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Abstract
Objective. The complex-valued transversemagnetization due to diffusion-encodingmagnetic field
gradients acting on a permeablemedium can bemodeled by the Bloch–Torrey partial differential
equation. The diffusionmagnetic resonance imaging (MRI) signal has a representation in the basis of
the Laplace eigenfunctions of themedium.However, in order to estimate the permeability coefficient
fromdiffusionMRI data, it is desirable that the forward solution can be calculated efficiently formany
values of permeability.Approach. In this paper we propose a new formulation of the permeable
diffusionMRI signal representation in the basis of the Laplace eigenfunctions of the samemedium
where the interfaces aremade impermeable.Main results.Weproved the theoretical equivalence
between our new formulation and the original formulation in the case that the full eigendecomposi-
tion is used.We validated ourmethod numerically and showed promising numerical results when a
partial eigendecomposition is used. TwodiffusionMRI sequences were used to illustrate the
numerical validity of our newmethod. Significance.Our approachmeans that the same basis (the
impermeable set) can be used for all permeability values, which reduces the computational time
significantly, enabling the study of the effects of the permeability coefficient on the diffusionMRI
signal in the future.

1. Introduction

Diffusionmagnetic resonance imaging (diffusionMRI) is a widely-used non-invasive imagingmodality to probe
themicro-structural properties of biological tissue by indirectlymeasuring the diffusion displacement of water
molecules (Stejskal andTanner 1965, Le Bihan et al 1986). In the free diffusion case, themean squared
displacement ofmolecules is given by =x dD t22

0 , where d is the spatial dimension,D0 is the intrinsic diffusion
coefficient and t is the diffusion time. In biological tissue, the diffusion process is usually hindered or restricted
by cellmembranes and themean squared displacement will be smaller than in the case of free diffusion. This
deviation can serve to infer tissuemicro-structural information (Palombo et al 2020, Romascano et al 2020).

The estimation ofmicro-structural parameters is of research and clinical interest. Permeablemembranes
occur in biological tissues and ignoring permeability effects willmakemicro-structural estimation inaccurate.
For example, ignoring the permeabilitymay under-estimate neurite volume fraction (Jelescu et al 2022). Some
recent works in the diffusionMRI literature on tissuemicro-structural estimation have begun to take cell
membrane permeability into account (Nguyen et al 2015, Bai et al 2020, Jelescu et al 2022, Olesen et al 2022).

The diffusionMRI physics ismathematically described by the Bloch–Torrey partial differential equation
(PDE) (Torrey 1956), which governs the time evolution of the complex transverse water protonmagnetization
subject to diffusion-encodingmagnetic field gradient pulses. For simple geometries such as circles, spheres,
plates, analytical expressions of the diffusionMRI signal exist. These analytical expressions have been used to
estimate tissuemicro-structure and interface permeability (Nedjati-Gilani et al 2017,Moutal andGrebenkov
2019, Bai et al 2020, Jelescu et al 2022). However, formore complex and realistic cellular geometries, there are no
explicit analytical expressions available and numerical simulations are needed.
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If only a small number of simulations are needed, the twomain groups of approaches are (1)MonteCarlo/
randomwalk simulations (Hall andAlexander 2009, Grebenkov 2011,Waudby andChristodoulou 2011, Yeh
et al 2013, Grebenkov 2014) and (2) solving the discretized Bloch–Torrey PDE (Russell et al 2012,Nguyen et al
2014, Beltrachini et al 2015,Nguyen et al 2019).Monte Carlo simulation uses randomwalkers tomimic the
diffusion process during a diffusionMRI experiment. It randomly places a large number of spins inside the
complex geometry, and let themmove according to the diffusion dynamics. To incorporate permeable
membranes, thewater exchange through interfaces ismodeled via a transit probability Ptrans, which is the
probability that spins will either cross or reflect when they arrive at a permeable interface (Fieremans et al 2010,
Lee et al 2020, 2021, Alemany et al 2022). However, as the permeability increases, the time stepsmust become
smaller (see the reasoning in the paper (Fieremans et al 2010, Lee et al 2020) to obtain the condition Ptrans= 1)
which results in a high demand of computational resources and computermemory. The discretization of the
BlochTorrey PDE can be used to directly solve for themagnetization in a geometrical configuration. The
computational domain is discretized either by finite elements (Nguyen et al 2014, Beltrachini et al 2015,Nguyen
et al 2019) orfinite differences (Russell et al 2012). SpinDoctor (Li et al 2019) is aMATLAB-based diffusionMRI
simulation toolbox that solves the Bloch–Torrey PDEusing the finite elementmethod (FEM) and an adaptive
time steppingmethod, allowing for arbitrary values of permeability.

Finally, we come to another important representation of the diffusionMRI signal, derived twenty years ago,
that projects themagnetization in the basis of the eigenfunctions of the Laplace operator in the imaged domain.
This representation goes under the name ofmatrix formalism (Callaghan 1997, Barzykin 1999, Grebenkov 2007,
Drobnjak et al 2011). There are two advantages to thematrix formalism signal representation (Li et al 2020).
First, itmakes explicit the link between the Laplace eigenvalues and eigenfunctions of themedium and its
diffusionMRI signal. This clear linkmay help in the formulation of reducedmodels of the diffusionMRI signal.
Second, once the Laplace eigendecomposition has been computed and saved, the diffusionMRI signal can be
calculated formany experimental configurations at negligible additional cost. Thismakes it feasible to use the
matrix formalism as the inner loop of optimization or parameter estimation procedures.

In a previous work, we presented a numerical implementation of thematrix formalism for permeable
interfaces (Agdestein et al 2021), called the numericalmatrix formalismmethod, where the permeability
interface conditions are incorporated in the Laplace eigendecomposition step. In this paper, we present a new
method, where the diffusionMRI signal of a permeablemedium is computed using only impermeable Laplace
eigenfunctions. This idea is inspired by how the paper (Grebenkov 2008) treats surface relaxation.We prove that
the newmethod produces the same diffusionMRI signal as the original numericalmatrix formalismmethod,
under the condition that the full set of eigenfunctions is used.We show the numerical convergence of the new
methodwhen the number of eigenfunctions used ismuch smaller than the full set.We also show the improved
computational efficiency of the newmethod if simulations usingmany permeability coefficients are needed.

2. Theory

In this sectionwe introduce the Bloch–Torrey equation and the numericalmatrix formalismmethod.

2.1. Geometrical description
Consider a connected domain W = W Î= i

N
i

d
1

cmpt⋃ , made up ofNcmpt compartments W  i i N1 cmpt
{ } .We denote

the interface between two compartmentsΩi andΩj byΓij=Ωi∩Ωj for i≠ j, Î ¼i j N, 1, , cmpt
2( ) { } . If two

compartments do not touch each other, G = Æij . Let∂Ω be the outer boundary of the domainΩ, we denote the
restriction of outer boundary in compartmentΩi byΣi= ∂Ω ∩Ωi, i ä {1,K,Ncmpt}. If the compartment does
not touch the outer boundary,S = Æi .

Wemodel the brainwhitematter using the above geometrical description. Axons are enclosed in the extra-
cellular space (ECS), with thewater exchange between axons and the ECS described by a permeability coefficient.
The geometry has an outer boundary that is impermeable towater. Thus, the number of compartments is the
number of axons plus one (the ECS compartment).

2.2. Bloch–Torrey PDE
In diffusionMRI, a time-varyingmagnetic field gradient is applied to the tissue to encodewater diffusion.
Denoting the effective time profile of the diffusion-encodingmagnetic field gradient by f (t) and themagnetic
field gradient by g, the restriction of the complex-valued transverse water protonmagnetizationM(x, t) in theith
compartmentΩi byM

i(x, t), the governing equation is the Bloch–Torrey equation (Torrey 1956):

g
¶
¶

=   - Î Wx x g x x x
t

M t D M t I f t M t, , , , , 1i
i

i i
i( ) · ( ) ( ) · ( ) ( )

2
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 = -  Î Gx n x x n x xD M t D M t, , , , 2i
i

i j
j

j ij( ) · ( ) ( ) · ( ) ( )

k = - Î Gx n x x x xD M t M t M t, , , , , 3i
i

i ij
j i

ij( ) · ( ) ( ( ) ( )) ( )

 = Î Sx n x xD M t, 0, , 4i
i

i i( ) · ( ) ( )
r= Î Wx xM , 0 , , 5i

i( ) ( )

where γ= 2.67513× 108 rad s−1T−1 is the gyromagnetic ratio of thewater proton, I is the imaginary unit,Di is
the intrinsic diffusion coefficient in the compartmentΩi,n(x) is the unit outward pointing normal vector, ρ is
the initial spin density andκij is the permeability coefficient of the interfaceΓij.We assume the initial spin
density ρ is the same in all compartments and the interface permeability is non negative, i.e.κij= κji� 0.

ThemagnetizationM(x, t) is a function of position x and time t, and depends on the diffusion gradient vector
g and the time profile f (t). For the interface between ith and jth compartmentsΓij, the two interface conditions
are theflux continuity and a condition that incorporates a permeability coefficientκij. The outer boundary is
homogeneousNeumann boundary condition andwe assume that the initial condition is the same for all
compartments.

Some commonly used time profiles (diffusion-encoding sequences) are the pulsed-gradient spin echo
(PGSE) sequence (Stejskal andTanner 1965, Callaghan and Stepišnik 1995) and the oscillating gradient spin
echo (OGSE) sequence (Does et al 2003). For the simplicity, formost of the paper, wewill only consider the
PGSE sequence, with two rectangular pulses of duration δ, separated by a time intervalΔ− δ, for which the
profile f (t) is

d
d= - D < D +

 
f t

t
t

1, 0 ,
1, ,

0, otherwise,

6
⎧
⎨
⎩

( ) ( )

where t= 0 is the starting time of the first gradient pulse andTE= δ+Δ is the echo time atwhich the signal is
measured. The diffusionMRI signal due to spins in the domainΩ is the space integral ofmagnetization,
measured at echo timeTE:

ò=
ÎW

g x xS f M T d, , . 7
x

E( ) ( ) ( )

In a diffusionMRI experiment, the pulse sequence (time profile f (t)) is usuallyfixed, while g is varied in
amplitude (and possibly also in direction).When g varies only in amplitude (while staying in the same direction),
S is plotted against a quantity called the b-value. The b-value depends on g and f (t) and is defined as

  ò òg=g g du f s dsb . 8
T u

2 2

0 0

2E
⎛
⎝

⎞
⎠

( ) ( ) ( )

For PGSE, by replacing equation (6) into equation (8), the b-value is Stejskal andTanner (1965):

 d g d dD = D -g gb , , 3 . 92 2 2( ) ( ) ( )

The reason for these definitions is that in a homogeneousmedium, the signal attenuation is e−Db, whereD is the
intrinsic diffusion coefficient.

2.3.Matrix formalism representation
Thematrix formalism solution of the Bloch–Torrey equation uses the basis of Laplace eigenfunctions onΩ. Let
fk(x) andλk, k= 1,K, be the L2-normalized eigenfunctions and eigenvalues associated to the Laplace operator
onΩ satisfying interface conditions and outer boundary condition above:

f l f-  = Î Wx x xD , , 10i k
i

k k
i

i· ( ) ( ) ( )

f f = -  Î Gx n x x n x xD D , , 11i k
i

i j k
j

j ij( ) · ( ) ( ) · ( ) ( )

f k f f = - Î Gx n x x x xD , , 12i k
i

i ij k
j

k
i

ij( ) · ( ) ( ( ) ( )) ( )

f = Î Sx n x xD 0, , 13i k
i

i i( ) · ( ) ( )

where f xk
i ( ) denotes the restriction offk(x) to compartmentΩi for i ä {1,K,Ncmpt}. One remark is that this set

of L2-normalized eigenfunctions is orthogonal since the permeability coefficient is the same on the both sides of
interfaces.We assume the non-negative real-valued eigenvalues are ordered in non-decreasing order:

l l l=   0 ... 141 2 3 ( )

Wewill suppose thatΩ is connected. If all permeability coefficients are strictly positive, then only the first
eigenvaluewill be zero and the corresponding eigenfunctionwill be the constant function onΩ. If all
permeability coefficients are zero, then the firstNcmpt eigenvalues will be zero and therewill beNcmpt

corresponding constant eigenfunctions supported on each compartment. For the ease of the presentation, we
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will limit ourselves to these two cases, and defineNgroup as the number of constant eigenfunctions in the basis.
Clearly,Ngroup= 1 in the former case, andNgroup=Ncmpt in the latter case.

Let L be the diagonalmatrix containing thefirstNeig Laplace eigenvalues:

l l l= ¼ Î ´L diag , , , . 15N
N N

1 2 eig
eig eig( ) ( )

Denoting by

f f fF = ¼x x x x, , , ,N1 2 eig
( ) ( ( ) ( ) ( ))

the vector of Laplace eigenfunctions corresponding to thefirstNeig eigenvalues. Because f = ¼xk k 1,2,3,{ ( )} is a
complete basis onΩwith the correct interfaces and boundaries conditions, we decompose themagnetization
M(x, t) in this basis as

å f» = F
=

x x xM t T t tT, , 16
k

N

k k
1

eig

( ) ( ) ( ) ( ) ( ) ( )

with the time dependent coefficient column vector

= ¼t T t T t T tT , , , .N
T

1 2 eig( ) ( ( ) ( ) ( ))

Substituing equation (16) into Bloch–Torrey equation,multiplying both sides withfl(x) and integrating overΩ
gives

òål g f f
¶
¶

= - - = ¼
= W

g x x x x
t

T t T t I T t d l N, 1, 2, , . 17l l l
k

N

k k l eig
1

eig

( ) ( ) ( ) · ( ) ( ) ( )

Define

+ +W g A A Ag g g , 18x
x

y
y

z
z( ) ≔ ( )

where =g g g g, ,x y z
T( ) is the encoding gradient vector andAx,Ay andAz are three symmetricNeig×Neig

matrices whose entries are the first ordermoments in the coordinate directions of the product of pairs of
eigenfunctions:

ò f f Î ¼ Î
ÎW

A x x xr d k l N r x y z, , 1,2, , , , , . 19
x

kl
r

k l eig
2≔ ( ) ( ) ( ) { } { } ( )

Then the Bloch–Torrey operator−∇ ·Di∇+ Iγf (t)g · x in the Laplace eigenfunction basis is given by the
complex-valuedmatrix

g+L W gI f t , 20( ) ( ) ( )

and equation (17) can bewritten as a systemof ordinary differential equations below

g= - +L W g
d

dt
t I f t tT T . 21( ) ( ( ) ( )) ( ) ( )

Define

= d g d d g- - - D- - +H g f e e e, , 22L W g L L W gI I( ) · · ( )( ( )) ( ) ( ( ))

and denote

ò ò òr f f f= ¼ Î
W W W

x x x x x xd d dT 0 , , , ,N

T
N

1 2
,1

eig
eig⎛

⎝
⎞
⎠

( ) ( ) ( ) ( )

the vector of coefficients of the initial condition projected onto the eigenfunctions of the Laplace operator. It is
easy to show that the integral of the eigenfunctions overΩwill be zero except for the constant functions,

ò f f= W
W

x x
x

d
, if is a constant function,

0, otherwise.
i

i i⎧
⎨⎩

( ) ( )

Themagnetizationmeasured at the echo time is

= Fx x H gM T f T, , 0 . 23E( ) ( ) ( ) ( ) ( )

The signal is computed by integrating themagnetization overΩ:

ò= F
W

g x H g xS f N f dT, ; , 0 . 24eig( ) ( ) ( ) ( ) ( )

2.4. The numericalmatrix formalismmethod
In order to numerically implement thematrix formalismmethod, we discretize the Laplace operator with
permeable interface conditions usingP1finite elements. Themethod is described in a previous publication
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(Li et al 2020).We discretizeΩ into a finite elementmesh and useP1 basis functions j Î ¼xp p N1, , node
{ ( )} { }, where

Nnode is the number of nodes, to construct the followingfinite elementmatrices: Î ´M K Q, , N Nnode node, known
as themass, stiffness and fluxmatrices, respectively,

ò j j=
W

M x x xd , 25pq p q( ) ( ) ( )

ò j j
=

  Î Î ¼
WK

x x xD d p q i N, , , 1, , ,

0, otherwise,
26pq

i p q i cmpt
2⎧

⎨⎩

( ) ( ) ( ) { }
( )



å å

ò

ò

k j j

k j j

=

=

G Î Î ¼

- G Î ´ Î ¼ ¹

= =

G

G

Q Q

Q

d p q i N

d p q i j N i j

x x x

x x x

,

, , , 1, , ,

, , , , 1, , , ,

0, otherwise,

27

pq
i

N

j

N

pq
ij

pq
ij

ij p q i cmpt

ij p q i j cmpt

1 1

2

2

cmpt cmpt

ij

ij

⎧

⎨
⎪

⎩
⎪

( ) ( ) ( ) ( ) { }

( ) ( ) ( ) ( ) ( ) { } ( )



 

where i is the set of nodes index belonging to ith compartment. In order to implement thefluxmatrix, double
nodes are placed at the interfaces (Li et al 2019, 2020).

We discretize the eigenfunctions of the Laplace operator with permeable interface condition in the P1 basis
functions,

åf j= Î ¼ Î ¼
=

x P x n N k N, 1, 2, , , 1, , , 28k
n

N

n k n node eig
1

,

node

( ) ( ) { } { } ( )

where Î ´P N Nnode eig , and the entryPn,k is the coefficient of eigenfunctionfk in the basis functionjn.
Thefinite elements discretization described above changes the continuous Laplace operator eigenvalue

problem in equation (10)–(13) to a discrete, generalizedmatrix eigenvalues problem: find thefirstNeig

eigenvalues L and corresponding eigenfunctionsP, such that

+ =K Q P MPL, 29( ) ( )

where Î ´L N Neig eig is a diagonalmatrix whose diagonal terms are eigenvalues of Laplace operator with
permeable interface conditions.

The integrals of thefinite element discretized eigenfunctions are given by

ò F =
W

x x P Md 1 , 30T
N ,1node( ) ( )

where 1N ,1node
is column vector of all oneswith sizeNnode and

òr

r

= F

=

= W ¼ W ¼ Î

W



x x

P M

T d

1

0

, , 0, ,0 , 31

T
N

N
T N

,1

1
,1

node

group
eig

( ) ( )

[ ] ( )

whereNgroup is the number of constant eigenfunctions.
Similarly, with this discretization, thematricesAx,Ay andAz in equation (19) can be rewritten as

= ÎA P J P r x y z, , , , 32r T r { } ( )

where the entries of Jr are

ò j j= Î
W

J xr d r x y z, , , . 33kl
r

k l { } ( )

Wedefine

º + + Î J g J J Jg g g , 34x
x

y
y

z
z N N,node node( ) ( )

W(g) can be rewritten as

å å= = =
= =

W g A P J P P J g Pg g . 35
r x y z

r
r

r x y z
r

T r T

, , , ,

( ) ( ) ( )
{ } { }

Substituting L,P and J(g) intoH(g, f ):

= d g d d g- - - D- - +H g f e e e, . 36L W g L L W gI I( ) · · ( )( ( )) ( ) ( ( ))
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The numericalmatrix formalism diffusionMRI signal at echo time is the following:

r

r

=

=

g MP H g P M

H g

S f N f

f

1 1

T T

, ; ,

0 , 0 . 37

eig N
T T

N

T

NMF
,1 ,1node node( ) ( ) ( )( )

( ) ( ) ( ) ( )

2.4.1. Choice of Neig

WhenNeig=Nnode, the full set of discretized eigenfunctions will be used to compute the diffusionMRI signal. In
practice, the large eigenvalues have little contribution to the physics of diffusion. Using the eigenfunctions whose
spatial scales are on the order of the cell structure and the diffusion distance can yield a good approximation, and
result in aNeig=Nnode.

When computing the diffusionMRI signal from the numericalmatrix formalismmethod, we do not choose
Neig arbitrarily. Rather, we impose a length scale cut-off Ls that is appropriate for the geometry and for theMRI
experiment. For realisticMRI experimental parameters and brain cell geometries, the smallest length scales that
can influence the diffusionMRI signal is around 1 μm.We refer to theworks (Li et al 2020, Agdestein et al 2021)
for details about the numericalmatrix formalismmethod and how to choose the length scale cut-off. To
translate the eigenvalues into length scales, we use the expression

l
l

p l l
=

¥ =

>
l

D

, 0,

, 0.
38⎧

⎨⎩
( ) ( )

Typically, l(λ) is related to thewavelength of the oscillations in the corresponding eigenfunction. The number
Neig associatedwith this length scale choice is determined by the relation

 l l l¥ > >+    l l L l 0. 39N s N1 1eig eig( ) ( ) ( ) ( )

Thus, we use interchangeablyNeig or Ls to indicate the truncation of the eigenfunctions.

Remark 1. It is to be noted that for the same geometry and the same Ls, when using the numericalmatrix
formalismmethod, the resultingNeig is smaller at higher permeability.

Remark 2.Even though eigendecomposition routines can accept an eigenvalue range (length scale cut-off) as
input, it ismore computationally efficient to input the number of desired eigenvalues and then keep those
eigenvalues within the length scale cut-off. This is whatwe do in practice to compute a subset of eigenfunctions.

3.New formulation using the impermeable Laplace eigenfunctions

Themain aimof our paper is to derive a new formulation of the numericalmatrix formalismmethod for
permeable interfaces, using the eigenvalues and eigenfunctions of Laplace operator from the impermeable case.

Suppose that all the interfaces are impermeable, thenequation (29)becomes:

=KP MP L . 40imp imp imp ( )

The subscript imp indicates thesematrices are from the impermeable case.We nowwant to use these twomatrix
Limp andPimp aswell as

º + +W g P J P P J P P J Pg g g 41imp x imp
T x

imp y imp
T y

imp z imp
T z

imp( ) ( )

=P J g P , 42imp
T

imp( ) ( )

to obtain the diffusionMRI signal in the presence of permeable interfaces.
Assume that for ¹ Î ¼i j i j N, , 1, , cmpt

2( ) { } , the interfaces are permeable:κij> 0, and denoting the
corresponding fluxmatrix byQ.We recall thatQ for the permeable case is defined by equation (27).We define a
newmatrix,

º Î Q P QP , 43proj imp
T

imp
N N,eig eig ( )

the projection of the fluxmatrix onto the eigenfunctions of the Laplace operator with impermable interfaces
conditions. AddingQproj to the diagonalmatrix Limp, we define a newmatrix (in general not diagonal)

º +L L Q ,proj imp proj

aswell as

º d g d d g- - - D- - +H g f e e e, . 44L W g L L W g
proj

I Iproj imp proj proj imp( ) · · ( )( ( )) ( ) ( ( ))
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Theorem1. In the presence of permeable interfaces, the expression

r

r

º

=

g MP H g P M

H g

S f N f

f

1 1

T T

, ; ,

0 , 0 , 45

eig N
T

imp proj imp
T

N

imp
T

proj imp

NEW
,1 ,1node node( ) ( ) ( )( )

( ) ( ) ( ) ( )

where

= W W ¼ W ¼ Î T 0 , , , , 0, ,0 , 46imp N
T N

1 2
,1

cmpt
eig( ) [ ∣ ∣ ∣ ∣ ∣ ∣ ] ( )

is exactly equal to the diffusionMRI signal expression from the numericalmatrix formalismmethod, if the full set of
the eigenvalues and eigenfunctions is used for bothmethods.See Appendix for the proof of theorem 1.

3.1. Choice ofNeig

Aswith the original numericalmatrix formalismmethod, the newmethodwill not, in practice, require the use of
the full set of eigenfunctions, andwewill again haveNeig=Nnode, with the choice ofNeig determined by the
length scale cut-off Ls:

 l l l¥ > >+    l l L l 0. 47N s N1 1eig eig( ) ( ) ( ) ( )

Remark 3. It is to be noted that for the same geometry and the same Ls, when using the newmethod, the resulting
Neig is the same nomatter what the interface permeability, and it is usually somewhat larger than theNeig of the
numericalmatrix formalismmethod (with the same value of Ls).

Remark 4.Any basis set, when it is complete, can represent any discretized solution in thefinite elements basis.
We usedP1 finite elements, so any basis set is complete that hasNnode elements. Thismeans, the permeable
Laplace eigenfunctions set and the impermeable Laplace eigenfunctions set are both sufficient to represent any
PDE solution if =N Neig node.

The discretized solution of the Bloch–Torrey equation, permeable or not, is usually piecewise smooth (on
each compartment) and so should be able to be represented by the smooth eigenfunctions in the impermeable
basis. The discretized solution should not need to be represented by very oscillatory eigenfunctions, thismeans
the vastmajority of the oscillatory eigenfunctions in the impermeable basis are not needed. Thus, one can just
keep the relatively smooth eigenfunctions in the impermeable basis and they are enough to represent any
reasonable solution for the permeable problem. In short, for a discretized finite element solution of the Bloch–
Torrey equation, one never needs to takeNeig to be anywhere close toNnode in any basis.

4.Numerical results

In this sectionwe conduct a numerical validation of the newmethod. The generation of the computational
geometries, the discretization into finite elements, and the numerical computation of the Laplace eigenfunctions
in the finite element spacewere implemented using the SpinDoctor toolbox (Li et al 2019).

The simulationswill be performed on a quasi-two dimensionalmulti-compartment geometry, denoted by
ΩI, shown infigure 1, containing 20 axons. The axons are randomly placed and thenwrapped by an ECS. The
ECS is not a rectangle in order to keep the axons closely packed. The axon radii vary between 1 μmand 3 μm.

Figure 1. Finite elementmesh of the geometryΩI. It contains 20 randomly placed cylindrical axons, wrapped in the ECS. The radii of
all axons are between 1 μmand 3 μmand the height of all compartments is 1 μm. Dimension of thewhole geometry is
34 μm × 29 μm × 1 μm.The geometry is generated by SpinDoctor and thefinite elementsmesh is created by Tetgen (Si 2015). The
mesh contains 3455 nodes and 6673 elements.

7
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The dimension of thewhole geometry is 34 μm× 29 μm× 1 μm.The diffusion coefficients are set to be the
same for all compartments:Di= 2× 10−3 mm2 s−1 for i ä {1,Ncmpt}. The initial spin density is set to ρ= 1.0.
SpinDoctor creates the geometrical configuration and the surface triangulation, then pass the surface
triangulation to TetGen (Si 2015) to create a volumemesh. Thefinite elementsmesh containsNnode= 3455
nodes and 6673 elements.

In the literature, the experimentallymeasured permeability coefficientκ in biological cells ranges from
10−6 to 10−4 m s−1 (Grebenkov et al 2014), in particular,κ= 10−5 m s−1 for axonalmembranes (Chin et al
2002). Therefore, our simulations are performed using permeability coefficients up toκ= 10−4 m s−1. The
average displacement in free diffusion is dDT2 E , where d is the dimension. In order to reduce the amount of
spins hitting the outer boundary, wewant to keep the displacement to less than half of the geometry diameter,
obtaining thatTE� 20 ms.Wemake this choice because the focus of this paper is on the permeable interfaces, so
wewant to reduce the effects from the interaction of spins with the impermeable outer boundary. Thus, we limit
δ+Δ� 20 ms in the simulations. The gradient strength in in-vivo experiments does not exceed 1000 mTm−1

(Huang et al 2021), sowe set the highest simulated g-value to 1000 mTm−1.

4.1. Computing the reference solution
For the geometryΩI, we do not have the analytical solution of the diffusionMRI signal.We propose using the
numerical formalismmethodwith the full set of permeable Laplace eigenfunctions as the reference solution.We
have compared the reference solution to the finite elements solution of the discretized Bloch–Torrey PDE and
verified that for the simulationswe performed, the relative differences between the two are less 0.002%. Thus, we
estimate that the signals computed using the numericalmatrix formalismmethodwith the full set of permeable
eigenfunctions to be accurate to 0.002% from the true signal.

The reference solution is set to be the numericalmatrix formalism solution using the full set of permeable
Laplce eigenfunctions i.e.Neig=Nnode= 3455 eigenfunctions forΩI,

=g gS f S f N, , ; .node
REF NMF( ) ( )

To avoid the dependence of the results on the gradient direction g, we average the diffusionMRI signal over 18
gradient directions, uniformly distributed on a unit semicircle in the x− y plane(equivalent to 36 gradient
directions on the unit circle):

   å p p=
W

=
=

g g g gS f N S f N
d d

, ;
1 1

18
, ; , cos

18
, sin

18
, 0 , 48eig

d
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⎞
⎠

⎛
⎝
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⎠

⎤
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∣ ∣
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normalized by the total volume. Figure 2 depicts the reference signals as a function of the g-value ∥g∥. The
simulations are performed for g-value from0mTm−1 to 1000 mTm−1. The signals S have been normalized by
the total volume so theirmaximumvalue is 1.We observe that diffusionMRI signal decays faster in presence of
more permeablemembranes.

Figure 2.Normalized direction-averaged diffusionMRI signals as a function of the g-value ∥g∥. These are the reference solutions
computed using the numericalmatrix formalismmethodwith the full set of permeable Laplce eigenfunctions, i.e.Neig = Nnode = 3455
eigenfunctions forΩI.
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4.2. Validation of the newmethod
Wehave shown in theorem1 that the newmethod yields the same signal as the numericalmatrix formalism
method if the full set of basis functions is used.However, since in practice,Neig=Nnode, wewill now show the
accuracy of the twomethods for fixed values of the length scale cut-off Ls.

Infigure 3, we show the relative errors produced by the twomethods compared to the reference solution.
The relative error is defined as:

   
 

= ´
-g g

g

S f N S f

S f
% 100

, ; ,

,
. 49rel

eig
REF

REF
( )

∣ ( ) ( )∣
( )

( )

First, we see that the relative errors of the original numericalmatrix formalismmethodwhere the length scale
cut-off is Ls= 1 μmare under 0.03% for all the simulated sequences. The number of the eigenfunctions differs
with permeability: whenκ= 10−5 m s−1, 5× 10−5 m s−1, 10−4 m s−1,Neig= 538, 535, 532, respectively.
Second, for the newmethod, with a length scale cut-off of Ls= 1 μm, resulting inNeig= 538, the relative error is
under 1.5% for all the sequences. The relative error increases as permeability increases, as the g-value ∥g∥
increases, and as the diffusion time increases.

Nowwe study the convergence behavior of the newmethod as Ls decreases (Neig increases) and
compare it to the original numericalmatrix formalismmethod. The simulated gradient direction isfixed in

2 2, 2 2, 0 T[ ] andwe use the longest sequence PSGSE (10 ms, 10 ms), which yields the biggest errors.We

Figure 3. First row: relative errors of direction averaged signals of the numericalmatrix formalismwith the length scale cut-off
Ls = 1 μm (κ = 10−4 m s−1,Neig = 532; κ = 5 × 10−5 m s−1,Neig = 535; κ = 10−5 m s−1,Neig = 538). Second row: relative
errors of direction averaged signals of the newmethodwith the length scale cut-off Ls = 1 μm (Neig = 538). The relative errors are in
percent. Simulations are performed onΩI, by SpinDoctor. Left:κ = 10−5 m s−1; middle:κ = 5 × 10−5 m s−1; right:
κ = 10−4 m s−1.
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define the normalized error between the computed signal and reference signal to be

=
-

W

g gS f N S f, ; ,
. 50abs

eig
REF∣ ( ) ( )∣

∣ ∣
( )

It is a normalized error because S/|Ω| is always bounded by 1.Note this is not a relative error, we do not divide by
SREF, becausewe do notwant the error to increase due to the decrease in the signal itself, we simplywant to show
the convergence of the signals.

Figure 4 shows the normalized errors of the diffusionMRI signals computed by the newmethod and by the
original numericalmatrix formalismmethod, compared to the reference solution. The x-axis givesNeig. The two
vertical lines indicate where the truncations occur for Ls= 2 μmand Ls= 1 μm in the impermeable case:

m
m

= =
= =

L N

L N

2 m, 193,

1 m, 538.
s eig

s eig

Asmore eigenfunctions are used, the errors are reduced for both the newmethod and the original numerical
matrix formalismmethod.Whenκ� 10−5 m s−1, the newmethod converges at a similar rate as the original
numericalmatrix formalism. At thehigher permeabilities, the newmethod convergesmore slowly than
numericalmatrix formalism, but it is clear that if we are interested 2 or 3 digits of accuracy, which is reasonable
given that the diffusionMRI signal noise is at least of order 0.01, using the length scale cut-off of Ls= 2 μm is
sufficient. As far aswe know, there is not an analytical way to relate the truncation size and the signal error. The
truncation is defined on the impermeable Laplace eigenfunctions, whereas the signal is related to the operator
including the term Ig · x as well as the permeability.We observe that though the errors of the numericalmatrix
formalismmethod increases with lower permeability due to the large variations of the permeable eigenfunctions
around the interfaces, the errors of the newmethod increases with higher permeability due to the fact that the
newmethod uses impermeable eigenfunctions for all permeability values.

4.3. Computational time
An advantage of the newmethod to compute the diffusionMRI signal is the savings in computational time. To
show the efficiency of the newmethod, we compare the computational times of the numericalmatrix formalism
method and our newmethod on a bigger geometryΩaxons200 that contains 200 cylindrical axons enclosed in the
ECS, as shown infigure 5. Its dimensions are 98 μm× 118 μm× 1 μmand there are 62 145 elements and
Nnode= 32 023 nodes in total, of which 16 924 nodes in the ECS. The gradient direction of simulations isfixed in

2 2, 2 2, 0 T[ ] . TwoPGSE sequences PGSE (5 ms, 5 ms) andPGSE (10 ms, 10 ms) and four g− value= [50,
200, 500, 1000]mTm−1 are used. The simulations are performedwith 3 different values ofNeig= 2000, 4000,
5000 (we fixedNeig rather than Ls tomake easier comparisons of computational time). All the simulations are
performed on a computing server with 20 cores of frequency 2.4 GHz, andRAMof 256 GB. The operating
system is Rocky Linux 8 and theMatlab version is R2021a.

numericalmatrix formalismwith the full set of eigenfunctions is set to be the reference solution. Bothmatrix
formalismand the newmethod compute the diffusionMRI signal in two steps: Laplace eigendecomposition and
matrix exponential computations. Thefirst step is independent of the encoding sequence settings, involving only

Figure 4.Normalized signal errors of the newmethod (in solid line) and the numericalmatrix formalismmethod (in dashed line),
compared to the reference solution, as a function ofNeig. The two vertical lines indicate where the truncations occur for Ls = 2 μm
(Neig = 193) and Ls = 1 μm (Neig = 538). The simulations are performed onΩI, with gradient directionfixed in 2 2, 2 2, 0 T[ ]
and the sequence PGSE (10 ms, 10 ms). Left: g-value= 50 mT m−1; right: g-value = 200 mT m−1.
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sparsematrices of sizeNnode×Nnode. The second step involves densematrices of sizeNeig×Neig. In practice, we
haveNeig=Nnode.

Table 1 shows the computational times of the Laplace eigendecompositions by the newmethod and the
numericalmatrix formalismmethod.The eigenmodes are computed by theMatlab built-in function ‘eigs’, which
computes thefirst smallestNeig eigenmodes by Lanczos iteration. Toobtain the full set of the eigenmodes, the
Matlab built-in function ‘eig’ can beused to conduct a complete eigen-decomposition. The computational
complexity of ‘eig’ for the generalized eigenvalue problem,Ay= Byλ, is O Nnode

3( ) in theory, and O Nnode
2.376( ) in

practice using theCoppersmith andWinograd algorithm (Coppersmith andWinograd 1990). The computational
complexity of ‘eigs’ is +O N N N Neig node node eig

2 2( ), thefirst term is due to the computation ofB⧹Ay at eachLanczos
iteration and the second term is due to the orthogonalization of the newKrylov vectors at each Lanczos iteration
(Lee et al 2009). In fact, because A andB are sparsematrices, the computation ofB⧹Ay isO(NeigNnode) rather than
O N Neig node

2( ), so the dominant termof the computational complexity for ‘eigs’ is O N Nnode eig
2( ).We can see in the

table that going fromNeig= 2000 toNeig= 4000, the computational times increase by 4 in all the rows.
Theoriginal numericalmatrix formalismmethodneeds to recalculate permeableLaplace eigenfunctionswhen

the permeability changes.On the contrary, the newmethodonly computes the impermeable Laplace eigenfunctions
once. In addition, the impermeable Laplace eigendecomposition canbe achieved compartment by compartment.
The computational complexity of the permeable eigendecomposition is Nnode

2.376( ) (‘eig’)or N Nnode eig
2( ) (‘eigs’),

compared to the impermeable case,where it is å Ni
N

i node,
2.376cmpt( ) (‘eig’)or å N Ni

N
i node eig,

2cmpt( ( )) (‘eigs’),Ni,nodebeing
the number offinite elements nodes in compartment i. In table 1,wecan see that for the sameNeig, the impermeable
eigendecomposition istwo times faster than the permeable eigendecomposition.Ifwe consider the simulationof
three permeability values, using thenewmethod, the full set eigendecomposition canbedone in141 s,whereas the
numericalmatrix formalismmethod takes 301 s atNeig= 2000.

On thequestionofwhether to call ‘eigs’or ‘eig’ to compute the eigenmodes,we remind the reader that the
theoretical complexities areO N Nnode eig

2( ) andO Nnode
2.376( ), respectively. It is clear that, at somepoint, asNeig increases, it

wouldbemore computationally efficient to compute the full eigendecomposition insteadof apartial
eigendecomposition. Some further considerations are that (1) the ‘eig’ implementation inMatlab iswell optimized for
parallel computingusing all the computer’s cores, unlike the ‘eigs’, (2), the ‘eig’ function inMATLABonly accepts
densematriceswhereas the ‘eigs’ functionallows thedesignationof sparsematrices so thematrix-vectormultiplications

Figure 5. Finite elementmeshes of the geometryΩaxons200 for the computational times comparison. The geometry contains 200
randomly place cylindrical axons, whose radii vary between 1 μmand 3 μm, and one tightly wrapped ECS. All compartments are
1 μm inheight. The dimensions are 98 μm × 118 μm × 1 μm.Thismesh has 32 023 nodes and 62 145 elements in total. Left: 200
axons compartments; right: ECS compartment, which contains 16 924 nodes and 34 258 elements.

Table 1.Computational times of Laplace eigen-decomposition at different permeabilities for
Ωaxons200, given in seconds. The full set containsNnode = 32 023 nodes.

Computational time (seconds)

Neig = 2000 Neig = 4000 Neig = 5000 Full set (Neig = 32 023)

Newmethod

Total 41 171 278 141

κ(m/s) numericalmatrix formalismmethod

10−5 99 419 646 723

5 × 10−5 100 389 518 727

10−4 102 353 625 734

Total 301 1161 1789 2184
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are faster and take lessmemory. In summary, ‘eigs’ is usefulwhen: (1)only a small numberof eigenmodes (for example,
less than15%) areneeded, suchas for simple geometries, longerdiffusion times, lower gradient amplitudes; (2)when
the computerRAMis limited. For ‘eig’, the input andoutputmatrices are full,whenNnode= 32 023, ‘eig’ requires
22.9 GBofRAM. In contrast, the inputs of ‘eigs’ are sparsematrices,whenNnode= 32 023, ‘eigs’ requires 1.2 GBof
RAM.Forother cases, using ‘eig’ and selecting a subset of eigenmodes is preferred.

Table 2 shows the computational times of thematrix exponential computations in one gradient directionwith
different settings. In order to accelerate the computation, insteadof computing thematrix exponential explicitly,
we use the algorithm ‘expmv’ (Al-Mohy andHigham2011), which computes the action ofmatrix exponential on
a vector, without explicitly forming thematrix exponential. The number of eigenfunctions is set toNeig= 2000.
With this choice, the errors of the normalized signals of the original numericalmatrix formalismmethod is less
than 0.0008, and the error of the newmethod is less than 0.0013.We can see from the table that for the original
numericalmatrix formalismmethod, the computational time is between 0.7 to 4.7 s. For the newmethod, the
computational time is between 0.8 and 3.8 s. Thus, the twomethods are similar in the signal computational step,
however, the newmethodoffers substantial computational time advantage over the original numericalmatrix
formalismmethoddue to the savings in the eigendecomposition step. In the table,we are also include the cost of
solving the Bloch–Torrey PDEdirectly usingfinite elements rather than computing eigenfunctions, labelled ‘FE’,
clearly, this approach ismuchmore costly than either of the two eigenfunction basedmethods.

4.4. Numerical study of permeability effects on signal
To illustrate away that the newmethodwe developed in this paper can be used to study permeability, we test a
hypothesis about the behavior of the signal as a function of permeability. Supposewewant to test the hypothesis
that the dependence of the signal on the permeability can be approximated by the following expression for a
range of values of permeability found in biological tissues:

= - +b k-g g g gS f N e S f N S f N S f N, ; , ; , ; , ; , 51g
eig

f
imp eig free eig free eig

APPROX ,( ) · ( ( ) ( )) ( ) ( )( )·

whereβ(g, f ) is a positive fitted coefficient depending on the encoding gradient and the geometry, Simp(g, f;Neig)
is the signal in the impermeable case and Sfree(g, f;Neig) is the signal in absence of all interior interfaces. Both

Table 2.Computational times and normalized signal errors of the numericalmatrix formalism (NMF)method and
the newmethod inΩaxons200, given in seconds. The number of eigenfunctions isNeig = 2000. The encoding gradient
direction isfixed in 2 2, 2 2, 0 T[ ] . The units areκ: m s−1, δ: ms,Δ: ms and ∥g∥: mT m−1.We also include the
cost of solving the Bloch–Torrey PDEdirectly usingfinite elements rather than computing eigenfunctions, labelled
‘FE’, and the value of the reference signal, labelled ‘SREF’.

NMF Newmethod
FE

κ δ Δ ∥g∥ Time òabs Time òabs Time SREF

10−5 5 5 50 0.9 0.000004 0.8 0.000001 16.2 0.99

200 1.2 0.00006 1.1 0.00002 34.0 0.82

500 1.4 0.0002 1.6 0.00008 68.9 0.43

1000 1.8 0.0006 2.3 0.0001 117.3 0.22

10 10 50 1.1 0.000008 1.3 0.000008 22.1 0.91

200 1.2 0.00007 1.5 0.00009 53.1 0.43

500 1.8 0.0003 2.3 0.0002 106.9 0.24

1000 3.5 0.0008 3.8 0.0001 199.0 0.10

5 × 10−5 5 5 50 0.7 0.000004 0.8 0.00002 16.6 0.99

200 0.9 0.00005 0.9 0.0003 34.0 0.81

500 1.4 0.0002 1.4 0.001 67.2 0.38

1000 2.1 0.0004 1.8 0.001 106.6 0.16

10 10 50 1.2 0.000007 1.1 0.0002 24.6 0.90

200 1.4 0.00005 1.1 0.001 59.2 0.35

500 2.3 0.0001 2.2 0.002 103.7 0.14

1000 3.7 0.0003 2.6 0.0009 184.8 0.05

10−4 5 5 50 0.9 0.000004 0.8 0.00007 16.0 0.99

200 1.2 0.00005 1.0 0.0009 37.7 0.80

500 1.7 0.0002 1.3 0.003 70.0 0.33

1000 2.7 0.0002 1.7 0.0003 94.6 0.12

10 10 50 1.4 0.000007 1.0 0.0005 24.9 0.90

200 1.7 0.00004 1.2 0.004 56.6 0.28

500 2.6 0.00006 1.7 0.0003 103.9 0.08

1000 4.7 0.00008 3.1 0.0013 179.9 0.02
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Simp(g, f;Neig) and Sfree(g, f;Neig) are independent of permeability. By construction, (1) S= Simpwhen
κ= 0 m s−1; (2) =k+¥S Slim ;free (3) the signal is subject to exponential decay inκ;

We computed the permeable signals using the newmethod and infigure 6we show the computed SNEW/
Simp and S

APPROX/Simpwith the fitted values ofβ(g, f ). The good fit of the exponential dependence onκ is evident
for the range ofκ tested. At low gradient strength (b= 500 s mm−2), diffusionMRI signal depends very little on
κ. As the gradient strength increases, the signal ismore sensitive toκ. This result is consistent with the signal
behavior at high gradients for one dimensional problems in presence ofmultiple semi-permeable barriers
discussed inGrebenkov (2014).

The evolution of the fitted values ofβ(g, f ) as functions of b and d is plotted infigure 7. At low gradient
strength, b dµ .

4.5. Application to other diffusionMRI sequences
Ourmethodology can be applied to other sequences, such as double PGSE (Khrapitchev andCallaghan 2001),
OGSE (Does et al 2003),flow compensation sequence (Haacke and Lenz 1987) and long-narrow pore imaging
sequence (Laun et al 2011). One should represent or approximate the sequence profile f (t) as a piece-wise
constant function defined on n intervals:

å=
=

-

+f t f t , 52
i

n

i t t
0

1

,i i 1( ) ( ) ( )[ ]

where {t0,L , tn} is a strictly increasing sequence between 0 andTE and  +t t,i i 1[ ] is the indicator function on the
interval +t t,i i 1[ ].

We illustrate the application of ourmethod to the long-narrowpore imaging sequence (Laun et al 2011),
which consists of two rectangular pulses of durationsTEδ1 andTEδ2, of gradient strengths−∥g∥ and ∥g∥δ1/δ2,
respectively, separated by a time intervalTE(1− δ1− δ2), for which the temporal profile fpore(t) is

d
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where δ1> 0 and δ2> 0 are two dimensionless positive time coefficients, with δ1+ δ2� 1.
We perform the simulations onΩI, with long-narrow pore imaging parameters below:

• TE= 20 ms, δ1= 1− δ2 and δ2= [0.5, 0.2, 0.1, 0.05];

• g-value from0 to 200 mTm−1;

• 18 gradient directions uniformly distributed on a unit semicircle.

Figure 6.The simulations are performed onΩI, with the gradient direction fixed in 2 2, 2 2, 0 T[ ] , using the newmethodwith
length scale cut-off Ls = 1 μm (Neig = 538). The solid and dashed lines represent SNEW/Simp and S

APPROX/Simp, respectively. Left:
short diffusion time case, PGSE (5 ms, 5 ms). The fitted coefficients are b = - -2424 m s 1 1( ) (b = 500 s mm−2), b = - -7497 m s 1 1( )
(b = 5000 s mm−2), b = - -8984 m s 1 1( ) (b = 10000 s mm−2). The normalized impermeable signals are Simp = 0.7
(b = 500 s mm−2), Simp = 0.256 (b = 5000 s mm−2), Simp = 0.162 (b = 1000 s mm−2); right: long diffusion time case, PGSE(10 ms,
10 ms). The fitted coefficient b = - -3185 m s 1 1( ) (b = 500 s mm−2), b = - -11536 m s 1 1( ) (b = 5000 s mm−2),
b = - -14535 m s 1 1( ) (b = 10000 s mm−2). The normalized impermeable signals are Simp = 0.734 (b = 500 s mm−2), Simp = 0.341
(b = 5000 s mm−2), Simp = 0.281 (b = 1000 s mm−2).
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We show infigure 8 the simulated reference signals.We note that when δ2= 0.5, we are in the PGSE case.
When δ2≠ 0.5, we see that the signals have a non-zero imaginary part.

Figure 7.The evolution ofβ(g, f ) as a function of b-value (left) for three tested sequences, PGSE (5 ms, 5 ms), PGSE (7.5 ms, 7.5 ms)
and PGSE (10 ms, 10 ms), and as a function of d (right) for three tested gradient strengths, b= 500 s mm−2, b= 5000 s mm−2 and
b= 10000 s mm−2. The simulations are performed onΩI, with the gradient direction fixed in 2 2, 2 2, 0 T[ ] , using the new
methodwith length scale cut-off Ls = 1 μm (Neig = 538).

Figure 8.Real part (first row) and imaginary part (second row) of normalized direction-averaged diffusionMRI signals using the long-
narrow pore imaging sequence, with (δ1 = 1 − δ2 andTE = 20 ms). Simulations are performed onΩI, by SpinDoctor. Left:
κ = 10−5 m s−1; middle:κ = 5 × 10−5 m s−1; right:κ = 10−4 m s−1.
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We show infigure 9 the relative errors between the newmethodwith the length scale cut-off Ls= 1 μm
(Neig= 538) and the reference signals. The errors in the real part of the signal are between 0.01% and 1%, the
errors in the imaginary part of the signal are between 2%and 3%.

5. Conclusion

The numericalmatrix formalismmethod produces a diffusionMRI signal representation using the Laplace
eigenfunctions basis computed on a domainwith permeable interfaces. In this paper, we formulated a new
representation of the diffusionMRI signal using the Laplace eigenfunctions in the same domainwhilemaking
the interfaces impermeable. Thismeans our newmethod can use the same set of eigenfunctions formany
different values of permeability, thus saving computational time in the eigendecomposition step.While the new
method requiresmore eigenfunctions than the original numericalmatrix formalismmethod to achieve the same
accuracy, we have shown that if the permeability is not too high (while still staying in the realistic range for
biological cellmembranes), the total computational time is still significantly lower than the original numerical
matrix formalismmethod.
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Appendix. Proof of theorem1

Proof. For a permeabilitymatrix Î Q N N,node node, let Î Lper
N N,eig eig and Î Pper

N N,node eig be the eigenvalues
matrix and the eigenfunctionsmatrix, respectively,

+ =K Q P MP L . A1per per per( ) ( )

The subscript per indicates thesematrices are frompermeable case. Then theHmatrix for the permeable case is

º d g d d g- - - D- - +H g f e e e, , A2L W g L L W g
per

I Iper per per per per( ) ( )( ( )) ( ) ( ( ))

where

=W g P J g P ,per per
T

per( ) ( )

and the signal is

r=g MP H g P MS f N f1 1, ; , . A3eig N
T

per per per
T

N
NMF

,1 ,1node node( ) ( ) ( )( ) ( )

We recall that all the eigenfunctions are L2-normalized and orthogonal, so that

=P PM I , A4imp
T

imp Neig ( )

=P PM I , A5per
T

per Neig ( )

where INeig
is identitymatrix, thus,multiplying Pimp

T on the both sides of equation (40) and Pper
T on the both sides

of equation (A1) gives

=L P KP , A6imp imp
T

imp ( )

= +L P K Q P . A7per per
T

per per( ) ( )

Wedefine a newmatrix Î C N N,eig eig , projecting the permeable Laplace eigenfunctions onto the
impermeable Laplace eigenfunctions:

ºC P PM . A8imp
T

per ( )

Knowing that themassmatrix M is real, symmetric and positive-definite, we apply theCholesky factorization,
=M R RT . Under the condition that =N Neig node so that Pimp and Pper are full rank squarematrices, we have
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Then, we can derive that C is a unitarymatrix:
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In addition, we can derive that

=P P C, A11per imp ( )
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because
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since R is invertible.
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Combining equations (A6), (A7), (A11), (A12)we have

º + = + = + =L L Q P P CP P C CL CK Q K Q , A13proj imp proj imp
T

per imp per
T

per per
T

per
T( ) ( ) ( )

and similarly,

º = =W P J g P CP J g P C CW C . A14imp imp
T

imp per
T

per
T

per
T( ) ( ) ( )

Then thematrix exponentials satisfy

= =

= =

d d d

d g d g d g

- D- - D- - D-

- + - + - +

C C

C C

e e e

e e e

,

,

L CL C L

L W g C L W g C L W g

T

I I I T

proj per
T

per

proj imp per per
T

per per

( ) ( ) ( )

( ( )) ( ( )) ( ( ))

because =CC IT . Thus,

=

=
=

d g d d g

d g d d g

- - - D- - +

- - - D- - +

H g

C C C C C C
C g C

f e e e

e e e
H f

,

, . A15

L W g L L W g

L W g L L W g

proj
I I

I T T I T

per
T

proj imp proj proj imp

per per per per per

( ) · ·

( ) ( )

( ( )) ( ) ( ( ))

( ( )) ( ) ( ( ))

Substituting equation (A11)A15 into 45, we obtain the equivalence:

r

r

r

=

=

=

=

g MP H g P M

M P C H g C P M

MP H g P M

g

S f N f

f

f

S f N

1 1

1 1

1 1

, ; ,

,

,

, ; . A16

node N
T

imp proj imp
T

N

N
T

imp per
T

imp
T

N

N
T

per per per
T

N

node

NEW
,1 ,1

,1 ,1

,1 ,1

NMF

node node

node node

node node

( ) ( ) ( )( )

· · ( · ) · ( ) · ( · ) · ·

( ) ( )( )
( ) ( )

Thus, when the full set of the discretized eigenfunctions is used, the newmethod using the impermeable
eigenfunctions gives the same signal as the original numericalmatrix formalismmethod that uses permeable
eigenfunctions.
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