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Abstract. The complex transverse water proton magnetization subject to diffusion-
encoding magnetic field gradient pulses can be modeled by the Bloch-Torrey partial dif-
ferential equation (PDE). The associated diffusion MRI signal is the spatial integral of
the solution of the Bloch-Torrey PDE. In addition to the signal, the time-dependent ap-
parent diffusion coefficient (ADC) can be obtained from the solution of another partial
differential equation, called the HADC model, which was obtained using homogenization
techniques.

In this paper, we analyze the Bloch-Torrey PDE and the HADC model in the context
of geometrical deformations starting from a canonical configuration. To be more concrete,
we focused on two analytically defined deformations: bending and twisting. We derived
asymptotic models of the diffusion MRI signal and the ADC where the asymptotic pa-
rameter indicates the extent of the geometrical deformation. We compute numerically the
first three terms of the asymptotic models and illustrate the effects of the deformations
by comparing the diffusion MRI signal and the ADC from the canonical configuration
with those of the deformed configuration.

The purpose of this work is to relate the diffusion MRI signal more directly with tissue
geometrical parameters.

1. Introduction

Diffusion magnetic resonance imaging (diffusion MRI) is an imaging modality that can
be used to probe the tissue micro-structure by encoding the incoherent motion of water
molecules with magnetic field gradient pulses. The motion during the diffusion-encoding
time causes a signal attenuation from which the apparent diffusion coefficient (ADC), and
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possibly higher order diffusion terms, can be calculated [5,12,26]. For unrestricted diffusion,

the root of the mean squared displacement of molecules is given by x̄ =
√

2 dimσt, where
dim is the spatial dimension, σ is the intrinsic diffusion coefficient, and t is the diffusion
time. In biological tissue, the diffusion is usually hindered or restricted (for example, by cell
membranes). This deviation from unrestricted diffusion can be used to infer information
about the tissue micro-structure.

Using diffusion MRI to get tissue micro-structure information in the mammalian brain has
been the focus of much experimental and modeling work in recent years [1,4,6,19–21,27,28].
The predominant approach up to now has been adding the diffusion MRI signal from simple
geometrical components and extracting model parameters of interest. Numerous biophysi-
cal models subdivide the tissue into compartments described by spheres, ellipsoids, cylin-
ders, and the extra-cellular space (ECS) [1, 4, 6, 11, 13, 21, 22, 27]. Some model parameters
of interest include axon diameter and orientation, neurite density, dendrite structure, the
volume fraction and size distribution of cylinder and sphere components and the effective
diffusion coefficient or tensor of the ECS.

There is a gold-standard reference model of the diffusion MRI signal, it is the Bloch-
Torrey partial differential equation (PDE) that describes the time evolution of the complex
transverse water proton magnetization subject to diffusion-encoding magnetic field gradient
pulses. The spatial integral of the solution of the Bloch-Torrey PDE provides a reference
model for the diffusion MRI signal arising from the geometry of interest. Because of the
high computational cost of solving the Bloch-Torrey PDE in complicated cell geometries,
this gold standard model has been used primarily as a “forward model” or “simulation
framework”, in which one changes the inputs parameters such as cell geometry, intrinsic
diffusion coefficient, membrane permeability, and study the resulting changes to the MRI
signal. This is in contrast to “inverse models”, which are used to estimate the model
parameters of interest from the MRI signal, the idea being that the “inverse models” have
been formulated in such a way so that the model parameters can be correlated to biological
information in the imaging voxel. “Inverse models” include the biophysical models cited
above.

In [15], we presented SpinDoctor, a MATLAB-based diffusion MRI simulation toolbox that
solves the Bloch-Torrey PDE using the Finite Element Method (FEM) and an adaptive
time stepping method. In addition to the diffusion MRI signal, the time-dependent apparent
diffusion coefficient (ADC) can be obtained from the solution of another partial differential
equation, called the HADC model, which was obtained using homogenization techniques.
SpinDoctor also provides the numerical solution of the HADC model. SpinDoctor provides
a user-friendly interface to easily define cell configurations relevant to the brain white
matter. In [10], we presented an add-on module of SpinDoctor called the Neuron Module
that enables diffusion MRI simulations for a group of pyramidal neurons and a group
of spindle neurons whose morphological descriptions were found in the neuron repository
NeuroMorpho.Org [3].
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In this paper, we continue the Bloch-Torrey PDE based simulation work to further re-
veal the relationship between the cellular structure and the diffusion MRI signal in the
brain white matter. We analyze the Bloch-Torrey PDE and the HADC model in the con-
text of parameterized deformation mappings, starting from a canonical configuration. The
canonical configuration we have in mind is a set of straight parallel axons contained in
the extra-cellular space. Our idea is to model realistic axons as spatial deformations of
canonical configurations of parallel axons.

To be more concrete, we focus on two analytically defined deformations: bending and
twisting. We will derive asymptotic models of the diffusion MRI signal and the ADC where
the asymptotic parameter indicates the extent of the geometrical deformation. The purpose
of this work is to relate the diffusion MRI signal more directly with tissue geometrical
parameters.

2. Theory

We suppose that one would like to simulate a geometrical configuration of axons enclosed
in the extra-cellular space (ECS). Let Ωe be the ECS, Ωin

i the ith axon. In this paper, we
focus on deformations and do not consider the effects of water exchange between the axons
and the ECS. Thus, we analyze each compartment individually. In the case where we talk
about a general geometrical compartment, we will use the notation Ω.

2.1. Bloch-Torrey PDE

In diffusion MRI, a time-varying magnetic field gradient is applied to the tissue to encode
water diffusion. For simplicity, we will assume the interfaces between the axons and the
ECS are impermeable, meaning the water exchange between compartments is negligible.
Denoting the effective time profile of the diffusion-encoding magnetic field gradient by f(t),
and let the vector g contain the amplitude and direction information of the magnetic field
gradient, the complex transverse water proton magnetization in a compartment Ω (either
an axon or the ECS) in the rotating frame satisfies the Bloch-Torrey PDE:

∂

∂t
M(x, t) = −Iγf(t)g · xM(x, t) +∇ · (σ∇M(x, t)),x ∈ Ω, (2.1)

where γ = 2.67513 × 108 rad s−1T−1 is the gyromagnetic ratio of the water proton, I
is the imaginary unit, σ is the intrinsic diffusion coefficient in the compartment Ω. The
magnetization is a function of position x and time t, and depends on the diffusion gradient
vector g and the time profile f(t).

Some commonly used time profiles (diffusion-encoding sequences) are the pulsed-gradient
spin echo (PGSE) sequence [26] and the oscillating gradient spin echo (OGSE) sequence
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[7, 8]. Here, we will consider the PGSE sequence, with two rectangular pulses of duration
δ, separated by a time interval ∆− δ, for which the profile f(t) is

f(t) =


1, t1 ≤ t ≤ t1 + δ,

−1, t1 + ∆ < t ≤ t1 + ∆ + δ,

0, otherwise,

(2.2)

where t1 is the starting time of the first gradient pulse with t1 + ∆ > TE/2, and TE is the
echo time at which the signal is measured.

The Bloch-Torrey PDE needs to be supplemented by interface conditions. In this paper,
we consider the impermeable boundary condition:

σ∇M(x, t) · n = 0, x ∈ Γ, (2.3)

where n is the unit outward pointing normal vector and Γ = ∂Ω is the boundary of the
compartment Ω (an axon or ECS).

The Bloch-Torrey PDE also needs initial conditions:

M(x, 0) = ρ, x ∈ Ω, (2.4)

where ρ is the initial spin density in the compartment Ω.

The diffusion MRI signal is measured at echo time t = TE > ∆ + δ for PGSE. This signal
is the integral of M(x, TE) in all the compartments:

S :=

∫
x∈

⋃
Ωi

M(x, TE) dx. (2.5)

In a diffusion MRI experiment, the pulse sequence (time profile f(t)) is usually fixed, while
g is varied in amplitude (and possibly also in direction). When g varies only in amplitude
(while staying in the same direction), S is plotted against a quantity called the b-value.
The b-value depends on g and f(t) and is defined as

b(g) = γ2‖g‖2
∫ TE

0
du

(∫ u

0
f(s)ds

)2

. (2.6)

For PGSE,
::
by

::::::::::
replacing

::::
Eq.

:::
2.2

:::::
into

::::
Eq.

:::
2.6

:
, the b-value is [26]:

b(g, δ,∆) = γ2‖g‖2δ2 (∆− δ/3) . (2.7)

The reason for these definitions is that in a homogeneous medium, the signal attenuation
is e−σb, where σ is the intrinsic diffusion coefficient.

An important quantity that can be derived from the diffusion MRI signal is the “Apparent
Diffusion Coefficient” (ADC), which gives an indication of the root mean squared distance
travelled by water molecules in the gradient direction g/‖g‖

:::::::::::
ug = g/‖g‖, averaged over all

starting positions:
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ADC := − ∂

∂b
log

S(b)

S(0)

∣∣∣∣
b=0

. (2.8)

From experimental data, the ADC is numerically computed by a polynomial fit of logS(b).

2.2. HADC model

In a previous work [25], a PDE model for the time-dependent ADC was obtained starting
from the Bloch-Torrey PDE, using homogenization techniques. In the case of negligible
water exchange between compartments (low permeability), there is no coupling between
the compartments, at least to the quadratic order in g, which is the ADC term. The ADC
in compartment Ω is given by

HADC = σ − 1∫ TE
0 F (t)2dt

∫ TE

0
F (t) h(t) dt, (2.9)

where
::::::::::::::::
F (t) =

∫ t

0
f(t)dt

:::
is

:::
the

::::::::
integral

:::
of

:::::
time

:::::::
profile

::::
and

:

h(t) =
1

|Ω|

∫
∂Ω
ω(x, t) (ug · n(x)) dsx (2.10)

is a quantity related to the directional gradient of a function ω that is the solution of
the homogeneous diffusion equation with Neumann boundary condition and zero initial
condition:

∂

∂t
ω(x, t)−∇ · (σ∇ω(x, t)) = 0, x ∈ Ω,

σ∇ω(x, t) · n(x) = σF (t)ug · n(x), x ∈ ∂Ω,

ω(x, 0) = 0, x ∈ Ω,

(2.11)

n being the outward normal and t ∈ [0, TE ]. The above set of equations, (2.9)-(2.11),
comprise the HADC model.

2.3. Canonical configuration and geometrical deformations

To reveal the relationship between the geometrical structure and the diffusion MRI signal,
we propose to describe white matter fibers as a deformation of a canonical configuration
of parallel axons. The two basic types of deformations that we implement in this paper
are 1) bending, and 2) twisting. Both types of deformations will be described by a single
parameter, called αtwist and αbend. The geometrical structure of the white matter fibers
will be defined by these two deformation parameters.
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Twisting around the z-axis with a twisting parameter αtwist is defined by

xy
z

→
cos(αtwistz) −sin(αtwistz) 0
sin(αtwistz) cos(αtwistz) 0

0 0 1

xy
z

 ; (2.12)

Bending on the x− z plane with a bending parameter αbend is defined by

xy
z

→
x+ αbendz

2

y
z

 . (2.13)

We plot in Fig. 1 a geometrical configuration of 10 cylindrical axons and the ECS before
and after deformation.
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Figure 1. First row: canonical configuration, ECS (left) and all 10 cylin-
drical axons (right). Second row: ECS, bend deformation with αbend = 0.05
(left), 10 cylindrical axons in x − z plane with αbend = 0.05 (middle), 10
cylindrical axons with αbend = 0.10 (right). Third row: ECS, twist defor-
mation with αtwist = 0.05 (left), 10 cylindrical axons in x − z plane with
αtwist = 0.05 (middle), 10 cylindrical axons with αtwist = 0.10 (right). The
radii of all axons are between 2µm and 3µm and the height is 20µm.

3. Derivation of asymptotic models on the deformation parameter

The main aim of our paper is to construct appropriate models to describe the relationship
between the deformation parameters αtwist and αbend and the diffusion MRI signal as well
as the ADC. We will expand the solutions of the Bloch-Torrey PDE and the HADC model
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as asymptotic series in the deformation parameters αtwist and αbend. This approach is
expected to work well in the regime of small deformations.

3.1. Formulation of the PDEs on the canonical configuration

First, we transform the Bloch-Torrey PDE and the HADC model posed on the deformed
geometry Ω into PDEs that are posed on the canonical geometry C. Let r be the space
variable in the deformed (by bending or twisting) configuration, whose domain is Ω. The
coordinate transformation,

T : C → Ω, (3.1)

maps the canonical configuration defined on C to the deformed configuration on Ω:

x→ r =
[
T (x)

]
. (3.2)

Let J be the Jacobian of T :

J =
[
∂T
∂x

∂T
∂y

∂T
∂z

]
. (3.3)

We define the composite function for the Bloch-Torrey PDE to be N(x, t) : C → R, where

N = M ◦ T, (3.4)

and for the HADC model to be η(x, t) : C → R, where

η = ω ◦ T. (3.5)

We recall that M(r, t) and ω(r, t) are solutions on the deformed domain Ω, thus, N(x, t)
and η(x, t) are the solutions of the respective transformed PDEs.

It is easy to show that the transformed diffusion tensor is :

β = J−tσJ−1. (3.6)

For the twist deformation (α = αtwist):

J−1 =

 cos(αz) sin(αz) αy
−sin(αz) cos(αz) −αx

0 0 1

 , det(J) = 1, (3.7)

and the transformed diffusion tensor is

β = J−1σJ−t = σ

α2y2 + 1 −α2yx αy
−α2yx α2x2 + 1 −αx
αy −αx 1

 . (3.8)

For the bend deformation (α = αbend):

J−1 =

1 0 −2αz
0 1 0
0 0 1

 , det(J) = 1, (3.9)
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and the transformed diffusion tensor is

β = J−1σJ−t = σ

4α2z2 + 1 0 −2αz
0 1 0
−2αz 0 1

 . (3.10)

The transformed Bloch-Torrey PDE in C is then:

∂

∂t
N(x, t) = −Iγf(t) (g · T (x)) N(x, t) +∇ · (β∇N(x, t)), x ∈ C, (3.11)

β∇N(x, t) · n = 0, x ∈ ∂C, (3.12)

N(x, 0) = ρ, x ∈ C, (3.13)

n being the outward normal to C.

The transformed HADC model is:

∂

∂t
η(x, t)−∇ · (β∇η(x, t)) = 0, x ∈ C, (3.14)

β∇η(x, t) · n(x) = σJ−1F (t)ug · n(x), x ∈ ∂C, (3.15)

η(x, 0) = 0, x ∈ C, (3.16)

3.2. Asymptotic expansion of HADC

We now expand the solution of the HADC model in the deformation parameters and match
the terms to get the first three terms of the asymptotic expansion.

We write the solution η to Eq. (3.14)-(3.16) as a three term asymptotic expansion:

η(x, t) = η0(x, t) + αkη1(x, t) + α2
kη2(x, t) +O(α2

k), (3.17)

where k ∈ {bend, twist}. Replacing Eq. 3.14 by Eq. 3.17, we obtain:

∂tη0 + αk∂tη1 + α2
k∂tη2 −∇ · (β∇η0)− αk∇ · (β∇η1)− α2

k∇ · (β∇η2) = 0. (3.18)

Using Eq. (3.10) for the bending transformation, the transformed Laplacian operator is
(α = αbend):

∇ · (βbend∇) = ∇ ·

σ
4α2z2 + 1 0 −2αz

0 1 0
−2αz 0 1

∂x∂y
∂z


= ∇(σ∇) + σ

(
α (−2∂x − 4z∂xz) + α2

(
4z2∂xx

))
.

(3.19)

To simplify the notation, we define two second order differential operators :

Kbend,1 := −2∂x − 4z∂xz, (3.20)
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and

Kbend,2 := 4z2∂xx. (3.21)

Similarly, in the case of the twisting transformation, using Eq. (3.8) , the transformed
Laplacian operator is (α = αtwist):

∇ · (βtwist∇) = ∇ ·

σ
α2y2 + 1 −α2yx αy
−α2yx α2x2 + 1 −αx
αy −αx 1

∂x∂y
∂z


= ∇(σ∇) + σ(2α(y∂xz − x∂yz) + α2(y2∂xx − y∂y − 2yx∂xy − x∂x + x2∂yy)).

(3.22)

Also, we define :

Ktwist,1 := 2y∂xz − 2x∂yz, (3.23)

and

Ktwist,2 := y2∂xx − y∂y − 2yx∂xy − x∂x + x2∂yy. (3.24)

So the transformed Laplacian operator acts as the first and the second correction operators
for the Laplacian:

∇ · (βk∇) = ∇ (σ∇) + σ
(
αkKk,1 + α2

kKk,2

)
, (3.25)

where k ∈ {bend, twist}.
Using Eqs. (3.9) and (3.10) for the bend deformation and Eqs. (3.7) and (3.8) for the twist
deformation, the right hand side of the boundary condition of (3.15) becomes:

σJ−1F (t)ug · n = σF (t)ug · n + αkσF (t)Lk · ug · n, (3.26)

where k ∈ {bend, twist},

Lbend :=

0 0 −2z
0 0 0
0 0 0

 , (3.27)

and

Ltwist :=


cos(αtwistz)−1

αtwist

sin(αtwistz)
αtwist

y
−sin(αtwistz)

αtwist

cos(αtwistz)−1
αtwist

−x
0 0 0

 . (3.28)

We note that in Ltwist, we do not expand the trigonometrical functions and keep αtwist in
the expression. This is because if we simulate a geometry containing long axons, then αz is
not a small quantity, there will be a large error if we expand the trigonometrical functions.

10



ASYMPTOTIC MODELS OF DIFFUSION MRI FOR GEOMETRICAL DEFORMATIONS

The left hand side of the boundary condition of (3.15) becomes:

βk∇η · n = βk

∂xη0 + αk∂xη1 + α2
k∂xη2

∂yη0 + αk∂yη1 + α2
k∂yη2

∂zη0 + αk∂zη1 + α2
k∂zη2


= σ

(
∇η0 + αk

(
Gk,1η0 +∇η1

)
+ α2

k

(
Gk,2η0 + Gk,1η1 +∇η2

))
+O(α2

k),

(3.29)

where k ∈ {bend, twist}. For the bend deformation:

Gbend,1 :=

−2z∂z
0

−2z∂x

 ,Gbend,2 :=

4z2∂x
0
0

 , (3.30)

and for the twist deformation:

Gtwist,1 :=

 y∂z
−x∂z

y∂x − x∂y

 ,Gtwist,2 :=

y2∂x − xy∂y
x2∂y − xy∂x

0

 . (3.31)

Finally, we obtain the following equations after matching the terms αjk, with j = 0, 1, 2 and
k ∈ {bend, twist}.
For α0

k, we get the solution of the HADC on the canonical configuration:

∂

∂t
η0(x, t)−∇ · (σ∇η0(x, t)) = 0, x ∈ C, (3.32)

σ∇η0(x, t) · n(x) = σF (t)ug · n(x), x ∈ ∂C, (3.33)

η0(x, 0) = 0, x ∈ C. (3.34)

For α1
k, we get a PDE that depends on the solution of the previous equation, η0:

∂

∂t
η1(x, t)−∇ · (σ∇η1(x, t)) = σKk,1η0(x, t), x ∈ C, (3.35)

σ∇η1(x, t) · n(x) = σF (t)Lkug · n(x)− σGk,1η0 · n(x), x ∈ ∂C, (3.36)

η1(x, 0) = 0, x ∈ C. (3.37)

For α2
k, we get a PDE that depends on the solutions of both of the above PDEs:

∂

∂t
η2(x, t)−∇ · (σ∇η2(x, t)) = σ(Kk,1η1(x, t) + Kk,2η0(x, t)), x ∈ C, (3.38)

σ∇η2(x, t) · n(x) = −σ(Gk,1η1 + Gk,2η0) · n(x), x ∈ ∂C, (3.39)

η2(x, 0) = 0, x ∈ C. (3.40)
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3.3. Asymptotic expansion for Bloch-Torrey PDE in the deformation parame-
ters

Similar to the asymptotic expansion of HADC model, we write the solution N(x, t) of Eq.
3.11- 3.13 as a three term expansion:

N(x, t) = N0(x, t) + αkN1(x, t) + α2
kN2(x, t) +O(α2

k), k ∈ {bend, twist}. (3.41)

By using Eqs. (3.7) and (3.8), we get :

∂t(N0+αkN1+α2
kN2) = ∇·(β∇(N0+αkN1+α2

kN2))−Iγf(t)(g ·T (x))(N0+αkN1+α2
kN2).
(3.42)

The transformed Laplacian operator∇·β∇ here is identical to the case of HADC asymptotic
expansion. The Iγf(t)g · T (x) operator becomes:

Iγf(t)g · T (x) = Iγf(t)g · (x + αkPk) , (3.43)

where k ∈ {bend, twist},

Pbend =

z2

0
0

 , (3.44)

and

Ptwist =


cos(αtwistz)−1

αtwist
x− sin(αtwistz)

αtwist
y

sin(αtwistz)
αtwist

x+ cos(αtwistz)−1
αtwist

y

0

 . (3.45)

For the same reason as indicated in previously, we do not expand trigonometrical functions
in αtwist in the case of the twist deformation.

The left side of boundary condition of (3.11) is also identical to the Eq. 3.29.

For simplicity of notation, we define the Bloch-Torrey operator BT := −∇σ∇+ Iγf(t)g ·
x. We obtain the following equations after matching for αjk, with j = 0, 1, 2, and k ∈
{bend, twist}:
For α0

k, this is the solution of the Bloch-Torrey PDE on the canonical geometry C:

∂

∂t
N0(x, t) + BTN0(x, t) = 0, x ∈ Ci, (3.46)

σ∇N0(x, t) · n = 0, x ∈ ∂C, (3.47)

N0(x, 0) = ρ, x ∈ C. (3.48)
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For α1
k, the solution depends on the solution of the above PDE, N0:

∂

∂t
N1(x, t) + BTN1(x, t) = −Iγf(t)g ·PkN0(x, t) + Kk,1N0(x, t), x ∈ C, (3.49)

σ∇N1(x, t) · n = −σGk,1N0(x, t) · n, x ∈ ∂C, (3.50)

N1(x, 0) = 0, x ∈ C. (3.51)

For α2
k, the solution depends on the solutions of both of the above PDEs:

∂

∂t
N2(x, t) + BTN2(x, t) = −Iγf(t)gPkN1(x, t) + Kk,1N1(x, t) + Kk,2N0(x, t), x ∈ C,

(3.52)

σ∇N2(x, t) · n = −σ(Gk,1N1(x, t)−Gk,2N0(x, t)) · n, x ∈ ∂C,
(3.53)

N2(x, 0) = 0, x ∈ C.
(3.54)

3.4. Numerical implementation

The numerical computations of the asymptotic expansions are done using the diffusion MRI
simulation toolbox SpinDoctor [15]. We use SpinDoctor to create the geometries, generate
finite element (FE) meshes and compute the orders 0, 1, and 2 asymptotic expansions:
η0, η1, η2 and N0, N1, N2.

Firstly, we use SpinDoctor to create a canonical geometry, containing several straight cylin-
drical axons parallel to the z-axis and an extracellular space wrapped around the axons.
Then a finite element mesh is generated for the canonical geometry. The deformed geome-
tries will have finite element meshes that are the analytical deformations of the canonical
finite element mesh, described in Eq. 2.12 and 2.13.

Since we assumed that the water exchange is negligible, there is no coupling between any
compartments for both the Bloch-Torrey PDE and the HADC, and the PDEs are solved
independently in each compartment. The finite element discretization is based on contin-
uous piecewise linear basis functions (the P1 finite elements), with a numerically efficient
implementation from [24]. The time stepping is done automatically using the MATLAB
built-in ODE solver ode15s.

Further details about the finite elements matrices construction are contained in the Ap-
pendix.

4. Numerical results

The numerical validation of the asymptotic expansions of the Bloch-Torrey PDE and the
HADC model will be conducted in this section. The geometry we use is composed of 10
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cylindrical axons and a tightly wrapped ECS, as depicted in Fig. 1. The radii of the axons
are between 2µm and 3µm, the exterior width of the ECS is around 40% of the average
axon radius, and the height of all the compartments is 20µm. The diffusion coefficients are
set to σaxon = σecs = 2 × 10−3 mm2/s and the permeability coefficient set to κ = 0 m/s.
The gradient sequence is PGSE (δ = 5ms, and ∆ = 10ms).

The reference values are either the ADC obtained by solving the HADC model (Eq. 2.11)
on the deformed geometry Ω or the diffusion MRI signal obtained by solving the Bloch-
Torrey PDE (Eq. 2.1) on Ω. Both of these reference values are obtained using SpinDoctor.
The error of the asymptotic model is the difference between the reference values and either
η0 + η1 + η2 or N0 +N1 +N2.

4.1. HADC model

First we show the effects of bending and twisting in multiple gradient directions for the
HADC model. Being that η0 gives the ADC of the canonical configuration, η1 and η2 could
be considered as two corrections. In all the plots that follow, the ADC is normalized by
the intrinsic diffusion coefficient σ.

In Fig. 2 we show η0, η1 and η2 in multiple gradient directions in 3 dimensions. We can see
that η1 provides maximal correction along the z direction. On the other hand, η2 provides
maximal correction along the x − z plane for the bend deformation, and along the x − y
plane for the twist deformation.
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Figure 2. The components of the HADC asymptotic model in 180
gradient-directions, which are uniformly distributed on the sphere. The
black dots indicate the ADC values. The distances from the origin of the
dots as well as the colors are proportional to the ADC (normalized by the
intrinsic diffusion coefficient σ = 2 × 10−3 mm2/s). The gradient sequence
is PGSE (δ = 5ms, and ∆ = 10ms). Top: the bend deformation with
αbend = 0.05. Bottom: the twist deformation with αtwist = 0.05. η0 (left),
η1 (middle), η2 (right).

For the clarity of display, we show further results, which concern the accuracy of our
asymptotic model, using two dimensional plots, where a uniform distribution of gradient
directions is taken from the x− z plane (y = 0). The reference value is the ADC obtained
by solving the HADC model on the deformed geometry Ω. The error of the asymptotic
model is the difference between η0 + η1 + η2 and the reference value.

In Fig. 3, we show four curves: the reference value, the asymptotic model (η0 + η1 + η2,
the second order approximation), η0 (the ADC from the canonical geometry, the zeroth
order approximation), and η0 + η1 (the first order approximation). We see that frequently,
the first order correction is an overcorrection on η0 and that our second order correction
brings the result closer to the reference value. As the deformation parameter increases, the
difference between our asymptotic model and the reference value increases, as expected.
We note that even though η0 is the same function on the canonical geometry for both the
bend and twist deformations, when transformed to the deformed geometry, its contribution
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to the ADC is different depending on the specific deformation. This means the computed
zeroth order ADC is different for each deformation despite the fact that η0 is the same
function on the canonical geometry C.
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Figure 3. 2D HARDI simulations of the ADC in 60 gradient-directions,
which are uniformly distributed in the x−z plane (y = 0). The ADC values
are normalized by the intrinsic diffusion coefficient σ = 2×10−3 mm2/s and
labelled on the gray circles. The displayed angle (from 0 to 360 degrees)
is the angle between positive x-axis and the diffusion gradient direction.
The blue, red, yellow lines represent η0, η0 + η1, η0 + η1 + η2, respectively.
The reference value is shown in purple. The gradient sequence is PGSE
(δ = 5ms, and ∆ = 10ms). Top left: αbend = 0.05 (where the asymptotic
model and the reference value are indistinguishable); Top right: αtwist =
0.05; Bottom left: αbend = 0.10; Bottom right: αtwist = 0.10.
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In Figure 4, we show the relative errors of the 0th, 1st and 2nd order approximations,
normalized by the reference values. At αbend = 0.05, the maximum 2nd order approximation
error is 1 percent, and the maximum 0th order approximation error is 14 percent. At
αbend = 0.10, the maximum 2nd order approximation error is 15 percent, and the maximum
0th order approximation error is 45 percent. At αtwist = 0.05, the maximum 2nd order
approximation error is 2 percent, and the maximum 0th order approximation error is 10
percent. At αtwist = 0.10, the maximum 2nd order approximation error is 22 percent, and
the maximum 0th order approximation error is 45 percent.
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Figure 4. The relative ADC error between 0th, 1st and 2nd order approx-
imations and the reference value in 60 gradient directions, which are uni-
formly distributed in the x−z plane (y = 0). The labelled values on the gray
circles are given in percent. The displayed angle (from 0 to 360 degrees) is
the angle between positive x-axis and the diffusion gradient direction. The
blue, red, yellow lines represent η0, η0 + η1 and η0 + η1 + η2, respectively.
Top left: αbend = 0.05; Top right: αtwist = 0.05; Bottom left: αbend = 0.10;
Bottom right: αtwist = 0.10.

Next, we show in Figure 5 the relative errors for the axons compartment and for the
ECS separately. In general, the axons compartment is much less accurately modelled than
the ECS compartment (which is more isotropic). At αbend = 0.05, the maximum axons
error over the gradient directions is 8 percent, the maximum ECS error is 1 percent. At
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αbend = 0.10, the maximum axons error is 40 percent, the maximum ECS error is 8 percent.
At αtwist = 0.05, the maximum axons error is 16 percent, the maximum ECS error is 1
percent, and at αtwist = 0.10, the maximum axons error is 65 percent, the maximum ECS
error is 10 percent.

Figure 5. The relative ADC errors between the reference solution and the
asymptotic model in 60 gradient directions in the x − z plane (y = 0),
in all compartments (blue line), in the axons (red line), and in the ECS
(yellow line). The labelled values on the gray circles are given in percent.
The displayed angle (from 0 to 360 degrees) is the angle between positive x-
axis and the diffusion gradient direction. The angles in bold styles indicate
the encoding gradient directions where ADC errors reach minimum. The
gradient sequence is PGSE (δ = 5ms, and ∆ = 10ms). The ratio of volume
of axons and ECS is around 1:1.5. Top left: αbend = 0.05; Top right: αtwist =
0.05. Bottom left: αbend = 0.10; Bottom right: αtwist = 0.10.
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4.2. Bloch-Torrey PDE

Now we validate our asymptotic model for the Bloch-Torrey PDE in the same geometries.
In Figure 6 we show the real part of the normalized signal at b = 3000 s/mm2 in the
canonical geometry, as well as in the bend and twist deformed geometries.

Figure 6. The real part of the normalized diffusion MRI signal at b-
value = 3000 s/mm2, in 180 gradient-directions, which are uniformly dis-
tributed on the sphere. The distances from the origin of the black dots as
well as the colors are normalized by S0. The gradient sequence is PGSE
(δ = 5ms, and ∆ = 10ms). The diffusion MRI signals of the canonical con-
figuration (left). The signals of the bend deformation by asymptotic model,
with αbend = 0.05 (middle). The signals of the twist deformation by asymp-
totic model, with αtwist = 0.05 (right).

In Figure 7, we show the relative errors between the 0th, the 1st, the 2nd order approxi-
mations and the reference value, for b = 1000 s/mm2. For the bend deformation, the 0th

and the 1st order approximations are indistinguishable in their real parts. For the twist
deformation, the 1st order approximation actually has a higher error than η0.
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Figure 7. The relative signal error between 0th, 1st and 2nd order approxi-
mations and reference value in 60 directions gradient-directions in the x− z
plane (y = 0). The labelled values on the gray circles are given in percent.
The displayed angle (from 0 to 360 degrees) is the angle between positive

x-axis and the diffusion gradient direction. The b-value = 1000 s/mm2 and
the gradient sequence is PGSE (δ = 5ms, and ∆ = 10ms). The real part
of the diffusion MRI signal is normalized by the initial signal S0. The blue,
red, yellow lines represent η0, η0 +η1 and η0 +η1 +η2, respectively. Top left:
αbend = 0.05; Top right: αtwist = 0.05; Bottom left: αbend = 0.10; Bottom
right: αtwist = 0.10.

In Fig. 8, we show the relative errors of the asymptotic model for the axons compartment
and for the ECS separately, for b = 500 s/mm2 and b = 1000 s/mm2. For both αbend = 0.05
and αtwist = 0.05, the axons errors are larger than the ECS errors.

22



ASYMPTOTIC MODELS OF DIFFUSION MRI FOR GEOMETRICAL DEFORMATIONS

Figure 8. The relative signal errors between the reference solution and
the asymptotic model in 60 gradient directions in the x − z plane (y = 0),
in all compartments (blue line), in the axons (red line), and in the ECS
(yellow line). The labelled values on the gray circles are given in percent.
The displayed angle (from 0 to 360 degrees) is the angle between positive
x-axis and the diffusion gradient direction. The angles in bold styles indicate
the encoding gradient directions where signal errors reach minimum. The
gradient sequence is PGSE (δ = 5ms, and ∆ = 10ms). The ratio of volume
of axons and ECS is around 1:1.5. Top: αbend = 0.05. Bottom: αtwist = 0.05.
Left: b = 500 s/mm2. Right: b = 1000 s/mm2.

4.3. Convergence order of the asymptotic models

Finally, we show the convergence order of the asymptotic models. In Figure 9, we show the
relative errors in the ADC of η0, η0 + η1, and η0 + η1 + η2, as αbend and αtwist decrease.
We see a convergence order of 3, O(α3), for our asymptotic model.
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Figure 9. The ADC relative error (in percent) vs. deformation angle. The
diffusion gradient direction is (1, 0, 0). The black, red and blue markers
represent zeroth order, first order and second order approximations, respec-
tively. The lines with the same color are the fitting functions. Left: ADC
error vs. bend angle; Right: ADC error vs. twist angle.

In Figure 10, we show the relative errors in the signal of N0, N0 +N1, and N0 +N1 +N2,
as αbend and αtwist decrease, for b = 500 s/mm2. Again, we see a convergence order of 3,
O(α3), for our asymptotic model.

Figure 10. The signal relative error (in percent) vs. deformation angle.
The diffusion gradient direction is (1, 0, 0). The black, red and blue markers
represent zeroth order, first order and second order approximations, respec-
tively. The lines with the same color are the fitting functions. Left: Signal
error vs. bend angle; Right: Signal error vs. twist angle.
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Finally, in Figure 11, we show the convergence of our asymptotic models with b-value is
first order, O(b).

Figure 11. The signal relative error vs. b-values. The diffusion gradient
direction is (1, 0, 0). The black, red and blue markers represent zeroth order,
first order and second order approximations, respectively. The lines with
the same color are the fitting functions. Left: Signal error vs. b-value, with
αbend = 0.06; Right: Signal error vs. b-value, with αtwist = 0.06.

5. Discussion

In the previous section we have shown the accuracy levels of the second order asymptotic
models for four geometrical deformations. From Figure 1 we can see that at the two smaller
deformation values, αbend = 0.05 and αtwist = 0.05, there are already visually significant
deformations compared to the canonical geometry. It seems that this range of values is
sufficient to model significant deviations from straight cylinders and is therefore biological
relevant to describe the geometry of the brain white matter. At the higher values that
we simulated, αbend = 0.10 and αtwist = 0.10, the asymptotic models resulted in much
higher errors, but by visual inspection, this larger range of values seems beyond the level
of geometrical deviations from straight cylinders that we can expect in the brain white
matter.

We have shown that for biologically relevant geometrical deviations, the ADC and the
diffusion MRI signal are accurately described as the sum of a zeroth order value (signal
or ADC from the straight cylinders) and two orders of corrections. We showed that a first
order correction is not sufficient to improve on the zeroth order model, at least two orders
of corrections are needed to significantly improve on the zeroth order model. With the
second order corrections, the asymptotic models are third order accurate in the geometrical
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deformation parameters. In addition, the model errors were shown to come mainly from
the axons, with the errors from the ECS compartment a much smaller source of error.

This work uses similar mathematical tools as several previous papers focused on the math-
ematical analysis of the Bloch-Torrey PDE subject to geometrical deformations. In [9], a
new mathematical model of Bloch-Torrey PDE in moving and deforming media was intro-
duced. In [17], a rigorous mathematical formalism was introduced to quantify the effect of
macroscopic-scale tissue motion and deformation in cardiac diffusion MRI. In [18], a new
model of the ADC of cardiac diffusion MRI was formulated in the presence of microscopic-
scale tissue motion and deformation.

::::::::::
Compared

:::::
with

::::::::
solving

:::
the

:::::::::
problem

::::::::
directly,

::::
the

:::::::::::
asymptotic

:::::::
model

:

The purpose of this work is to contribute to relating the diffusion MRI signal more directly
with the tissue geometrical parameters, the idea being that the diffusion MRI signal and
ADC differences between nearby voxels and regions of interest can be modeled by second
order corrections due to geometrical deformations with respect to a canonical configuration
of straight white matter fibers. Even though the two correction terms we described in this
paper are in the forms of partial differential equations and hence are complicated to solve,
an intriguing possible future direction is the use of machine learning algorithms to directly
map diffusion MRI signals to some geometrical deformation parameters relevant to the
white matter fibers in the regions of interest.

:::
We

:::::::
expand

::::
the

:
.
:::::::::::
According

:::
to [2, 16,23] ,

::
d

6. Conclusion

We analyzed the Bloch-Torrey PDE and the HADC model in the context of geometrical
deformations starting from a canonical configuration, focusing on two analytically defined
deformations, bending and twisting. We derived asymptotic models of the diffusion MRI
signal and the ADC where the asymptotic parameter indicates the extent of the geometrical
deformation. We computed numerically the first three terms of the asymptotic models, the
zeroth order model based on the canonical configuration, and two orders of corrections.
We showed that a first order correction is not sufficient to improve on the zeroth order
model, at least two orders of corrections are needed to significantly improve on the zeroth
order model. With the second order corrections, the asymptotic models are third order
accurate in the geometrical deformation parameters. In addition, the model errors were
shown to come mainly from the axons, with the errors from the ECS compartment a much
smaller source of error. The purpose of this work is to contribute to relating the diffusion
MRI signal more directly with the tissue geometrical parameters, the idea being that the
diffusion MRI signal and ADC differences between nearby voxels and regions of interest
can be modeled by second order corrections due to geometrical deformations with respect
to a canonical configuration of straight white matter fibers.
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Appendix

In this Section, we give details about the construction of the finite elements matrices needed
to implement the second order corrections.

For the asymptotic expansion of HADC model, the FE matrices are generated for each
compartment with P1 basis function, which are denoted as ϕi, for i = 1, ..., Nv, where
Nv is the number of mesh nodes. The approximate solution of each order of expansion is∑Nv ξjiϕi, where ξji is the weight of corresponding P1 basis function and j is the order.

The zeroth order term is identical to regular HADC model. The mass, stiffness and flux
matrices M, S and Q are defined as follows:

Mij =

∫
Ω
ϕiϕjdx, Sij =

∫
Ω
σ∇ϕi · ∇ϕjdx, Qij = σ

∫
∂Ω

ug · n(x)ϕiϕjds. (6.1)

Applying Green’s Theorem for partial derivatives, the integral of correction terms Kk,1 and
Kk,2 multiplying ϕk could be written as an volume integral of C and a surface integral of
∂C. The later items cancel Gk,1 and Gk,2. Therefore, for the bend deformation, the two
correction matrices are:

Cbend,1,ij = 2σ

∫
∂Ω
z(∂zϕi∂xϕj + ∂xϕi∂zϕj)dx, Cbend,2,ij = 4σ

∫
∂Ω
z2∂xϕi∂xϕjdx. (6.2)

For the twist deformation, the two correction matrices are:

Ctwist,1,ij = σ

∫
∂Ω
xi(∂zϕi∂yϕj + ∂yϕi∂zϕj)− yi(∂zϕi∂xϕj + ∂xϕi∂zϕj)dx,

Ctwist,2,ij = σ

∫
∂Ω
xiyi(∂xϕi∂yϕj + ∂yϕi∂xϕj)− x2

i (∂yϕi∂yϕj)− y2
i (∂xϕi∂xϕj)dx.

(6.3)

The flux matrix for solving Eq. 3.35 on the bend geometry is:

Qbend,ij = −2σ

∫
∂Ω
zugz · nx(x)ϕiϕjds, (6.4)

where ugz and nz(x) are the projections of ug and n(x) onto z-axis, respectively.

The flux matrix for solving Eq. 3.35 on the twist geometry is:

Qtwist,ij = −2σ

∫
∂Ω


cos(αtwistz)−1

αtwist
ugx + sin(αtwistz)

αtwist
ugy + yugz

cos(αtwistz)−1
αtwist

ugy −
sin(αtwistz)

αtwist
ugx − xugz

0

 · n(x)ϕiϕjds, (6.5)
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where ugx and ugy are the projections of ug onto x-axis and y-axis, respectively.

For numerical computing the solution η0 of Eq. 3.32, the semi-discretized equation is:

M
∂ξ0

∂t
= −Sξ0 + Qξ̄, (6.6)

where
∑
ξ0
i ϕi is the approximation of η0, ξ0

i is the coefficient of base functions and ξ̄ =
F (t) · 1.

Eq. 3.35 and 3.38 can be discretized into the matrix form below:

M
∂ξ1

∂t
= −Sξ1 + Qkξ̄ + Ck,1ξ

0, (6.7)

M
∂ξ2

∂t
= −Sξ2 + Ck,1ξ

1 + Ck,2ξ
0, (6.8)

where k ∈ {bend, twist}. System of semi-discretized equations Eq. 6.6,6.7,6.8 can be as-
sembled into one equations as below:

M 0 0
0 M 0
0 0 M

 ∂ξa
∂t

= −

 S 0 0
−Ck,1 S 0
−Ck,2 −Ck,1 S

 ξa +

Q 0 0
0 Qk 0
0 0 0

ξ̄ξ̄
ξ̄

 , (6.9)

where ξa = [ξ0; ξ1; ξ2] and 0 is the all-zeros matrix with the same dimension as M.

Eq. 6.9 is solved by MATLAB built-in ODE solver ode15s. This solver will automatically
determine the time stepping. When the computation is finished, we decompose ξa into ξ0,
ξ1 and ξ2. The approximation of ηall equals to the sum of all components above:

ηall =
∑
k

(ξ0 + αkξ1 + α2
kξ2)ϕk, where k ∈ {bend, twist}. (6.10)

Then, ADC coefficient is computed according to equation 2.9. It is worth mentioning that
the approximation of η is computed on canonical geometry, but the integration in Eq. 2.9
should be performed over deformed coordinates.

The asymptotic expansion of the Bloch-Torrey PDE could be discretized similarly as for
the HADC model, the only difference is the diffusion encoding gradient matrices, which
are described as:
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J0 = Iγ

∫
Ω

g · xϕiϕjdx,

Jbend = Iγ

∫
Ω

gz · z2ϕiϕjdx,

Jtwist = Iγ

∫
Ω

g ·


cos(αtwistz)−1

αtwist
x− sin(αtwistz

αtwist
y

sin(αtwistz)
αtwist

x+ cos(αtwistz)−1
αtwist

y

0

ϕiϕjdx.
(6.11)

Eq. 3.46, 3.49 and 3.38 can be discretized into the matrix form below:

M
∂ξ0

∂t
= −(S + f(t) · J0)ξ0, (6.12)

M
∂ξ1

∂t
= −(S + f(t) · J0)ξ1 + (Ck,1 − f(t)Jk)ξ

0, (6.13)

M
∂ξ2

∂t
= −(S + f(t) · J0)ξ2 + (Ck,1 − f(t)Jk)ξ

1 + Ck,2ξ
0, (6.14)

where k ∈ {bend, twist},
∑
ξ0
i ϕi,

∑
ξ1
i ϕi and

∑
ξ2
i ϕi are the approximations of N0, N1

and N2 , respectively. The assmbled semi-discreted equation is:

M 0 0
0 M 0
0 0 M

 ∂ξa
∂t

= −

 S 0 0
−Ck,1 S 0
−Ck,2 −Ck,1 S

 ξa − f(t)

J0 0 0
Jk J0 0
0 Jk J0

 ξa, (6.15)

and the coefficient of approximation of Nall is:

ξall = ξ0 + αkξ1 + α2
kξ2, where k ∈ {bend, twist}. (6.16)

The signal S is computed according to equation 2.5 after simulation. The same as above,
the integration in Eq. 2.5 is over deformed coordinates.

The FE mesh nodes will be deformed analytically by a coordinate transformation. The
deformation process and mesh generation are realized by SpinDoctor routines.
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