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Brittle Fracture mechanics (LEFM): History

I Starting point: Cracked Liberty ship (second World War).
I Griffith 20’s→ Irwin 50’s (Naval research Laboratory).
I Failure occurs for small strains and negligible plasticity.

(glass, metal at low temperatures, rocks...).
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Brittle Fracture mechanics: the aims

Take an elastic loaded body:

1. Will a crack appear?

2. If yes, can we predict its shape? Can we predict the number of radial
cracks?

3. If cracks are present, will they propagate, over which distance? until the
total breakdown of the body?

4. Can we predict the crack front shape?
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Brittle Fracture mechanics: the aims

J Tignon

Take an elastic loaded body:
1. Will a crack appear?
2. If yes, can we predict its shape? Can we predict the number of radial

cracks?
3. If cracks are present, will they propagate, over which distance? until the

total breakdown of the body?
4. Can we predict the crack front shape?

8



Outline

1. Bases (Irwin 1950-)

If cracks are present, will they propagate, over which distance? until the
total breakdown of the body?

2. Deformation of the crack front (Rice 1985-)

Can we predict the crack front shape?

3. Crack initiation (2000’s)

Will a crack appear?
If yes, can we predict its shape? Can we predict the number of radial
cracks?
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Traditional LEFM approach

~up

∂Ωt
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~e3(s)

E , ν

Linear Elastic material. Condition of crack propagation?
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Definition of the Stress Intensity Factors

~e12

~e2

3
1

process zone

r
M

Westergaard (1938), Williams (1952), Leblond and Torlai (1992):

σ1p(M) ∝ Kp(s)√
r

for r → 0.

Stress Intensity Factors (SIFs): K1(s), K2(s), K3(s)

Energy release rate G:

G(s) ≡ −dEelast

dS

=
1− ν2

E
(K1(s)2 + K2(s)2) +

1 + ν

E
K3(s)2 Irwin’s formula
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Crack propagation direction criterions

Whatever the loading, in an homogeneous brittle material, the crack
propagates in order to reach a situation of pure tension loading (Hull, 1993).

Mode 2: local kink ϕ

PLS: Goldstein and Salganik (1974)
MTS: Erdogan and Sih (1963)

Review: Qian and Fatemi (EFM, 1996)

Mode 3: rotation along x1

Lazarus et al. (JMPS 2001-I,II, IJF
2008)

Lin et al. (IJF 2010)
Pons et Karma (Nature 2010)
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Crack propagation direction criterions
In memory of F. Buchholz (univ. Paderborn, Germany) who made the
following experiments in PMMA:

Mode 1+2: in-plane 4PS Mode 1+2+3: in-plane 3PB

Now, coplanar propagation (weak interface) even in mode 1+2+3
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Crack advance versus loading criterions

I Brittle fracture: Griffith (1920)’ criterion

G < Gc ⇒ no propagation,

G = Gc ⇒ propagation.

In mode 1, it is equivalent to Irwin (1958)’s criterion:

K1 < Kc ⇒ no propagation,

K1 = Kc ⇒ propagation.

I Fatigue, subcritical fracture: Paris (1961)’ type law

∂a(t)
∂t

= CGβ

For β � 1, regularization of Griffith (1920)’ threshold criterion.
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Determination of the SIF

I Engineering: Finite Elements simulations, XFEM (Belytschko et al.
2000’s).

From Lazarus, Buchholz, Fulland, Wiebesiek (IJF, 2008).

I Research analytical approach:
Crack front perturbation approaches initiated by Rice (1985).
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Outline

Bases of the LEFM approach

Deformation of the crack front shape

Crack initiation

Conclusion
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Crack front perturbation approach:
δK(s) knowing their initial values K(s)

δ(s)~e2(s)

s0

τ

s

σ

K + δK

K
I Mode 1: Rice (1989)
I Mode 2+3 : Favier, Lazarus and

Leblond (IJSS, 2006)

δKi (s0) = Nij (ν) · Kj (s0)δ′(s0)

+
1

2π
PV
Z
F

Wij (s0, s)

D2(s0, s)
· Kj (s) [δ(s)− δ(s0)~e2(s0).~e2(s)] ds.

+Similar, but more complex, formula for δWij (s0, s1).

Initialisation: geometry for which Wij (s, s0) are known...

17



Initialisation: Circular cracks

x

y

z

θ

σ∞zy

σ∞xy

σ∞yy

a

An internal circular
crack

x

y

z

θ

O
a

F∞ or U∞0

M∞0 or Ω∞

An external circular crack

I Internal: Kassir and Sih (1975), Tada et al. (1973), Gao et Rice (1987),
Gao (1988).

I External: Stallybrass (1981), Gao et Rice (1987), Rice (1989)
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Initialisation: Half-plane cracks

z

x

y

I Homogeneous case: Meade and Keer (1984), Bueckner (1987), Rice
(1985), Gao and Rice (1986).

I Interfacial crack: Lazarus et Leblond (1998), Bercial-Velez et al. (2005),
Piccolroaz et al. (2007).
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Initialisation: Tunnel cracks

2a

x

y

z

σ

A tunnel-crack loaded by:
I remote tensile: Leblond, Mouchrif et Perrin, 1996;
I shear stresses: Lazarus and Leblond, 2002
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Examples of application of the perturbation approach

1. Largescale propagation simulations

2. Stability of the straight crack front shape in an homogeneous media

3. Crack propagation in heterogeneous media
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Largescale propagation simulations: PlaneCracks

τ

σ

F

I Initialisation of K, W: internal circle under remote tensile or shear loading
I Step 1: Determination of K and W along the front F

by successive small perturbations of the circle
I Step 2: Determination of the crack advance by Paris’ law

∂a(t)
∂t

= CGβ

Rice (1989), Bower and Ortiz (1990), Lazarus (2003), Favier, Lazarus,
Leblond (2006)
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Examples in mode 1

Brittle fracture β = 50

The stationnary shape is circular.

Lazarus, 2003
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Examples in mode 2+3 (coplanar propagation case)

τ a

b

Brittle fracture β = 50

The stationnary shape is nearly elliptical with:
a
b

= (1− ν)
β
β+1

a
b

= (1− ν) if β � 1 (G = Gc)

Favier, Lazarus, Leblond (IJSS, 2006)
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The configuration stability problem

x

y

z

I Problem: circular, straight cracks are often used in engineering, is it
safe?

I If the crack front is perturbed, will the perturbation increases (instable) or
decreases (stable) in time?

This stability problem has been studied by
I Rice and Gao (1985-1990) for circular and half-plane cracks
I Lazarus and Leblond (1998) for the interfacial half-plane crack
I Leblond, Favier, Pindra, Lazarus, Mouchrif, Perrin (1996-) for

tunnel-cracks
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Straight front stability in mode 1: unperturbed problem

x

y

z

K = cst , α = 0

z

x

y

a

−σ

σ

K = 2
q

2
πσa1/2, α = 1/2

z

x

y

a
P

−P

K =
q

2
πPa−1/2, α = −1/2

K (a) = kaα

I if α > 0,
dK (a)

da
> 0 : instable propagation at constant loading.

I if α < 0,
dK (a)

da
< 0 : stable propagation at constant loading.
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Model problems: SIF along the perturbed configuration

x

y

z

a

δ(z)

δK (z)

K (a)
= α

δ(z)

a
+

1
2π

PV
Z ∞
−∞

δ(z′)− δ(z)

(z′ − z)2 dz′

In Fourier transform along z−axis:

δbK (k)

K (a)
=

„
α− ka

2

« bδ(k)

a
k wavenumber
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Stability of the crack shape. Case α < 0,
dK (a)

da
< 0.

Then α− ka
2
< 0 whatever the value of k .

Since,
δbK (k)

K (a)
=

„
α− ka

2

« bδ(k)

a

it implies that any perturbation disappears.

B

Aλ

a

λ� a
K (A) < K (B)

a λ

A

B

λ� a
K (A) < K (B)
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Stability of the crack shape. Case α > 0,
dK (a)

da
> 0.

λ� a
K (A) < K (B)

B

Aλ

a

λ� a
K (A) > K (B)

a λ

A

B
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Stability of the crack shape. Case α > 0.

Stability
λ < λc

K (A) < K (B)

B

Aλ

a

Bifurcation
λ = λc = λ∗c a
K (A) = K (B)

where

λ∗c =
π

α

Instability
λ > λc

K (A) > K (B)

a λ

A

B

Since λc = λ∗c a↗ with a, ultimately any perturbation tends to disappear.
If :

I The first order approach remains valid
I The fracture properties are homogeneous...
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Crack propagation in heterogeneous media

Crack front shape such as K (x , z) = Kc(x , z), ∀(x , z) ∈ F?
For slightly toughness heterogeneities:
Kc(z, x) = Kc(1 + ∆Kc(z, x)), |∆Kc | � 1:

δ̂(k , a) = −ad∆Kc(k , a)
ka
2
− α

Meaningless if α ≥ 0 due to the existence of a bifurcation

⇒ α < 0 in the sequel.

Application to

1. Crack trapping by obstacles

2. Crack propagation in disordered medium
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Application to the crack trapping

y

z

Kc

Kc(1 + ∆Kc)

1. Gao and Rice (1989, 1991)

2. Dalmas, Barthel, Vandembroucq (2009)

3. ANR MEPHYSTAR
Theory: S. Patinet, postdoc with V. Lazarus D. Vandembroucq.
Experiments: L. Alzate (PhD D. Dalmas, St Gobain)
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Application to disordered medium.

δ̂(k , a) = −ad∆Kc(k , a)
ka
2
− α

I Power spectrum of the crack front fluctuations:

|δ̂(k , a)|2 = a2 |d∆Kc(k)|2„
|α|+ ka

2

«2

as a function of |d∆Kc(k)|2 power spectrum of the toughness fluctuations
∆Kc .

I If |d∆Kc(k)|2 = cst = bK0 (white noise), one obtains:

|δ̂(k , a)|2bK0a2
=

1„
|α|+ ka

2

«2

which corresponds to a Family-Viscek (1985) scaling ζ = 0.5 and τ = 1.
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Application to disordered media. Other results

I Interfacial/homogeneous: minor influence.

Pindra, Lazarus, Leblond, JMPS 2008.
I Mode mixity: minor influence

Pindra, Lazarus, Leblond, JMPS 2010
I Tunnel-crack/half-plane crack: minor influence
I Loading α: MAJOR influence
I Irwin/Paris law: MAJOR influence with a memory effect

bδ(k , a) =

Z a

a0

»
exp(−ka/2)

exp(−ka′/2)

–2β “ a
a′
”βcδc(k , a′) da′,

Lazarus and Leblond (2002); Favier, Lazarus and Leblond (JMPS, 2006).

Statistical physics approach:
Daguier, Bouchaud and Lapasset (1995), Schmittbuhl, Maloy et al.
(1995-2010), Ramanatha, Fisher, Ertas (1997), Krauth and Rosso (2002),
Hansen et al. (2003), Roux, Vandembroucq, Hild, (2003), Katzav et
Adda-Bedia (2006), Ponson (2007), Bonamy (2009)...
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Interaction between several cracks

I Interaction between two tunnel-cracks:

I Determination of Wij for two-tunnel cracks (Pindra, Lazarus, Leblond, 2010)

I Bifurcation wavelength λc = λ∗a↘ when a↗ (Legrand, Leblond, 2010).

2a2b 2b

σ

I Extension of the code PlaneCracks for two cracks (PhD of L. Legrand).
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Comparison of PlaneCracks with experiments

Lazarus (2003) Dupeux et al. (1998)

Collaboration envisaged with Muriel Braccini (SIMAP, Grenoble).
One crack, interaction of two cracks (L. Legrand).
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Heterogeneous media: comparison with experiments

D. Dalmas and D. Vandembroucq
ANR Mephystar J. Schmittbuhl et al.
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Outline

Bases of the LEFM approach

Deformation of the crack front shape

Crack initiation

Conclusion
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JL Prensier

1. Will a crack appear?

2. If yes, can we predict its shape?
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Variational approach to fracture.
Bourdin, Francfort and Marigo (1998-2008)

Principle
F cracks such as Etot (F) ≡ Eelastic(F) + Gc length(F) is minimum.

I Identical to the traditional approach if a crack is still present.
I Applicable only if an “idea” of the crack shape.

Regularized form: Non-local damage model
α(M) damage field such as Etot (α) ≡ Eelastic(α) + Gc f (α, `) is minimum.

where f (α, `) chosen such as lim`→0 f (α, `) = length(F).
I Convergence toward the initial principle for `→ 0.
I Suitable for numerical purposes.
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Directional drying in capillary cells

Gauthier, Lazarus and Pauchard
(Langmuir 2007, EPL 2010)

I Capillary tubes of diameter ∼ 1 mm.
I Ludox R© colloidal aqueous suspension of

silica particles (diameter ∼ 10 nm).
I Drying from the single bottom open edge.
I Contraction prevent by adhesion
⇒ tensile stresses
⇒ vertical star-shaped cracks.

I Variation of the drying conditions⇒
various number n of radial cracks

Model: Linear elastic cross-section 2D
problem:

σ =
Eν

(1 + ν)(1− 2ν)
trε1+

E
(1 + ν)

ε+σ01
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Use of the regularized approach.

VL, Gauthier, Pauchard, Maurini, Valdivia (ICF12, 2009):

Qualitative agreement.
Idea of the crack shape.
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Use of the direct approach
For dimensional reasons:

n = f (L)

where L =
Lc

R
∝ fracture energy

elastic energy

More precisely, Lc is the Griffith length defined by (Kc toughness):

Lc =
EGc

σ2
0

=
K 2

c

σ2
0

0

1

2

3

4

5

6

7

8

9

0.01 0.1 1

n

Lc/R
43



Comparison theory/experiments:

Good agreement between theory and experiments.
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Application: Geological shrinkage crack patterns

Septarias Giant’s causeway, Ireland Port Arthur, Tas-
mania

Minimum principle⇒ Lc

R
=

K 2
c

σ2
0

= f−1(n)⇒ σ0 =
Kcp

f−1(n)
⇒ origin?

With A. Davaille (FAST), S. Morris (Univ Toronto), colleagues of IDES (Orsay)

45



Application to crack nucleation

Impact (Vandenberghe, Ver-
morel, 2009)

Indentation (Rhee et al.,
2001)

Drying of a thin colloidal sus-
pension film (L. Pauchard)
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Conclusion.

New theoretical developments in LEFM in the last 10-20 years:

I Traditional approach
I Statistical physics
I Variational approach
I Phase-field
I XFEM
I Experiments

Now:
I Collaborations
I Application several fields:

I Engineering
I Soft Matter
I Geophysics
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