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Abstract
Macroscopic models of the diffusion MRI (dMRI) signal can be helpful to 
understanding the relationship between the tissue microstructure and the dMRI 
signal. We study the least squares problem associated with estimating tissue 
parameters such as the cellular volume fraction, the residence times and the 
effective diffusion coefficients using a recently developed macroscopic model 
of the dMRI signal called the Finite Pulse Kärger model that generalizes the 
original Kärger model to non-narrow gradient pulses. In order to analyze the 
quality of the estimation in a controlled way, we generated synthetic noisy 
dMRI signals by including the effect of noise on the exact signal produced 
by the Finite Pulse Kärger model. The noisy signals were then fitted using 
the macroscopic model. Minimizing the least squares, we estimated the 
model parameters. The bias and standard deviations of the estimated model 
parameters as a function of the signal to noise ratio (SNR) were obtained. We 
discuss the choice of the b-values, the least square weights, the extension to 
experimentally obtained dMRI data as well noise correction.

Keywords: diffusion MRI, macroscopic model, parameter estimation

(Some figures may appear in colour only in the online journal)

1. Introduction

In diffusion magnetic resonance imaging (dMRI), water motion inside a biological tissue is 
monitored in order to characterize the tissue microstructure. Varying magnetic field gradients 
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and diffusion times, one acquires the macroscopic signal (at millimeter spatial resolution) 
which aggregates statistically averaged information about the domain at the micrometer scale. 
Inferring the microstructure from the macroscopic signal is a formidable inverse problem 
(Grebenkov 2007).

The complexity of brain tissue does not allow the extraction of the whole microstructure. 
Rather, one focuses on estimating some macroscopic parameters of the tissue whose changes 
can be related to physiological or pathological modifications. In the diffusion tensor model 
(Basser et al 1994) water diffusion was modeled as a Gaussian process whereas the diffusion 
kurtosis model (Chabert et al 2005, Jensen et al 2005) included additional degrees of freedom 
for a better fit of the dMRI signal. The dMRI signal has been also modeled as the sum of two 
or multiple decaying exponentials, representing, for example, fast and slow Gaussian diffu-
sion pools. Although the explicit form of this representation makes the bi-exponential model 
very attractive, naive identifications of the extracted volume fractions of the pools as volume 
fractions of the physiological constituents of the tissue, i.e. the cells (slow diffusion) and the 
extracellular space (fast diffusion), have failed (Niendorf et al 1996, Mulkern et al 1999, 
Clark and Le Bihan 2000, Chin et al 2002, Lee and Springer 2003, Stanisz 2003, Schwarcz 
et al 2004, Ababneh et al 2005). There also have been macroscopic models that explicitly use 
certain biological quantities as model parameters. For example, if the neurites are modeled 
by cylinders, while the extracellular space as a Gaussian pool, the total dMRI signal can be 
represented as the sum of the two explicitly known signals from both compartments (Sen and 
Basser 2005, Jespersen et al 2007, Assaf et al 2008). The radius of neurites appears here as 
a parameter of the model. Note that this explicit representation relies on the Gaussian phase 
approximation (Grebenkov 2007) and assumes no water exchange between the compartments.

The Kärger model (Kärger et al 1988) allows for water exchange between effective 
Gaussian compartments and incorporates macroscopic parameters such as the cellular volume 
fraction, the residence times, as well as the effective diffusion coefficients. When the gradi-
ent pulses are narrow (as compared to diffusion time), the time evolution of the signals in the 
different compartments can be described by a system of coupled ordinary differential equa-
tions (ODEs). The ODE system can be solved analytically, yielding an explicit dependence of 
the dMRI signal on the model parameters. This explicit representation of the dMRI signal can 
then be used to estimate the residence times and the volume fractions of water molecules in 
the effective Gaussian diffusion pools. Fieremans et al. proposed a coarse graining argument 
to justify the concept of co-existing pools of water molecules and validated the Kärger model 
by Monte Carlo simulations (Fieremans et al 2010) (see also Meier et al (2003) and Nilsson 
et al (2010) for Monte Carlo simulations). In particular, the slow exchange between compart-
ments (i.e. low permeability) was shown to be necessary for compartment separation. In spite 
of these limitations, the Kärger model has been often used in biological tissue imaging to 
invert for model parameters (Stanisz et al 1997, Waldeck et al 1997, Pfeuffer et al 1998, Lee 
and Springer 2003, Meier et al 2003, Quirk et al 2003, Roth et al 2008, Aslund et al 2009, 
Nilsson et al 2009).

Recently, a new macroscopic model for the dMRI signal was formulated (Coatléven et al 
2014, Li et al 2014) using homogenization techniques (Bensoussan et al 1978). The compart-
ments of this macroscopic model are the biological cells and the extracellular space that are 
separated from each other by cell membranes. By matching asymptotic expansions of the 
solution of the microscopic Bloch–Torrey partial differential equation (PDE) in different com-
partments, the dMRI signal is given as the solution of a system of coupled ODEs. These ODEs 
are similar to that of the Kärger model, but they have time-dependent coefficients so that the 
solution is obtained numerically. As the main advantage, this new macroscopic model is not 
subject to the narrow pulse restriction, in contrast to the Kärger model. The gradient pulses 
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can be long in duration and can have an arbitrary temporal profile. The work of (Coatléven et 
al 2014) can be thought of as giving a sound mathematical basis to the Kärger model as well 
as generalizing it beyond narrow gradient pulses.

In this paper, we consider the weighted least squares problem associated with estimating 
the macroscopic model parameters such as the cellular volume fraction, the residence times 
and the effective diffusion coefficients using the Finite Pulse Kärger (FPK) model. There have 
been many works on estimating the parameters of the diffusion tensor and the diffusion kur-
tosis models in the presence of noise and noise correction. See Veraart et al (2013a, 2013b), 
Collier et al (2014), Iima et al (2015) and Veraart et al (2011) and references therein. The 
major difference between the diffusion tensor or kurtosis models and the FPK model that we 
consider in this paper is that the data cannot be easily represented as a linear function of the 
model parameters (as it was done, e.g. in the diffusion tensor model by taking the logarithm of 
the signal). In other words, one has to deal with nonlinear fitting so that the parameters estima-
tion becomes much more involved.

To proceed with our study, we first solve the Bloch–Torrey equation for the complex trans-
verse magnetization on a geometry containing spherical cells of various sizes to show that 
the total complex transverse magnetization is accurately represented by the solution of the 
FPK model over an appropriate range of b-values. In this way, the FPK model is identified as 
an appropriate macroscopic fitting frame for this geometrical example. We then investigate 
in depth the robustness of parameters estimation within this model. Following the standard 
scheme, we first simulate the dMRI signal within the FPK model with prescribed parameters, 
add noise and then fit the noisy signal to the FPK model by minimizing the least squares 
in order to estimate the model parameters. The quality of the estimation procedure can be 
accessed by comparing the estimated parameters to their true values. The bias and standard 
deviations of the estimated model parameters as a function of the signal to noise ratio (SNR) 
were obtained. We discuss the choice of the b-values, the least square weights, the extension 
to experimentally obtained dMRI data as well noise correction.

2. Theory

To validate the FPK model, we define a simplified geometrical model of a biological tissue 
in a computational box C = [−L1/2, L1/2] × [−L2/2, L2/2] × [−L3/2, L3/2] and assume that C is 
periodically repeated in all three dimensions to make up the imaging voxel. Inside C, there 
are sphere compartments, Ωj, j = 2, ··· (where each Ωj is a sphere), while the remaining set 
Ω1 = C\∪j ⩾ 2 Ωj is called the extracellular compartment.

2.1. Microscopic Bloch–Torrey equation

A ‘ground truth’ dMRI signal can be computed by solving the multiple compartment Bloch–
Torrey PDE in C (Torrey 1956, Grebenkov 2010)

γ= − ⋅ + ∇ ⋅ ∇ ∈ Ω∂
∂

f t M t D M tg r r g r g ri ( )( ) ( , | ) ( ( , | )) ( ),M t

t
l l lr g( , | ) 0l

 (1)

where Ml(r, t∣ g) is the complex-valued transverse water proton magnetization at r = (r1, r2, 
r3) in compartment Ωl, g = (g1, g2, g3) is the diffusion-encoding gradient, f(t) is its effective 
temporal profile, i is the imaginary unit, γ = 2.675 · 108 rad/s/Tesla is the gyromagnetic ratio 
of the water proton and D0 is the intrinsic diffusion coefficient of water molecules. The PDEs 
in equation (1) are supplemented with two interface conditions on the interface Γln between 
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any two adjacent compartments Ωl and Ωn. One interface condition is the continuity of mag-
netization flux:

∇ ⋅ = − ∇ ⋅ ∈ ΓD M t D M tr g n r r g n r r( ( , | ) ( )) ( ( , | ) ( )), ,l l n n ln0 0 (2)

where nl(r) and nn(r) are the outward-pointing normals to Ωl and Ωn at r. The second interface 
condition,

κ∇ ⋅ = − ∈ ΓD M t M t M tr g n r r g r g r( ( , | ) ( )) ( ( , | ) ( , | )), ,l l n l ln0 (3)

incorporates a permeability κ across Γln and models the ease with which water crosses the 
interface. The larger the κ, the easier the passage of water. We add the initial condition:

= ∈ Ω ∀M M lr g r( , 0 | ) , , ,l l
0 (4)

where the uniform excitation of the nuclei over the whole voxel is assumed, with M0 being the 
initial magnetization.

Since the computational box C = [−L1/2, L1/2] × [−L2/2, L2/2] × [−L3/2, L3/2] is periodi-
cally repeated, we add the boundary conditions on ∂C following (Xu et al 2007):

| = | =θ
=− =M t M t kr g r g( , ) ( , ) e , 1, 2, 3,r L r L

t
/2 /2

i ( )
k k k k

k (5)

= =θ∂ |
∂ =−

∂ |
∂ =

ke , 1, 2, 3,M t

r r L

M t

r r L

tr g r g( , )

/2

( , )

/2

i ( )
k k k k k k

k (6)

for each of the faces perpendicular to the three coordinate axes, where ∫θ γ=t g L f s s( ) ( ) dk k k

t

0
.

Now we define the compartment magnetization as the integral of the magnetization in Ωl:

∫= | ≤ ≤
∈Ω

M b t M t tr g r( , ): ( , ) d , 0 TE,
l l

r

PDE

l
 (7)

where TE is the echo time at which the dMRI signal is acquired and the b-value is defined as:

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟∫ ∫γ= ∥ ∥b u f s sg g( ) d ( )d .

u

2 2

0

TE

0

2

 (8)

The dMRI signal measured in experiments (without the imaging gradients and T2 effects) 
corresponds to

∫∑ ∑= =
= = ∈Ω

S b M b M r g r( ): ( , TE) ( , TE | ) d ,
l

P
l

l

P
l

r

PDE

1

PDE

1 l

 (9)

where P is the number of compartments. Because the computational box C is periodically 
repeated, SPDE(b) provides the dMRI signal in the whole voxel.

In a dMRI experiment, the TE and sequence f(t) are usually fixed while g is varied in ampli-
tude and/or in direction to obtain the signal at different b-values. In the rest of the paper, we will 

set the initial magnetization to =
| |

M
C

1
0 , so that SPDE(b = 0) = 1 and = = |Ω |

| |
=M b t

C
v( , 0) :

l l
l

PDE ,  

where ∣Ωl∣ is the volume of Ωl, ∣C∣ is the volume of the computational box and vl is the volume 

fraction of Ωl.
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A standard pulsed-gradient spin-echo (PGSE) sequence is composed of two rectangular 
gradient pulses of duration δ separated by diffusion time Δ:

δ
Δ Δ δ=

< < +
− + < < + +

⎧
⎨
⎪

⎩⎪
f t

t t t
t t t( )

1 ,
1 ,

0 otherwise,

s s

s s (10)

where ts is the start of the first pulse (we set ts = 0 throughout the paper). Although both 
gradient pulses are of the same polarity in a usual spin-echo sequence, the second gradient 
pulse is effectively inverted (i.e. f(t) = − 1) by the refocusing 180° rf pulse. The b-value from 
 equation (8) becomes

γ δ δ= ∥ ∥ Δ −b g ( / 3).2 2 2 (11)

2.2. Macroscopic Kärger model

The Kärger model (Kärger et al 1988) is formulated under the narrow pulse approximation, 

δ ≪ Δ, for which the compartment magnetizations M b t( , )
l
KAR , l = 1, ···, P satisfy

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑

∑

δ γ
τ

τ

= − +

+ = ⋯

= ≠

= ≠

D M b t

M b t m P

g g
1

( , )

1
( , ), 1, , ,

M b t

t
T m

l l m

P

lm
m

l l m

P

ml
l

d ( , )

d
2 2

1,
KAR

1,
KAR

m
KAR

 (12)

where D
m
 is the effective diffusion tensor in compartment m and 1/τlm is the transfer rate from 

m-th compartment to l-th compartment. Note that in the case of two compartments, τ12 can be 
interpreted as the residence time in the first (extracellular) compartment. The volume fractions 
vl are normalized as

∑ =
=

v 1.
l

P
l

1

 (13)

These coupled ODEs are subject to the initial conditions:

= = ⋯M b v l P( , 0) , 1, , .
l l
KAR (14)

While the dMRI signal is the sum of the M
l
KAR from all the compartments at t = Δ:

∑ Δ
=

M b( , ),
l

P
l

1

KAR

we found that the Kärger model can be made more accurate when the signal is evaluated at 
t = Δ − δ/3, similar to the appearance of the factor Δ − δ/3 in the b-value in equation (11). Thus, 
we will use the expression

∑ δ= Δ −
=

S b M b( ) ( , / 3)
l

P
l

KAR

1

KAR

for the dMRI signal attenuation when comparing the Kärger model with the FPK model to be 
described next.
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The Kärger ODEs with constant coefficients are easy to solve analytically or numerically. 
For the two-compartment case (P = 2, i.e. one extracellular compartment Ω1 and one intracel-
lular compartment Ω2), the Kärger dMRI signal is given explicitly,

ρ ρ= − + − −+ −S b D q t D q t( ) exp( ) (1 )exp( ),KAR
2 2

where

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

δγ

ρ

≡

≡ + + +

± − + − +

≡

=

τ τ

τ τ τ τ

±

+ −

−
−

+ −

( )

( )

( )

q

D D D

D D

D D

g

g g

g g

g g g

,

( )

( ) ,

.

/

q

q q

v D v D D

D D

m T m

g g

g

1

2
1 2 1 1 1

2 1 1 1 1
2

4

( )

2

2
12 21

2
21 12

4
12 21

1 1 2 2

2.3. Macroscopic FPK model

In Coatléven et al (2014), a macroscopic FPK model was obtained from the microscopic 
multiple-compartment Bloch–Torrey PDE (1)–(6) using the periodic homogenization theory. 
The narrow pulse assumption on the diffusion encoding sequence was not needed. The Kärger 
model can be retrieved from the FPK model in the narrow pulse limit: δ ≪ Δ.

The FPK model describes the time evolution of the compartment magnetizations as

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑

∑

γ
τ

τ

= − +

+ = ⋯

= ≠

= ≠

c t D M b t

M b t m P

g g( )
1

( , )

1
( , ), 1, , ,

M b t

t
T m

l l m

P

lm
m

l l m

P

ml
l

d ( , )

d
2

1,
FPK

1,
FPK

m
FPK

 (15)

where the function c(t) was derived in Coatléven et al (2014) to be

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟∫=c t f s s( ): ( )d

t

0

2

 (16)

for any profile f(t). For the standard PGSE sequence from equation (10), one finds

⎧
⎨
⎪

⎩⎪

δ
δ δ

δ δ
=

− ≤ ≤ +
+ < ≤ + Δ

− Δ − − + Δ < ≤ + Δ +
c t

t t t t t

t t t

t t t t t

( )
( ) , ,

, ,
( ) , .

s s s

s s

s s s

2

2

2

 (17)

In the narrow pulse regime, δ ≪ Δ, equation (17) yields the coefficient δ2 of the Kärger model.
For connected Ωl ∈ C, the derivation of (Coatléven et al 2014) shows that

τ
κ≔ Γ

Ω
≠l m

1 | |

| |
, ( ),

ml

ml

l
 (18)

from which
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τ
τ

= Ω
Ω

= v

v

| |

| |
,

lm

ml

m

l

m

l
 (19)

where ∣Γml∣ is the surface area of the interface between Ωm and Ωl. 
The initial condition of the FPK model is the same as for the Kärger model, namely, equa-

tion (14) and the dMRI signal is

∑=
=

S b M b( ) ( , TE).
l

P
l

FPK

1

FPK (20)

2.4. Effective diffusion tensors

Now we define the effective diffusion tensors describing diffusion in the compartments in the 
long time limit. When the computational box C is small compared to the diffusion distance 
and under the assumption that C is periodically repeated, the effective diffusion tensor D

m
 in 

compartment Ωm can be rigorously defined as (Coatléven et al 2014)

∫= ∇ ⋅ = ⋯
Ω

D
v

D W j kr e r
1

( ) d , , 1, , 3,j k
m

m j k,
0

m
 (21)

where ek is the unit vector in the kth direction; one has to solve three Laplace equations over 
C for three unknown functions Wj:

∇ ⋅ ∇ = ∈ Ω = ⋯( )D W jr r( ) 0, , 1, , 3,j
m0 (22)

subject to impermeable interface condition on ∂Ωm:

∇ ⋅ = ∈ ∂ΩW r n r r( ) ( ) 0, ,j
m (23)

and the following boundary conditions on ∂C:

δ= − = ⋯=− =W W L kr r( ) ( ) , 1, , 3,j r L j r L j k k/2 /2 ,
k k k k

 (24)

= = ⋯∂
∂ =−

∂
∂ =

W W kr r( ) ( ) , 1, , 3,
r j

r L r j
r L/2 /2k k k k k k

 (25)

where δj, k = 1 if k = j and δj, k = 0, otherwise.
It is easy to show that if Ωm is the union of spheres then its effective diffusion tensor 

vanishes:

=D 0.
m (26)

In other words, restricted diffusion in a compact isolated region becomes negligible in the 
long time limit.

We note that the expressions (18) and (26) have been used in previous works for the Kärger 
model (for example, in Fieremans et al (2010)).

2.5. Limiting cases

If there is no exchange between the compartments, the macroscopic dMRI signal under the 
Gaussian phase approximation is

H T Nguyen et alPhys. Med. Biol. 60 (2015) 3389
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∑= −
=

S b v D b( ) exp( ) ,
m

P
m m

gNOEX

1

 (27)

where the effective diffusivity in compartment m in the gradient direction ug ≡ g/∣ g∣ is

≡D Du u  .m T m
g g g

In the opposite limit of complete exchange, the macroscopic dMRI signal is

⎛

⎝
⎜⎜

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎞

⎠
⎟⎟∑= −

=

S b v D b( ) exp .
m

P
m m

gCOMPEX

1

 (28)

The Kärger model and the FPK model are formulated to investigate the intermediate exchange 
regime that falls between the two extreme cases in equations (27) and (28).

One important property of the FPK model (and its narrow pulse limit, the Kärger model) is 
that the apparent diffusion coefficient (ADC) extrapolated at b = 0, i.e.

= −
→

S b

b
ADC lim

log ( )
,

b
0

0

is independent of time and of the permeability κ:

∑= = = =
=

v DADC ADC ADC ADC .
m

P
m m

g0
KAR

0
FPK

0
COMPEX

0
NOEX

1

Thus, two necessary conditions for the applicability of the above macroscopic models are: (i) 
the diffusion time should be long enough that the measured ADC0 does not change (much) 
with time and (ii) the cell membrane permeability κ should be low enough that it does not 
affect (much) the ADC0.

2.6. Quality of macroscopic models

We constructed the computational box C  =  [−5  µm, 5  µm]3 shown in figure  1 containing 
76 spherical cells with a range of radii between 0.6 µm and 2.55 µm. Formally, one could 
consider 76 different compartments for the 76 spheres, each with its volume fraction and sur-
face-to-volume ratio. However, we just combine the 76 spheres to form one compartment Ω2. 
The remaining extracellular space forms another compartment Ω1. The corresponding volume 
fractions are v2 = 0.65 and v1 = 0.35. The surface-to-volume ratio is ∣Γ21∣/∣Ω2∣ = 1.85 µm−1. 
We consider that ∣Γ21∣/∣Ω2∣ is a good approximation of the average surface-to-volume ratios 
of all the 76 spheres. Note that this approximation would be exact if all the spheres had the 
same radius.

Setting the intrinsic diffusion coefficient D0  =  3  ×  10−3  mm2  s−1 and the permeability 
κ = 10−5 m s−1, one finds the true model parameters to be

U τ= = = × = =− −{ }v D D0.65, 2.20 10 mm s , 0, 54 ms ,gtrue
2 1 3 2 1 2 12 (29)

where the true value of Dg
1 is computed numerically as earlier explained in section 2.4. The 

value Dg
1 = 2.20 × 10−3 mm2 s−1 is rather high compared to the values found in the literature 

for brain tissue due to the geometry chosen (spherical cells).
We first check the quality of the macroscopic models as an approximation of the ‘ground 

truth’ dMRI signal obtained from the Bloch–Torrey equation. Figure  1(b) shows that the 
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two-compartment FPK model gives a good approximation of the signal from the Bloch–
Torrey PDE. For the PGSE sequence with δ = Δ = 40 ms, the narrow pulse assumption is not 
satisfied and the original Kärger model fails to approximate the dMRI signal. In turn, the 
FPK model provides a very accurate approximation over the typical range of b-values up to 
4000 s mm−2.

3. Materials and methods

The parameter estimation consists of fitting an experimentally measured dMRI signal to an 
appropriate macroscopic model in order to extract the model parameters. In order to investi-
gate the sensitivity and robustness of the parameters estimation problem, we replace experi-
mental data by synthetically generated data to which we added Gaussian noise in the real and 
imaginary parts. This allows us to check the influence of various factors on the stability and 
the quality of the parameters estimation.

We show results for two examples. In the first example, the synthetic dMRI data is gen-
erated by solving the FPK model for the 76-spheres geometry using the true model param-
eters in equation (29) (see section 2.6). In the second example, the synthetic dMRI data is 
obtained by evaluating the bi-exponetial fit of published in vivo data in the rat brain cortex 
(Pyatigorskaya et al 2014).

3.1. Synthetic dMRI signal

3.1.1. First example. For the 76-spheres example (see section 2.6) we generated the dMRI 
signal by using the FPK model with the true parameters in equation (29) and simulating two 
PGSE sequences with

δ δ= Δ = = Δ ={ 25 ms; 40 ms} . (30)

Figure 1. (a) The computational box C =  [−5 µm, 5 µm]3 contains 76 spheres with 
radii between 0.6  µm and 2.55  µm. The volume fraction of the spheres and of the 
extracellular space are v2 = 0.65 and v1 = 0.35, respectively. We set κ = 10−5 m s−1, 
D0 = 3 × 10−3 mm2 s−1. (b) The dMRI signals: SPDE(b), SFPK(b), SKAR(b), SNOEX(b), 
SCOMPEX(b). The parameters of the PGSE sequence are δ = Δ = 40 ms.
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3.1.2. Second example. For our second example, we refer to the in vivo experimental signals 
of the rat cortex obtained for PGSE at δ = 2.5 ms and several diffusion times (Pyatigorskaya 
et al 2014). Here we focus on two diffusion times: Δ = 10, 30 ms. It was shown that the 
experimental data over b-values in the range [0, 4000] s mm−2 can be well fitted using a bi-
exponential function:

= − + − −S f bD f bDexp( ) (1 )exp( ),s s s f

where the values are as shown below.

We use the above bi-exponential description to generate dMRI signals and we simulate the 
same PGSE sequences as in the in vivo experiment:

δ δ= Δ = = Δ ={ 2.5 ms, 10 ms; 2.5 ms, 30 ms} . (31)

For both examples, the dMRI signals were computed at a set of 42 b-values:

⎧
⎨
⎩

= = …
− = …

−

−b
k k

k k

50 s mm , 1 5,
100( 3) s mm , 6 42 .

k

2

2 (32)

Note the first few low b-values increase in intervals of 50  s mm−2 (e.g. b1 = 50  s mm−2, 
b2  =  100  s  mm−2, etc) and the later b-values increase in intervals of 100  s  mm−2 (e.g. 
b6 = 300 s mm−2, b7 = 400 s mm−2, etc). The set of b-values is within the range typically used 
in experimental settings for brain imaging. We denote by S(bk) the simulated dMRI signal 
at bk.

3.2. Noisy signal

In order to quantify the effect of experimental noise in the parameters estimation problem, 
we add Gaussian noise to the real and imaginary components of the simulated signal S(bk) to 
produce noisy signals:

N Nσ σ= + +σ ( ) ( )S b S b( ) ( ) ,i k k i k i k, ,
Re 2

,
Im 2

 (33)

where k = 1, ···, 42 (42 b-values), i = 1, ···, N (N random samples of noisy signal), σ is the 
level of noise, while N i k,

Re and N i k,
Im are independent Gaussian variables with zero mean and 

unit variance. In practice, we save all generated noises N i k,
Re and N i k,

Im for N = 1000 samples of 
noise and use them repeatly when comparing different noise levels and parameters estimation 
strategies. We will generate results for 5 different noise levels

σ ∈{0.0125, 0.025, 0.05, 0.1, 0.2}.

Note that the imaginary part of the simulated signal S(bk) is zero due to the rephasing of the 
nuclei.

The above scheme of adding Gaussian noises to the real and imaginary parts of the signal 
results in the so-called Rice distributed noisy magnitude signal (see, for example, Gudbjartsson 
and Patz (1995)) which is considered a benchmark for dMRI measurements. In other words, 

δ, ms Δ, ms fs Df, mm2 s−1 Ds, mm2 s−1

2.5 10 0.27 0.89 × 10−3 0.23 × 10−3

2.5 30 0.32 0.92 × 10−3 0.29 × 10−3
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the noisy magnitude signal Sσ, i(bk) from equation (33) is a random variable from the Rice 
distribution (Rice 1944). The expected value and the variance of this variable are

σ σ⟨ ⟩ =σS b F S b( ) ( ( )/ ),i k k, (34)

σ σ σ= + −σS b S b F S bvar{ ( )} (2 [ ( )/ ] [ ( ( )/ )] ),i k k k,
2 2 2 (35)

where

π= + +−F x x I x x I x( ) / 2  e [(1 / 2) ( / 4) ( / 2) ( / 4)],x /4 2
0

2 2
1

22
 (36)

and In(z) are the modified Bessel functions of the first kind. When σ ≪  S(bk) (i.e. x ≫ 1), one 
gets

≃ + + + −F x x
x x

O x( )
1

2

1

8
( )

3
5 (37)

so that the mean value 〈Sσ, i(bk)〉 approaches the noiseless signal S(bk) as expected. One can 
check that this approximate relation is accurate within 5% even at x = 1 (i.e. when S(b) = σ), 
while its relative error is 0.3% at x = 2.

In the opposite limit σ ≫  S(bk) (i.e. x ≪ 1), π≃ +F x O x( ) / 2 (1 ( ))2  so that π σ→σS b( ) / 2  i k, .  
In other words, when the noise level is too large as compared to the noiseless signal, one meas-
ures the noise level. This situation is not relevant in practice.

According to equation  (35), the variance of the noisy signal monotonously grows from  
σ2 (2 − π/2) ≈ 0.43σ2 at x = 0 to σ2 at x = ∞. One can conclude that the variance does not change 
significantly, even for very noisy signals.

It is also convenient to define the signal-to-noise ratio as

σ
σ=

⟨ ⟩
=   ~σ

σ{ }
S b

S b

S b
F S bSNR

( )

var ( )

( )
( ( )/ ),k

i k

i k

k
k

,

,
 (38)

where

⎛
⎝
⎜

⎞
⎠
⎟~ = + −

−

F x
x

x

F x
( )

1 2

[ ( )]
1 .

2

2

1/2

 (39)

Using equation (37) for large x, the correction factor 
~
F x( ) can be written as

≃ + + + −F x
x x

O x
~( ) 1

3

4

13

32
( ).

2 4
6 (40)

For instance, ~ ≃F(5) 1.03. In other words, when x is large, SNRk is close to S(bk)/σ, as expected.
For the first example (76-spheres), figure 2(a) shows the bias of the signal at σ = 0.2. One 

can see that the presence of noise tends to increase the signal: mean values of noisy signal 
(shown by circles and by solid line) lie above the noiseless signal (shown by dashed line). 
While this bias is negligible for small σ (not shown), it cannot be ignored at noises as large 
as σ  =  0.2. Figure  2(b) presents the signal-to-noise ratio from equation  (38) for all σ and 
δ = Δ = 40 ms.

The decrease of the dMRI signal S(b) with b-values results in decreasing SNR at large 
b-value. At the highest considered noise level σ = 0.2, SNR remains around 5 for almost all 
b-values.
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For the second example (bi-exponential fit of rat cortex data), figure 3(a) shows the bias of 
the signal at σ = 0.2, δ = 2.5 ms, Δ = 10 ms. As earlier, the presence of noise tends to increase 
the signal. Figure 3(b) presents the signal-to-noise ratio (SNR) as a function of b-value for all 
σ, at δ = 2.5 ms, Δ = 10 ms.

To perform the parameters estimation on noisy data using a subset, ⊂ ⋯K {1, , 42}, of 
b-values, we define the SNR as SNR1, i.e. the signal-to-noise ratio at the smallest (nonzero) 
b-value that we use: b1 = 50 s mm−2.

3.3. The least squares problem

In order to estimate the FPK model parameters, we fit the noisy signal to the FPK model in a 
weighted least squares (WLS) sense.

For the first example, the 4-parameter set to be estimated is

U τ= { }s v D, , , ,g0
2 1 12 (41)

Figure 3. Second example (adapted from in vivo data) for δ = 2.5 ms, Δ = 10 ms: (a) 
Comparison between S(b) (noiseless signal) and 〈Sσ, i(b)〉 (mean noisy signal); (b) SNR. 
Signal S(b) is obtained using bi-exponential fit from in vivo rat brain cortex experimental 
data. Symbols show the empirical mean values of Sσ, i(b) over 1000 realizations.
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Figure 2. First example (76-spheres geometry) with δ = Δ = 40 ms: (a) Comparison 
between S(b) (noiseless signal) and 〈Sσ, i(b)〉 (mean noisy signal); (b) SNR. Signal S(b) 
is obtained by solving the FPK model using the true model parameters for the 76-spheres 
geometry. Symbols show the empirical mean values of Sσ, i(b) over 1000 realizations.
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where the residence time τ12 is related to the permeability κ according to equation (18) and Dg
1 

is the extracellular effective diffusion coefficient in direction g = (1, 0, 0), s0 is the extrapolated 
value of the dMRI signal at b = 0. The other parameters of the FPK model are retrieved as

Ω

=

+ =
=

τ
τ

v v

D

,

1,

0, because   is the union of spheres.

v

v
1 2

2 2

12

21

2

1

For the second example, we note that the effective diffusion coefficients of two compartments 
have to be found. This is different from the spheres example where D

2
 was set to zero. To 

shorten the computational time, we set s0 to its true value (s0 = 1) and the 4-parameters set to 
be estimated for this example is

U τ= { }v D D, , , .g g
2 1 2 12 (42)

For a given set U  of macroscopic model parameters, we denote the FPK signal by US b( , )FPK . 
For each random sample of noisy signal Sσ, i(b), we solve the following least squares problem:

U
U

K

∑ −σ
∈

S b s S b wmin ( ) ( , ) ,
k

i k k k, 0 FPK
2

 (43)

where K ⊂ ⋯{1, , 42} is a subset of the full list of simulated b-values and wk are the associ-
ated weights. The solution of equation (43) which is denoted as U i

FPK, is random because it 
depends on a random realization of a noisy signal. Repeating this procedure for N = 1000 
samples, we compute the mean values (MV) of the estimated parameters and their stan-
dard deviations (SD). In what follows, we focus on two cases: identical weights wk = 1 and  
wk = 1/var{Sσ, i(bk)} from equation (35).

3.4. Numerical resolution

In order to assess the quality and robustness of the parameters estimation with the FPK model, 
we perform the following analysis.

 (a) We solve the least squares problem in equation (43) by an exhaustive search in the param-
eter space.

	 •	For	 the	first	example,	 the	4D	parameter	space	 is	U τ= s v D{ , , , }g0
2 1 12 . The limits of the 

search space were chosen to be

× U[0.9, 1.1] ,3

  where the limits U3 for {v2, D ,g1  τ12} are

= × × ×− −U {[0.4, 0.9]} {[1.0, 3.0] 10 mm s } {[1, 150] ms} .3
3 2 1

  We created and saved a search table for U3 that has the values of US b( , )kFPK , k = 1, ···, 42, 
with a uniform discretization in 51 points in [0.4, 0.9], 41 in [1.0, 3.0] × 10−3 mm2 s−1 and 
150 in [1, 150] ms. Previously, the idea of using search tables for parameter estimation 
in dMRI has appeared in Iima et al (2015). The exhaustive search for s0 was conducted 
in [0.9, 1.1] using 9 uniform discretization points. The range for s0 is justified because 
the synthetic signal is already normalized to S(b = 0) = 1. In summary, the precision of 
our search method is 0.05 × 10−3 mm2 s−1 in Dg

1, 0.01 in v2, 1 ms in τ12 and 0.025 in s0. 
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The ODE system (21) in the FPK model is solved numerically in Matlab by the function 
ode45 with absolute and relative tolerances of 10−6.

	 •	For	 the	 second	 example,	we	 conduct	 an	 exhaustive	 search	 in	 4D	parameter	 space	 for	

U τ= v D D( , , , )g g
2 1 2 12 . The limits of the search space were chosen to be:

= × ×
× × ×

− −

− −
U {[0.25, 0.55]} {[0.5, 3.0] 10 mm s }

{[0, 0.5] 10 mm s } {[1, 400] ms} ,
4

3 2 1

3 2 1

  We created and saved a search table for U4 that had the values of US b( , )kFPK , k = 1, ···, 42, 
with a uniform discretization in 31 points in [0.25, 0.55], 51 in [0.5, 3.0] × 10−3 mm2 s−1 
for Dg

1, 11 in [0.0, 0.5] × 10−3 mm2 s−1 for Dg
2, and 400 in [1, 400] ms. The precision of 

the search table is the same as for the first example. Because δ is much smaller than Δ, it 
is sufficient to use the Kärger model for the second example.

 (b) We characterize the quality of the fit by the root of the mean squared error (RMSE) of the 
weighted LS fitting, normalized by the weights,

U
K

K

∑
∑

=
−σ∈

∈

S b s S b w

w
RMSE

( ) ( , )
.i

k
i k k k

k
k

, 0 FPK
2

 (44)

  This quantity characterizes the accuracy of the LS fitting for one random realization of 
the noisy signal. In what follows, we will present the empirical mean values and the 
standard deviations of the estimated parameters and of RMSEi after averaging over 1000 
realizations, as functions of the noise level (plotted against the SNR from equation (38)). 
In addition, for the first example, because the true values of the FPK model parameters 
are known, the mean values of the estimated parameters are compared to their true values. 
Note that while the true values of v2 and τ12 are determined by the microstructure and the 
permeability, the true value of Dg

1 is computed from equation (21) by solving numerically 
equations (22)–(24) by the same finite elements method as for the Bloch–Torrey equa-
tion (Nguyen et al 2014).

4. Results and discussion

4.1. First example

We compare four parameters estimation strategies:

	 •	Choice	 1:	 sequence	 δ  =  Δ  =  40  ms, the full list of 42 b-values in equation  (32), LS 
weighting wk = 1;

	 •	Choice	 2:	 sequence	 δ  =  Δ  =  40  ms, the full list of 42 b-values in equation  (32), LS 
weighting wk = 1/var{Sσ, i(bk)} from equation (35);

	 •	Choice	 3:	 Sequence	 δ  =  Δ  =  25  ms, the full list of 42 b-values in equation  (32), LS 
weighting wk = 1;

	 •	Choice	4:	sequence	δ = Δ = 40 ms, b-values are taken from the first 21 of the 42 values 
in equation (32) and repeated once (for a total of 42 b-values, 21 of them distinct), LS 
weighting wk = 1. The b-values range from 50 s mm−2 to 1700 s mm−2.
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In this way, we compare the reference case (Choice 1) with other cases in order to reveal 
the respective roles of weighting by the reciprocal of the variance (Choice 2), using shorter 
diffusion time (Choice 3) and using a smaller range of b-values (Choice 4).

First we show in figure 4 the normalized RMSE defined in equation (44). One can see that 
all four strategies provide similar RMSE, both in the mean values and the standard deviations. 
The mean values of the RMSE increased from 1% at SNR = 100 to 18% at SNR = 4.9. The 
standard deviations increase from 0.1% to 3%.

In figure 5 we show the mean values and standard deviations (as percentages) of the param-
eters, Dg

1, v2, τ12, of the four strategies (the parameters are normalized by their true values for 
convenience). We see that

 (a) As the SNR decreases from 77 to 4.9, for Choices 1 and 2, the mean values of Dg
1 decrease 

from 101% to 96% of the true values. For Choice 3, the mean values decrease from 102% 
to 98% of the true value. For Choice 4, the mean value decreases from 102% to 93% of 
the true values. For Choices 1 and 2, the standard deviations of Dg

1 increase from 23% to 
26% of the true values. For Choice 3, the standard deviations increase from 20% to 35% 
of the true values. For Choice 4, the standard deviations increase from 30% to 40% of the 
true values.

 (b) As the SNR decreases from 77 to 9.7, for Choices 1 and 2, the mean values of v2 decrease 
from 98% to 92% of the true values. For Choice 3, the mean values decrease from 100% 
to 95% of the true values. For Choice 4, the mean values decrease from 96% to 93% of 
the true values. For Choices 1 and 2, the standard deviations of v2 increase from 10% to 
21% of the true values. For Choice 3, the standard deviations increase from 8% to 19% 
of the true values. For Choice 4, the standard deviations increase from 15% to 18% of the 
true values.

 (c) As the SNR decreases from 77 to 4.9, for Choices 1, 2 and 3, the mean values of τ12 
increase from 110% to 185% of the true values. For Choice 4, the mean values increase 
from 140% to 155% of the true values. For Choices 1, 2 and 3, the standard deviations of 
τ12 increase from 30% to 100% of the true values. For Choice 4, the mean values increase 
from 70% to 120% of the true values.

Figure 4. Comparison between four strategies described in section  4.1 for the 
76-spheres example: empirical mean values (MV, as a percentage) in (a) and standard 
deviations (SD, as a percentage) in (b) of RMSE as functions of the SNR at the lowest 
b-value. The SNR is defined in equation (38).
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Figure 5. Comparison between four strategies described in section 4.1 to estimate {s0, 
Dg

1, v2, τ12} for the 76-spheres example. Results from 1000 samples of noisy signals 
for 5 noise levels. The empirical mean values and standard deviations of the estimated 
parameters: Dg

1, v2, τ12, normalized by their true values from equation (29), are shown 
as functions of the SNR (at the lowest b-value). The SNR is defined in equation (38). 

(a) MV 
D

D( )
g

g

1

1
true

. (b) SD 
D

D( )
g

g

1

1
true

. (c) MV 
v

v

2

true
2

. (d) SD 
v

v

2

true
2

. (e) MV 
τ
τ

12

true
12

. (f) SD 
τ
τ

12

true
12

.

0 20 40 60 80
92

94

96

98

100

102

104

SNR

(a) (b)

(c) (d)

(e) (f)

M
V

  D
1 g

 (
%

)

0 20 40 60 80
20

25

30

35

40

SNR

S
D

  D
1 g

 (
%

)

Choice 1 
Choice 2 
Choice 3 
Choice 4

0 20 40 60 80
90

92

94

96

98

100

SNR

M
V

  v
2  (

%
)

0 20 40 60 80
5

10

15

20

25

SNR

S
D

 v
 2  (

%
)

Choice 1
Choice 2
Choice 3
Choice 4

0 20 40 60 80
100

120

140

160

180

200

SNR

M
V

 τ
12

 (
%

)

0 20 40 60 80
20

40

60

80

100

120

140

SNR

S
D

 τ
12

 (
%

)

Choice 1
Choice 2
Choice 3
Choice 4

H T Nguyen et alPhys. Med. Biol. 60 (2015) 3389



3405

4.2. In vivo brain imaging

In figure 6 we compare the following four estimation strategies:

	 •	Choice	1:	sequence	δ = 2.5 ms, Δ = 30 ms, the full list of 42 b-values in equation (32), LS 
weighting wk = 1;

	 •	Choice	2:	sequence	δ = 2.5 ms, Δ = 30 ms, the full list of 42 b-values in equation (32), LS 
weighting wk = 1/vark{Sσ, i(bk)} from equation (35);

	 •	Choice	3:	sequence	δ = 2.5 ms, Δ = 10 ms, the full list of 42 b-values in equation (32), LS 
weighting wk = 1.

	 •	Choice	4:	sequence	δ = 2.5 ms, Δ = 30 ms, b-values are taken from the first 21 of the 42 
values in equation (32) and repeated once (for a total of 42 b-values, 21 of them distinct), 
LS weighting wk = 1. The b-values range from 50 s mm−2 to 1700 s mm−2.

Results from 1000 samples of noisy signals for 5 noise levels are shown. In figure  6 we 
show the mean values and standard deviations of the estimated parameters, D ,g1  v2, τ12, Dg

2,  
of the strategies described above. The mean values of the estimated parameters are not nor-
malized by their true values as in the previous example because the true values are not known. 
The standard deviations of the estimated parameters are normalized by their mean values and 
expressed as a percentage. We see that

 (a) As the SNR decreases from 77 to 4.9, for Choices 1, 2, 3, 4, the mean values of D ,g1  
increase from 1.0 × 10−3 mm2 s−1 to 1.2 × 10−3 mm2 s−1. For Choices 1, 2, 3, the standard 
deviations of D ,g1  increase from 15% to 40% of the mean value. For Choice 4, the standard 
deviations increase from 15% to 55% of the mean values.

 (b) For Choices 1 and 2, the mean values of v2 vary between 0.36 to 0.38. For Choice 3, the 
mean values vary between 0.35 to 0.37. For Choice 4, the mean values vary between 0.38 
to 0.41. The trend of the mean values is not monotonic with SNR. For Choices 1, 2, 3, the 
standard deviations of v2 vary between 30% to 38% of the mean values. For Choice 4, the 
standard deviations vary between 26% to 34% of the mean values.

 (c) As the SNR decreases from 77 to 4.9, for Choices 1, 2, the mean values of τ12 increase 
from 70 ms to 225 ms. For Choice 3, the mean values increase from 30 ms to 160 ms. 
For Choice 4, the mean value increases from 70 ms to 160 ms. Between SNR = 9.7 and 
SNR = 77, for Choices 1, 2 and 4, the standard deviations of τ12 are around 120% of the 
mean values. Between SNR = 9.7 and SNR = 77, for Choice 3, the standard deviations of 
τ12 are around 180% of the mean values. There is a decrease in the normalized standard 
deviations at SNR = 4.9 because the mean values are very large.

 (d) As the SNR decreases from 77 to 4.9, for Choices 1, 2, 3, the mean value of Dg
2 decreases 

from 0.2 × 10−3 mm2 s−1 to 0.05 × 10−3 mm2 s−1. For Choice 4, the mean values of Dg
2 are 

around 2.5 × 10−3 mm2 s−1. For Choices 1, 2, 3, the standard deviations of Dg
2 increase 

from 60% to 145% of the mean values. For Choice 4, the standard deviations increase 
from 55% to 90% of the mean values.

4.3. Bias-corrected signal

When the noise level σ is significant, the mean values of the noisy signal lie above the noise-
less signal, as illustrated in figures 2 and 3. As a consequence, fitting noisy signals Sσ, i(b) by 
the (noiseless) model signal SFPK(b) may yield a strong bias in estimated parameters. This bias 
can be corrected by replacing the model signal SFPK(b) by the expected value 〈Sσ, i(b)〉 = σ 
F(SFPK(b)/σ) from equation  (34). When the noise level σ is not known a priori, it can be 
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Figure 6. Comparison between four strategies described in section 4.2 to estimate {v2, 
Dg

1, Dg
2, τ12} for the in vivo rat brain cortex experimental data. Results from 1000 samples 

of noisy signals for 5 noise levels. The empirical mean values and standard deviations 
of the estimated parameters (v2, Dg

1, Dg
2, τ12), are shown as functions of the SNR at the 

lowest b-value. The SNR is defined in equation (38). The mean values are not normalized 
by the true values of the parameters as in the previous example since the true values are not 
known. The standard deviations of the estimated parameters are normalized by their mean 
values and expressed in percentages. (a) MV Dg

1 (mm2 s−1). (b) SD Dg
1 (%). (c) MV v2. 

(d) SD v2 (%). (e) MV τ12 (ms). (f) SD τ12 (%). (g) MV Dg
2 (mm2 s−1). (h) SD Dg

2 (%).
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considered as an additional unknown parameter in the LS problem, i.e. added to macroscopic 
model parameters U . We note that this simple correction method relies on the assumption of 
the Rician noise (from which equation (34) was derived). As discussed in Gudbjartsson and 
Patz (1995) and Veraart et al (2011), this assumption is satisfied in most dMRI measurements.

We compare three choices (for simplicity, s0 will be set to 1 instead of being a searched 
parameter in the LS method also for the 76-spheres example, just like in the rat cortex example):

	 •	‘No	NC’:	no	noise	correction,	in	which	case	one	solves	the	LS	problem	in	equation (43) 
as in earlier sections;

	 •	‘NC	 1’:	 noise	 correction	with	 known	 noise	 level	σ, in which case one solves the LS 
problem

U
U

K

∑ σ σ−σ
∈

S b F S b wmin ( ) ( ( , )/ ) .
k

i k k k, FPK
2

 (45)

	 •	‘NC	 2’:	 noise	 correction	with	 unknown	 noise	 level	σ, in which case the LS problem 
becomes

U
U

K

∑ β β−
β

σ
∈

S b F S b wmin ( ( ) ( ( , )/ ) ,
k

i k k k
,

, FPK
2

 (46)

  where β is an additional fitting parameter (the best fit noise level). The parameter β adds a 
new dimension to the search space. We used the following discretization of β in the global 
search:

β σ∈ ⋯ ×[0.5, 0.6, , 1.5] ,

where σ is the true noise level.

In figure  7 we show the results for the 76-spheres example. We used the sequence 
δ = Δ = 40 ms, the full list of 42 b-values in equation (32), LS weighting wk = 1. We see at SNR =  
9.7, the small bias in Dg

1 (96% of true value) is corrected by ‘NC 1’(98% of true value) and 
‘NC 2’(98% of true value), with essentially no change in estimated v2 and τ12. At SNR = 4.9, 
the small bias in Dg

1 (95% of true value) is corrected by ‘NC 1’(98% of true value) and ‘NC 
2’(99% of true value), with an improvement in τ12, going from 190% of the true value to 160% 
for ‘NC 1’ and 135% for ‘NC 2’ and a worse estimated v2: going from 96% of the true value 
to 91% for ‘NC 1’ and 90% for ‘NC 2’. There is very little change in the standard deviations.

In figure 8 we show the results for the rat cortex bi-exponential fit example. We used the 
sequence δ = 2.5 ms, Δ = 30 ms, the full list of 42 b-values in equation (32), LS weighting 
wk = 1. We see at the smallest SNR shown (= 4.25), the positive bias for Dg

1 and τ12 are cor-
rected by ‘NC 1’ and ‘NC 2’. For v2, the no correction case has a negative bias. ‘NC 1’ cor-
rected the negative bias in v2, whereas ‘NC 2’ produced a positive bias of a similar magnitude 
compared to the no correction case. For Dg

2, the no correction case has a negative bias and 
both ‘NC 1’ and ‘NC 2’ resulted in a positive bias of a similar magnitude compared to the no 
bias case.

4.4. Discussion

Since the current dMRI spatial resolution does not allow one to directly image the com-
plete tissue microstructure, inferring the macroscopic parameters of biological tissues from 
voxel-level dMRI signals is standard practice. Clearly, the inference quality depends strongly 
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on the chosen macroscopic model. As one moves from simpler to more complicated mac-
roscopic models, careful studies of the quality and sensitivity of the estimated macroscopic 

Figure 7. 76-spheres example. Noise correction using Rice distribution. The sequence 
is δ = Δ = 40 ms, LS problem uses the full list of 42 b-values in equation  (32) and 
LS weighting wk  =  1. The strategies are described in section  4.2. The mean values 
and standard deviations of the estimated parameters, Dg

1, v2, τ12, normalized by 
their true values, are shown. True parameters are given by equation  (29). The SNR 
of the estimation strategy is defined as the SNR at the lowest b-value. The SNR is 

defined in equation (38). (a) MV 
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parameters under realistic imaging conditions need to be conducted. Such studies have been 
conducted for the diffusion tensor model (see, for example, Veraart et al (2013b) and Collier  
et al (2014)), as well as the diffusion kurtosis model (see Veraart et al (2011) and Veraart et al 
(2013a)). By taking the logarithm of dMRI signal data, both the diffusion tensor and the diffu-
sion kurtosis models become linear in the macroscopic parameters. Linear parameters estima-
tion is inherently easier to solve than its non-linear counterpart and there exist well-developed 
theory and numerical tools to solve the linear parameters estimation problem. By contrast, the 
parameters estimation problem associated with some other common macroscopic models, such 
as the multiple exponential model, the cylindrical neurites model, or the Kärger model, cannot 
be made linear by a simple transformation of the dMRI signal data. The parameters estimation 
problem associated with these models remain non-linear. Nevertheless, it is hoped that the addi-
tional difficulties in parameters estimation will be justified by other advantages of these macro-
scopic models, such as better sensitivities to physiological or pathological variations in tissue.

It is in this spirit that we undertake the present study of the FPK model which was 
derived from the microscopic Bloch–Torrey equation  by homogenization techniques. In 
fact, it is a promising choice for revealing the relation between the macroscopic parameters 
and the microstructure. The FPK model generalizes the Kärger model (Kärger et al 1988) to 

Figure 8. Second example (adapted from in vivo data). Noise correction using Rice 
distribution. The squence is δ = 2.5 ms, Δ = 30 ms, LS problem uses the full list of 
42 b-values in equation (32) and LS weighting wk = 1. The strategies are described in 
section 4.3. The mean values of the estimated parameters, D ,g1  v2, τ12, and D ,g2  are shown. 
The SNR of the estimation strategy is defined as the SNR at the lowest b-value. The 
SNR is defined in equation (38). (a) MV D ,g1  (mm2 s−1). (b) MV v2. (c) MV τ12 (ms). 
(d) MV D ,g2  (mm2 s−1).

0 20 40 60 80
1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

SNR

M
V

  D
1 g

 (
m

m
2 /s

)

No NC
NC 1
NC 2

0 20 40 60 80
0.36

0.37

0.38

0.39

0.4

0.41

0.42

SNR

(a) (b)

(c) (d)

M
V

  v
2

No NC
NC 1
NC 2

0 20 40 60 80
50

100

150

200

250

SNR

M
V

 τ
12

 (
m

s)

No NC
NC 1
NC 2

0 20 40 60 80
0.5

1

1.5

2

2.5

3

3.5

SNR

M
V

  D
2  g

 (
m

m
2 /s

)

 

 

No NC
NC 1
NC 2

H T Nguyen et alPhys. Med. Biol. 60 (2015) 3389



3410

non-narrow pulses and the Kärger model has already been used to invert for model param-
eters from dMRI signals (Stanisz et al 1997, Waldeck et al 1997, Pfeuffer et al 1998, Lee 
and Springer 2003, Meier et al 2003, Quirk et al 2003, Roth et al 2008, Aslund et al 2009, 
Nilsson et al 2009).

We used two sets of data. The first set came from the solution of the Bloch–Torrey equa-
tion on a microstructure containing 76 spheres of variable radii. We checked that this solution 
can be accurately approximated by the FPK model. For numerical convenience, the synthetic 
signal generated by the FPK model was used. The second set of data came from the in vivo 
rat cortex data (Pyatigorskaya et al 2014). These data were shown to be accurately approxi-
mated by the bi-exponential model. Once again, we used the simpler representation by the 
bi-exponential model just for numerical purposes. We showed that these data can as well be 
accurately approximated by the FPK model.

The synthetic dMRI signals were then corrupted by adding Gaussian noise to their real 
and imaginary parts. This numerical procedure models the way that the experimental signal 
gets noisy and yields the Rician noise, as expected. Fitting the noisy signal by weighted least 
squares method to the FPK signal allows one to estimate the macroscopic parameters of this 
model. Our goal was to quantify how the quality of the parameters estimation depends on the 
noise level, sequence timing, weighting coefficients and the range of b-values. In what fol-
lows, we discuss the main conclusions of this study.

 (a) The mean values of the two estimated parameters Dg
1 and v2 remain close to their true 

values and weakly depend on the noise level (or SNR), see figures 5(a) and (c). The PGSE 
sequence with shorter pulses (Δ = δ = 25 ms instead of Δ = δ = 40 ms) yields a slightly 
better estimation. In turn, the third parameter τ12 exhibits a strong bias from its true value 
(figure 5(e)), ranging from 10% at the smallest noise (SNR ≃ 80) to 85% at the highest 
noise (SNR ≈ 5). This observation suggests that the FPK signal weakly depends on τ12 so 
that even small noise can significantly affect the inference quality.

 (b) There is almost no difference between the standard LS method (with identical weights 
wk = 1) and the LS method weighted by the inverse of variances of the signal (wk = 1/
var{Sσ, i(bk)}). In general, the correction by variances assigns smaller weights to more 
noisy points and thus improves the overall quality of the LS fit. In the case of Rician 
noise, the variance of the noisy signal weakly depends on b-values (section 3.2) and thus 
has no impact on the estimation quality. We conclude that the standard LS method can 
be employed. Fitting the signal over a shorter range of b-values also has a weak effect.

 (c) The standard deviations of all estimated parameters (or, equivalently, the relative errors as 
they are plotted in figures 5(b), (d) and (f)), decrease with the SNR, as expected. However, 
their values remain significant even at the smallest noise level. For instance, the relative 
errors vary between 20% and 40% for Dg

1, 8% and 20% for v2 and 20% and 120% for τ12. 
As expected, the worst estimation occurs for the residence time τ12, re-affirming our sug-
gestion about the weak dependence of the FPK signal on this parameter. The PGSE with 
shorter diffusion time yields smaller standard deviations of Dg

1, v2 and essentially the 
same standard deviation of τ12. We also note that the variations between mean values of 
the estimated parameters among different estimation strategies (figures 5(a), (c) and (e)) 
are below standard deviations. For this reason, we conclude that all considered estimation 
strategies are of comparable quality, though the shorter diffusion time can yield a slight 
improvement.

 (d) When the noise level is high, the mean noisy signal deviates significantly from the (noise-
less) FPK signal S(b) that was used for the above parameters estimation (figure 2). In 
other words, fitting noisy signals by S(b) could bias the estimated parameters. In order 
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to correct for this bias, we replaced the noiseless signal S(b) from the FPK model by 
the mean noisy signal 〈Sσ, i(b)〉. Under the assumption of Rician noise, one can write  
〈Sσ, i(b)〉 = σ F(S (b)/σ), with the explicit formula (34) for the function F(x). We compared 
three estimation strategies: use of noiseless signal S(b), use of bias-corrected signal σ 
F(S (b)/σ) with known noise level σ and use of bias-corrected signal σ F(S (b)/σ) with 
unknown noise level σ which is added to fitting parameters. We showed that the use of 
the bias-corrected signal improves the estimation of the worst parameter τ12 at the highest 
noise level (figure 7(c)). Another advantage of this scheme is a possibility to estimate the 
noise level directly from the noisy signal. However, the standard deviations of all three 
parameters remain almost unchanged (figures 7(b), (d) and (f)). We conclude that the use 
of bias-corrected signal may be advantageous but it does not allow to reduce standard 
deviations (i.e. uncertainty range of estimated parameters).

 (e) Similar analysis was performed on the second set of data coming from the in vivo rat 
cortex. Since the true values of the macroscopic parameters of the FPK model are not 
known in this case, it is more difficult to assess the quality of parameters estimation. 
Our goal here was just to illustrate a potiential application of the parameters estimation 
on experimental data (figure 6). The mean values of the estimated Dg

1 are similar for all 
4 strategies, its standard deviations are higher when using smaller b-values (figures 6(a) 
and (b)) than the other three strategies. The quality of the estimated v2 is similar among 
the 4 strategies (figures 6(c) and (d)). The mean values of the estimated τ12 are different 
and the standard deviations are higher when using the shorter diffusion time compared to 
the other 3 strategies (figures 6(e) and (f)), leading us to conclude that the longer diffusion 
time should be used. The quality of the estimated Dg

2 is the best when using the smaller 
b-values (figures 6(g) and (h)). As earlier, the worst estimated parameter is the transfer 
time τ12, for which the standard deviation is comparable to the mean value. The next 
worst is Dg

2. The other parameters, Dg
1 and v2, can be estimated more accurately.

Although the quality of the parameters estimation remains modest, the FPK model can be 
considered as a promising tool for inferring the macroscopic parameters of a biological tis-
sue. The worst estimated parameter is the transfer time between the tissue compartments, 
which is related to the membrane permeability and the surface-to-volume ratios of both 
compartments. Other parameters (volume fractions and effective diffusivities) can be esti-
mated more accurately. The major advantage of this macroscopic model as compared to other 
popular choices (such as bi-exponential or kurtosis models) is the fact that the FPK model 
was derived from the microscopic Bloch–Torrey equation. In other words, the FPK model 
remains related to the microstructure and can potentially be used to reveal structural features. 
As a pespective, one can try to optimize the PGSE sequence in order to improve the quality 
of estimation.

In this paper, we have only estimated the effective diffusion coefficient in a single gradient 
direction, while it is known that the dMRI signal in brain tissue depends on gradient direc-
tion. This dependence is likely to have an impact on the parameters estimation results. For 
some preliminary results on determining the gradient direction dependence in an anisotropic 
diffusion geometrical configuration consisting of spheres and cylinders embedded in extra-
cellular space, we refer the readers to the PhD thesis (Nguyen 2014). However, as we have 
shown in this paper, solving for 4 or 5 macroscopic model parameters accurately is already 
quite difficult. We believe that estimating the full diffusion tensor, rather than just an effec-
tive diffusion coefficient in a single gradient direction, is too challenging for real biological 
systems at this point.
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5. Conclusions

We studied the weighted least squares problem associated with estimating tissue parameters 
such as the cellular volume fraction, the exchange time and the effective diffusion coefficients 
using the FPK model of the voxel-level dMRI signal. We found that while the diffusivity in 
the extracellular compartment and the cellular volume fraction can be estimated relatively 
accurately, it is quite difficult to obtain accurate estimates of the exchange time between the 
compartments, especially in the presence of significant noise. We found that noise correction 
strategies using a Rice signal model improved the parameters estimation only slightly.
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