing algorithms
had both strengths and weaknesses. Some of the existing hybrid
methods are Minneapolis Consensus Strip (MCS) [17], Brain Extrac-
tion Meta Algorithm (BEMA) [18] and Hybrid Watershed Algorithm
(HWA) [19]. MCS outperforms other methods but the tool depen-
dency and setup procedure are too complex for practical use [20].
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Thus no single algorithm appears to have produced accurate
results without initialization and computational complexity.
Ravinda and Jagath [21] suggested that a fully automated proce-
dure to extract the brain from a large database of T1 MRI of head
scans must have the capability to extract the brain accurately
from all the images without any human intervention during the
peeling process. Further, the procedure should not require any
preprocess of the images outside the chain of image processing
routines. Our present study follows this lead given by Ravinda
and Jagath [21] and sets our goal to develop an automatic tool to
extract the brain portion from T1 head scans.

The proposed methods are simple, unsupervised and knowl-
edge based approaches. The main head features like scalp, skull
and brain and their MRI intensity characteristics are used in our
approach. In most of the T1 scans, skull is a dark portion and lies
between the two brighter regions, scalp and brain. Using this
expert knowledge either the scalp is removed or the brain is
extracted to get a rough brain portion. The generation of coarse
brain portion is purely a nonparametric and unsupervised pro-
cess. Run length identification (RLI) scheme is used for region
labeling and searching. Then a set of segmentation processes such
as morphological operations and connected component analysis
(CCA) are done to produce a fine brain. This segmentation stage is
adaptable to any of the existing methods and extendable to 3-D
schemes. Application of our algorithms on standard real image
datasets show that the proposed methods work better than the
popular algorithms BET, BSE and MLS.

The remaining part of the paper is organized as follows. In
Section 2, we present the methods that we have developed to
extract brain. The materials used for our study are given in
Section 3 and the experimental results and discussions are given
in Section 4. Finally we conclude the paper in Section 5.
Generate Rough Brain Mask grb

Fig. 1. Flowchart of Stage-1: feature extraction.
2. Methods

In this work we propose two fully automatic, two-stage brain
extraction methods (BEM) to extract the brain portion from T1
MRI of head scans. In Stage-1, the feature extraction is done
to locate the region of interest (ROI) and in Stage-2, segmentation
is done to extract the ROI. In our work, the ROI is the brain
region. Region labeling plays a major role in Stage-1 for detecting
the brain area and to produce the rough brain portion. Morpho-
logical operations are used in Stage-2 to segment the fine brain
portion.

2.1. Stage-1: feature extraction

The objective of the Stage-1 is to obtain a rough brain portion.
The features found in the brain are used for this process. For
feature extraction an expert knowledge that solely depends on
the brain anatomy and intensity characteristics of T1 scans is
used. In T1 MRI of head scans, scalp and brain tissues are brighter
than CSF, skull and background [10]. Skull is the boundary
separating brain and scalp.

Using the above expert knowledge, either the bright scalp is
detected and removed from the slice or the bright brain is
identified and retained in the slice. Thus the main feature we
try to identify from the image is either the scalp or the brain. The
scalp removal technique is named as scalp removal process (SRP)
and the brain extraction technique is called as brain extraction
process (BEP). We use either of these processes to produce the
rough brain portion in this stage. The flowchart for Stage-1 is
shown in Fig. 1. The images corresponding to input, output and
the intermediate processes are given alongside of the flowchart
in Fig. 1.
2.1.1. Thresholding and 2-labeling process

Stage-1 starts with the 2-labeling process for the given input
T1 image. Initially, an optimal intensity threshold value (Topt) for
the pixels of the input T1 image (f0) is calculated using Ridler’s
method [22]. This algorithm is iterative, four to ten iterations
usually being sufficient [22]. At iteration t, the threshold value
Ttþ1 is computed as follows:

Ttþ1 ¼
mbgtþmobt

2
ð1Þ

where mbgt and mobtare the mean background (bg) and object (ob)
gray-level at iteration t, respectively. The segmentation into
background and object at step t is defined by the threshold value
Tt determined in the previous iteration. The threshold value
computed at 10th iteration is considered as optimal threshold
value Topt and it is used to identify and separate objects from the
surrounding uniform background [22]. A binary image g0(x, y) is
obtained using Topt as

g0ðx,yÞ ¼
1 if f0ðx,yÞZTopt

0 otherwise

�
ð2Þ

where, f0(x, y) is the original intensity of the image at pixel (x, y).
Thus the binary image g0 has two labels: label 0 to dark regions
like background, skull and csf, and label 1 to bright regions
like scalp and brain as shown in Fig. 1. The image g0 contains
few contour like regions. The outermost dark region is the



K. Somasundaram, T. Kalaiselvi / Computers in Biology and Medicine 41 (2011) 716–725718
background, the next white region represents the scalp, the inner
dark region represents the skull and CSF and the innermost white
region represents the brain.
2.1.2. Head contour detection

Next we proceed to detect the boundary separating the scalp and
the background to produce the head mask. For this, we traverse the
binary image g0 from the four sides, pixel by pixel, starting from the
left side followed by right, top and bottom and trace towards the
opposite side to detect the border of the head. The scalp is a bright
region in T1 images. Hence the 0–1 (black to white) transition during
the traversal in g0 is marked as the head border point b(x, y), for all
rows and columns of the image. Then a region Rh is formed which is
bounded by a set of b(x, y) found earlier. This region is considered as
head and the rest is treated as background. Finally, an image h

representing the head mask is obtained as

hðx,yÞ ¼
1 if ðx,yÞARh

0 otherwise

�
ð3Þ

In the image h, shown in Fig. 1, the region containing value 1’s
(white) is the Rh representing head and the region containing values
0’s (black) is the background (Rbg). The two regions then satify

h¼ Rh [ Rbg ð4Þ
2.1.3. 3-Labeling process

Next, we proceed to identify the inner dark region represent-
ing the skull and the CSF. This is done by marking that region with
label 2. For this operation, we take the binary image g0 and take Rh

as the region of interest. Within Rh, we select the pixels corre-
sponding to dark portions representing skull and/or CSF using the
binary image g0 and mark them with a label 2. Already g0 is a two-
labeled image with values 0 and 1. With the new label 2, the
whole image becomes a 3-labeled image and is denoted as L3.
The labeling is done as follows:

L3ðx,yÞ ¼

2 if g0ðx,yÞ ¼ 0 and ðx,yÞARh

1 if g0ðx,yÞ ¼ 1

0 if g0ðx,yÞ ¼ 0

8><
>: ð5Þ

Now we have L3, a 3-labeled image, with pixels in the back-
ground labeled as 0, the pixels in the regions of scalp and brain
tissues labeled as 1 and the remaining pixels representing skull,
CSF, etc., labeled as 2. The resultant L3 is shown in Fig. 1. Label 0 is
dark, 1 is white and 2 is gray. Each labeled region is given some
gray shades for display purpose.
Fig. 2. (a) Rough brain portion frb produced by SRP in Stage-1 using the original image f0

and (c) final brain portion ffb produced by segmentation process in Stage-2 using the fi
2.1.4. Brain region detection

We then proceed to extract the rough brain portion. For this,
we employ SRP or BEP. The SRP and BEP are based on run length
identification scheme for labeling [21]. First, we construct hor-
izontal runs for regions with label 1 of L3 that corresponds to
scalp and brain regions. Next, we check the label values of pixels
that are connected horizontally to each run and classify them into
two cases I and II. The classification of the runs is done based on
the edges of that run. The runs between background (0) to
background (0), background (0) to skull (2), and skull (2) to
background (0) are classified as case I. The runs between skull/CSF
(2) to skull/CSF (2) are classified as case II. Here the numbers
within the parenthesis 0 and 2 represent the label of the pixel.
2.1.5. Scalp removal process (SRP)

If a run satisfies case I then these runs are marked as Rsc

(scalp).The intensity of the pixels belonging to Rsc are set to 0 and
the rest is retained as such in g0 to produce a rough brain mask grb

and is given by

grbðx,yÞ ¼
0 if ðx,yÞARsc

g0ðx,yÞ otherwise

(
ð6Þ

By this process the bright scalp is merged with the
background.
2.1.6. Brain extraction process (BEP)

If a run satisfies case II then these runs are marked as Rbt (brain
tissue). The pixels corresponding to these runs are retained in g0

and the intensities of other pixels are set to background value
0 and the rough brain mask grb is obtained as

grbðx,yÞ ¼
g0ðx,yÞ if ðx,yÞARbt

0 otherwise

�
ð7Þ

Using either of these processes (SRP or BEP), Stage-1 produces
a rough brain mask as shown in Fig. 1. Both SRP and BEP produce
the same result. If the original image f0 is used instead of binary
form g0 in Eqs. (6) and (7) then the rough brain portions frb will be
produced as shown in Fig. 2(a) and (b).
2.2. Stage-2: segmentation

The aim of the segmentation stage is to produce a fine brain
mask from the rough brain mask grb, produced in Stage-1. Image
processing techniques, morphological operations and connected
component operation are performed in this stage. The sequence of
these processes is given in Fig. 3.
; (b) rough brain portion frb produced by BEP in Stage-1 using the original image f0;

nal mask X3 and original image f0.
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2.2.1. Binary erosion

The binary image grb obtained in Stage-1 is eroded by an
octagonal structuring element with a 7�7 size (O7) to get an eroded
image X1. The binary erosion is used to separate the weakly
connected regions. After the erosion, the binary image X1 will have
several disconnected regions as shown in Fig. 3. Let there be n

regions (R(i), i¼1,y,n) in the eroded image X1. The area RA(i) of the
ith region R(i) is the total number of pixels in that region and is
computed using the run length identification scheme.
2.2.2. Brain region selection

The next step is to select the brain region. Let Rfb be the region
of final brain. Initially it is set to null:

Rfb ¼j ð8Þ

The area of each connected regions RA(i) is calculated. For each
slice, the largest connected component (LCC) among the regions
obtained in the eroded image is treated as the brain portion Rfb.
The brain selection is done as follows:

RLCC ¼ R arg maxRAðiÞ
1r irn

 !
ð9Þ

Rfb ¼ RLCC ð10Þ

After identifying the brain portion Rfb in the binary image X1,
we extract the brain region X2 as

X2ðx,yÞ ¼
1 if ðx,yÞARfb

0 otherwise

�
ð11Þ

The brain region X2 extracted by applying Eqs. (9)–(11) is
shown in Fig. 3.
2.2.3. Binary dilation

To recover the pixels that were lost due to thresholding and
erosion, the dilation operation is performed on X2 using the same
structuring element O7 at the border to get a dilated image. The
dilated binary image X3 is taken as the brain mask and a sample is
shown in Fig. 3. Using X3, the final brain portion (ffb) is extracted
from the original MR scan (f0) and is given by

ffbðx,yÞ ¼
f0ðx,yÞ if X3ðx,yÞ ¼ 1

0 otherwise

�
ð12Þ

The final brain portion extracted by our method is shown in
Fig. 2(c). This is purely a two-dimensional approach to extract the
brain and is named as BEM2D.
2.3. BEM2DE

The selection of a region on the basis of LCC as brain by
Eq. (10) gives, in few cases, either a partial brain or a non-brain
region as shown in column 2 of Fig. 4 for the original images given
at column 1. In some brain volumes few slices might contain
more than one connected component and yet correspond to brain.
Such volumes are
i.
 At the posterior and anterior ends of coronal volume, where
the cerebral hemispheres appear as two regions.
ii.
 Upper slices near the top of head of axial volume, where the
cerebral hemispheres appear as two regions.
iii.
 In the very lower portions of axial volume, in which the
temporal and frontal lobes are separated from the cerebellum.
iv.
 In the middle slices, narrow openings either in head or skull
due to partial volume effect (PVE) that splits the brain into
two or more regions.

In order to obtain the complete brain portion and to discard
the non-brain region, we make use of 3-D information available in
adjacent slices of that volume. This extended method is named as
BEM2DE. In MRI of head scans, there is a continuity of the brain
portion between two adjacent slices. This similarity property, in
addition to overlap test procedure, is used to select the proper
brain regions as discussed in [13]. Jaccard coefficient (J) [23] is
used to estimate the similarity between the brain mask of the
current slice and the previous slice. If J is greater than 85% the
segmented result is considered as brain portions, otherwise an
overlap ratio (V) of each region (R) with the brains mask of the
previous slice (P) is computed using

VðP,RÞi
NðR \ PÞ

NðRÞ
ð13Þ

For an anisotropic nature of volume, V is expected to be more
than 90%. But the narrow openings through the weak boundaries
of head or skull may split or reduce the size of the region that is
present with P. We set V¼70% in our method. The values 85% and
70% for J and V, respectively, were estimated after doing several
trial experiments. For any ith region R(i), if Vi470% then the
region R(i) is treated as a brain portion, and is added to the brain
region Rfb, otherwise it will be discarded. Hence for the eroded
brain X1, with more than one connected components, Eq. (10) is
modified as

Rfb ¼

Rfb [
1r irn

RðiÞ if Vi470%

Rfb otherwise

8<
: ð14Þ

In MRI of head scans, the middle slices contain only one
connected region. Therefore, identifying the brain portion is
simple and easy. Therefore, in the BEM2DE method we start with
the center slice for each brain volume, at approximately W/2th
position, where W is the total number of slices in the volume and
proceed in each direction, up and down, to obtain the result.
Finally a binary image (X2) of the selected brain region (Rfb) is
created using Eq. (11) and used to extract the fine brain portion.
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Fig. 4. Original images from different orientations are given in column 1. The results of BEM2D are in column 2 and the results of BEM2DE are in column 3.
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2.4. Evaluation parameters

For evaluating the performance of our methods we make use
of Dice coefficient, sensitivity, specificity, false positive rate and
false negative rate. Several popular quantitative measures are
available for comparing structural similarities of two images. Dice
coefficient and Jaccard’s coefficient (measure of similarity) are
such measurements of asymmetry information on binary (and
non-binary) variables. The Dice coefficient (D) [24] is given by

DðA,BÞ ¼
2 A \ B
�� ��
A
�� ��þ Bj j

ð15Þ

where A and B are two datasets. The value D varies from 0 for
complete disagreement to 1 for complete agreement, between
A and B.

The sensitivity (S) is the percentage of brain voxels recognized
by the algorithm and specificity (Sp) is the percentage of non-
brain voxels recognized by the algorithm and are computed using
the true positive (TP), false positive (FP), true negative (TN) and
false negative (FN) values of the brain extracted by an algorithm.
TP and FP are the total number of pixels correctly and incorrectly
classified as brain tissue by the automated algorithm. TN and FN

are defined as the total pixels correctly and incorrectly classified
as non-brain tissue by the automated algorithm:

S¼
TP

TPþFN
ð16Þ

Sp¼
TN

TNþFP
ð17Þ
Finally, false positive rate (FPR) and false negative rate (FNR)
are used to measure the misclassification done by the algorithm.
FPR is the number of voxels incorrectly classified as brain tissue
by the automated algorithm divided by manually segmented
brain masks and is given by

FPR¼
FP

TPþFN
ð18Þ

FNR is the number of voxels incorrectly classified as non-brain
tissue by the automated algorithm divided by manually segmen-
ted brain masks and is given by

FNR¼
FN

TPþFN
ð19Þ

The FPR represents the degree of under segmentation and the
FNR the degree of over segmentation.
3. Materials

We used 61 T1 datasets obtained from the following sources
for our experiments.

Twenty coronal datasets of normal subjects were obtained
from the Internet Brain Segmentation Repository (IBSR) devel-
oped by Centre for Morphometric Analysis (CMA) at Massachu-
setts General Hospital. Each set has approximately 60 slices with
slice thickness E3 mm and matrix¼256�256. Some datasets
were affected by intensity non-uniformity (INU) artifact caused
by magnetic fields, radio frequency coils and noise factors. The
presence of neck portion along with head was much higher in
some datasets and had intensities similar to brain tissues.



Table 1
MRI T1 datasets collected from ‘The Whole Brain Atlas’.

Dataset Gender Age Clinical Total
slices

1 Male 73 Glioma—II Grade Astrocytoma 124

2 Male 22 Sarcome 24

3 Female 36 Cerebral calcinosis 18

4 Male 30 Multiple sclerosis 24

5 Male 31 Cerebral toxoplasmosis 24

6 Female 49 Multiple embolic infarction 24

7 Male 51 Multiple embolic infarctions 24

8 Female 49 Cerebral hemorrhage 24

9 Male 70 Mild Alzheimer’s diseases 24

10 Female 71 AD-visual hallucination 55

11 Female 59 Pick’s diseases 23

12 Female 76 Vascular dementia 43

13 Female 71 Fatal stroke 24

14 Male 76 Chronic subdural hematoma 26

1.2
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The manually segmented masks, ground truth or gold standard,
are also provided by the CMA.

Twelve datasets of MRI of Head Scans were collected from KGS
Advanced MR and CT Scans, Madurai, Tamilnadu, India. The MRI
datasets were acquired on a Siemens 1.5T scanner and each
dataset contained nearly 20 slices.

Another fifteen T1 test datasets were obtained from Brain
Extraction Evaluation (BEE) web service maintained by the Inter-
national Neuroimaging Consortium (INC), University of Minne-
sota. Some of the datasets were affected either by wrap around
artifact or by zipper artifact.

Fourteen T1 abnormal datasets are taken from ‘The Whole
Brain Atlas’ (WBA) website maintained by the Department of
Radiology and Neurology at Brigham and Women’s Hospital,
Harvard Medical School, the Library of Medicine, and the Amer-
ican Academy of Neurology. The details of datasets are given in
Table 1. These were used to evaluate our methods on datasets
with abnormalities.
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Fig. 5. The Dice coefficient (similarity measure) obtained for existing BEAs (BET,

BSE and MLS) and proposed BEMs (BEM2D and BEM2DE) on each of the 20 normal

datasets from the IBSR. The labels at the x-axis are the datasets names given

in IBSR.

Table 2
Mean value and standard deviation for the parameters Dice coefficient, sensitivity

and specificity calculated on 20 normal datasets taken from the IBSR. The best

performance for each metric is highlighted.

Method Similarity measure

Dice (D)

Sensitivity (S) Specificity (Sp)

BET 0.74170.146 0.99870.002 0.91570.055

BSE 0.87470.088 0.88570.116 0.9970.012

MLS 0.90570.213 0.93670.22 0.98770.017

BEM2D 0.91370.033 0.90970.063 0.99270.006
BEM2DE 0.93870.021 0.95170.036 0.99270.006
4. Results and discussions

We carried out experiments by applying our BEM2D and
BEM2DE on 61 datasets of T1 images of the head scans and
performed quantitative and qualitative analysis on the extracted
brain portion. To estimate the performance of our methods, we
compared our results with the well-known brain extractors BET,
BSE and MLS. Manual segmentation masks were unavailable for
the images collected from BEE web service, KGS scan centre and
WBA website. Therefore they were evaluated qualitatively. We
used BET, MRIcro 1.40, with a default smoothness value of 0.50.
For BSE we used BrainSuite 2.0 with the default values 3, 5, 0.75
and 1 for the number of iterations, diffusion constant, edge
constant and erosion size, respectively. Since BSE is an interactive
tool the values should be adjusted to yield good segmentation
results for some volumes. The MLS software was obtained from
the software collections maintained by Laboratory of Neuro
Imaging (LONI), University of California at Los Angeles (UCLA)
and used with the default values specified by the software.

4.1. Quantitative evaluation

For a quantitative comparison of the performance of our
methods with BET, BSE and MLS, the ‘‘gold standard’’, manually
extracted brain from T1 weighted MRI brain datasets available at
IBSR website, was used. For quantitative analysis, the parameters
D, S, Sp, FPR** and FNR were computed using Eqs. (15)–(19).
First we carried out experiments on the 20 datasets available in
IBSR. Fig. 5 shows the plot of average Dice coefficient for the 20
datasets. The labels along x-axis are the names of the IBSR datasets.
The average value of Dice coefficient, D, of BET is very low for the
datasets 1_24, 5_8, 6_10, 7_8, 8_4, 15_3, 16_3 and 17_3. The reason is
either due to INU artifact among the datasets or the inability to
remove neck portion. The D value obtained by BSE was lower for
datasets 5_8, 6_10, 15_3 and 17_3 due to the intensity variation
among the slices. Adjustments of parameters (3, 25, 0.62, 1) were
done in BrainSuite 2.0 for the datasets 5_8, 6_10 and 15_3 so as to get
the best result. BSE produced higher values of D for the datasets
110_3, 111_2 and 205_3 than the proposed methods. But the
deviation of D value among the datasets, as shown in Fig. 5, is higher
for BSE and BET than the proposed and MLS methods. MLS and
BEM2DE are found to give the highest similarity coefficient for all the
datasets. But for the dataset 6_10, MLS selected the neck portions
from the coronal scans instead of brain and hence failed to produce
the result. Hence the best and consistent performance, irrespective of
INU artifact, image contrast and involvement of excess portions like
neck, eyes and other non-brain tissues, is attained by the proposed
methods.

The quantitative values obtained for the D, S, and Sp using our
methods for the 20 datasets of IBSR are given in Table 2. To
evaluate the performance of our methods, the results obtained for
BET, BSE and MLS are also given. From Table 2, we note that the
highest value for D, 0.938, is obtained by our method BEM2DE,
the best value for sensitivity S, 0.998, by BET, and the best value
for specificity Sp, 0.992, by the proposed methods. From Fig. 5 we
note that our methods give better consistencies with low stan-
dard deviation.

The computed values for the parameters FPR and FNR and total
misclassification rate are given in Table 3. The FPR of BET is greater
than that of other methods and indicates that it has included more



Table 3
Average value of FPR, FNR and total misclassification rate for 20 datasets taken

from IBSR.

Method FPR FNR Total misclassification
rate (FPRþFNR)

BET 0.878 0.003 0.881

BSE 0.086 0.115 0.201

MLS 0.119 0.064 0.183

BEM2D 0.066 0.091 0.157

BEM2DE 0.075 0.049 0.124

Fig. 6. Brain portion extracted using the existing and proposed algorithms on T1

head scans selected from the lower portions of axial volume of BEE web service.

Row 1 shows original T1 scans and rows 2–6 show brain portion extracted by BET,

BSE, BEM2D, BEM2DE and MLS, respectively.
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non-brain tissues than other methods. FNR of BSE is high and implies
that it has excluded several brain tissues from the final result than
other methods. For a better performance the sum of FPR and FNR, i.e.,
the total misclassification rate should be as low as possible. Our
method BEM2DE gives the lowest value implying that it is the best
BEA with lower errors than BET, BSE and MLS.

The experiments were performed in a 1.73 GHz Intel Pentium
dual-core processor, Windows XP with 1 GB RAM using Matlab 6.5.
The average processing times of the proposed BEM2D and BEM2DE
methods on IBSR datasets were approximately 0.7 and 1 s/slice,
respectively. BET and BSE took less than 0.5 s/slice to produce the
final result but the excess FPR with BET and FNR with BSE are
unavoidable. This shows that the manual intervention is required to
redefine the final result. MLS took E4 s/slice and even consumed
longer time to real datasets.

4.2. Qualitative evaluation

Then we applied our methods, BET, BSE and MLS on the second
set of 15 datasets of BEE service. Slices 16, 26, 36, 46, 56, 66, 76,
86, 96, 116, 126 and 136 were selected at regular intervals from
subject01 of BEE web service. The brain portions extracted by the
existing and proposed methods are given in Figs. 6 and 7. Under
segmentation is experienced by BET in slices 46, 56 and 66 (row 2).
BSE (row 3) was unable to produce any result for first two slices (16
and 26) and over-extraction was done in slices 36–106. The
proposed BEM2D failed to extract the correct brain as seen in slices
16, 26,36, 46 and 56. Our BEM2DE and MLS produced acceptable
results for all the slices.

We then carried out experiments on the third set containing 12
real image datasets obtained from the KGS Scan Centre. Samples of
the brain extracted by each method for different orientations are
given in Fig. 8. The original slices selected from axial (slice 1 and
slice 2), coronal (slice 3 and slice 4) and sagittal (slice 5 and slice 6)
orientations of a normal subject are given in first row of Fig. 8. The
results obtained by each method are given in successive rows. From
Fig. 8 we note that the results obtained by our methods are better
than the results obtained from the well-known methods BET, BSE
and MLS. BET includes some additional non-brain tissues along with
the brain tissues and requires some post-processing operations to
remove the extra tissues (see the BET results of slices 1, 5 and 6 in
row 2 of Fig. 8). Over-extraction is done by BSE and it removes some
brain tissues along the cerebral border and inside the brain as
shown in row 3 of Fig. 8 for slices 1 through 6.

BET smoothens the image for low contrast images and thus
enhances and extracts the brain region from original images as
shown in row 2 (slices 1 and 2) of Fig. 8. But this is not possible
for all situations. When the same principle is applied for extre-
mely poor contrast images, BET failed to extract the brain region
(slices 3 and 4). Further, when we applied BSE on the datasets it
was unable to extract the brain region for the entire dataset even
after setting different values to model parameters. From the
results of BET and BSE for slices 3 and 4 given in Fig. 8, it can
be seen that BET and BSE failed to work on extremely poor
contrast images. MLS worked on axial and coronal volumes
whereas it failed to extract the brain region from sagittal scans
(slices 5 and 6 in row 6). MLS also included some additional non-
brain tissues with the final result (slices 1, 3 and 4). Our BEM2D
produced partial brain portions (slice 3 in row 4 of Fig. 8) whereas
the BEM2DE extracted them correctly.

The WBA contains MRI of head scans of patients with different
brain abnormalities. None of the BEAs, BSE, BET and MLS worked
successfully on these images. To test the robustness of our
method, we applied our BEM2DE on the 14 datasets given in
Table 1. BEM2DE worked well for the first 8 sets and the results of
the initial slices are given in Fig. 9. The selection of initial slice is
an important factor to start our method. If the brain portion in the
initial slice could not be extracted properly, then our method fails.
It is a drawback of our method. This happened for the dataset 9,
which had the image of Alzheimer’s disease. In this, the middle
slice (slice 12) had brain tissue discontinuity along the mid-
sagital line. As a result only half of the brain was extracted and
therefore, the extraction done in the remaining slices keeping that
as a reference gave wrong results. But when the next slice 13 of
that dataset was set as the initial slice our method worked well.
The results of slices 12 and 13 of dataset 9 are given in
Fig. 10(a) and (b), respectively. Our method produced good results
for the remaining 5 sets (10–14) except for few upper slices that
are affected by partial volume effect (PVE) at the skull boundary.
The result for the slice 33 of dataset 10 is shown in Fig. 10(c).
Fig. 10(c) shows only strips of brain portion at the bottom left.
Specialized methods are needed to deal such abnormal slices.

During our experiments we observed that the head masks
produced in Stage-1 of few slices had cavities, either due to scalp
tissues having low intensity values or due to wrap around artifact.
Sometimes the weak boundaries of skull, due to PVE, did not produce
the closed contour for the skull and affected the results in SRP or BEP.
These two factors will split our brain portion into many pieces during
the extraction process. But our BEM2DE picked up the regions



Fig. 7. Brain portion extracted using the existing and proposed algorithms on T1 head scans selected from the lower portions of axial volume of BEE web service. Row 1 shows

original T1 scans and rows 2–6 show brain portion extracted by BET, BSE, BEM2D, BEM2DE and MLS, respectively.

Slice 3Slice 2Slice 1 Slice 6Slice 5Slice 4

Fig. 8. Brain portion extracted using the existing and proposed algorithms on T1 head scans selected from real datasets. Row 1 shows original T1 scans and rows 2–6 show

brain portion extracted by BET, BSE, BEM2D, BEM2DE and MLS, respectively.
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Fig. 9. Initial slices selected from datasets 1–8 of WBA are in row 1 and the respective brain portions extracted by proposed method are in row 2. (a) Slice 62 of dataset 1,

(b) slice 12 of dataset 2, (c) slice 9 of dataset 3, (d) slice 12 of dataset 4, (e) slice 12 of dataset 5, (f) slice 12 of dataset 6, (g) slice 12 of dataset 7 and (h) slice 12 of dataset 8.

Fig. 10. Row 1 shows the originals and row 2 shows the extracted brain portions: (a) slice 12 of dataset 9, (b) slice 13 of dataset 9 and (c) slice 33 of dataset 10.
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corresponding to brain in each slice and constructed brain with more
than one connected region.

The extracted brain region from real datasets, BEE web service
subjects and WBA datasets were visually inspected by two
radiological experts and two experienced neurologists. The qua-
litative assessment was done by analyzing the remaining non-
brain regions and the regions of brain tissues lost in the stripped
brain area. The experts opined that the brain has been extracted
correctly in all the images except a few that are affected by PVE
and wrap around artifacts. The qualitative validation shows that
the results produced by our methods are comparable to or better
than the popular methods BET, BSE and MLS.

The failure of the methods BET, BSE and MLS on certain slices
of MRI of head scans and success of the proposed methods may be
due to the following reasons:
i.
 The existing methods require certain parameters as input to
start the procedure. These parameters depend on image
specific knowledge. Therefore, in datasets with abnormal
slices, the input parameters may not fit for the abnormal
slices and failed. The proposed methods are adaptive to image
characteristics and hence succeeded in extracting those brain
portions.
ii.
 The existing methods are designed for normal datasets and
thus they failed for certain abnormal datasets especially for
tumorous volumes. The proposed methods worked well for
both normal and abnormal datasets.
iii.
 The existing methods are model based methods. They require
the input image to have head up position and less neck
portions. So they require some preprocessing technique like
rotation and cropping to bring the image into the required
position. But the proposed methods require only the skull-
brain boundary detection and not model-based approach.
iv.
 The existing methods require preprocessing of the image, like
bias correction and contrast enhancement. The proposed meth-
ods do not require any of these. Therefore, when raw images with
artifacts, INU and low contrast are given as inputs, these methods
failed while the proposed methods worked well.
v.
 MLS is not modeled to process sagital type image. Hence it
failed for sagital orientation.

Our methods start from the mid slices and propagate up or
down to process the other slices. If this initial extraction fails,
then the whole process fails. Further, when PVE affects the skull
boundary then the brain extraction is not good. These are the
drawbacks of our methods.
5. Conclusion

In this paper we have presented two fully automatic brain
extraction methods with 2-D and 3-D approaches to extract brain
from T1 MRI of head scans. The 3-D based BEM2DE performed better
than BEM2D. The proposed methods do not require any external
parameter to process the MRI of head scans and thus qualify to be an
automatic BEA. These methods are not model based approaches and
thus are suitable for any orientation and even for low contrast
images. Experimental results show that our methods worked well on
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both normal and certain types of abnormal brain datasets. Our 3-D
based method worked well even for abnormal datasets available in
WBA where BSE, BET and MLS failed. This is purely an intensity
based automatic tool and hence can be implemented as a part of any
automatic brain image processing system. This method is extended
to 3-D processing and is under progress.
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