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AbstractThis dissertation concerns the model reduction of large, linear, time-invariant systems. Anew method called the Dominant Gramian Eigenspaces method, which utilizes low rankapproximations to the exact system gramians, is proposed for such system.The Cholesky Factor ADI algorithm is developed to generate low rank approximations tothe system gramians. Cholesky Factor ADI requires only matrix-vector products and linearsolves, hence it enables one to take advantage of sparsity or structure in the system matrix.A connection is made between approximating the dominant eigenspaces of the systemgramians and the generation of various low order Krylov and rational Krylov subspaces.The Cholesky Factor ADI algorithm is then used in conjunction with the DominantGramian Eigenspaces method in the model reduction of large, linear, time-invariant systems.It is demonstrated numerically that this approach often produces globally accurate reducedmodels, even when the low rank approximations to the system gramians have not convergedto the exact gramians.In addition, it is shown that, in a model reduction method for symmetric systems basedon moment matching, the problem of choosing moment matching points can be approachedby solving the rational min-max problem associated with CF{ADI parameter selection.Thesis Supervisor: Jacob K. WhiteTitle: Professor
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Chapter 1
Introduction
1.1 Dissertation outlineThis dissertation has two parts. A self-contained part concerns the solution of the Lyapunovequation whose right hand side has low rank. The other part utilizes the Lyapunov resultsin the model reduction of large, linear, time-invariant systems.A main contribution of this dissertation is the formulation of the Cholesky Factor ADIalgorithm [33], which solves the following Lyapunov equation whose right hand side has lowrank,

AX +XAT = �BBT ; A 2 R n�n; X 2 R n�n ; �i(A) < 0; 8i; rank(B)� n: (1.1)
The unknown is the matrix X. The coe�cient matrix A is stable, and the right hand side,�BBT , has rank much lower than n. Such Lyapunov equations occur in the analysis andmodel reduction of large, linear, time-invariant systems, where the system size is much largerthan the number of inputs and the number of outputs.The Cholesky Factor ADI algorithm is a reformulation of the Alternate Direction Implicitalgorithm [2, 57, 58], and gives exactly the same approximation. However, Cholesky FactorADI requires only matrix-vector products and linear solves by A, hence it enables one totake advantage of sparsity or structure in the matrix A. The Cholesky Factor ADI algorithmcan be used to generate a low rank approximation to the solution of (1.1).A second contribution of this dissertation consists of making the connection betweenapproximating the dominant eigenspace of the solution to (1.1) and the generation of variouslow order Krylov and rational Krylov subspaces.The second part of this dissertation concerns low rank model reduction methods forlarge, linear, time-invariant systems. A low rank model reduction method uses low rankapproximations to the exact system gramians. A new method, the Dominant GramianEigenspaces method, is proposed here. Numerical comparison of the Dominant Gramian
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Eigenspaces method is made with another low rank model reduction approach, the Low RankSquare Root method [41, 46]. It is shown that the Dominant Gramian Eigenspaces methodoften produces a better reduced model than the Low Rank Square Root method when thelow rank approximations to the system gramians have not converged to the exact gramians.The Cholesky Factor ADI algorithm can be used to generate low rank approximations tothe system gramians for either low rank model reduction method.A further contribution of this dissertation is showing that, for symmetric systems, theproblem of picking points where moments are to be matched in a moment matching via ra-tional Krylov subspaces method can be approached by solving the rational min-max problemassociated with CF{ADI parameter selection.This dissertation is organized in the following way.Chapter 1 covers the basics of linear, time-invariant systems theory, including controlla-bility, observability, and the system gramians as the solutions to two Lyapunov equations.Chapter 2 introduces the idea of model reduction via projection. Chapter 3 describesmoment matching via projection onto a rational Krylov subspace. Chapter 4 describes theTruncated Balanced Realization method of model reduction, which requires exact systemgramians.Chapter 5 motivates the need to approximate Truncated Balanced Realization by lowrank methods which use only low rank approximations to the system gramians. It isshown that this is achievable for symmetric systems, but is in general not possible fornon-symmetric systems. For the model reduction of non-symmetric systems, the Domi-nant Gramian Eigenspaces method is proposed and shown to produce better reduced modelsthan the existing Low Rank Square Root method.Chapter 6 characterizes the di�erent bases for the range of the solution to (1.1) as ordern Krylov and rational Krylov subspaces with di�erent starting vectors.Chapter 7 turns to the solution of (1.1) and provides background on existing approaches.Chapter 8 develops the Cholesky Factor ADI method.Chapter 9 motivates the low rank approximation of the solution to (1.1). It is shownthat, various low rank approximations, including Cholesky Factor ADI, consist of �nding alow order Krylov or rational Krylov subspace. These low rank methods, when run to n steps,yield the range of the solution to (1.1). This chapter includes numerical results on how wellthe low rank Cholesky Factor ADI approximation captures the dominant eigenspace of theexact solution to (1.1).Chapter 10 uses Cholesky Factor ADI to generate low rank approximate gramians for theDominant Gramian Eigenspaces method. It is shown that, for symmetric systems, the prob-lem of picking points where moments are to be matched in a moment matching via rationalKrylov subspaces method can be approached by solving the rational min-max problem as-sociated with CF{ADI parameter selection. This chapter also includes numerical results onthe model reduction of symmetric and non-symmetric systems, and on CF{ADI parameter
9
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Figure 1-1: System with a large number of devices to be simulated
selection.Chapter 11 contains conclusions and future work.
1.2 MotivationThe design of complicated systems (�gure 1-1) which are composed of a large number ofdisparate devices occurs in many engineering applications. In order to optimize a systemfor best performance, one needs to simulate it repeatedly, each time design parameters arevaried. Devices that can belong to a system include circuits, sensors, and micro-machineddevices. The devices couple to one another via inputs and outputs. The input-outputbehavior of the devices determines how the overall system performs.Often, the devices are initially described by mathematical models which are large. Thiscan happen if the models were generated without the idea in mind that they will be a partof a much larger system which needs to be repeatedly simulated.If a system has a large number of devices, and the devices themselves are describedby large models, simulation of the entire system in �gure 1-1 may be unacceptably time-consuming and expensive. The idea of model reduction is that the large models should bereplaced by smaller models which are amenable to fast and e�cient simulation and whichstill capture the devices' input-output behavior to an acceptable accuracy.Henceforth leaving the large picture of the overall system, the rest of this dissertationfocuses on the mathematical models which describe the devices. Model reduction is thesimpli�cation or reduction of a mathematical model, under the constraint that the input-output behavior of the device is well approximated over the relevant range of inputs. Usually,there are also constraints placed upon the reduced model size and the approximation error.The mathematical model for a device may be a set of discretized integral equations,semi-discretized PDEs, or simply a large system of ODEs. Often, when a model comes fromdiscretization, the resulting system of equations can be very large. It is not rare to encounter
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a circuit model of interconnect with O(100; 000) elements. It is also not rare for the largeinitial model to contain a vast amount of redundant information and to be amenable tosigni�cant reduction in model size with little loss in accuracy.Of course, with knowledge of the nature of the physical device a engineer can frequentlyreduce the model size by lumping together elements, or removing parts of the problem whichare of little importance in the relevant input range. This is an extremely useful approachand can produce very good, application-speci�c, results. However, it is far from automatic,and, at times, the intuition of the engineer can fail when subtle high order e�ects come intoplay.This dissertation is not concerned with reduction methods which are speci�c to a particu-lar engineering application. Rather, it is concerned with numerical model reduction, meaningthat very little knowledge of the physical device is assumed. The object of the reduction isthe original large numerical model, which is assumed to be su�ciently accurate in modelingthe input-output behavior of the physical device for the relevant range of inputs. It, ratherthan the underlying physical device, is the object by which the quality of approximation ismeasured. In fact, a reduced model from numerical model reduction frequently does nothave a physical counterpart.One bene�t of numerical model reduction is that for linear, time-invariant systems, thereare theoretical results regarding optimality and approximation error.This dissertation is restricted to the numerical reduction of models described by linear,time-invariant systems which have large, sparse or structured, system matrices. Such systemsoccur in interconnect modeling, solution of PDEs, and other applications.
1.3 Systems theoryThis section contains basic known results on linear, time-invariant systems, some of whichare taken from [4, 19, 50].A linear, time-invariant system with realization, (A;B;C), is characterized by the equa-tions, dx(t)dt = Ax(t) +Bu(t); (1.2)y(t) = Cx(t): (1.3)
The vector valued function, x(t) : R 7! R n , gives the state at time t, and has n components.The input u(t) : R 7! R p , and output y(t) : R 7! R q , have p and q components, respectively.The matrices A 2 R n�n , B 2 R n�p, C 2 R q�n are the system matrix, the input coe�cientmatrix, and the output coe�cient matrix, respectively.For single-input single-output (SISO) systems, p = 1; q = 1. Even for multiple-input,multiple-output (MIMO) systems, p and q are usually both very small compared to n.
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The components in u(t) and y(t) have physical meaning as the inputs and outputs ofthe device being modeled. Often, the components in x(t), as originally discretized, alsohave physical meaning, such as being the nodal voltages and branch currents of a circuit.The matrices B and C describe how the components in x(t) are connected to the deviceinputs and outputs. The original matrix A usually comes from discretizing the governingequations. However, after model reduction, x(t), A, B, and C may not have simple physicalinterpretations.An example of a linear, time-invariant system comes from the semi-discretization of the1-D di�usion equation, @f(w; t)@t = �@2f(w; t)@w2 ; (1.4)
where f(w; t) may be the temperature of a metal rod at time t and position w. If (1.4) isdiscretized in the space variable w only,

xi(t) := f(wi; t); (1.5)
then it becomes a system of ODEs as in (1.2). The semi-discretized values of f are thecomponents of the state vector x(t). The system matrix A comes from discretizing the secondorder di�erentiation operator. The boundary condition determines the input. Indicating atwhich positions temperature is measured gives the output equation (1.3).Equation (1.2) is a simple system of linear, time-invariant, non-homogeneous, �rst orderODEs. Equation (1.3) is an algebraic equation which produces the output y(t), each ofwhose components is a linear combination of the components of the solution x(t) to (1.2).The solution of (1.2) is,

x(t) = eA(t�t0)x0 + Z tt0 eA(t��)Bu(�)d�; x0 = x(t0); (1.6)
which gives the output as,

y(t) = CeA(t�t0)x0 + C Z tt0 eA(t��)Bu(�)d�: (1.7)
1.3.1 Transfer functionThe Laplace transform of a function f(t) in the time domain is the function F (s) in thefrequency domain,

Lff(t)g = F (s) := Z 10 e�stf(t)dt: (1.8)
12



By taking the Laplace transforms of the quantities in (1.2-1.3) one obtains,
sX(s) = AX(s) +BU(s); (1.9)Y (x) = CX(s); (1.10)

where U(s), Y (s), X(s) are the Laplace transforms of the input u(t), the output y(t), andthe state vector x(t), respectively.The transfer function G(s) of the system (1.2-1.3) is
G(s) = C(sI � A)�1B: (1.11)

It relates input to output in the Laplace or frequency domain according to,
Y (s) = G(s)U(s): (1.12)

The following de�nition deals with the equivalence of di�erent realizations in terms ofthe transfer function.De�nition 1. A realization ( ~A; ~B; ~C),d~x(t)dt = ~A~x(t) + ~Bu(t); (1.13)~y(t) = ~C~x(t); (1.14)
is equivalent to (1.2-1.3) if~G(s) = ~C(sI � ~A)�1 ~B = C(sI � A)�1B = G(s); 8s: (1.15)

A realization (T�1AT; T�1B;CT ), where T 2 R n�n is an invertible matrix, is equivalentto (A;B;C). It corresponds to a change of variable, x(t) = T ~x(t), in (1.2-1.3). There arein�nitely many equivalent realizations of the same linear time-invariant system.
1.3.2 Reachability and controllabilityThis section reviews the basics of controllability.De�nition 2. The state z 2 R n can be reached from the state w 2 R n, and equivalently,w can be controlled to z, if there exist t0; t; u(t) such that equation (1.6) is satis�ed withx0 = w and x(t) = z.De�nition 3. A system is controllable if for any pair of states w and z, w can be controlledto z, or equivalently, z can be reached from w.
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Proposition 1. The system in (1.2-1.3), because it is linear, is controllable if and only ifevery state z can be reached from the zero state [50].The states that can be reached from x0 = 0 are�z 2 R n ���� z = z(t) = Z tt0 eA(t��)Bu(�)d�� ; (1.16)
which implies

z 2 colsp �B;AB; � � � ; An�1B� : (1.17)
The system (1.2-1.3) is controllable if and only if

rank ��B;AB; � � � ; An�1B�� = n: (1.18)
De�ne L2p(�; �) to be the set of square integrable functions u : [�; �) 7! R p . The operatorL : L2p(�; �) ! R n which maps the input u(�) 2 L2p(�; �) to the state x(�) 2 R n at t = � ,with zero initial state, x0 = x(�) = 0, is given by

L(u) = Z �� k(�)Tu(�)d�; (1.19)
where

k(�) = BT (eAT (���)): (1.20)
De�ne the inner product on L2p(�; �) as

< u; v >:= Z �� u(�)Tv(�)d�; (1.21)
and the inner product on R n as

< w; z >:= wT z; (1.22)
then the adjoint operator L� : R n ! L2p(�; �) of L, which must satisfy,

< Lu; x >=< u;L�x >; (1.23)
is

(L�x)(�) = k(�)x = BT (eAT (���))x: (1.24)
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The system (1.2-1.3) is controllable if and only if L is onto, and if and only if LL� is positivede�nite [50].The controllability gramian, Wc(�; �) : R n ! R n ; is de�ned as
Wc(�; �) = LL� = Z �� k(�)Tk(�)d�;

= Z �� eA(���)BBT eAT (���)d�: (1.25)
It is a Hermitian, positive semide�nite matrix, and

< x;Wc(�; �)x >= kL�xk2; 8x: (1.26)
The generalized inverse of L, L# : R n ! L2p(�; �), isL# = L�(LL�)�1 = L�Wc(�; �)�1: (1.27)
L#x is the unique solution to Lu = x with the smallest norm,

L(L#x) = x; 8x 2 R n ; (1.28)
and

kL#xk < kuk; 8u : Lu = x; u 6= L#x: (1.29)
Its norm is

kL#xk2 = kL�Wc(�; �)�1xk2 =< x;Wc(�; �)�1x >= xTWc(�; �)�1x: (1.30)
Thus, given any two states x and z the input

u(�) = BT eAT (���)Wc(�; �)�1(z � eA(���)x) (1.31)
is the unique input that minimizes kuk among all inputs which take x to z in [�; � ].
1.3.3 ObservabilityThis section reviews the basics of observability.De�nition 4. The states w 2 R n and z 2 R n are distinguishable if there exist t0; t; u(t)such that, x0 := w and x0 := z in (1.7) result in di�erent y(t)'s.De�nition 5. A system is observable if any two distinct states are distinguishable.
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Proposition 2. For linear systems, w and z are distinguishable if and only if w � z isdistinguishable from 0, and if and only if the zero input, u(t) � 0, distinguishes them [50].Proposition 3. The system (1.2-1.3), because it is linear, is observable if and only if thezero state is the only state which results in the zero output, y(t) � 0, with zero input, u(t) � 0[50].According to (1.7), the states which result in the zero output, y(t) � 0, with zero input,u(t) � 0, are �z 2 R n �� CeA(t�t0)z � 0	 ; (1.32)
which implies

z 2 ker
0BBB@

CCA...CAn�1
1CCCA : (1.33)

The system (1.2-1.3) is observable if and only if
ker

0BBB@
CCA...CAn�1

1CCCA = 0; (1.34)
and if and only if

rank
0BBB@

CCA...CAn�1
1CCCA = n: (1.35)

De�ne L : L2q(�; �)! R n as,
L(y) = Z �� k(t)Ty(t)dt; (1.36)

where
k(t) = CeA(t��): (1.37)

16



Then the adjoint operator L� : R n ! L2q(�; �),(L�x)(t) = CeA(t��)x = CeA(t��)eA(���)x; (1.38)
maps x to the output y(t) resulting from the initial state x0 = eA(���)x and zero input.The system (1.2-1.3) is observable if and only if L� is one-to-one, and if and only if LL�is positive de�nite. The observability gramian, Wo(�; �) : R n ! R n , is de�ned as

Wo(�; �) = LL� = Z �� eAT (t��)CTCeA(t��)dt: (1.39)
The adjoint of the pseudo-inverse L#, (L#)� : L2q(�; �)! R n , is

(L#)� =Wo(�; �)�1L: (1.40)
It gives the least-squares solution of L�z = y. For each y 2 L2q(�; �), let z = Wo(�; �)�1Ly,then,

kL�z � yk < kL�x� yk; x 6= z: (1.41)
Thus, eA(���)z is the initial state that results in an output that is closest to y(t) in theleast-squares sense.
1.4 Gramians and Lyapunov equationsIf the particular choices of � = �1 and � = 0 are made, and if the system matrix A isstable, i.e., all eigenvalues of A are in the open left half plane, the following de�nitions of thesystem controllability gramian P , and the system observability gramian Q, can be made,

P := Z 10 eAtBBT eAT tdt =Wc(�1; 0); (1.42)
Q := Z 10 eAT tCTCeAtdt =Wo(�1; 0): (1.43)

Proposition 4. (See [19]) If Re(�i(A)) < 0;8i, then1. P is positive de�nite if and only if (A;B) is controllable.2. Q is positive de�nite if and only if (A;C) is observable.If the system (1.2-1.3) is controllable, hence P is invertible, then the solution of the
17



minimum energy problem,
minu2L2p(�1;0); x(0)=z J(u); (1.44)

where
J(u) = Z 0�1 uT (t)u(t)dt; (1.45)

is given by,
uopt(t) = BT e�AT tP�1z; (1.46)

and the energy of uopt(t) is J(uopt) = zTP�1z: (1.47)
Hence, if x(0) = z lies along one of the eigenvectors of P�1 with large eigenvalues, thenx(0) = z can be reached only if a large input energy is used. Eigenvectors of P�1 with largeeigenvalues are also eigenvectors of P with small eigenvalues, since

P = U�UT () P�1 = U��1UT ; (1.48)
because P is real and symmetric.If the system is released from x(0) = z, with u(t) = 0; t � 0, thenZ 10 yT (t)y(t)dt = zTQz: (1.49)
If x(0) = z lies along one of the eigenvectors of Q with small eigenvalues, then it will havelittle e�ect on the output.It can be seen that the system gramians P andQ satisfy the following Lyapunov equations[19],

AP + PAT = �BBT ; (1.50)ATQ+QA = �CTC: (1.51)
The solutions to both are unique if A is stable [19].If the number of inputs p is much smaller than the number of state components n, thenrank(BBT ) = rank(B) � p� n, and the right hand side of (1.50) has low rank. Similarly,if the number of outputs q is much smaller than n, then the right hand side of (1.51) haslow rank.
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The gramians P and Q provide information about the controllability and observabilityof the system (1.2-1.3) in terms of past inputs (t � 0) and future outputs (t � 0).In the rest of this dissertation, eigenvectors of P with large eigenvalues will be referredto as the dominant controllable modes, and eigenvectors of Q with large eigenvalues will bereferred to as the dominant observable modes.De�nition 6. Let Re(�i(A)) < 0;8i, then the Hankel singular values of the transfer functionG(s) (1.11) are
�i(G(s)) := f�i(PQ)g 12 : (1.52)

Proposition 5. The Hankel singular values of G(s) are also the singular values of the Han-kel operator, �G : L2p(0;1)! L2q(0;1),
(�Gv)(t) := Z 10 Ce(A(t+�))Bv(�)d�: (1.53)

Proof. [19] To �nd the singular values of �G, note that its adjoint is
(��Gy)(t) = Z 10 BT e(AT (t+�))CTy(�)d�: (1.54)

Suppose �i is a singular value of �G, with v the corresponding eigenvector of ��G�G,��G�Gv = �2i v; (1.55)
and let

y := �Gv = CeAtx0; (1.56)
where

x0 = Z 10 eA�Bv(�)d�; (1.57)
then

��G�Gv = ��Gy; (1.58)= BT eAT t Z 10 eAT �CTCeA�x0d�; (1.59)= BT eAT tQx0; (1.60)= �2i v: (1.61)
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Hence
v(t) = BT eAT tQx0��2i : (1.62)

Substituting (1.62) into (1.57) gives
PQx0 = �2i x0: (1.63)

Therefore,
��G�Gv = �2i v () PQx0 = �2i x0: (1.64)

The Hankel operator associated with the system (1.2-1.3) maps past inputs to futureoutputs. If the input u(t) = v(�t) for t < 0, then the output for t > 0 is y(t) = (�Gv)(t).
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Chapter 2
Model Reduction
2.1 IntroductionThe two competing approaches for generating reduced order models of linear, time-invariantsystems have been moment-matching via orthogonalized Krylov-subspace methods [12, 13,15, 17, 18, 21, 22, 28, 29, 31, 37, 38, 40] and Truncated Balanced Realization (TBR) [11, 39, 45,49, 53]. TBR produces a reduced model with good global accuracy and a known frequencydomain L1-error bound. However, because it requires the solutions to two Lyapunov equa-tions as well as matrix factorizations and products, TBR is too expensive computationallyto use on large problems. Although moment-matching methods are inexpensive to apply,they often produce unnecessarily high order models.
2.2 Problem formulationThe linear, time-invariant system with realization (A;B;C),dx(t)dt = Ax(t) +Bu(t); (2.1)y(t) = Cx(t); (2.2)A 2 R n�n; B 2 R n�p; C 2 R q�n ; (2.3)
has the transfer function G(s),

G(s) = C(sI � A)�1B; G(s) 2 C q�p; (2.4)
which relates input to output in the frequency domain according to,

Y (s) = G(s)U(s): (2.5)
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The transfer function G(s) can be written as G(s) = C (mc(sI�A))Tdet(sI�A) B, where det(sI � A) isthe determinant of the matrix sI � A, and mc(sI � A) denotes the matrix of cofactors ofsI�A. Thus, G(s) is a q�p matrix whose entries are rational functions in s. The numeratordegree of each rational function is strictly smaller than its denominator degree, because thedegree of each entry in (mc(sI � A))T is at most n� 1 and degree of det(sI � A) is n.In the simple case of p = q = 1, the system (2.1-2.2) is controllable and observable ifand only if the numerator and denominator of the rational function G(s) have no commonfactors, or in other words, G(s) is irreducible.The problem of model reduction is to �nd a smaller system,dxrk(t)dt = Arkxrk(t) +Brku(t); (2.6)yrk(t) = Crkxrk(t); (2.7)Ark 2 R k�k ; Brk 2 R k�p; Crk 2 R q�k ; (2.8)
such that k, the number of components in xrk(t), is much smaller than n, and the transferfunction of the new system Grk(s),Grk(s) = Crk(sI � Ark)�1Brk; G(s) 2 C q�p ; Y rk (s) = Grk(s)U rk(s); (2.9)
is close to the original transfer function G(s).If p = q = 1, then Grk(s) is a rational function of degree � k, and the problem of modelreduction can also be viewed as the approximation of a high degree rational function by oneof much lower degree.
2.3 ProjectionAlmost all model reduction methods are projection methods. An exception may be explicitmoment matching methods, which will not be considered here.Before proceeding with projection methods, generalized state space form will be brie
ydescribed. This will help to create a more general framework which can include projectionmethods whose left and right projection matrices are not bi-orthogonal.A system given by (2.1-2.2) is in standard state space form. A system in generalizedstate space form, with realization (E;A;B;C), is described by the equations,

E _x(t) = Ax(t) +Bu(t); (2.10)y(t) = Cx(t); (2.11)
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and has the transfer function
G(s) = C(sE � A)�1B: (2.12)

If E is invertible, (2.10-2.11) can be easily converted to standard state space form.For generalized state space systems, the reduced system should have the form,
Erk _xrk(t) = Arkxrk(t) +Brku(t); (2.13)yrk(t) = Crkxrk(t); (2.14)

with the transfer function
Grk(s) = Crk(sErk � Ark)�1Brk: (2.15)

A projection method reduces (2.10-2.11) by choosing two k-dim projection spaces, S1; S2 �R n , so that the solution space is projected unto S2, xrk 2 S2, and the residual of (2.10-2.11)is orthogonal to S1. A realization of the reduced system satis�es the projection equations,
Ekr = V Tk EUk; Akr = V Tk AUk; (2.16)Bkr = V Tk B; Ckr = CUk; (2.17)

where the columns of Vk and Uk form bases for S1 and S2, respectively,colsp(Vk) = S1; Vk 2 R n�k ; colsp(Uk) = S2; Uk 2 R n�k : (2.18)
If S1 = S2, the projection is orthogonal, otherwise it is oblique. The matrices Vk and Ukwill be referred to as the left projection matrix and the right projection matrix, respectively.The following proposition shows that the choice of basis for S1 and S2 is not important.Proposition 6. If the columns of ~Vk also form a basis for S1, and the columns of ~Uk alsoform a basis for S2, then the reduced system obtained by projection with ~Vk and ~Uk accordingto (2.16-2.17), is equivalent to (has the same transfer function as) the reduced model obtainedby projection with Vk and Uk.Proof. This follows from the existence of invertible k � k matrices, Rk�k and Wk�k, suchthat

Vk = ~VkRk�k; (2.19)Uk = ~UkWk�k; (2.20)
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so that
Gr(s) = CUk(sV Tk EUk � V Tk AUk)�1V Tk B (2.21)= C ~UkWk�k(sRTk�k ~VkTE ~UkWk�k �RTk�k ~VkTA ~UkWk�k)�1RTk�k ~VkTB (2.22)= C ~Uk(s ~V Tk E ~Uk � ~V Tk A ~Uk)�1 ~V Tk B (2.23)= ~Gr(s): (2.24)

Hence, the exact projection matrices are not important, only their column spans are.Note if V Tk Uk 6= Ik�k, then the reduced system obtained according to (2.16-2.17) will notbe in standard state space form even if the original system is in standard form. Thus, topreserve standard space form, the projection matrices Vk and Uk must be bi-orthogonal.
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Chapter 3
Moment Matching via Krylov
Subspaces
This chapter describes the matching of transfer function moments, and how it is implementedas projection via Krylov subspaces.
3.1 Transfer function momentsThe category of moment matching methods includes all methods which seek to preserve, inthe transfer function of the reduced system Gr(s), some coe�cients of a series expansion ofthe original transfer function G(s). Generalized state-space form (2.10-2.11) will be used.If G(s) is expanded in powers of s�1, i.e., around the point at in�nity,

G(s) = 1Xj=1 m�js�j; (3.1)
m�j = C(E�1A)j�1E�1B = g(j�1)(t)jt=0; (3.2)

then the coe�cients to be preserved are m�j; j = 1; � � � ; k. The m�j's are called the Markovparameters, and they are the function value and derivatives of g(t), the inverse Laplacetransform of G(s), evaluated at t = 0.A reduced order model whose transfer function
Gr(s) = 1Xj=1 mr�js�j; (3.3)
mr�j = Cr(E�1r Ar)j�1E�1r Br = g(j�1)r (t)jt=0; (3.4)
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preserves a number of the original Markov parameters,
mr�j = m�j; j = 1; � � � ; k; (3.5)

is called a partial realization.A partial realization generally results in good approximation to the original transferfunction near s =1, but may not be accurate at low frequencies.More often, G(s) is expanded around one or more �nite points in the complex plane. Inthis case, each series has the form,
G(s) = 1Xji=0mji(�i)(s� �i)ji ; (3.6)

mji(�i) = C((A� �iE)�1E)ji(�iE � A)�1B = G(ji)(s)js=�iji! ; (3.7)i = 1; 2; � � � ;�i: (3.8)
The mji(�i)'s are called the moments of the transfer function G(s) at �i, which are thefunction value and derivatives of G(s) evaluated at �i.A reduced order model whose transfer function

Gr(s) = 1Xji=0mrji(�i)(s� �i)ji ; (3.9)
mrji(�i) = Cr((Ar � �iEr)�1Er)ji(�iEr � Ar)�1Br = G(ji)r (s)js=�iji! ; (3.10)i = 1; 2; � � � ;�i; (3.11)

preserves some moments of the original transfer function G(s) at a number of points �i; i =1; � � � ;�i, in the complex plane,
mrj(�i) = mj(�i); j = 1; � � � ; ki; ; i = 1; � � ��i; (3.12)

is called a (multi-point) Pad�e approximant. The moment matching points �i; i = 1; � � � ;�i,can be real, imaginary, or complex.Pad�e approximants result in good approximation to the original transfer function inneighborhoods around the points where moments are matched, but may not be accurateaway from the expansion points.
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3.2 Implementation via Krylov subspacesThe usual implementation of moment matching uses projection via Krylov subspaces [8, 12,15, 18, 40]. They are implicit moment matching methods, because the moments themselvesare never explicitly computed. The choice of Krylov subspace determines where and to whatorder moments are matched. The assumption B 2 R n will be made throughout this section.De�nition 7. The order m Krylov subspace Km(A;B) of the n�n matrix A and the startingvector B 2 R n is the subspace,
Km(A;B) = spanfB;AB; � � � ; Am�1Bg: (3.13)

Note dim(Km(A;B)) � m.The following proposition connects projection via Krylov subspaces and the matching ofMarkov parameters.Proposition 7. (See [22]) If
Kkb �E�1A;E�1B� = spannE�1B;E�1AE�1B; � � � ; E�1Ak�1E�1Bo � colspfUkg; (3.14)

and
Kkc �(E�1A)T ; E�1CT � = spannE�1CT ; (E�1A)TE�1CT ; � � � ; ((E�1A)T )k�1E�1CTo � colspfVkg;(3.15)then,

C(E�1A)j�1E�1B = Cr(E�1r Ar)j�1E�1r Br; (3.16)
for j = 1; 2; � � � ; kb + kc.The following proposition connects projection via Krylov subspaces and the matching ofmoments at the points �1; � � � ; ��i 6=1.Proposition 8. (See [21]) If�i[i=1Kkbi �(A� �iE)�1E; (A� �iE)�1B� � colspfUkg; (3.17)
and �i[i=1Kkci �(A� �iE)�TET ; (A� �iE)�TCT � � colspfVkg; (3.18)
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then,
�C �(A� �iE)�1E	ji�1 (A� �iE)�1B (3.19)= �Cr �(Ar � �iEr)�1Er	ji�1 (Ar � �iEr)�1Br; (3.20)=) dji�1G(s)ds js=�i = dji�1Gr(s)ds js=�i ; (3.21)

for ji = 1; 2; � � � ; kbi + kci and i = 1; 2; � � � ;�i. Note the inclusion rather than equality in(3.17-3.18).When certain processes are used to generate bases for the Krylov subspaces in (3.14-3.15) and (3.17-3.18), such as the Lanczos or the Arnoldi process, the reduced quantitiesErk; Akr ; Bkr ; Ckr in (2.16-2.17) may be obtained as part of the basis generation process, ratherthan projected explicitly via (2.16-2.17).Regardless of how the Krylov subspaces are generated, the following two algorithms areexamples of moment matching methods which use Krylov subspaces, and will be referredto in chapter 10 for numerical comparison. The systems they reduce are assumed to be instandard form, E = In�n. They are not the most general of moment matching via Krylovsubspaces methods. They assume bi-orthogonality of the two projection matrices, and make(3.17) and (3.18) equalities rather than inclusions. Algorithm 1 uses orthogonal projection,algorithm 2 uses oblique projection.Algorithm 1 Moment matching via Krylov subspaces, orthogonal projection0. Original system, (In�n; A;B;C).1. Find Uk = [u1; � � � ; uk] such that UTk Uk = Ik�k and
colspfUkg = �iXi=1 Kki �(A� �iI)�1; (A� �iI)�1B� ; (3.22)k = k1 + � � � + km: (3.23)2. Obtain Erk = Ik�k; Ark; Brk; Crk such that (2.16-2.17) hold.

Moment matching methods require only matrix-vector products (3.14-3.15) or linearsolves (3.17-3.18), hence they are very e�cient. If the linear solves are done iterativelyusing a Krylov subspace method such as GMRES, all that is needed is the action of thesystem matrix A on a vector, which is advantageous when A is sparse, structured, or givenonly as a black box. However, there is no global error bound on the transfer function ap-proximation error for moment matching methods. The error, G(s) � Gr(s), will be smallnear points where moments are matched, but there is no guarantee that the error will besmall elsewhere. These methods also may produce unstable reduced models even thoughthe original system is stable. Further processing is needed to remove the unstable modes.[12, 22, 29] 28



Algorithm 2 Moment matching via Krylov subspaces, oblique projection0. Original system, (In�n; A;B;C).1. Find Uk = [u1; � � � ; uk], Vk = [v1; � � � ; vk] such that V Tk Uk = Ik�k and
colspfUkg = �iXi=1 Kkbi �(A� �iI)�1; (A� �iI)�1B� ; (3.24)
colspfVkg = �iXi=1 Kkci �(A� �iI)�T ; (A� �iI)�TCT � ; (3.25)k = kb1 + kb2 + � � � + kbm = kc1 + kc2 + � � � + kcm: (3.26)2. Obtain Erk = Ik�k; Ark; Brk; Crk such that (2.16-2.17) hold.

A most important question associated with moment matching methods is how to pickmoment matching points f�1; � � � ; �mg, and their orders k1; � � � ; km, so that the global ap-proximation error is small. This problem is not solved. Rather, it is tackled with heuristics[5, 6, 21], such as picking evenly or logarithmically spaced points on the imaginary or the realaxis, as a function of the frequency range of interest.In chapter 10, a criterion for picking good moment matching points, when the systemis symmetric, will be given based on approximating the Truncated Balanced Realizationmethod of model reduction.
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Chapter 4
Truncated Balanced Realization
Truncated Balanced Realization (TBR) [11, 39, 45] produces a guaranteed stable reducedmodel, and has a frequency domain L1-error bound. There is no theoretical result concern-ing the optimality or near optimality of the TBR reduction in the L1 norm. However, TBRin general produces a reduced model with globally accurate frequency response approxima-tion. This reduced model is usually superior to the models produced by moment matchingmethods.The Square Root method of implementing TBR is proposed in [49, 53]. It has betternumerical properties than the implementation in [19]. When referring to `the TBR algorithm'in future chapters, the implementation in algorithm 3 is assumed.Given a stable system in standard state space form (2.1-2.2), algorithm 3 produces theorder k TBR reduction.
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Algorithm 3 Square Root method to calculate the order k TBR reduction.1. Find the Cholesky factors ZB and ZC of the solutions P and Q to (1.50-1.51),
P = ZB(ZB)T ; Q = ZC(ZC)T : (4.1)

2. Calculate the singular value decomposition of (ZC)TZB,
UL�(UR)T = (ZC)TZB; (4.2)

where,
UR = huR1 � � � uRn i ; UL = huL1 � � � uLni ; � = 264�1 � � � 0... . . . ...0 � � � �n

375 : (4.3)
3. If �k > �k+1, let

SB = ZB �uR1 ; � � � ; uRk �
2664 1p�1 � � � 0... . . . ...0 � � � 1p�k

3775 ; (4.4)
and

SC = ZC �uL1 ; � � � ; uLk �
2664 1p�1 � � � 0... . . . ...0 � � � 1p�k

3775 : (4.5)
4. The order k Truncated Balanced Realization is given by

Atbrk = (SC)TASB; Btbrk = (SC)TB; Ctbrk = CSB: (4.6)
The controllability and observability gramians of the order k reduced system (Atbrk ; Btbrk ; Ctbrk )are diagonal and equal,

P tbrk = Qtbrk = �1 = diag(�1; �2; :::; �k): (4.7)
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The resulting transfer function Gtbrk (s) has L1-error bound,
kG(jw)�Gtbrk (jw)kL1 := supw kG(jw)�Gtbrk (jw)k2 � 2(�k+1 + �k+2 + :::+ �n): (4.8)
TBR is a projection method with left projection matrix SC and right projection matrixSB, such that (SC)TSB = Ik�k andcolsp(SB) � colsp(ZB); colsp(SC) � colsp(ZC): (4.9)

A merit of the Square Root method is that it relies on the Cholesky factors ZB and ZC ofthe gramians P and Q, rather than the gramians themselves, which has advantages in termsof numerical stability.The vast majority of the work involved in algorithm 3 comes from step 1 to obtain ZB andZC , and step 2, the balancing singular value decomposition. Both steps 1 and 2 are O(n3)if done exactly, even if the system matrix A is sparse, which makes algorithm 3 impracticalfor problems with more than a few hundred components in the state vector. For this reason,TBR has long been considered too expensive to apply to large problems.
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Chapter 5
Low Rank Approximation to TBR
5.1 MotivationEven though Truncated Balanced Realization produces a guaranteed stable, globally accuratereduced model with a L1-error bound, it has been almost entirely abandoned in favor ofKrylov subspace-based moment matching methods for large problems such as the modeling ofcomplicated interconnect structures [3, 37, 40]. The solution of two Lyapunov equations andthe balancing SVD in (4.2) both have complexity O(n3), which is prohibitive for problemswith more than a few hundred components in the state vector.It is clear that even if the n � n Cholesky factors of the gramians are available, thecomplexity of the Square Root method is still prohibitive for large n, due to the SVD of then� n matrix (ZC)TZB in step 2.However, the work in step 2 and the subsequent step of calculating SB and SC will bedramatically reduced if ZB and ZC each have only a few columns, or equivalently, they havelow rank.This chapter answers the question of whether it is possible to approximate TBR if lowrank approximations to ZB and ZC are available. The contention of this dissertation isthat the answer is a�rmative for symmetric systems, but not de�nitive for non-symmetricsystems, although there is numerical evidence that good approximation to TBR is possibleeven in the non-symmetric case.The main goal of this chapter is to present the approaches that can be taken in tryingto approximate TBR, at a cost that is comparable to the popular moment matching meth-ods. These approaches should only require matrix-vector products and linear solves. Twoapproaches are examined and compared. One is the Low Rank Square Root method [41, 46],the other is the Dominant Gramian Eigenspaces method [34].The question of how to obtain low rank approximations to ZB and ZC will be answeredin subsequent chapters.
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5.2 Optimal low rank gramian approximationIf X 2 R n�n, a symmetric, positive semi-de�nite matrix, has eigenvalue (singular value)decomposition,

X = [u1; � � � ; uJ ; uJ+1 � � � ; un]
266666666664

�1 � � � � � � 0. . .... �J 0 ...... 0 �J+1 .... . .0 � � � � � � �n

377777777775
[u1; � � � ; uJ ; uJ+1; � � � ; un]T ;

(5.1)
�1 � � � � �J � �J+1 � � � � � �n � 0; (5.2)

and if �J > �J+1, then
XoptJ := [u1; � � � ; uJ ]264�1 � � � 0... . . . ...0 � � � �J

375 [u1; � � � ; uJ ]T ; (5.3)
is the unique optimal rank J approximation to X in the 2-norm [20].Clearly kX �XoptJ k2 = �J+1, and �J+1 is the smallest achievable 2-norm error when ap-proximatingX by a rank J matrix. If �J+1 is not small, then X cannot be well approximatedby a rank J matrix.De�nition 8. ZoptJ 2 R n�J is an optimal rank J Cholesky factor of X if

ZoptJ (ZoptJ )T = XoptJ : (5.4)
If ZoptJ has `thin' singular value decomposition,

ZoptJ = [ucf1 ; � � � ; ucfJ ]
264�cf1 � � � 0... . . . ...0 � � � �cfJ

375 [vcf1 ; � � � ; vcfJ ]T ; (5.5)
�cf1 � � � � � �cfJ > 0; ucfi 2 R n ; vcfi 2 R J ; (5.6)(5.7)
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thenXoptJ = ZoptJ (ZoptJ )T
= [ucf1 ; � � � ; ucfJ ]

264�cf1 � � � 0... . . . ...0 � � � �cfJ
375 [vcf1 ; � � � ; vcfJ ]T [vcf1 ; � � � ; vcfJ ]264�cf1 � � � 0... . . . ...0 � � � �cfJ

375 [ucf1 ; � � � ; ucfJ ]T ;
(5.8)

= [ucf1 ; � � � ; ucfJ ]
264(�cf1 )2 � � � 0... . . . ...0 � � � (�cfJ )2

375 [ucf1 ; � � � ; ucfJ ]T : (5.9)
Thus, ucfi is an eigenvector of XoptJ associated with the eigenvalue (�cfi )2 if and only if it isa left singular vector of ZoptJ associated with the eigenvalue �cfi . Therefore, the eigenvectorsof XoptJ can be obtained by �nding the left singular vectors of ZoptJ , which is inexpensive todo since ZoptJ has only J columns.A matrix ZJ 2 R n�J is called an approximately optimal rank J Cholesky factor of X, ifZJZTJ � XoptJ .This chapter provides analysis on approximating TBR when approximately optimal rankJ Cholesky factors of P and Q are available. Subsequent chapters will address how to obtainthe approximately optimal low rank Cholesky factors.
5.3 Symmetric systemsApproximating TBR for symmetric systems is addressed �rst.A symmetric state-space system has the form,

_x(t) = Ax(t) +Bu(t); A = AT ; (5.10)y(t) = BTx(t): (5.11)
The system matrix A is symmetric, and the output coe�cient matrix is simply the transposeof the input coe�cient matrix.A certain class of circuit models from modi�ed nodal analysis, which has the form,

E _x(t) = Ax(t) +Bu(t); (5.12)y(t) = BTx(t); (5.13)
where E and A are symmetric, and E positive de�nite, can be symmetrized as follows [38].A symmetric, positive de�nite square root of E, E 12 , can be found. The new state vector
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~x is de�ned as ~x := E 12x. Multiplying (5.12) by E� 12 results in
E� 12E 12E 12 _x(t) = E� 12AE� 12E 12x(t) + E� 12Bu(t); (5.14)y(t) = BTE� 12E 12x(t): (5.15)

Thus, (5.12-5.13) become _~x(t) = ~A~x(t) + ~Bu(t); ~A = ~AT ; (5.16)y(t) = ~BT ~x(t); (5.17)~A = E� 12AE� 12 ; ~B = E� 12B: (5.18)
TBR for symmetric systems is simpler than for non-symmetric systems. The controlla-bility gramian is equal to the observability gramian for symmetric systems since equations(1.50) and (1.51) are the same when A = AT and C = BT . Hence, there is no need for thebalancing SVD in step 2 of algorithm 3.TBR for symmetric systems simply solves,

AP + PA+BBT = 0; (5.19)
for the single system gramian P (= Q), and �nds P 's k dominant eigenvectors,

fugram1 ; � � � ; ugramk g; (5.20)
where

P = [ugram1 ; � � � ; ugramn ]�gram([ugram1 ; � � � ; ugramn ])T ; (5.21)�gram = diag(�1; � � � ; �n); �1 � � � � � �k > �k+1 � � � � � �n: (5.22)
The left and right projection matrices Uk and Vk are chosen to be equal, and

Uk = Vk = [ugram1 ; � � � ; ugramk ] := U gramk : (5.23)
The system in (5.10-5.11) is reduced according to

Atbrk = (U gramk )TAU gramk ; Btbrk = (U gramk )TB: (5.24)
Because the symmetric system in (5.10-5.11) is already balanced, the k dominant leftsingular vectors of an approximately optimal low rank Cholesky factor can simply be usedin place of U gramk , to obtain `Approximate TBR', given as algorithm 4.The k dominant left singular vectors of ZJ are easy to �nd because ZJ has only J columns.If ZJ is exactly an optimal rank J Cholesky factor of P , ZJZTJ = P optJ , then algorithm 4
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Algorithm 4 Approximate TBR for Symmetric Systems
1. Compute ZJ 2 R n�J , ZJZTJ � P optJ .2. Find Uk, k � J , the matrix of the k dominant left singular vectors of ZJ .3. Reduction: Ark = (Uk)TAUk; Brk = (Uk)TB.(Using Uk to approximate U gramk ).

produces exactly the order k TBR reduction.
5.4 Non-symmetric systemsThe controllability and observability gramians of a non-symmetric system will not, in general,be equal. This section examines how to reduce a system if only approximately optimal lowrank Cholesky factors of P and Q are available.
5.4.1 Low Rank Square Root methodAn idea that was proposed in [41] and [46], is to simply replace the exact Cholesky factorsZB and ZC , (possibly of full or, at least, high rank), in algorithm 3 by low rank Choleskyfactors, ZBJB 2 R n�JB and ZCJC 2 R n�JC . This reduces step 2 of the Square Root method tothe SVD of a small, JC�JB, matrix, which is much less work than the SVD of the full n�nexact Cholesky factor product (ZB)TZC . This idea, the Low Rank Square Root method, isshown as algorithm 5.Algorithm 5 Low rank square root method1. Compute ZBJB 2 R n�JB , ZBJB(ZBJB)T � P optJB ,
2. Compute ZCJC 2 R n�JC , ZCJC (ZCJC )T � QoptJC ,3. Compute reduced system (Ark; Brk; Crk), k � JB; JC , by algorithm 3 using approxi-mate Cholesky factors ZBJB and ZCJC .

Even if ZBJB and ZCJC are optimal rank JB and JC Cholesky factors of P and Q, re-spectively, algorithm 5 will not, in general, produce a good approximation to TBR unlessZBJB(ZBJB)T and ZCJC (ZCJC )T are fairly accurate approximations to the matrices P and Q them-selves. If JB; JC � n, this cannot happen unless P and Q are themselves close to low rank.
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For example, if
(ZBJB)T (ZCJC ) = 0; (5.25)

then algorithm 5 cannot proceed even though the order k TBR reduction via algorithm 3may be perfectly well de�ned.The near low rank assumption on the exact gramians P and Q needs to be met foralgorithm 5 to be an e�cient and accurate method. Numerical results for the Low RankSquare Root method will be given in section 5.5.
5.4.2 Dominant Gramian Eigenspaces methodWhen P and Q are not close to low rank, the Low Rank Square Root method often doesnot produce a good reduced model. In this case another approach is needed.In the TBR reduction, gramians P and Q are balanced so that they have the sameeigendecomposition, namely, along the coordinate axes, in the same order. Then it makessense to project the original system onto that single dominant eigenspace of both gramians.Balancing the gramians requires knowledge of the entire eigenspaces of both gramians.For the situation when only approximately optimal rank JB and JC Cholesky factors of Pand Q are available, and the rest of the eigenspaces are unknown but signi�cant, the followingalgorithm is proposed.The Dominant Gramian Eigenspaces method is an orthogonal projection method, andits projection space is the column span of the union of a subset of the dominant left singularvectors ZBJB , and a subset of the dominant left singular vectors of ZCJC [34].
5.4.3 A Special caseThe following theorem gives a condition under which both algorithms 5 and 6 will produceexactly the order k TBR reduction.Theorem 1. If the span of the k most controllable modes is the same as the span of the kmost observable modes, and �Bk > �Bk+1, �Ck > �Ck+1, where �B1 ; � � � ; �Bn are the singular valuesof P in non-increasing order, and �C1 ; � � � ; �Cn are the singular values of Q in non-increasingorder, and if ZBJB and ZCJC , JB; JC ;� k, in algorithms 5 and 6 are optimal rank JB and JCCholesky factors of P and Q, then both algorithms 5 and 6 will produce exactly the order kTBR reduction.
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Algorithm 6 Dominant Gramian Eigenspaces method1. Compute ZBJB , ZBJB(ZBJB)T � P optJB .2. Compute ZCJC , ZCJC (ZCJC )T � QoptJC .3. Calculate SVD: ZBJB = UBn�JBDBJB�JB(V BJB�JB)T , ZCJC = UCn�JCDCJC�JC (V CJC�JC )T .4. Choose k � JB; JC , 2k being the desired reduction order, and letU ctobm = qr ��UBn�JB(:; 1 : k); UCn�JC (:; 1 : k)�� : (5.26)Note k � m = rank(U ctobm ) � 2k.5. Reduce the system:Arm = (U ctobm )TAU ctobm ; Brm = (U ctobm )TB; Crm = CU ctobm : (5.27)
Proof. Let P and Q have SVDs,

P = UB(�B)2(UB)T ; (5.28)UB = [uB1 ; � � � ; uBn ]; �B1 � � � � � �Bk > �Bk+1 � � � � � �Bn � 0; (5.29)Q = UC(�C)2(UC)T ; (5.30)UC = [uC1 ; � � � ; uCn ]; �C1 � � � � � �Ck > �Ck+1 � � � � � �Cn � 0: (5.31)
Since the span of the k most controllable modes is the same as the span of the k mostobservable modes,

spanfuB1 ; � � � uBk g = spanfuC1 ; � � � uCk g: (5.32)
Without loss of generality, assume ZB, ZC , exact Cholesky factors, and ZBJB ; ZCJC , optimalrank JB and JC Cholesky factors, have the following form,

ZB = [uB1 ; � � � ; uBn ]
264�B1 � � � 0... . . . ...0 � � � �Bn

375 ; ZBJ = [uB1 ; � � � ; uBJ ]
264�B1 � � � 0... . . . ...0 � � � �BJ

375 ; (5.33)
ZC = [uC1 ; � � � ; uCn ]

264�C1 � � � 0... . . . ...0 � � � �Cn
375 ; ZCJ = [uC1 ; � � � ; uCJ ]

264�C1 � � � 0... . . . ...0 � � � �CJ
375 : (5.34)
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Otherwise, they di�er from the above forms only by right multiplication by orthogonalmatrices, which will cancel out when de�ning projection matrices in (4.4) and (4.5).Because of (5.32),
ZTCZB = 264�C1 � � � 0... . . . ...0 � � � �Cn

375264(uC1 )T...(uCn )T
375 [uB1 ; � � � ; uBn ]

264�B1 � � � 0... . . . ...0 � � � �Bn
375 ; (5.35)

= "�Ck 00 �Cn�k
#"(UCk )TUBk 00 (UCn�k)TUBn�k

#"�Bk 00 �Bn�k
# ; (5.36)

:= "Wk 00 Wn�k
# (5.37)

is (k; n � k) block diagonal. The matrices (UCk )TUBk 2 R k�k , (UCn�k)TUBn�k 2 R n�k�n�kare both orthogonal. Let Wk = Uk�kV Tk , and Wn�k = Un�k�n�kV Tn�k, be singular valuedecompositions, then
ZTCZB = "Uk 00 Un�k

#"�k 00 �n�k
#"V Tk 00 V Tn�k

# ; (5.38)
is a SVD of ZTCZB, and �1 � � � � � �k � �Bk �Ck > �Bk+1�Ck+1 � �k+1 � � � � � �n.Therefore, �uR1 ; � � � ; uRk � in (4.4) has zeros in the last n� k rows,

�uR1 ; � � � ; uRk � = "Vk0 # ; (5.39)
and the right projection space for TBR is,

colsp((SB)tbr) = colsp ZB "Vk0 #! = colsp(ZB(:; 1 : k)) = spanfuB1 ; � � � ; uBk g: (5.40)
Similarly, �uL1 ; � � � ; uLk � in (4.5) has zeros in the last n� k rows,

�uL1 ; � � � ; uLk � = "Uk0 # ; (5.41)
and the left projection space for TBR is,

colsp((SC)tbr) = colsp ZC "Uk0 #! = colsp(ZC(:; 1 : k)) = spanfuC1 ; � � � ; uCk g: (5.42)
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The same argument, replacing ZB, ZC by ZBJB , ZCJC , and n by max(JB; JC), gives the rightand left projection spaces for the Low Rank Square Root method as,
colsp((SB)lrsqrt) = colsp(ZBJB(:; 1 : k)) = spanfuB1 ; � � � ; uBk g; (5.43)

and
colsp((SC)lrsqrt) = colsp(ZCJC (:; 1 : k)) = spanfuC1 ; � � � ; uCk g: (5.44)

Thus, TBR and the Low Rank Square Root method have the same projection spaces.From (5.26),
colsp(U ctobm ) = qr ��uB1 ; � � � ; uBk ; uC1 ; � � � ; uCk �� (5.45)= spanfuB1 ; � � � ; uBk g = spanfuC1 ; � � � ; uCk g; (5.46)

and m = k. Thus, TBR and the Dominant Gramian Eigenspace method have the sameprojection spaces.Therefore, all three methods produce equivalent reduced systems.
5.5 Numerical resultsThis section gives numerical results for algorithms 5 and 6 for non-symmetric systems, whenoptimal low rank Cholesky factors are used.Figures 5-2 and 5-3 show an example of a non-symmetric system which resulted fromthe discretization of the transmission line shown in �gure 5-1. The non-symmetric systemmatrix A is 256� 256, and the system is single-input single-output.
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Figure 5-1: Transmission line.Figure 5-2 shows the absolute value of the frequency responses, jG(jw)j, of the original41



system and various reduced systems.In �gure 5-2(a), an order 10 reduced model obtained via the Dominant Gramian Eigenspacesmethod, `Ct5 U Ob5', is compared to the order 10 reduced model from TBR, `TBR-10'. Theabbreviation `Ct5 U Ob5' means that the column span of the union of the 5 most control-lable modes and the 5 most observable modes is used as the projection space. In this case,the projection space has dimension 10. Optimal rank 5 Cholesky factors of P and Q areneeded to produce the reduced model. It can be seen that the frequency response of reducedmodel from the Dominant Gramian Eigenspaces method is almost indistinguishable fromthe frequency response of the order 10 TBR reduced model.In �gure 5-2(b), order 10 and order 20 models obtained from the Low Rank Square Rootmethod are shown as `LR-sqrt-10', and `LR-sqrt-20'. The order 10 model is obtained bybalancing optimal rank 10 Cholesky factors of P and Q, the order 20 model by balancingoptimal rank 20 Cholesky factors. The order 10 model from Low Rank Square Root is nota good approximation. Its system matrix also has many unstable eigenvalues. `LR-sqrt-20'is a better approximation, with similar accuracy as `Ct 5 U Ob5'. However, `Ct 5 U Ob5'needs only two rank 5 Cholesky factors, whereas `LR-sqrt-20' needs two rank 20 Choleskyfactors.Figure 5-2(c) compares `Ct 5 U Ob5' with projection by either the column span of the 10most controllable modes, `Ct-10', or by the column span of the 10 most observable modes,'Ob-10'. Both `Ct-10' and `Ob-10' only need one rank 10 Cholesky factor. Neither `Ct-10'nor `Ob-10' comes close to capturing the frequency response behavior of the original systemas well as using the union of 5 and 5.Figures 5-3 shows that the dominant controllable and dominant observable modes are`far' from each other. Figure 5-3(a) plots the projection of the observable modes onto the 10most controllable modes, k(uobj )T [uct1 ; � � � ; uct10]k2. All are unit vectors. It can be seen that the20 most observable modes have very little component in the span of the 10 most controllablemodes, less than 0.01. Figure 5-3(b) shows a similar situation with the projection of thecontrollable modes onto the 10 most observable modes.When the dominant controllable modes and the dominant observable modes are nearlyorthogonal, and when the remaining eigenspace of either P or Q is not small, the Low RankSquare Root method does not produce good results. In that case, it is better to use theDominant Gramian Eigenspaces method.
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Chapter 6
Lyapunov Solution and Rational
Krylov Subspaces
This chapter contains a main theoretical result of this dissertation, given as theorem 2, whichcharacterizes the di�erent manifestations of the range of the solution to

AX +XAT = �BBT (6.1)
as order n Krylov and rational Krylov subspaces with di�erent starting vectors.Proposition 9. Let X be the solution to (6.1), then

Range(X) = spanfB;AB; � � � ; An�1Bg = Kn(A;B): (6.2)
Proof. See [50].The de�nition of a rational Krylov subspace is given below.De�nition 9. An order m rational Krylov subspace Kratm (A; z1;pm�1), A 2 R n�n; z1 2 R n,pm�1 = fp1; � � � ; pm�1g, pi 2 R , is the subspace,
Km(A; z1;pm�1) := span(z1; (A+ p1I)�1z1; (A+ p2I)�1(A+ p1I)�1z1; � � � ;m�1Yi=1 (A+ pi)�1z1) :(6.3)Note that dim(Kratm (A; z1;pm�1) � m.A main result of this dissertation is theorem 2, which shows the equivalence of an in�nitenumber of order n Krylov and rational Krylov subspaces based on A and B.
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Theorem 2. Let A be invertible, B 2 R n, and de�ne the subspace L(A;B;p),p = f� � � ; p�2; p�1; p0; p1; p2 � � � g, pi 2 R , asL(A;B;p)
:= span� � � � ; �1Yi=�j(A+ piI)�1B; � � � ; (A+ p�2I)�1(A+ p�1I)�1B;

(A+ p�1I)�1B; B; (A+ p0I)B;(A+ p1I)(A+ p0I)�1B; � � � ; jYi=1(A+ piI)B; � � ��;
(6.4)

= span� � � � ; v�j(p); � � � ; v�2(p); v�1(p); v0(p); v1(p); v2(p); � � � ; vj(p); � � �	;(6.5)where
v0(p) = B; vj(p) = j�1Yi=0(A+ piI)B; j > 0; vj(p) := �1Yi=j (A+ piI)�1B; j < 0; (6.6)

and where all matrix inverses in (6.4) are well-de�ned. Then 8s; 8p,8r = f� � � ; r�1; r0; r1; � � � g, 8q = f� � � ; q�1; q0; q1; � � � g,L(A;B;p) = spanfvs(p); vs+1(p); vs+2(p); � � � ; vs+(n�1)(p)g (6.7)= spanfB;AB; � � � ; An�1Bg (6.8)= L(A; vs(r);q): (6.9)
L(A;B) := L(A;B;p) may be written without referring to the shifts.The proof of theorem 2 needs the following lemmas. The dependence of the vi's on p willbe suppressed in the proofs unless needed.Lemma 1. If m > n, then Km(A;B) = Kn(A;B).Proof. First, it is shown that if m > n, then Am�1B 2 Km�1(A;B). If m > n, there existcoe�cients, c0; � � � ; cm�1, not all zero, such that

c0B + c1AB + � � � + cm�2Am�2B + cm�1Am�1B = 0: (6.10)
Choose 0 � j � m� 1 such that cj 6= 0, and ci = 0;8i > j, then
c0Am�1�jB + � � �+ cjAm�1�jAjB = 0;=) cjAm�1B = �c0Am�1�jB + � � � + cj�1Am�2B:(6.11)
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Hence, Am�1B 2 Km�1(A;B). Therefore, if m > n, Km(A;B) = Km�1(A;B), and �nally,Km(A;B) = Km�1(A;B) = � � � = Kn+1(A;B) = Kn(A;B).The order n Krylov subspace is also referred to simply as the Krylov subspace, Kn(A;B) :=K(A;B), without the subscript.Lemma 2. With the vi's de�ned as (6.4),
vl 2 spanfvs; vs+1; vs+2; � � � ; vs+(n�1)g; (6.12)

whenever l > s+ (n� 1).Proof. From (6.4), it can be seen that,
vi = (A+ pi�1I)vi�1; 8i; =) vi 2 spanfvi�1; Avi�1g; (6.13)

and therefore,
spanfvs; vs+1; vs+2; � � � ; vlg = spanfvs; Avs; � � � ; Al�svsg = Kl�s+1(A; vs): (6.14)

From lemma 1,spanfvs; vs+1; vs+2; � � � ; vlg = Kl�s+1(A; vs)= Kn(A; vs) = spanfvs; vs+1; vs+2; � � � ; vs+(n�1)g:(6.15)The result follows.Lemma 3. With the vi's de�ned as (6.4),
vl 2 spanfvs; vs+1; vs+2; � � � ; vs+(n�1)g; (6.16)

whenever l < s.Proof. First show that the lemma is true for l = s� 1. Equivalently, because of (6.14), showthat
(A+ ps�1I)�1vs 2 spanfvs; Avs; � � � ; An�1vsg: (6.17)

Shifts can be added in the right hand side of (6.17),
spanfvs; Avs; � � � ; An�1vsg = spanfvs; (A+ ps�1I)vs; � � � ; (A+ ps�1I)n�1vsg; (6.18)
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without a�ecting its column span. Because fvs�1; vs; � � � ; vs+(n�1)g are n + 1 vectors in R n ,there exist coe�cients, c0; � � � ; cn, not all zero, such that,
c0vs + c1(A+ ps�1I)vs + � � � + cn�1(A+ ps�1I)n�1vs + cn(A+ ps�1I)�1vs = 0; (6.19)

If cn 6= 0, (6.17) is proven.Otherwise, choose 0 � j < n such that cj 6= 0, and ci = 0;8i < j. Then multiply (6.19)by (A+ ps�1I)�(j+1), to obtaincj(A+ ps�1I)�1vs + cj+1vs + � � �+ cn�1(A+ ps�1I)n�2�jvs = 0;=) cj(A+ ps�1I)�1vs = �cj+1vs � � � � � cn�1(A+ ps�1I)n�2�jvs: (6.20)
Thus, (6.17) is proven, and (6.16) holds for l = s� 1. If l < s� 1,

vl 2 spanfvl+1; vl+2; � � � ; vl+ng (6.21)� spanfvl+2; � � � ; vl+n+1g (6.22)... (6.23)� spanfvs; � � � ; vs+n�1g: (6.24)
Line (6.22) follows because each vector vl+1; � � � ; vl+n is in spanfvl+2; � � � ; vl+n+1g.Proof of theorem 2. Lemmas 2 and 3 show that

L(A;B;p) = spanfvs(p); vs+1(p); vs+2(p); � � � ; vs+(n�1)(p)g (6.25)
holds for all s and for all p. (6.8) follows from

spanfv0(p); v1(p); � � � ; vn�1(p)g = spanfB;AB; � � � ; An�1Bg; (6.26)
with the choice of s = 0, and p � 0. (6.9) follows from

L(A;B;p) = L(A;B; r) (6.27)= spanfvs(r); vs+1(r); � � � ; vs+(n�1)(r)g (6.28)= spanfvs(r); Avs(r); � � � ; An�1vs(r)g (6.29)= L(A; vs(r);q); 8p; 8r; 8q: (6.30)
Corollary 1. With the same notation as in theorem 2,

L(A; vs(r);q) = range(X); 8s; 8r; 8q; (6.31)
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where X is the solution to (6.1).Theorem 2 and corollary 1 can be taken to mean that to �nd the range of X, one canchoose any starting vector vs of the form,
vs(r) := B; or vs(r) := jYi=1(A+ riI)B; or vs(r) := jYi=1(A+ riI)�1B; (6.32)

for any r1; � � � ; rj, and let the remaining basis vectors fvs; vs+1; � � � ; vs+n�1g satisfyvi = (A+ qi�sI)vi�1; i = s+ 1; � � � ; s+ n� 1; (6.33)
for any choice of q1; � � � ; qn�1.To emphasize the choice of basis, the various manifestations of the space L(A;B;p) willbe written as Ln(A; vs(r);qn�1), if its basis representation satis�es (6.33). The vector ofshifts qn�1 = fq1; � � � ; qn�1g now has only n� 1 numbers.Since only B and not any other vs is given, if the starting vector is B, vs = B, or powersof shifts of A multiplied by B, vs(r) = Qji=1(A + riI)B, then (6.33) is an e�cient way tocompute the basis fvs; � � � ; vs+n�1g. If vs(r) = Qji=1(A + riI)�1B, and j � n � 1, then itis more e�cient to �nd the basis in reverse order, and choose qn�1 = fr1; � � � ; rn�1g so theshifts of A cancel out. The �nal vector is

vs+n�1 = jYi=n(A+ riI)�1B; if j > n� 1; or vs+n�1 = B; if j = n� 1; (6.34)
and the rest of the basis is calculated according to

vi�1 = (A+ ri�sI)�1vi; i = s+ n� 1; � � � ; s+ 1: (6.35)
If fvs; vs+1; � � � ; vs+n�1g contains both vectors which are positive powers of shifts of A mul-tiplied by B, and vectors which are inverse powers of shifts of A multiplied by B, the basisshould be computed in two parts. One starts with B and �nds a subset of the basis bymultiplication by shifts of A, and then �nds the remaining basis vectors by multiplicationby inverses of shifts of A.If Ln(A; vs(r);qn�1)'s basis contains only vectors which are positive powers of shifts ofA multiplied by B, Ln(A; vs(r);qn�1) will be denoted Kshn (A; vs(r);qn�1), which is a Krylovsubspace, but with n � 1 shifts. If Ln(A; vs(r); fr1; � � � ; rn�1g) contains only vectors whichare inverse powers of shifts of A multiplied by B, then it is actually the rational Krylovsubspace, Kratn (A; vs(p);qn�1), where qn�1 = frn�1; � � � ; r1g, and p = frn � � � ; rjg
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Quite simply, what Kshn (A; vs(r);qn�1) means is that the basis fw1; � � � ; wng is obtainedin the following way,
w1 := vs(r) = lYi=1(A+ riI)B; l > 0; or w1 := B; l = 0; (6.36)wi = (A� qi�1I)wi�1; i = 2; � � � ; n: (6.37)

Furthermore, Kratn (A; vs(p);qn�1) means that the basis fw1; � � � ; wng is obtained thus,
w1 := vs(p) = lYi=1(A+ piI)�1B; l > 0; or w1 := B; l = 0; (6.38)wi = (A� qi�1I)�1wi�1; i = 2; � � � ; n: (6.39)

The following theorem gives a di�erent characterization ofKratJ (A; (A+p1I)�1B; fp2; � � � ; pJg)as the sum of m Krylov subspaces, where m is the number of distinct parameters in the listfp1; � � � ; png.Theorem 3. Let KratJ (A; (A+ p1I)�1B; fp2; � � � ; pJg) be such that no (A+ piI) is singular,then
KratJ (A; (A+ p1I)�1B; fp2; � � � ; pJg); (6.40)= span((A� p1I)�1B; � � � ; jYi=1(A� piI)�1B; � � � ; JYi=1(A� piI)�1B) ; (6.41)

= mXi=1 spanf(A� piI)�1B; � � � ; (A� piI)�isBg (6.42)
= mXi=1 Kis �(A� piI); (A� piI)�1B� ; (6.43)

where 1s + � � � +ms = n, and each pi appears in fp1; � � � ; png a total of is times.Proof. By partial fraction expansion.Theorem 3 will be used in chapter 10 to prove moment matching results.
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Chapter 7
Lyapunov Equations
This chapter describes several existing methods for �nding or approximating the solution tothe Lyapunov equation,

AX +XAT = �BBT ; �i(A) < 0;8i; (7.1)
including the iterative Alternating Direction Implicit (ADI) method [2, 57] in some detail.
7.1 Previous methodsThe Bartels-Stewart method [1], the Hammarling method [23], and the Alternating DirectionImplicit (ADI) method [2, 57, 59] described in this chapter are appropriate for Lyapunovequations with a small, dense matrix A. They require matrix decompositions and haveO(n3) complexity. Low rank approximations to the solution X were formulated in [25, 27].
7.1.1 Bartels-Stewart methodA well-known, exact method to solve Lyapunov equations is the Bartels-Stewart method[1]. It �rst transforms A to real Schur form, and then back solves for the solution of thetransformed Lyapunov equation. The solution X is then obtained by a congruence transfor-mation. Reducing a general, possibly sparse matrix to real Schur form requires O(n3) work,as does the congruence transformation to produce X. The 
op count for the Bartels-Stewardmethod calculated in [36] is 15n3.
7.1.2 Hammarling methodThe Hammarling method [23] is another exact method which �rst transforms A to Schurform. It calculates the Cholesky factor of the solution X rather than X itself. It also hasO(n3) complexity.
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7.1.3 Low rank methodsIn [25, 27], low rank approximations to the solution to (7.1) were proposed of the form
X � VmXmV Tm ; (7.2)

where the columns of Vm form an orthonormal basis for the block Krylov subspace Km (A;B),
colsp(Vm) = Km (A;B) = colsp[B;AB;A2B; � � � ; Am�1B]: (7.3)

The columns of Vm are obtained via the block Arnoldi process with A and B. The matrixXm 2 Rmp�mp is obtained by solving a smaller, order mp, matrix equation.The residual of (7.1) is de�ned as
Rm(Xm) := A(VmXmV Tm ) + (VmXmV Tm )AT +BBT : (7.4)

The smaller Lyapunov equation that needs to be solved to satisfy a Galerkin condition onthe residual Rm(Xm) was found in both [25] and [27]. In [27] the smaller matrix equationthat needs to be solved to satisfy a minimum residual condition on the residual was alsogiven.The block Arnoldi algorithm [60] is given here as algorithm 7.Algorithm 7 Block Arnoldi algorithm1. B = Q1R1 (QR factorization), p1 := number of columns of Q1 .FOR i = 1 : m2a. Vi = [Q1; Q2; � � � ; Qi],
2b. Compute

26664
A1iA2i...Aii
37775 = V Ti AQi.

2c. Qi+1Ai+1;i = AQi�Pik=1QkAki (QR factorization), pi+1 := number of columns of Qi+1.END
Let Am�m 2 Rmp�mp , Vm 2 R n�mp ; Bm 2 Rmp�p be the quantities obtained via algorithm7 such that,

B = VmBm; (7.5)AVm = VmAm�m + Vm+1Am+1;mETm; (7.6)Am�m = V TmAVm: (7.7)
Here, Am�m is a block upper-Hessenberg matrix, the columns of Vm form an orthonormal
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basis for Km (A;B), and Em is the matrix formed by the last p columns of the mp�mpidentity matrix. If �i(Am�m) + ��j(Am�m) 6= 0 for all i; j, ensuring an unique solution to(7.9) exists, then
V TmRm(Xm)Vm = 0 (7.8)

if and only if Xm satis�es
Am�mXm +XmATm�m +BmBTm = 0: (7.9)

Equation (7.9) is the order mp Lyapunov equation that needs to be solved to satisfy aGalerkin condition on Rm(Xm) [25, 27].On the other hand, the Frobenius norm of Rm(Xm) is minimized if Xm satis�esATm�m(Am�mXm +XmATm�m +BmBTm) + (Am�mXm +XmATm�m +BmBTm)Am�m+EmATm+1;mAm+1;mETmXm +XmEmATm+1;mAm+1;mETm = 0: (7.10)
Equation (7.10) is the order mp linear matrix equation that needs to be solved to satisfy aminimal residual condition on Rm(Xm) [27].
7.2 Alternate Direction Implicit IterationThe Alternate Direction Implicit (ADI) method [2, 57{59] is another iterative Lyapunovequation solver, and is given as algorithm 8. It produces the approximation XadiJ to theLyapunov solution X according to the two step iteration in (7.12-7.13). The parametersfp1; p2; p2; � � � g; Refpjg < 0; are called the ADI parameters.
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Algorithm 8 Alternate Direction Implicit algorithmINPUT: A, B.00. If v 7! Av; v 2 R n , is not O(n) work, tri-diagonalize A,a. Find ~A tri-diagonal, such that ~A = TAT�1.b. Set ~B := TB.Otherwise, set ~A := A; ~B := B.
0. Choose ADI parameters, fp1; � � � ; pJmaxg, Refpig < 0, (real or complex conjugate pairs),according to section 7.2.2 and references, using spectral bounds on ~A.
1. Initial guess, ~X0 = 0n�n: (7.11)
FOR j = 1; 2; � � � ; J2. Do

( ~A+ pjI) ~Xj� 12 = �BBT � ~Xj�1( ~AT � pjI); (7.12)( ~A+ pjI) ~Xj = �BBT � ~XTj� 12 ( ~AT � pjI): (7.13)
END
3. If A was tri-diagonalized, recover solution,

XadiJ := T�1 ~XJT�T : (7.14)
Otherwise, XadiJ = ~XJ .
OUTPUT: XadiJ 2 R n�n, XadiJ � X.
Remark 1. In step 0, the spectral bounds required in section 7.2.2 are easy to �nd if ~A istri-diagonal.To keep the �nal ADI approximation XadiJfinal real, it is assumed that in the parameter listfp1; p2; � � � ; pJfinalg, each parameter is either real or comes as a part of a complex conjugatepair. Because ~A is stable, since A is stable, and Refpjg < 0 for all j, ( ~A+pjI) is non-singularand solutions to (7.12-7.13) exist for all j. The intermediate matrix ~Xj� 12 in (7.12-7.13) maynot be symmetric, but ~Xj�1 and ~Xj are symmetric.There are two matrix-matrix products and two matrix-matrix solves at each ADI step(7.12-7.13). The matrix ~Xj�1 and BBT are symmetric and in general full. The �rst matrix-54



matrix product in (7.12) is the multiplication of ( ~A�pjI) by the full matrix ~Xj�1, the resultof which is then transposed. The �rst matrix-matrix solve is ( ~A + pjI) ~Xj� 12 = �BBT �~Xj�1( ~AT � pjI), with the full matrix �BBT � ~Xj�1( ~AT � pjI) as the right hand side. Thesolution ~Xj� 12 is also a matrix. This matrix-matrix solve can be done by solving n linearsystems with the matrix ( ~A+pjI) and the columns of �BBT � ~Xj�1( ~AT �pjI) as n di�erentright hand sides.Thus, in each ADI step (7.12-7.13), ( ~A� pjI) is multiplied by two full matrices, and 2nlinear systems are solved with the matrix ( ~A+ pjI).A general matrix A must be �rst reduced to a sparse form before proceeding with (7.12-7.13), to avoid full matrix-matrix products and full matrix-matrix solves, which would requireO(n3) work per iteration [36, 58]. If v 7! ~Av; v 2 R n , requires O(n) work, then the twomatrix-matrix products in (7.12-7.13) can be done in O(n2) work. The two matrix-matrixsolves in (7.12-7.13) can also be done in O(n2) work, either under the assumption that ~Ais narrowly banded so that banded LU factorization can be used, or under the assumptionthat the solves are done iteratively using only multiplication by ~A, for example, via a Krylovsubspace method, and that convergence is fast, which will result in an approximate solutionof ~Ax = b; x; b 2 R n in O(n) work. In either case, solving with 2n right hand sides puts thetotal work for doing two matrix-matrix solves at O(n2).Reducing a full matrix A to tri-diagonal form via a similarity transformation as a pre-processing step ensures that v 7! ~Av; v 2 R n , has O(n) complexity, and that solving ~Ax =b; x; b 2 R n , has O(n) complexity. The �nal approximation XadiJ is recovered via (7.14).The 
op count for ADI calculated in [36] is193 n3 + 12Jn2; (7.15)
where J is the total number of ADI iterations. The O(n3) term comes from the tri-diagonalization of a general matrix A, and the transformation in (7.14) to obtain the �nalADI approximation. If A is already sparse or structured so that the action of A on a vector isO(n) work, there is no need to reduce A to tri-diagonal form. The ADI step (7.12-7.13) canbe performed with the original matrix A. In either case, the O(Jn2) term in (7.15) comesfrom J iterations of (7.12-7.13) with the sparse matrix ~A. The ADI method is competitivewith the Bartels-Stewart and Hammarling methods which are also O(n3) methods.If the original matrix A is sparse, then ADI has an advantage over the exact methods,because it then does not need to reduce A to any special form, and its work requirementbecomes O(Jn2). It is shown in later sections and chapters that frequently J � n, for avariety of reasons. On the other hand, the Bartels-Stewart and Hammarling methods stillneed to reduce a sparse A to Schur form, and so still require O(n3) work to obtain thesolution.
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7.2.1 ADI error boundTo obtain an error bound on the ADI approximation, it is convenient to consider (7.1) and(7.11-7.13) as order n2 linear systems.The Kronecker product of two matrices, F 2 Rm1�n1 and G 2 Rm2�n2, is de�ned as
E = F 
G :=

26664
f11G f12G � � � f1n1Gf21G f22G � � � f2n1G... ... . . . ...fm11G fm12G � � � fm1n1G

37775 ; (7.16)
E 2 R (m1n1)�(m2n2): (7.17)

The `vec' operation on a matrix X 2 Rm�n is de�ned as
vec(X) = 264X(:; 1)...X(:; n)

375 2 R (mn)�1: (7.18)
Clearly,

Y = GXF T () vec(Y ) = (F 
G)vec(X): (7.19)
It is possible to consider (7.1) as an order n2 linear system,

AX +XAT = �BBT ; (7.20)) (In 
 A)vec(X) + (A
 In)vec(X) = vec(�BBT ); (7.21)) (In 
 A+ A
 In)vec(X) = vec(�BBT ); (7.22)
and de�ne H 2 R n2�n2, V 2 R n2�n2, u 2 R n2 , b 2 R n2 , as

H := (In 
 A); V := (A
 In); (7.23)u := vec(X); b := vec(�BBT ): (7.24)
Then (7.1) can be written as the order n2 linear system,

(H + V )u = b: (7.25)
Similarly, without loss of generality, assume A is not pre-processed, A = ~A, then (7.11-
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7.13) become
u0 = 0n2; (7.26)(H + pjIn2)uj� 12 = (pjIn2 � V )uj�1 + b; (7.27)(V + pjIn2)uj = (pjIn2 �H)uj� 12 + b; (7.28)

where (7.28) uses the fact that Xj is a symmetric matrix for all j. Hence,uj =(V + pjIn2)�1(pjIn2 �H) �(H + pjIn2)�1(pjIn2 � V )uj�1 + (H + pjIn2)�1b�+ (V + pjIn2)�1b: (7.29)
De�ne ej := uj � u, then (7.25) and (7.29) imply,

ej = Rjej�1; (7.30)
where

Rj = (V + pjIn2)�1(H � pjIn2)(H + pjIn2)�1(V � pjIn2): (7.31)
Thus,

eJ =  JYj=1Rj! e0: (7.32)
It can be seen that H and V commute,

HV = (In 
 A)(A
 In) = (A
 A) = (A
 In)(In 
 A) = V H; (7.33)
thus, JYj=1Rj = " JYj=1(V + pjIn2)�1(V � pjIn2)#" JYj=1(H � pjIn2)(H + pjIn2)�1# : (7.34)
A bound for the second part of (7.34) is




 JYj=1(H � pjIn2)(H + pjjIn2)�1




2 � kGk2kG�1k2 maxx2spec(H) ����� JYj=1 (pj � x)(pj + x) ����� ; (7.35)
where G is a matrix of eigenvectors of H and spec(H) the set of H's eigenvalues,

H = GDG�1; D = diag(�1; � � � ; �n2); spec(H) = f�iji = 1; � � � ; n2g: (7.36)
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Since H = In 
 A, G := In 
 T is a matrix of H's eigenvectors, provided T is a matrix ofA's eigenvectors. Also, kGk2 = kIn 
 Tk2 = kTk2, and spec(H) = spec(In 
 A) = spec(A).A similar argument can be made for the expression in (7.34) containing V .The error expression in (7.32) can now be written in terms of the qualities from theoriginal Lyapunov equation (7.1),kuJ � uk2 � kTk22kT�1k22k(p)2ku0 � uk2;k(p) = maxx2spec(A) ����� JYj=1 (pj � x)(pj + x) ����� : (7.37)
If u = vec(X), the 2-norm of u is the Frobenius norm of X. The �nal form for the ADIerror bound is kXJ �XkF � kTk22kT�1k22k(p)2kX0 �XkF ;k(p) = maxx2spec(A) ����� JYj=1 (pj � x)(pj + x) ����� ; (7.38)

where T is a matrix of A's eigenvectors, and p = fp1; p2; � � � ; pJg are the ADI parameters.
7.2.2 ADI parameter selectionOptimal ADI parameters p = fp1; p2; � � � ; pJg are the solution of the discrete rational min-max problem [58],

minp1;p2;��� ;pJ max�2spec(A) ����� JYj=1 (pj � �)(pj + �) ����� ; (7.39)
and are a function of J .However, since A's entire spectrum may not be easily available, the following continuousproblem is usually posed instead,

minp1;p2;��� ;pJ maxx2R ����� JYj=1 (pj � x)(pj + x) ����� ; (7.40)
where

�1(A); � � � ; �n(A) 2 R: (7.41)
The parameters fp1; � � � ; pJg will be referred to as optimal if they solve (7.40). They do notneed to be the solution to the discrete problem (7.39). The problem of �nding optimal and
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near-optimal parameters was investigated in several papers [10, 26, 51, 52, 55].For example, if A's eigenvalues are strictly real and contained in the interval [�b;�a],
�b � �1(A); � � � ; �n(A) � �a < 0; (7.42)

then the ADI parameters are chosen to be the solution of
minp1;p2;��� ;pJ maxx2[�b;�a] ����� JYj=1 (pj � x)(pj + x) ����� : (7.43)

The solution to (7.43) is known [58] and is given below.The solution to (7.40) is not known when R is an arbitrary region in the open left halfplane. In [55, 58], `approximately optimal' parameters were reported. [52] gave `asymptoti-cally optimal' parameters.The following parameter selection procedure comes from [58].De�ne the spectral bounds a; b; and � for the matrix A as,
a = mini (Ref�)ig); b = maxi (Ref�)ig); � = tan�1maxi j Imf�igRef�)igj; (7.44)

where �1; � � � ; �n are the eigenvalues of �A. It is assumed that �A's spectrum lies entirelyinside the `elliptic function domain' determined by a; b; �, as de�ned in [58]. If this assump-tion does not hold, one should try to apply a more general parameter selection algorithm.Let
cos2 � = 21 + 12(ab + ba) ; (7.45)

m = 2 cos2 �cos2� � 1: (7.46)
If m < 1, the parameters are complex, and are given in [10, 58]. If m � 1, the parametersare real, and de�ne

k0 = 1m+pm2 � 1 ; (7.47)k = p1� k02: (7.48)
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Note k0 = ab if the eigenvalues of A are all real. De�ne elliptic integrals K and v as,
F [ ; k] = Z  0 dxp1� k2 sin2 x; (7.49)

K = K(k) = F [�2 ; k]; (7.50)
v = F [sin�1r abk0 ; k0]: (7.51)

The number of ADI iterations required to achieve k(p)2 � �1 is
J = d K2v� log 4�1 e; (7.52)

and the ADI parameters are given by
pj = �rabk0 dn[ (2j � 1)K2J ; k]; j = 1; 2; � � � ; J: (7.53)

It was noted in [36] that for most problems ADI usually converges in a few iterations withthese parameters.
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Chapter 8
Cholesky-Factor ADI
A major contribution of this dissertation is the development of the Cholesky Factor ADI(CF{ADI) algorithm [33], which is presented in this chapter. CF{ADI is well-suited to solvethe Lyapunov equation

AX +XAT = �BBT ; B 2 R n�p ; rank(B) = p� n; (8.1)
whose right hand side has low rank. The matrix A is assumed to be stable. The right handside �BBT has low rank compared to the size of A. For simplicity, it is assumed that Bhas full column rank. Otherwise, it is a simple matter to replace B by ~B, where ~B has fullcolumn rank, and ~B ~BT = BBT .Lyapunov equations of the form (8.1) occur frequently in the analysis of large, linear,time-invariant systems whose system matrix is stable, and where the number of inputs andthe number of outputs are much smaller than the system size.For the low rank right hand side problem (8.1), CF{ADI produces the same approxima-tion as the ADI method described in chapter 7, but is much more e�cient because it iterateson the Cholesky factor of the ADI approximation rather than the approximation itself.
8.1 DerivationThis section derives the CF{ADI method from the ADI method. For simplicity, all quantitiesin algorithm 8 with tildes will be written in this chapter without the tildes.The complexity of the ADI method is given in (7.15). Frequently, the system matrix Aof a large, linear, time-invariant system is sparse, so that the action of A on a vector requiresonly O(n) work. In this case the reduction of A to tri-diagonal form in step 0 of algorithm8 is not necessary. Because Xj�1 and Xj� 12 in (7.12-7.13) are in general full, and the workof multiplying a sparse matrix by a full matrix, as well as doing a sparse matrix solve witha full matrix as the right hand side, require O(n2) work, the complexity of ADI is O(Jn2)
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if A is sparse, where J is the total number of ADI iterations. Unfortunately, O(Jn2) is stillunacceptably high for many applications, where n can be on the order of 100; 000.The fact that there are two matrix-matrix products and two matrix-matrix solves in(7.12-7.13) is of concern. The need for matrix-matrix operations rather than simply matrix-vector operations at each ADI step makes algorithm 8 extremely expensive. It is clear thata more e�cient way to represent the full matrix Xj is needed.The �rst step in developing CF{ADI is to combine (7.12) and (7.13) and obtainXj = �2pj(A+ pjI)�1BBT (A+ pjI)�T+ (A+ pjI)�1(A� pjI)Xj�1(A� pjI)T (A+ pjI)�T : (8.2)
From (8.2) and the fact that X0 = 0n�n, it can be seen that Xj is symmetric for all j 2 Z,and the rank of Xj is at most the sum of the rank of Xj�1 and the rank of B. Since iterationbegins with the zero matrix initial guess, Xj will have rank at most jp, where p is the numberof columns in B. Therefore, Xj can be represented as an outer product,

Xj = ZjZTj ; (8.3)
where Zj has jp columns.De�nition 10. A matrix Z is called a Cholesky factor of X 2 R n�n if it satis�es,

X = ZZT : (8.4)
The matrix Z does not have to be a square matrix nor have lower triangular structure.Thus, in (8.3) Zj 2 R n�jp is a Cholesky factor of Xj 2 R n�n.Replacing Xj by ZjZjT in (7.11-7.13) results in

Z0 = 0n�p; (8.5)ZjZTj = �2pj�(A+ pjI)�1B	�(A+ pjI)�1B	T+ �(A+ pjI)�1(A� pjI)Zj�1	�(A+ pjI)�1(A� pjI)Zj�1	T : (8.6)
The left hand side of (8.6) is an outer product, and the right hand side is the sum of twoouter products. Thus, Zj on the left hand side of (8.6) can be obtained simply by combiningthe two factors in the two outer products on the right,

Zj = �p�2pj�(A+ pjI)�1B	;�(A+ pjI)�1(A� pjI)Zj�1	�: (8.7)
Thus, the ADI algorithm can be reformulated in terms of the Cholesky factor Zj of Xj.There is no need to calculate or store Xj at each iteration, only Zj is needed.The preliminary form of Cholesky Factor ADI which iterates on the Cholesky factor Zj
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of Xj is Z1 =p�2p1(A+ p1I)�1B; Z1 2 Rn�p (8.8)Zj = �p�2pj(A+ pjI)�1B; (A+ pjI)�1(A� pjI)Zj�1� ; Zj 2 Rn�jp: (8.9)
In this formulation, at each iteration, the previous Cholesky factor Zj�1 2 R n�(j�1)p needsto be modi�ed by multiplication on the left by (A + pjI)�1(A� pjI). Thus, the number ofcolumns which need to be modi�ed at each iteration increases by p.The implementation in (8.8-8.9) was independently developed in [44].Here, a further step is taken to keep the number of columns modi�ed at each iterationconstant.
8.2 Rational Krylov subspace formulationThe Jp columns of ZJ , the Cholesky factor of the Jth ADI approximation, can be writtenout explicitly,
ZJ =�SJp�2pJB; SJ (TJSJ�1)p�2pJ�1B; SJTJSJ�1 (TJ�1SJ�2)p�2pJ�2B;

� � � ; SJTJ � � �S2 (T2S1)p�2p1B�;(8.10)where
Si = (A+ piI)�1; Ti = (A� piI): (8.11)

Note that the Si's and the Ti's commute,
SiSj = SjSi; TiTj = TjTi; SiTj = TjSi; 8i; j: (8.12)

The Cholesky factor ZJ then becomes
ZJ = [zJ ; PJ�1(zJ); PJ�2(PJ�1zJ); � � � ; P1(P2 � � �PJ�1zJ)] ; (8.13)
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where
zJ := �p�2pJ�SJB = p�2pJ(A+ pJI)�1B; (8.14)Pl := � p�2plp�2pl+1�SlTl+1 = p�2plp�2pl+1 (A+ plI)�1(A� pl+1I); (8.15)

= � p�2plp�2pl+1� [I � (pl+1 + pl) (A+ plI)�1]: (8.16)
It can be seen that if B only has one column, the columns of ZJ span the order J rationalKrylov subspace K(A; zJ ; fpJ�1; � � � ; p1g), with starting vector zJ = p�2pJ(A + pJI)�1Band the shifts fpJ�1; � � � ; p1g.Since there is no signi�cance to the order in which the ADI parameters appear, the index1; � � � ; J in (8.13) can be reversed, to obtain

ZJ = [z1; P1z1; P2P1z1; � � � ; PJ�1PJ�2 � � �P1z1] ; (8.17)
where

z1 = �p�2p1� (A+ p1I)�1B; (8.18)Pl = �p�2pl+lp�2pl ��I � (pl+1 + pl) (A+ pl+1I)�1� : (8.19)
The CF{ADI algorithm which comprises of (8.17-8.19) is given as algorithm 9.It will be justi�ed in section 8.5 that there is no need to tri-diagonalize A as a pre-processing step, even if A is a full matrix. As in the ADI method, it is assumed that eachparameter in the parameter list fp1; p2; � � � ; pJg is either real or comes as a part of a complexconjugate pair, to ensure that the �nal approximation XJ = ZJZTJ is real. Again, becauseA is stable, and Refpjg < 0 for all j, (A+ pjI) is non-singular for all j.
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Algorithm 9 The Cholesky Factor ADI Algorithm.INPUT: A, B.0. Choose ADI parameters, fp1; � � � ; pJmaxg, Refpig < 0, (real or complex conjugate pairs).De�ne: Pi = �p�2pi+1p�2pi � [I � (pi+1 + pi)(A+ pi+1I)�1]:1a. z1 = �p�2p1� (A+ p1I)�1B; (8.20)
1b. Zcfadi1 = h z1 i ;FOR j = 2; 3; � � � ; Jmax2a. zj = Pj�1zj�1; (8.21)

2b. If (kzjk2 > tol1 or kzjk2kZj�1k2 > tol2) and (j � Jmax)
Zcfadij = h Zcfadij�1 zj i : (8.22)

Otherwise, J = j � 1, stop.ENDOUTPUT: ZcfadiJ 2 C n�Jp , ZcfadiJ (ZcfadiJ )T 2 R n�n , XcfadiJ := ZcfadiJ (ZcfadiJ )T � X.
Theorem 4. If XadiJ is obtained by running J steps of algorithm 8, with the ADI parametersfp1; p2; � � � ; pJg, and ZcfadiJ is obtained by running J steps of algorithm 9, with the sameparameters, in any order, then

XadiJ = ZcfadiJ (ZcfadiJ )T : (8.23)
Proof. From the derivation of CF{ADI, it is clear that (8.23) is true when the order ofthe parameters is reversed. The fact that parameter order does not matter at all in eitheralgorithm is shown by
Xj = (A+ pjI)�1(A+ pj�1I)�1�(A� pjI)(A� pj�1I)Xj�2(A� pjI)T (A� pj�1I)T

� 2(pj + pj�1)(ABBTAT + pjpj�1BBT )�(A+ pjI)�T (A+ pj�1I)�T : (8.24)
Clearly, this expression does not depend on the order of pj and pj�1. Any ordering offp1; � � � ; pJg can be obtained by exchanging neighboring parameters.
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As a matter of notation, de�ne,
XcfadiJ := ZcfadiJ (ZcfadiJ )T : (8.25)

Both XcfadiJ and ZcfadiJ will be referred to as the Jth CF{ADI approximation, which one ismeant will be made clear in context. The full matrix XcfadiJ is usually not explicitly calcu-lated. It will be used in subsequent sections for convergence analysis purposes only. Thematrix XadiJ , produced by the ADI algorithm, will be referred to as the Jth ADI approxi-mation.
8.3 Stopping criterionThe stopping criterion kXcfadij �Xcfadij�1 k2 � tol2 can be implemented as kzjk2 � tol, since

kZjZTj � Zj�1ZTj�1k2 = kzjzTj k2 = kzjk22: (8.26)
Relative error can also be used, in which case the stopping criterion is kzjk2kZj�1k2 � tol.
8.4 Parameter selectionThe criterion for picking CF{ADI parameters, p = fp1; � � � ; pJmaxg, is exactly the same as forADI parameters, which is given as (7.40). Section 7.2.2 gives a parameter selection procedurebased on three spectral bounds of A,

a = mini (Re(�i)); b = maxi (Re(�i)); � = tan�1maxi jIm(�i)Re(�i) j; (8.27)
where �1; � � � ; �n are the eigenvalues of �A. These three bounds for the matrix A may beestimated using the power and inverse power iterations, or Gershgorin's circles.A numerical comparison of di�erent choices of parameters in the model reduction contextis given in section 10.2.Power and inverse power iterations can be done at the cost of a few matrix-vector productsand solves. The work to obtain the CF{ADI parameters, W param, will be calculated in thenext section.
8.5 CF{ADI algorithm complexityThe following de�nition is helpful when B has more than one column.De�nition 11. A p-vector v 2 R n�p is a matrix that has p columns.
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The �nal CF{ADI approximation ZcfadiJ can be obtained from the starting p-vector z1and J � 1 products of the form Pizi. The cost of applying Pi to a vector is essentially thatof a linear matrix-vector solve. The starting p-vector z1 is obtained after p matrix-vectorsolves with columns of B 2 R n�p as the p right-hand sides (8.20). Each succeeding p-vectorin ZcfadiJ is obtained from the previous p-vector at the cost of p matrix-vector solves (8.21).Thus, the work per iteration has been reduced from the two matrix-matrix products andtwo matrix-matrix solves in (7.11-7.12) of the original ADI method, to p matrix-vector solvesin (8.21). Figure 8-1 illustrates this savings.
Xj-1, BBT Xj

2 Solves by A + pI
2 Multi by A - pI =)

zjj-1z
p solves by A + pI

Figure 8-1: Savings from CF{ADI
As will be shown in later chapters, the Cholesky factor of the Lyapunov solution isprecisely what is needed in model reduction. In general, if ZcfadiJ is available, it is notnecessary to calculate XcfadiJ = ZcfadiJ (ZcfadiJ )T . Whereas if XadiJ is available, it is oftennecessary to calculate its Cholesky factor in the subsequent model reduction procedure.When comparing the complexities of the ADI algorithm and the CF{ADI algorithm, thework to generate XadiJ after J steps of the ADI algorithm is compared with the work togenerate ZcfadiJ after J steps of the CF{ADI algorithm.Table 8.1 summarizes the work of various matrix operations, depending on the sparsitypattern ofA, which will be assumed and used to calculate the complexities of both algorithms.v 7! Av v 7! (A+ piI)�1v tri-diag(A)Sparse O(n) O(Jsn) O(n3)Full O(n2) O(Jsn2) O(n3)Tri-diagonal O(n) O(n)Table 8.1: Work associated with matrix operations
The multiplication of a vector by a sparse matrix A requires O(n) work. Iterative linearsolve with the matrix A+piI is assumed to be O(Jsn) work, from the work of O(Js) matrix-vector products. This is true when an iterative Krylov-subspace such as GMRES is used to�nd (A+piI)�1v. The number Js indicates the speed of convergence of the iterative method.If A is full, and the same convergence speed is assumed, then calculating (A + piI)�1v isO(Jsn2). If A is tri-diagonal, calculating (A+ piI)�1v is O(n) work.
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Unlike the ADI method, it is not necessary to tri-diagonalize a full matrix as a pre-processing step in CF{ADI if J; Js � n. Since CF{ADI performs only p matrix-vector solvesper iteration, and a matrix-vector solve requires O(Jsn2) work when A is full, J iterationsof CF{ADI with a full matrix has O(JpJsn2) cost. If p; J; Js � n, O(JpJsn2) cost is stillbetter than the O(n3) cost of tri-diagonalization.Exclusive of the work to obtain the ADI/CF{ADI parameters, J iterations of the ADIalgorithm has O(n3 + 4Jn2) cost when A is full and O(J(2 + 2Js)n2) cost when A is sparse.In contrast, J iterations of CF{ADI has O(JpJsn2) cost when A is full and O(JpJsn) costwhen A is sparse.Since the work to calculate the ADI/CF{ADI parameters after the spectral bounds in(8.27) have been obtained is negligible, the work to generate ADI/CF{ADI parameters,W param, consists entirely of the work to calculate the spectral bounds.Suppose Jp iterations of the power method and Jip iterations of the inverse power methodare run to generate the bounds. If A is sparse, W param = Jpn + JipJsn for both ADI andCF{ADI. If A is full, W param = Jpn2 + JipJsn2 for CF{ADI. Since a full matrix A is �rsttransformed to a tri-diagonal matrix in ADI, the spectral bounds can be obtained from thetri-diagonal matrix, and W param = Jpn+ Jipn for the ADI algorithm.The complexity comparison between ADI and CF{ADI is shown in table 8.2. The �rstterm is the work to generate the parameters and the second term is running J iterations in allentries except ADI/full A, where O(n3) is included for tri-diagonalization and the similaritytransformation to obtain the �nal ADI solution.CF{ADI ADISparse (structured) A O((Jp + JipJs)n) +O(pJJsn) O((Jp + JipJs)n) +O(J(2 + 2Js)n2)Full A O((Jp + JipJs)n2 +O(pJJsn2) O(n3) +O(Jpn+ Jipn) +O(4Jn2)Table 8.2: ADI and CF{ADI complexity comparison, J; Js; Jp; Jip � n.
Table 8.3 gives the complexities as a function of n, p, and J only.CF{ADI ADISparse (structured) A O(Jpn) O(Jn2)Full A O(Jpn2) O(n3) +O(Jn2)Table 8.3: ADI and CF{ADI complexity comparison, function of n; p; J .
Since p, the number of inputs, is by assumption much smaller than n, CF{ADI alwaysresults in an order of magnitude savings when A is sparse.For many large system, O(n) complexity is considered acceptable, and O(n2) is deemedtoo expensive. The work to run CF{ADI on a sparse matrix is O(Jpn). Since p � n,Jpn � n2 if and only if J � n. In other words, the total number of CF{ADI iterations
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should be much smaller than the system size n, for CF{ADI to be practical on large problems.Thus, it is possible that algorithm 9 will terminate at a small J , before the error criterionis satis�ed, to ensure that the work stays O(n). Thus, XcfadiJ := ZcfadiJ (ZcfadiJ )T , under theassumption that J � n, is necessarily a low rank approximation to the exact solution X.
8.6 Real CF{ADI for complex parametersThe CF{ADI method in algorithm 9 will result in a complex Cholesky factor ZJ if there arecomplex ADI parameters, although ZJZTJ is guaranteed to be real if the CF{ADI parameterscome in complex conjugate pairs.A version of CF{ADI which only uses operations with real numbers is given as algo-rithm 10. It assumes that the CF{ADI parameters are either real or come in complexconjugate pairs, and that each complex conjugate pair is represented only once in the listfp1; p2; p3; � � � ; pJg. Thus, each complex number encountered in this list will result in 2padditional columns, p being the number of columns in B. The counter k in algorithm 10indicates that the number of columns in Zi is kp.The matrices associated with a real parameter piSi := (A+ piI)�1; Ti := (A� piI); (8.28)
are a rational function and a polynomial of degree one in A. The matrices associated withthe complex parameters pi, �pi,�i = 2Ref�pig; �i = jpij2; (8.29)Qi � (A2 � �iA+ �iI)�1; Ri � (A2 + �iA+ �iI); (8.30)
are a rational function and a polynomial of degree two in A.
8.7 Numerical resultsThis section gives numerical results on the CF{ADI approximation to the solution of (8.1).The example in �gure 8-3 comes from inductance extraction of an on-chip planar squarespiral inductor suspended over a copper plane [30], shown in �gure 8-2. The original order500 system has been symmetrized according to (5.16-5.18). The matrix A is a symmetric500� 500 matrix, and the input coe�cient matrix B 2 R n has only one column.Because A is symmetric, the eigenvalues of A are real and good CF{ADI parametersare easy to �nd. The procedure given in section 7.2.2 was followed. CF{ADI was run toconvergence in this example, which took 20 iterations.Figure 8-3 shows the relative error in the 2-norm of the CF{ADI approximation, kX�Xcfadij k2kXk2 ,
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Figure 8-2: Spiral inductor, a symmetric system.
for j = 1; � � � ; 20. At j = 20, relative error has reached 10�8, which is about the same size asthe error of the optimal rank 11 approximation. The error estimate kzcfadij+1 k22 approximatesthe actual error kX �Xcfadij k closely for all j.
8.8 Krylov vectors reuseIf the CF{ADI parameters fp1; � � � ; pJg are distinct, then a re-organization of algorithm 9can result in signi�cant savings in computational cost, when an iterative Krylov subspacemethod such as GMRES is used to solve the shifted linear system in (8.21).This re-organization involves converting the shifted linear system solve in (8.21) with theright hand side zj�1, to one with the right hand side B. Then each solve in (8.21) can reusethe Krylov subspace built up during the previous solve.
8.8.1 Shifted linear systems with the same RHSThis section describes how the CF{ADI approximation ZcfadiJ can be produced after J linearsystems solves with the right hand side B, if the CF{ADI parameters fp1; � � � ; pJg aredistinct.
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Figure 8-3: CF{ADI approximation.
The CF{ADI approximation ZcfadiJ can be written out explicitly,ZcfadiJ =[p�2p1(A+ p1I)�1B;p�2p2[I � (p2 + p1)(A+ p2I)�1](A+ p1I)�1B;...p�2pJ [I � (pJ + pJ�1)(A+ pJI)�1] � � �� � � [I � (p2 + p1)(A+ p2I)�1](A+ p1I)�1B]:

(8.31)
By expanding Qji=1 (A+ piI)�1 into partial fractions,jYi=1 (A+ piI)�1 = jXi=1 (Yk 6=i( 1pk � pi ))(A+ piI)�1; (8.32)p1 6= p2 6= � � � ; 6= pJ ; (8.33)
ZcfadiJ becomes

ZcfadiJ = VJMJ�JDJ�J ; (8.34)
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where
VJ = �(A+ p1I)�1B; (A+ p2I)�1B; � � � ; (A+ pJI)�1B�; (8.35)

MJ�J =
26664
m11 m12 � � � m1J0 m22 � � � m2J... . . . ...0 0 � � � mJJ

37775 ; (8.36)
m11 = 1; (8.37)mii = � i�1Xj=1 mi�1;j(pi�1 + pipj � pi ); (8.38)
mj;i = mj;i�1(pj + pi�1pj � pi ); j 6= i; (8.39)

and
DJ�J =

26664
p�2p1 0 � � � 00 p�2p2 � � � 0... . . . 00 0 � � � p�2pJ

37775 : (8.40)
The matricesMJ�J and DJ�J are determined completely by the parameters fp1; � � � ; pJgand cost very little to compute. Thus, the cost of calculating ZcfadiJ via (8.34) comes almostentirely from the calculation of VJ .It already follows from theorem 3 that colsp(ZcfadiJ ) = colsp(VJ), but (8.34) makes therelationship between ZcfadiJ and VJ precise.

8.8.2 Sharing of Krylov vectorsThe columns of VJ (8.35) can be obtained either exactly, using J LU factorizations, orapproximately, using J iterative linear system solves,
VJ = �v1; v2; � � � ; vJ�; (8.41)

(A+ piI)vi = B; i = 1 � � � J: (8.42)
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If an iterative Krylov subspace method such as GMRES is used, and if none of the solves in(8.42) is too di�cult, the columns of VJ can be obtained in a much more e�cient way thandoing J separate solves. The solution of shifted systems is discussed in detail in [14].For simplicity, assume B has only one column, B 2 R n . GMRES solves the systemAx = B by �nding an approximate solution xm in the m-dim Krylov subspace,
xm 2 Km(A; r0) := span�r0; Ar0; � � � ; Am�1r0	 : (8.43)

It chooses r0 = B � Ax0. The di�culty of solving a system in (8.42), in other words, thedimension of the Krylov subspace required to �nd a satisfactory solution, depends on theshift pi.If zero is used as the initial guess for all system solves in (8.42), the Krylov subspaceassociated with each system is the same, namely, Km(A;B), since shifts of A do not a�ectthe Krylov subspace,
Km(A+ piI; B) := span�B; (A+ piI)B; � � � ; (A+ piI)m�1B	 ; (8.44)= span�B;AB; � � � ; Am�1B	 := Km(A;B): (8.45)

Hence, one needs only one set of Krylov vectors for all solves in (8.42), which can be storedfrom solve to solve. When a more di�cult shift is encountered, one simply adds to the listof stored Krylov vectors.What is di�erent for each solve in (8.42) is that the decomposition of a di�erent Hessen-berg matrix is needed. Let ~Hm denote the Hessenberg matrix which comes from m stepsof the Arnoldi process with the matrix A, for the system Ax = B, then ~Hm + "piIm�m0 # isthe Hessenberg matrix associated with the shifted system (A + piI)xi = B. But if none ofthe systems in (8.42) is too di�cult, in other words, if they all can be solved in the Krylovsubspace whose dimension is small compared to the size of A, then the cost of decomposingsmall Hessenberg matrices will be low compared to the cost of generating Krylov vectors.In that case the cost of solving J shifted systems is only marginally higher than the cost ofsolving the most di�cult one.Figure 8-4 shows the speed-up in the calculation of the CF{ADI approximation ZcfadiJthat comes from storing the Krylov vectors between solves. The matrix A is 500�500 and itseigenvalues are well-distributed for fast GMRES convergence. The 
ops required to generateZcfadiJ , as a function of J , are plotted. Doing J solves separately and not storing the Krylovvectors is denoted by +, generating VJ by storing Krylov vectors is represented as �, thetotal cost of obtaining ZcfadiJ from VJ , including the generation of the matrices MJ�J andDJ�J in (8.34), is shown as �.
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Disregarding the jumps at J = 3 and J = 9 for the moment, it can be seen that whenKrylov vectors are not stored, the cost of generating ZcfadiJ grows linearly with J , whereas ifthe Krylov vectors are stored, the cost of generating ZcfadiJ increases very little as J increases.The cost of generating Z8 is only slightly higher than the cost of generating Z3. The jump atJ = 3 occurred because p3 is a more di�cult shift, so the solution of (A+p3I)vi = B requiredmore Krylov vectors than the previous two solves. But after the extra Krylov vectors weregenerated, more solves after J = 3 cost very little, until the next di�cult shift at J = 9.
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Algorithm 10 Real version of CF{ADI: ZcfadiJ 2 R n�Jp .
� De�ne, �i = 2Ref�pig; �i = jpij2.� if p1 is real, v1 = S1B = (A+ p1I)�1B;Z1 = hp�2p1v1i ; k = 1;
� elseif p1 is complex,v1 = Q1B = �A2 � �1A+ �1I��1B; v2 = Av1;Z1 = �p2�1p�1v1;p2�1v2� ; k = 2;
� for i = 2; 3; � � � ; J{ if pi is real,� if pi�1 is real,vk+1 = SiTi�1vk = �I � (pi�1 + pi) (A+ piI)�1� vk;Zi = hZi�1;p�2pivk+1i ; k = k + 1;� elseif pi�1 is complex,vk+1 = SiRi�1vk�1 = �A+ (�i�1 � pi) I + (�i�1 � pi (�i�1 � pi)) (A+ piI)�1� vk�1;= vk + �(�i�1 � pi) I + (�i�1 � pi (�i�1 � pi)) (A+ piI)�1� vk�1;Zi = hZi�1;p�2pivk+1i ; k = k + 1;{ elseif pi is complex,� if pi�1 is real,vk+1 = QiTi�1vk = �A2 � �iA+ �iI��1 (A� pi�1) vk; vk+2 = Avk+1;Zi = �Zi�1;p2�ip�ivk+1;p2�ivk+2� ; k = k + 2;� elseif pi�1 is complex,vk+1 = QiRi�1vk�1 = �I + ((�i + �i�1)A+ (�i�1 � �i) I) �A2 � �iA+ �iI��1� vk�1;vk+2 = Avk+1;Zi = �Zi�1;p2�ip�ivk+1;p2�ivk+2� ; k = k + 2;
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Chapter 9
Low Rank Approximation to
Dominant Eigenspace
9.1 Low rank CF{ADIThe work required to run CF{ADI on a sparse matrix A is O(Jpn), where p is the numberof columns in B, and J is the number of CF{ADI iterations. For many large systems, O(n)complexity is considered acceptable, and O(n2) is considered too expensive.Since p � n, Jpn � n2 if and only if J � n. Thus, the total number of CF{ADIiterations should be much smaller than the system size n, for CF{ADI to be practical onlarge problems. Therefore, it is possible that algorithm 9 will be terminated at a smallJ , before convergence, to ensure that the complexity of algorithm 9 stays O(n). In thatcase, XcfadiJ := ZcfadiJ (ZcfadiJ )T , J � n, is necessarily a low rank approximation to the exactsolution X.Since CF{ADI necessarily provides only a low rank approximation to the solution to(8.1), this section justi�es the usefulness of a low rank approximation to the exact solution.The �rst part explains why a low rank matrix can often be a very good approximation tothe exact solution to (8.1). The second part deals with the case when the exact solutioncannot be well approximated by a low rank matrix, in which case CF{ADI provides a goodapproximation to an optimal low rank Cholesky factor, which is needed in the low rankmodel reduction methods proposed in chapter 5.The e�ectiveness of the CF{ADI algorithm in each case is illustrated by numerical ex-amples.
9.2 Exact solution close to low rankIn [36] it was noted that ADI converges in a few iterations for many problems if goodparameters are chosen, which means that the exact solution in those cases is close to low
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rank, since it can be well approximated by a low rank matrix.The justi�cation of why the solution to (8.1) is often close to low rank was given in [42]for symmetric A.Proposition 10. Let A 2 R n�n be a stable, symmetric matrix with � = �(A) = �n(A)�1(A) ,�n(A) � �1(A) < 0, B 2 R n�p a nonzero matrix, and �i(X), i = 1; � � � ; n, the non-increasingordered eigenvalues of X, then
�pk+1(X)�1(X) �  k�1Yj=0 � 2j+12k � 1� 2j+12k + 1

!2 (9.1)
for 1 � pk < n [42].

A smaller � value indicates faster decay. Figure 9-1, also taken from [42], illustrates thedecay bound (9.1). The right hand side of (9.1) is smaller than 0:01 at k = 20, for all �values ranging from 10 to 105.
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Figure 9-1: Eigenvalue decay bound, symmetric case
Thus, if � is reasonably small, the exact solution to (8.1) when A is symmetric is amatrix which has very fast eigenvalue decay. Most of the solution's eigenvalues are negligiblecompared to the few largest ones. In other words, X, which is symmetric, has an eigenvalue(singular value) decomposition,

X = [u1; � � � ; un]264�1 � � � 0... . . . ...0 � � � �n
375 [u1; � � � ; un]T ; (9.2)
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where �1 � � � � � �J > �J+1 � � � � � �n � 0; �1 � �J+1; J � n. Therefore,
X = X largeJ +Xsmalln�J ; (9.3)

X largeJ := [u1; � � � ; uJ ]264�1 � � � 0... . . . ...0 � � � �J
375 [u1; � � � ; vJ ]T ; (9.4)

Xsmalln�J := [uJ+1; � � � ; un]264�J+1 � � � 0... . . . ...0 � � � �n�J
375 [uJ+1; � � � ; un]T ; (9.5)

where kX largeJ k2 � kXsmalln�J k2. Hence, the exact solution X is close to low rank, in thefollowing sense,
kX �X largeJ k2 = �J+1 � �1 = kXk2; rank(X largeJ ) = J; J � n: (9.6)

There is no bound similar to (9.1) for a non-symmetric matrix A, but one also frequentlyencounters rapid eigenvalue decay when A is non-symmetric.Figure 9.2 shows the eigenvalue decay of the solutions to (1.50) and (1.51) when A isnon-symmetric. The matrix A comes from the discretized transmission line example shownin �gure 5-1. It is a 256�256 matrix and B has one column. Figure 9.2 shows the rapid decayof the eigenvalues of P 2 R 256�256, the solution to (1.50), and Q 2 R 256�256, the solutionto (1.51). The magnitude of each set of eigenvalues has decayed to 10�5 of the magnitudeof the largest eigenvalue by k = 20. Thus, both P 2 R 256�256 and of Q 2 R 256�256 can bereasonably well approximated by rank 20 matrices.
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9.3 Dominant eigenspace of the Lyapunov solutionIn the case when the solution to (8.1) is not close to low rank as according to (9.6), andCF{ADI is still run only a small number of steps, a low rank approximation is produced. Inthis case, it is hoped that this low rank approximation will be close to optimal. To simplifythe analysis, in this section assume B has only one column, thus ZcfadiJ 2 R n�J . Also assumeZcfadiJ has full column rank.If the exact solution X to (8.1) has an eigenvalue (singular value) decomposition,

X = [u1; � � � ; un]264�1 � � � 0... . . . ...0 � � � �n
375 [u1; � � � ; un]T ; (9.7)

�1 � � � � � �n � 0; (9.8)
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where the �i's do not necessarily decay rapidly, X can still be divided into two parts,
X = X largeJ +Xsmalln�J ; (9.9)

X largeJ := [u1; � � � ; uJ ]264�1 � � � 0... . . . ...0 � � � �J
375 [u1; � � � ; uJ ]T ; (9.10)

Xsmalln�J := [uJ+1; � � � ; un]264�J+1 � � � 0... . . . ...0 � � � �n�J
375 [uJ+1; � � � ; un]T : (9.11)

With the assumption that �J > �J+1, X largeJ is the unique optimal rank J approximation toX in the 2-norm [20]. From now on, the optimal 2-norm rank J approximation (assumedunique) to X will be denoted by XoptJ .If �J+1 is not small, then X cannot be well approximated by a rank J matrix. In thatcase, the most one can hope for regarding the rank J CF{ADI approximation, in the 2-norm,is that it is close to the optimal rank J approximation,
XcfadiJ := ZcfadiJ (ZcfadiJ )T � XoptJ : (9.12)

The matrices XcfadiJ and ZcfadiJ both have rank J under the assumptions that B has onlyone column and ZcfadiJ has full column rank.In the model reduction context, it is often not important to capture the eigenvaluesof XoptJ exactly, rather, it is the eigenspace, colsp([u1; � � � ; uJ ]), associated with the largeeigenvalues of X, which is signi�cant.Thus, it is hoped that
colsp([ucfadi1 ; � � � ; ucfadiJ ]) � colsp([uopt1 ; � � � ; uoptJ ]); (9.13)

where
XoptJ = [uopt1 ; � � � ; uoptJ ]264�opt1 � � � 0... . . . ...0 � � � �optJ

375 [uopt1 ; � � � ; uoptJ ]T ; (9.14)
�opt1 � � � � � �optJ > 0; (9.15)
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and
XcfadiJ = [ucfadi1 ; � � � ; ucfadiJ ]264�cfadi1 � � � 0... . . . ...0 � � � �cfadiJ

375 [ucfadi1 ; � � � ; ucfadiJ ]T ; (9.16)
�cfadi1 � � � � � �cfadiJ > 0; (9.17)

are singular value decompositions, with the zero eigenvalues and their associated eigenvectorsexcluded.The eigenvectors fucfadi1 ; � � � ; ucfadiJ g can be obtained by �nding the left singular vectorsof ZcfadiJ .
9.4 Dominant eigenspace, rational Krylov subspaces,CF{ADIThe CF{ADI approximation can be written in the following way,

XcfadiJ = ZcfJ (ZcfJ ) = U cfJ YJ�J(U cfJ )T ; (9.18)
where

(U cfJ )T (U cfJ ) = IJ�J ; colsp(U cfJ ) = colsp(ZcfJ ): (9.19)
The columns of U cfJ form a basis for the range of XcfadiJ . Thus, the CF{ADI approximationhas the same form as the low rank ideas proposed in [25, 27], and described in section 7.1.3.In all these low rank methods, X is approximated by a low rank matrix,

X � UJYJ�JUTJ ; (9.20)
where the columns of UJ form an orthonormal basis for the range of the low rank approxi-mation. The important di�erence between the low rank methods in [25, 27] and CF{ADI isthe choice of colsp(UJ).In [25, 27], the columns of UJ form an orthonormal basis for KJ (A;B),colsp(UJ) = KJ (A;B) = colsp[B;AB;A2B; � � � ; AJ�1B]: (9.21)
In CF-ADI, the choice is (9.19). The choice in (9.21) is intuitive because of proposition9. Corollary 2, an immediate consequence of theorem 2 and lemma 3, shows that (9.19) isintuitive in the same way.
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Corollary 2. If Zcfadin = [z1; � � � ; zn] is the nth CF{ADI approximation, and fp1; � � � ; pngis any CF{ADI parameter set for which no (A+ piI) is singular, and B 2 R n, then
colsp(Zcfadin ) = Kinvn (A; (A� p1)�1B; fp2; � � � ; png); (9.22)= span ��B;AB; � � � ; An�1B�� ; (9.23)= range(X); (9.24)

where X is the solution to (8.1).The following two corollaries show what happens when a CF{ADI iterate is a linearcombination of the previous iterates.Corollary 3. Let Zcfadij = [z1; � � � ; zj ] be the jth CF{ADI approximation, and fp1; � � � ; pjgbe any CF{ADI parameter set for which no (A + piI) is singular, and B 2 R n. If zj+1 is alinear combination of fz1; � � � ; zjg, then zl is a linear combination of fz1; � � � ; zjg wheneverl � j + 1.Proof. See lemma 3.Corollary 4. If zj+1 at the j + 1th step of the CF{ADI iteration is a linear combination ofthe previous iterates, z1; � � � ; zj, and B 2 R n, then
Range(X) = spanfz1; � � � ; zjg; (9.25)

where X is the solution to (8.1).Proof. Because
Range(X) = spanfB;AB; � � � ; An�1Bg; (9.26)= spanfz1; z2; � � � ; zj; � � � ; zng; (9.27)= spanfz1; z2; � � � ; zjg: (9.28)

Corollary 4 says that if the j + 1st CF{ADI iterate, zj+1, is a linear combination of theprevious columns, then a basis for the range of the exact solution has been found.If the goal is to �nd the range of the exact solution X, then iteration can stop whenzj+1 is linear combination of the previous columns. If, however, the goal is to approximatethe exact solution X by Zcfadij (Zcfadij )T , then iteration may have to continue, since even ifZcfadij (Zcfadij )T has the same range as X, they may not be close as matrices.The range of X can also be characterized in terms of its eigenvectors. Let the eigen-decomposition of X be as in (9.7), and the eigenvalues ordered so that,
�1 � � � � ;� �r > �r+1 = � � � = �n = 0; (9.29)82



then u1; � � � ; ur, the eigenvectors of X associated with nonzero eigenvalues, span the rangeof X,
Range(X) = span fu1; � � � ; urg : (9.30)

Theorem 2 in chapter 6 shows that Range(X) = L(A;B;p), and L(A;B;p) can have anin�nite number of characterizations, as Krylov subspaces, as rational Krylov subspaces, andas their sums.A few examples of these characterizations appear below,
span fu1; � � � ; urg = Range(X); (9.31)= spanfB;AB; � � � ; An�1Bg; (9.32)= spanfA�1B;A�2B; � � � ; AnBg; (9.33)= spanfzcfadi1 (p); zcfadi2 (p); � � � ; zcfadin (p)g; any fp1; � � � ; png;(9.34)= mXi=1 Kis �(A� qiI); (A� qiI)�1B� ; (9.35)1s + � � �+ms = n; any q1; � � � ; qm: (9.36)

Therefore, the span of the eigenvectors of X associated with non-zero eigenvalues is thesame as the span of the columns of the nth CF{ADI approximation Zcfadin . Similarly, lowrank methods which utilizes (9.32) [25, 27], and (9.33), instead of the CF{ADI choice of(9.34), also �nd the span of the eigenvectors of X associated with non-zero eigenvalues whenrun to full n steps.Frequently it is not practical to run any of these Krylov subspace-based algorithms to nsteps to �nd the full range of X. Instead, the measure of success for a low rank method ishow well the partial basis it generates approximates X's dominant eigenvectors.In other words, if fw1; � � � ; wJg is the partial basis generated by J steps of a low rankmethod, how well does
spanfw1; � � � ; wJg � span fu1; � � � ; uJg ; J � n; (9.37)

where u1; � � � ; uJ are the dominant eigenvectors of X, in order of decreasing importance? Toavoid ambiguity, the eigenvalue associated with uJ is assumed to be strictly larger than theeigenvalue associated with uJ+1.Several possibilities for fw1; � � � ; wJg arespanfw1; � � � ; wJg = spanfB;AB; � � � ; AJ�1Bg; (9.38)
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or
spanfw1; � � � ; wJg = spanfzcfadi1 (p); zcfadi2 (p); � � � ; zcfadiJ (p)g; any fp1; � � � ; pJg; (9.39)

or some other set of J vectors from theorem 2. Due to practical considerations, the startingvector w1 should not contain too many powers of shifts of A or inverse powers of shifts of A.Clearly, the answer to the question of which choice of a partial basis approximatesspanfu1; � � � ; uJg better depends on A, B, J , and the shift parameters. However, sincethere is more freedom in picking fw1; � � � ; wJg according to (9.39), which amounts to pick-ing the CF{ADI parameters fp1; � � � ; pJg, than according to (9.38), one expects to be ableto approximate the span of the �rst J eigenvectors of X better with CF{ADI, if the CF{ADIparameters are well chosen.
9.5 Numerical resultsThis section provides numerical result on how well CF{ADI approximates the dominanteigenspace of X.Figure 9-3 shows dominant eigenspace approximation, where the matrices A and B camefrom the spiral inductor problem considered in section 8.7. The matrix A is symmetric,500� 500, and B has one column. CF{ADI is run for 20 iterations. The relative error after20 iterations is kX�Xcfadij k2kXk2 = 10�8.Figure 9-3(a) measures the closeness of the 20-dim dominant eigenspaces of X and Xcfadi20 .This measure is provided by the concept of principle angles between subspaces [20]. Let S1and S2 be two subspaces, of dimension d1 and d2, respectively, and assume d1 � d2. Thenthe d2 principle angles are de�ned as �1; � � � ; �d2, such that

cos(�j) = maxu12S1;ku1k=1 maxu22S2;ku2k=1(u1)Tu2 = (u1j)Tu2j ; (9.40)
under the constraints that

(u1)Tu1i = 0; (u2)Tu2i = 0; i = 1 : j � 1: (9.41)
If the columns of U1 are an orthonormal basis for S1, and the columns of U2 an orthonormalbasis for S2, and (U2)TU1 has singular value decomposition,

(U1)TU2 = U�V T ; (9.42)
then

cos(�j) = �(j; j); u1j = U1U(:; j); u2j = U2V (:; j): (9.43)
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Thus, these two bases, fu11; � � � ; u1d2g and fu21; � � � ; u2d2g, are mutually orthogonal, (u1i )Tu2j =0, if i 6= j. And (u1i )Tu2i = cos(�i) indicates the closeness of u1i and u2i . If S1 = S2, thencos(�j) = 1, j = 1; � � � ; d1 = d2. If S1 ? S2, then cos(�j) = 0, j = 1; � � � ; d2. A basis for theintersection of S1 and S2 is given by those basis vectors whose principle angle is 0.
range(S1) \ range(S2) = spanfu11; � � � ; u1sg = spanfu21; � � � ; u2sg; (9.44)1 = cos(�1) = � � � = cos(�s) > cos(�s+1): (9.45)

Thus, the closeness of two subspaces is measured by how many of their principle angles areclose to 0.In �gure 9-3(a) the cosines of the principle angles between U cfadi20 and U opt20 are plotted.The cosines of 18 of the principle angles are 1, and the cosines of the last two are above0.85, indicating close match of all dominant eigenvectors. This is not surprising since kX �Xcfadi20 k=kXk is less than 10�8.Because the eigenvectors of Xopt20 associated with the larger eigenvalues are more impor-tant than the eigenvectors of Xopt20 associated with the smaller (non-zero) eigenvalues in viewof later application to model reduction, as they indicate the more controllable or observablemodes among the top 20, it is worthwhile to see how well each eigenvector of Xopt20 is indi-vidually matched by U cfadi20 . This is measured by the norm of the projection of the exactdominant eigenvector, uoptj , onto U cfadi20 . The direction uoptj is contained in the column spanof U cfadi20 if k(uoptj )TU cfadi20 k2 = 1. This is a di�erent criterion than the one based on principleangles, as uoptj may not be one of the vectors in the orthogonal basis in (9.43).As can be seen in �gure 9-3(b), and not from �gure 9-3(a), uopt20 is better representedby the vectors in U cfadi20 than is uopt19 . Everything being equal, it is preferable for uopt19 to bebetter represented than uopt20 , because uopt19 is more important in terms of controllability orobservability.
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Figure 9-3: Symmetric matrix, n = 500, 20 CF{ADI iterations, converged

In contrast to �gure 9-3, �gures 9-4 and 9-5 demonstrate dominant subspace approxima-tion when CF{ADI is not run to convergence.Figure 9-4 is the same spiral inductor example as in �gure 9-3, but CF{ADI is only run7 steps. In �gure 9-4(a), kzcfadi7 k is small but kX � Xcfadij k2 has stagnated. The relativeerror kX�Xcfadi7 k2kXk2 is between 10�2 and 10�3, whereas the relative error of the optimal rank 7approximation is 10�5. However it can be seen from �gure 9-4(b) that the intersection of thecolumn span of U cfadi7 and the column span of U opt7 has dimension 6, since the cosines of 6principles angles are 1. In �gure 9-4(c), it can be seen that the top 5 dominant eigenvectorsof X, the 5 most important modes, are contained entirely in the column span of U cfadi7 . Thenorm of the projection of uopt6 onto U cfadi7 is around 0.9, while that of uopt7 is around 0.5.Thus, dominant eigenspace information about X can emerge, even when CF{ADI hasnot converged.
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(c) Dominant subspace projection
Figure 9-4: Symmetric matrix, n = 500, 7 CF{ADI iterations, not converged

Figure 9-5 shows another example of running CF{ADI only a small number of steps,before convergence occurs. It comes from the transmission line example (�gure 5-1). Thesystem matrix A is 256� 256, and the input matrix B has one column.Figure 9-5 contains results for the solutions to the two Lyapunov equations (1.50-1.51).The solution to (1.50) is denoted by P , and the solution to (1.51) is denoted by Q.Compared to the Lyapunov solution associated with the spiral inductor example, whosesystem matrix is symmetric, the two Lyapunov solutions associated with the non-symmetricmatrix A in this example have slower eigenvalue decay. In section 9.2 it is asserted that bothP and Q are close to rank 20 matrices. Since the eigenvalues of a non-symmetric matrix can
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be in an arbitrary region in the open left half plane, the problem of parameter selection isalso more di�cult for this example than for the symmetric example. The selection procedurein [58] was followed and the resulting parameters are complex.Figure 9-5(a) and 9-5(b) show that the CF{ADI error is not decreasing at all during15 iterations. The relative error stagnates at 1. However, �gure 9-5(c) shows that theintersection of the span of the 15 dominant eigenvectors of P and the span of the 15 dominanteigenvectors of the CF{ADI approximation has dimension 10 (almost 11). Similarly, theintersection of the span of the 15 dominant eigenvectors of Q and the span of the 15 dominanteigenvectors of the CF{ADI approximation has dimension 10.Figure 9-5(d) provides an interesting picture. Recall that eigenvectors of P or Q as-sociated with larger eigenvalues are more important than the eigenvectors associated withsmaller eigenvalues. In �gure 9-5(d), a lower index indicates a more important eigenvector.It can be seen that the 5 most important eigenvectors of P (Q) are represented almost com-pletely in span(U cfadi�P (Q)15 ). What is interesting is that the 9th and 10th eigenvectors of Qare also completely represented, even though eigenvectors 7 and 8 are not. The eigenvectorsof P display similar, if not as dramatic, behavior, whereby some middle eigenvectors are notas well captured as the eigenvectors to their left and right.This example demonstrates that even if the CF{ADI error is large, some informationabout the dominant eigenspace can still emerge, although there may also be missing infor-mation.
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(d) Dominant subspace projection
Figure 9-5: Non-symmetric matrix, n = 256, 15 CF{ADI iterations, not converged
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Chapter 10
Model Reduction via CF{ADI
Chapter 5 addressed the issue of how to utilize low rank approximations to the two systemgramians in a model reduction method, with the goal of approximating the TBR reducedmodel. The solution is clear for symmetric systems, and two approaches, the Low RankSquare Root method and the Dominant Gramian Eigenspaces method, are developed fornon-symmetric systems.The question of how to obtain low rank approximations to the system gramians is an-swered with the development of the CF{ADI method. Other methods of generating lowrank approximations, such as [27], can also be used in this context. In fact, an in�nitevariety of low order Krylov and rational Krylov bases can be used to generate low rankapproximations. Any subset containing consecutive elements of the in�nite spanning setf� � � ; v�j; � � � ; v0; � � � ; vj ; � � � g for the subspace L(A;B;p), whose characterization was givenin theorem 2, su�ces as a basis for the range of a low rank approximation.Theoretical and numerical results in chapter 9 support the belief that CF{ADI can pro-duce good approximately optimal low rank Cholesky factors.This chapter uses the CF{ADI algorithm to generate the low rank Cholesky factorsneeded in the Dominant Gramian Eigenspaces method. Numerical results for symmetricand non-symmetric systems are given.For symmetric systems, it is shown that, if the reduced model order equals the CF{ADIapproximation order, Approximate TBR via CF{ADI (algorithm 11) results in a reducedmodel which is equivalent to the reduced model produced by a particular moment matchingvia rational Krylov subspaces method. Thus, from the point of view of moment matching, theproblem of picking good moment matching points, so that the reduced model approximatesthe TBR reduction, can be approached by solving the CF{ADI parameter selection problem(7.43).Numerical comparison of several CF{ADI parameter selection procedures are also made.
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10.1 Symmetric systemsA symmetric state-space system of the form (5.10-5.11) can be reduced according to algo-rithm 11.Algorithm 11 Approximate TBR via CF{ADI for symmetric systemsINPUT: A, B.1. Compute ZJ 2 R n�J , ZJZTJ � P optJ , by CF-ADI, algorithm 9.2. Obtain the order k reduced system (Ark; Brk; (Brk)T ) according to algorithm 4.
10.1.1 Connection to moment matchingHere, for symmetric systems, a connection is established between Approximate TBR viaCF{ADI and the moment matching method given in algorithm 1.Theorem 5. The reduced model obtained by algorithm 11 using fp1; p2; � � � ; pJg as the CF{ADI parameters, when the reduced model order k equals the CF{ADI approximation orderJ , is equivalent to the reduced model obtained by algorithm 1, which matches is moments atthe point �pi, where pi appears is times in the parameter list fp1; p2; � � � ; pJg.Proof. By theorem 3, algorithm 11 and algorithm 1 produce the same projection spaces,namely,

col(Ualgo�11J (fp1; � � � ; pJg)) = spanfz1; � � � ; zJg (10.1)= f(A+ p1)�1B; � � � ; JYi=1(A+ piI)�1g (10.2)
= mXi=1 f(A+ piI)�1B; � � � ; (A+ piI)�isBg (10.3)
= mXi=1 Kis �(A� (�pi)I); (A� (�pi)I)�1B� ; (10.4)
= col(Ualgo�1J (f�p1; � � � ;�pJg)) (10.5)

where 1s + � � �+ms = J , and each pi appears in fp1; � � � ; pJg a total of is times. Hence thereduced models are equivalent by theorem 6.In trying to approximate TBR for symmetric systems via algorithm 11 with the parame-ters fp1; p2; � � � ; pJg, and k = J , one obtains a reduced system which also matches momentsof the original transfer function at f�p1;�p2; � � � ;�pJg, with higher order moments denoted
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by repeating the points. In this case, algorithm 11 can also be thought of as a moment match-ing method. The advantage of using algorithm 11 for symmetric systems instead of one ofthe moment matching algorithms described in chapter 3 is that the solution to the rationalmin-max problem on the real interval (7.43) is known, so optimal CF{ADI parameters canbe found.Thus, even if one starts from the view of matching transfer function moments, the ques-tion of which moment matching points to pick can be answered by solving the rationalmin-max problem (7.40), if the desire is to produce a reduced model which is close to theTBR reduction.In addition, ZJB from CF{ADI contains more information than the projection matrixUk obtained via moment matching. The columns of Uk are simply an orthonormal basisfor the sum of several Krylov subspaces. The singular values of ZJB give an indication ofapproximately how controllable (and observable for symmetric systems) a mode is, and canbe used in error estimation via (4.8).Algorithm 11, as an approximation to the TBR method, is expected to produce a globallyaccurate reduced model.
10.1.2 Numerical resultsAlgorithm 11 was tested on the spiral inductor example (�gure 8-2). The original system issingle-input single-output, of order 500, and has been symmetrized according to (5.16-5.18).
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Figure 10-1: Spiral inductor, order 7 reductions

Figure 10-1 compares four di�erent order 7 reductions of the original system. One isTBR. The second is moment matching around s = 0, denoted `MM0'. The third is moment92



matching at 7 points distributed in the frequency range (as a real interval) [105; 1015] withlog spacing, denoted `MM-log(freq)'. The fourth is algorithm 11, denoted `TBRvCfadi',where the reduced model order equals the CF{ADI approximation order, J = k = 7.Figure 10-1(a) shows the magnitudes of the frequency response errors, jG(j!)�Gred(j!)j,of the four di�erent approximations, as well as the TBR L1-error bound (4.8).It can be seen that the TBR reduction has the smallest L1-error, supw jG(j!)�Gred(j!)j,and it is below the TBR error bound. The L1-error of `TBRvCfadi-7' is half an order ofmagnitude larger than TBR's. Both moment matching reductions' L1-errors are two ordersof magnitude larger than TBR's.Figure 10-1(b) shows the relative errors, kG(j!)�Gred(j!)kkG(j!)k , of the same four order 7 reduc-tions. Both the TBR and the Approximate TBR via CF{ADI reductions have comparatively
at relative errors, whereas the two moment matching reductions have regions with very smallerror and regions with much larger error.Of course, the Approximate TBR via CF{ADI reduced model also matches moments atthe negative of the CF{ADI parameters. Thus, one interpretation of the results shown in�gure 10-1 is that the negative of the solution to the rational min-max problem on the realinterval (7.43) is a better choice of moment matching points than log spaced points over thefrequency range [105; 1015].
10.2 Numerical comparison: CF{ADI parametersThis section makes numerical comparison of several di�erent selection procedures for theCF{ADI parameters, or equivalently, moment matching points, in terms of reduced modelaccuracy.Figure 10-2 shows the frequency response errors, jG(j!)�Gred(j!)j, and relative errors,jG(j!)�Gred(j!)j=jG(j!)j, of seven parameter selection procedures for the spiral inductorexample. One set of procedures chooses the parameters as a function of the frequency rangeof interest as a real interval, [!min = 105; !max = 1015]. The other set chooses the parametersas a function of A's eigenvalue range, [�min = �7:91� 1010; �max = �1:38� 107], which isalso a real interval because A is symmetric. The spacings of the parameters are chosen to belinear, log, or Chebyshev on either [!min; !max], or [�min; �max]. In addition, the solutionof the real rational min-max problem (7.43) gives optimal parameters.In �gure 10-2(a), the legend is ordered so that the choices of parameters appear in the or-der their frequency response errors intersect the left vertical axis. The two Chebyshev choiceshave error 1 at low frequencies. Linear spacing on A's eigenvalue interval also attains highesterror at low frequencies, around 3� 10�2. Linear and log spacing on the frequency intervalhave small errors at low frequencies, and attain maximum error in the middle frequencyrange, with L1-errors of 10�1 and 10�3, respectively. The solution to the real min-maxproblem (7.43) and log spacing on A's eigenvalue interval have the smallest L1-errors of all
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the choices, around 3�10�5. In fact, these two choices picked parameter sets which are veryclose to each other.Figure 10-2(b) shows the relative errors. Log spacing on A's eigenvalue interval and thesolution to the real min-max problem (7.43) both have 
at errors over the entire frequencyrange. It can be seen that knowing A's eigenvalue range helps one to pick good parameters.Without that knowledge, log spacing on the frequency range seems to work best.
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Figure 10-2: Spiral inductor; shift parameters are important

10.3 Non-symmetric systemsIn chapter 5 two low rank reduction methods were proposed, the Low Rank Square Rootmethod, algorithm 5, and the Dominant Gramian Eigenspaces method, algorithm 6. CF{ADI can be used to produce low rank Cholesky factors for either method. If the CF{ADIerror in algorithm 9 is small after only a small number of iterations on both (A;B) and(AT ; CT ), then algorithm 5 can be used. In that case, both gramians are close to low rank,and the CF{ADI approximations to them are fairly accurate. If the CF{ADI error is notsmall, then algorithm 6 should be used.Because in chapter 5 it was shown that the Dominant Gramian Eigenspaces method,algorithm 6, generally produces a better reduced model than the Low Rank Square Rootmethod, this section only shows results for using CF{ADI with algorithm 6.
10.3.1 Numerical resultsThis section uses the discretized transmission line example (�gure 5-1) again.
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Algorithm 12 Dominant Gramian Eigenspaces via CF{ADIINPUT: A, B, C.1. Compute ZBJB , ZBJB(ZBJB)T � P optJB , by CF{ADI, algorithm 9, applied to (1.50).
2. Compute ZCJC , ZCJC (ZCJC )T � QoptJC , by CF{ADI, algorithm 9, applied to (1.51).
3. Choose k � J , 2k being the desired reduction order.U ctobm = qr(�UBn�J(:; 1 : k); UCn�J(:; 1 : k)�)note: k � m = rank(U ctobm ) � 2k
4. Reduce the system:Arm = (U ctobm )TAU ctobm ; Brm = (U ctobm )TB; Crm = CU ctobm (10.6)

Figure 10-3 shows numerical results obtained using algorithm 12. In �gure 10-3(a), thefrequency responses of three di�erent reduced systems are shown. All three are order 10.`Ct5 U Ob5' denotes using the 5 exact dominant controllable modes and the 5 exactdominant observable modes in steps 1 and 2 of algorithm 12. This reduction was shown tobe indistinguishable from the order 10 TBR reduction in �gure 5-2(a). `Ct5(15) U Ob5(15)'denotes running 15 iterations of CF{ADI on (A;B) to obtain ZB15, and 15 iterations of CF{ADI on (AT ; CT ), to obtain ZC15, and letting k = 5 in step 3 of algorithm 12. `Ct15(15) UOb15(15)-TBR-10' denotes letting k = 15 instead, obtaining an order 30 reduced system,and then doing TBR on this reduced system to obtain the further reduced system of order10. The frequency responses of `Ct5 U Ob5' and `Ct5(15) U Ob5(15)' are close except at thelast two peaks. `Ct5 U Ob5' follows the next to last peak of the exact frequency response andthen 
attens out, whereas `Ct5(15) U Ob5(15)' misses the next to last peak and �nds the lastone. `Ct15(15) U Ob15(15)-TBR-10' has a peak in between the last two tall peaks. The factthat `Ct15(15) U Ob15(15)-TBR-10' is not more accurate than `Ct5(15) U Ob5(15)', rather,it is a bit worse, is surprising, since the projection spaces which produced the intermediateorder 30 reduction contain the projection spaces which produced `Ct5(15) U Ob5(15)'. Thereason appears to be that the larger projection spaces have made the intermediate order 30system unstable. Its system matrix has many eigenvalues with positive real parts.Figure 10-3(b) adds the frequency response of the reduced system obtained by the mo-
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ment matching via orthogonal projection method given as algorithm 1. A total of 30 momentmatching points were chosen in the frequency interval [!min = 10�4; !max = 10�2], with logspacing. `MMorth-log(freq)-30' requires the same order of work as `Ct5(15) U Ob5(15)'. Itis an one-sided reduction as only a rational Krylov subspace with A and B is used. There isno contribution from the output coe�cient matrix C.It can be seen that `MMorth-log(freq)-30' is extremely accurate at frequencies lower than10�3, but fails to capture any of the peaks beyond ! = 10�3. `Ct5(15) U Ob5(15)' clearlycaptures the global frequency response behavior much better. It captures all but the next tolast sharp peak. It averages the �rst tiny peak and small bumps between sharp peaks, whichkeeps the L1-error small without having to following every topographical feature exactly.
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Chapter 11
Conclusions and Future Work
In this dissertation, a low rank model reduction method, the Dominant Gramian Eigenspacesmethod, is proposed for the reduction of large, linear, time-invariant systems. This methodutilizes low rank approximations to the exact system gramians.Numerical comparison of the Dominant Gramian Eigenspaces method is made with an-other low rank model reduction method, the Low Rank Square Root method [41, 46]. Itis shown that the Dominant Gramian Eigenspaces method often produces a better reducedmodel than the Low Rank Square Root method, when the low rank approximations to thesystem gramians have not converged to the exact gramians.The system gramians are the solutions to two Lyapunov equations. In theorem 2 the rangeof the Lyapunov solution is characterized as order n Krylov and rational Krylov subspaceswith di�erent shifts and starting vectors. A connection is made between approximating thedominant eigenspace of the solution to the Lyapunov equation and the generation of variouslow order Krylov and rational Krylov subspaces.The Cholesky Factor ADI algorithm is developed to generate a low rank approximationto the solution to the Lyapunov equation. Cholesky Factor ADI requires only matrix-vectorproducts and linear solves, hence it enables one to take advantage of sparsity or structure inthe system matrix.The Cholesky Factor ADI algorithm is then used in conjunction with the DominantGramian Eigenspaces method in the model reduction of large, linear, time-invariant systems.It is demonstrated by numerical examples that this approach often produces a globallyaccurate reduced model, even when the low rank approximations to the system gramianshave not converged to the exact gramians.Finally, it is shown that, for symmetric systems, approximating Truncated BalancedRealization is achievable. Approximate TBR via CF{ADI for symmetric systems results ina reduction which also matches moments at the negative of the CF{ADI parameters, if thereduced model order is the same as the CF{ADI approximation order. It is shown that, fromthe point view of moment matching methods, the problem of picking points where moments
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are to be matched, so that the reduced model is close to the TBR reduced model, can beapproached by solving the rational min-max problem associated with CF{ADI parameterselection.There is room for future research both in the area of low rank approximation to theLyapunov solution and in low rank model reduction methods.Further study is needed to characterize the eigenvalue behavior of the solution to theLyapunov equation with a non-symmetric A matrix. It would be very useful to determinethe conditions on A and B which will guarantee that the exact solution to the Lyapunovequation can be well approximated by a low rank matrix. [42] is the only work to the author'sknowledge that addresses the issue of eigenvalue decay for the Lyapunov solution.In the area of low rank model reduction methods, work needs to be done to �nd amethod which genuinely approximates the TBR reduction for non-symmetric systems. Sincethe system gramians cannot be balanced without having the exact gramians, it is necessaryto �nd a way to approximate the order k TBR projection matrices directly by low rankmatrices, without referring to the gramians separately.Finally, many of the results contained in this dissertation, on the solution of the Lyapunovequation and on low rank model reduction, can be extended to apply to the linear, time-varying model reduction problem [7, 54].
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