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State feedback design

Linear state space control theory involves modifying the
behaviour of an m-input, p-output, n-stafte system

x(t) = Ax(t) + Bu(t)

(OD)
y(t) = Cx(t),
which we call the plant, or open loop state equation, by
application of a control law of the form
u(t) = Nr(t) — Kx(t), (U)

INn which r(t) is the new (reference) input signal. The matrix K is
the state feedback gain and N the feedforward gain .



Is Full State Feedback Always Available?

In a typical system, measurements are provided by sensors:

U
— plant ~Y

Full state feedback uw = — Kz is not implementable!!
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When Full State Feedback Is Unavailable ...

.. we need an Observer!!



Is Full State Feedback Always Available?

In a typical system, measurements are provided by sensors:

u
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Full state feedback u = —Kx is not tmplementable!!

In that case, an observer is used to estimate the state x:
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State Estimation Using an Observer

If the system is observable, the state estimate T is
asymptotically accurate:

|12(t) —2(t)]| = \ ) (@i(t) — @i(t)? =0
1=1

If we are successful, then we can try estimated state feedback:

— plant i----| observer
u=—KT |
K

)




The Luenberger Observer

System: r = Az
y=Cx
Observer: z = (A— LC)Z + Ly.

What happens to state estimation error e = x — x as t — 007

= Ax — [(A— LC)x + LCx]
=(A—-LC)x— (A—- LC)x
=(A—LQC)e

Does e(t) converge to zero in some sense?



The Luenberger Observer

System: r = Ax
y=Cz
Observer: z=(A—LC)Z+ Ly
Error: ée=(A—LC)e

Recall our assumption that A — LC is Hurwitz (all eigenvalues
are in LHP). This implies that

l2(t) = 2@ = lle®]* = D les(t)* =0

1=1

at an exponential rate, determined by the eigenvalues of

A— LC.

For fast convergence, want eigenvalues of A — LC' far into
LHP!!



Observability and Estimation Error

Fact: If the system
x = Az, y=Cz

is observable, then we can arbitrarily assign eigenvalues of
A — LC by a suitable choice of the output injection matrix L.

This is similar to the fact that controllability implies arbitrary
closed-loop pole placement by state feedback.

In fact, these two facts are closely related because CCF is dual

to OCF.



Controllability—Observability Duality
Claim: The system

Tz = Az, y=Cx
is observable if and only if the system
t=Alz +Ctu
is controllable.

Proof: C(A',Cc")=[cT|ATC"|...|(A")"1CT]

-C-T

— CA — [O(A: C)]T

_CAn_ 1_

Thus, O(A, C) is nonsingular if and only if C(AT, C7T) is.



Observer Pole Placement, O/C Duality Version
Given an observable pair (A, C):

1. For F = AT, G = C7, consider the system & = Fz + Gu
(this system is controllable).

2. Use our earlier procedure to find K, such that
F-GK =AT - CTK

has desired eigenvalues.
3. Then

eig(AT — CTK) = eig(Al — CTK)! = eig(A — K1 O),
so L = K71 is the desired output injection matrix.

Final answer: use the observer

(A— LC)x + Ly
(A- K'C)z+ Ky

T



Recall: infinite-horizon Linear Quadratic Regulator (LQR)

Problem formulation: optimal control for integral-quadratic cost

minimize J(u(t)) = / +(0)TQx(t) + u(t)T Ru(t) dt
ult J 0

subject to @(t) = Az(t) + Bu(t), z(0) = x¢

Feasible if Q = 0, R >~ 0, (A, B) stabilizable, & (A, Q'/?) detectable.

Solution: independent of the initial condition x(, the linear state feedback

u*(t) = — K*z(t) = —R'B' Px

—/ & s

where P > ( solves the algebraic matrix Riccati equation

A'"P+ PA+Q=PBR'B'P



Equivalent problem formulation:

In hindsight, LQR can be interpreted as optimal pole placement for
t(t) = (A — BK™)x(t)

trading off minimal state deviation and minimal control energy:

00
K™ = argmin / z(t)' Qz(t)+z(t) K'RK z(t) dt
J O N— — N——— —
state deviation control energy



Recall: dual notions of controllability /observability

The following statements are The following statements are
equivalent for controller design: equivalent for observer design:

the system (A, B) is controllable the system (A, () is observable

the controllability matrix the observability matrix
Wc —_ [B AB . oo A'T?,—IB] — CCA |

Wo = i
_CA”—I |

has full rank n
has full rank n

the eigenvalues of A — BK can the eigenvalues of A — L(C' can be
be assigned via the matrix K assigned via the matrix L

idea: use duality (A, B, K) <> (A',C",L") to design optimal observers



Optimal design by duality (A, B, K) < (A',C",L")

LQ-optimal control for closed-loop dynamics: & = (A — BK)x

oo

minimizez f r()TQz(t) + z() TKTRK x(t) dt
() N \— p—
state deviation control energy

= K* =R !B"P where P> 0 solves ATP+ PA+Q =PBR'B'P

LQ-optimal estimation for estimation error dynamics: é = (A — LC) €

o0
minimizey, / e(t) ' Qe(t) +€e(t) LRL' €(t) dt
0 —— |
estimation error output correction

= [* = PCTR™! where P> 0 solves AP+ PA" +Q=PC"R™I1CP




Role of () and R in LQ observer design

Optimal observer for integral-quadratic cost

00
minimize; / e)TQe(t) +e(t)TLRLT e(t) dt
0 e e e— R e
estimation error output correction

trades off prediction and correction i = Ai + Bu + L(y — C%)
prediction correction
= R > 0 quantifies correction through measurement:
R “large” =— L “small" = trust prediction

R “small" = L "large” = trust measurement

= (Q >~ 0 quantifies prediction error: () “large” = “smaller” error ¢



Summary: LQ optimal estimation (LQE)

Problem formulation: optimal observer for integral-quadratic cost

o0
minimizey, / e(t) ' Qe(t) +e(t)' LRL" €(t) dt
J O N, e ——
estimation error output correction

subject to €é(t) = (A — LC)€(t)

Feasible if Q = 0, R > 0, (A, C) detectable, & (A, Q'/?) stabilizable.

Solution: independent of the initial condition ¢(, the output feedback
I*=PC'R™
where P > () solves the algebraic matrix Riccati equation

AP+ PA' +Q=PC'RCP



Combining Full-State Feedback with an Observer

» So far, we have focused on autonomous systems (u = 0).
» What about nonzero inputs?

r = Ax + Bu
y=0Cz



Combining Full-State Feedback with an Observer

» So far, we have focused on autonomous systems (u = 0).
» What about nonzero inputs?

r = Ax + Bu
y=Cx

— assume (A, B) is controllable and (A, C) is observable.

» Today, we will learn how to use an observer together with
estimated state feedback to (approximately) place
closed-loop poles.

u=—Kz

plant -Y

8)

observer «




Combining Full-State Feedback with an Observer

» Consider

r = Ax + Bu
y=0Cx

where (A, B) is controllable and (A, C') is observable.

» We know how to find K, such that A — BK has desired
eigenvalues (controller poles).

» Since we do not have access to x, we must design an
observer. But this time, we need a slight modification
because of the Bu term.



Observer in the Presence of Control Input

» Let’s see what goes wrong when we use the old approach:
z=(A—LO)Z+ Ly

» For the estimation error e = £ — x, we have

E=%—1
= Az + Bu — [(A — LC)x + LCx]
= (A— LC)e+ Bu — not good

» Idea: since u is a signal we can access, let’s use it as an
input to the observer to cancel the Bu term from zx.

» Modified observer:
z=(A—-LC)Z + Ly + Bu
é=i—17
= Ax + Bu — [(A — LC)x + LCx + Bu]
=(A—LC)e regardless of u



Observer and Controller

System: & = Ax + Bu
y = Cx
Observer: z = (A — LC)Z + Ly + Bu
Error: é=(A— LC)e

» By observability, we can arbitrarily assign eig(A — LC);
these should be farther into LHP than desired controller
poles.

Controller: u = —K=x (estimated state feedback)

» By controllability, we can arbitrarily assign eig(A — BK).



Observer and Controller

System: x = Ax + Bu
y=Cz
Observer: z = (A — LC)Z + Ly + Bu
Controller: u©=—KZx

The overall observer-controller system is:

2= (A—LC)Z+ Ly + B(—KZ%)

Y
=(A— LC — BK)x + Ly
u=—Kzx (dynamic output feedback)

— this is a dynamical system with input y and output



Dynamic Output Feedback

r = Ax + Bu

y=Cczx
Zz=(A—LC — BK)Z+ Ly
u=—Kzx

|
=
&)

observer DEEEE.
h
controller




Dynamic Output Feedback: Does It Work?

Summarizing:

» When y = z, tull state feedback u = — Kz achieves desired
pole placement.

» How do we know that u = —KZ achieves similar objectives?

Here is our overall closed-loop system:

r = Ax — BKZ
Z=(A—LC—BK)Z+ LCx

We can write it in block matrix form:

(D) -(re a-ze k) ()

How do we relate this to “nominal” behavior, A — BK?



Dynamic Output Feedback

(D =( a_rorsx) )

Let us transform to new coordinates:

(5) = () =(22) =G %))

T
Two key observations:

» T'is invertible, so the new representation is equivalent to
the old one
» in the new coordinates, we have
t = Axr — BKZx
=(A— BK)x+ BK(xz — )
= (A— BK)xz + BKe
e=(A—LC)e




The Main Result: Separation Principle

So now we can write

(O-( )

upper triangular matrix

The closed-loop characteristic polynomial is

1o (Is— A+ BK _BK
© 0 Is— A+ LC

=det (Is— A+ BK)-det(Is— A+ LC)
Separation principle. The closed-loop eigenvalues are:

{controller poles (roots of det(Is — A+ BK))}
U {observer poles (roots of det(Is — A+ LC))}

— this holds only for linear systems!!



Separation Principle

Separation principle. The closed-loop eigenvalues are:

{controller poles (roots of det(Is — A+ BK))}
U {observer poles (roots of det(Is — A+ LC))}

— this holds only for linear systems!!

Moral of the story:

» If we choose observer poles to be several times faster than
the controller poles (e.g., 2-5 times), then the controller
poles will be dominant.

» Dynamic output feedback gives essentially the same
performance as (nonimplementable) full-state feedback —
provided observer poles are far enough into LHP.

» Remember: the system must be controllable and
observable!!



Let’s go
a little bit out of the scope
of this class...



Stochastic model of plant

z(t) = Axz(t) + Bu(t) + w(t)
yt) = Cx(t) +v(1)

Assumption: Gaussian, white, & uncorrelated (E‘ [w(t)v(r)T] = 0) noise:
w(t) : process noise with zero mean E|w(t)] = 0 & covariance:
Elw(t)w(r)']=Qd(t—-71), Q=0
v(t) : measurement noise with zero mean E|v(t)| = 0 & covariance:
Ept)v(r)'|=Ré(t—-7), R>0

Kalman’s question: What is the estimate Z(#) that minimizes the mean
square error E [(:z:(t) —z(t)) " (x(t) — f’ﬁ(t))], given prior measurements ?

And how can we find an uncertainty estimate, e.g., a covariance matrix?



Kalman's solution

(see Wikipedia for controversial history & earlier/parallel authors: Bucy & Stratonovich)

Assume Q = 0, R > 0, (A, C) detectable, (A, Q'/?) stabilizable,
then the mean-square optimal state estimator is a linear observer

Z = AZ+ Bu+ L*(y — C%)

where | L* = PC'' R™! | is the Kalman gain & P = P" > 0 is the
unique positive definite solution to the algebraic matrix Riccati equation

= APEP ARSI PG RO PG

& P= lim F [e(t)e(t)T| y(7), Og'rgt] is stationary error covariance.

t—o0



Properties of the Kalman Filter

m The plant (A, B,C, D) is not required to be stable.

m The Kalman filter results in unbiased state estimate: EF|x| = F|x].

Further, the residual random process y(t) — C'Z(t) is white,
& therefore has no remaining dynamic information content.
— “no need to work harder” (in case of Gaussian noise & LTI system)

m Kalman filter is optimal & minimizes stationary mean square error
. = 1 . BT T
lim B {(x(t) = #(1) " (x(t) = 2(t)) | = Jim B [e(t) "e(1),

given prior measurements y(7) with 7 <t

m stationary error covariance P = flim E [e(t)e(t)T‘ y(7), Og'rgt]
- —00

m [he Kalman filter is recursive & fully determined by P & z(t).

m duality to LQR (all carries over) & separation principle for observer



LQG (linear-quadratic-Gaussian) control design

For a LTI control system with state and measurement noise

r(t) = Ax(t) + Bu(t) + w(t)
y(t) = Cux(t)+ v(t)

we want to find the output-feedback controller that minimizes

E [ / - x(t) ' Qx(t) + u(t) R(t)u(t)dt
0

— solution: combination of LQR state feedback & Kalman filter

S(ivurﬁko " rrih cipﬂ.



LQG design = LQR state feedback + time-invariant Kalman filter
LQR and Kalman gains can be designed separately

Plant
“ x = Ax + Bu ——
LQR feedback l
— — 4

state feedback: w = — Kz

via LQR

+
-<}x=\ Kalman filter ——@~__—O R

dynamic LQG compensator K(s)

state estimation: r ~ &
via Kalman filter



LQG design is optimal but not robust in general

try the calculation at home

Guaranteed Margins for LQG Regulators
JOHN C. DOYLE

Abstract—There are none,

INTRODUCTION

Considerable attention has been given lately to the issue of robustness
of linear-quadratic (LQ) regulators. The recent work by Safonov and
Athans [1] bas extended to the multivariable case the now well-known
guarantee of 60° phase and 6 dB gain margin for such controllers.
However, for even the single-input, single-output case there has re-
mained the question of whether there exist any guaranteed margins for
the full LQG (Kalman filter in the loop) regulator. By counterexample,
this note answers that question; there are none.

A standard two-state single-input single-output LQG control problem
is posed for which the resulting closed-loop regulator has arbitrarily
small gain margin.

Exampre
Consider the following:

HEBH HEREHE
y=[1 ol[i;]w

where (x,x;), , and y denote the usual states, control input, and
measured output, and where w and v are Gaussian white noises with
intensities o >0 and 1, respectively.




and that’s why we need
robust control...




We need volunteers
for a robotics experiment!

or how to get a little bonus to your final note...



