
Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

RESEARCH ARTICLE

Practical computation of the diffusion MRI signal based on Laplace
eigenfunctions: permeable interfaces

Syver Døving Agdestein1 | Try Nguyen Tran2 | Jing-Rebecca Li*3

1Centre de Mathématiques Appliquées,
Ecole Polytechnique, Route de Saclay,
91128 Palaiseau Cedex, France

2Ho Chi Minh City, Vietnam

3INRIA Saclay - Equipe DEFI, CMAP,
Ecole Polytechnique, Route de Saclay,
91128 Palaiseau Cedex, France

Correspondence

*Corresponding author. Email:
jingrebecca.li@inria.fr

Abstract

The complex transverse water proton magnetization subject to diffusion-encoding magnetic

field gradient pulses in a heterogeneous medium such as brain tissue can be modeled by

the Bloch-Torrey partial differential equation. The spatial integral of the solution of this

equation in realistic geometry provides a gold-standard reference model for the diffusion

MRI signal arising from different tissue micro-structures of interest.

A closed form representation of this reference diffusion MRI signal has been derived twenty

years ago, called Matrix Formalism, that makes explicit the link between the Laplace

eigenvalues and eigenfunctions of the tissue geometry and its diffusion MRI signal. In

addition, once the Laplace eigendecomposition has been computed and saved, the diffusion

MRI signal can be calculated for arbitrary diffusion-encoding sequences and b-values at

negligible additional cost.

In a previous publication, we presented a simulation framework that we implemented

inside the MATLAB-based diffusion MRI simulator SpinDoctor that efficiently computes

the Matrix Formalism representation for biological cells subject to impermeable mem-

brane boundary conditions. In this work, we extend our simulation framework to include

geometries that contain permeable cell membranes. We describe the new computational

techniques that allowed this generalization and we analyse the effects of the magnitude of

the permeability coefficient on the eigen-decomposition of the diffusion and Bloch-Torrey

operators.

This work is another step in bringing advanced mathematical tools and numerical method

development to the simulation and modeling of diffusion MRI.
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1 INTRODUCTION

Diffusion MRI is an imaging modality that can be used to probe the tissue micro-structure by encoding the incoherent motion of water molecules
with magnetic field gradient pulses. Incoherent motion during the diffusion-encoding time causes a signal attenuation from which the apparent
diffusion coefficient (ADC), and possibly higher order diffusion terms, can be calculated 1,2,3. For free diffusion, the root of the mean squared
displacement of molecules is given by x̄ =

√
2dDt, where d is the spatial dimension, D is the intrinsic diffusion coefficient, and t is the diffusion

time. In biological tissue, diffusion is usually hindered or restricted (for example, by cell membranes) and the mean square displacement is smaller
than in the case of free diffusion. This deviation from free diffusion can be used to infer information about the tissue micro-structure.

Using diffusion MRI to get tissue structural information in the brain has been the focus of much experimental and modeling work in recent
years 4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19. In terms of modeling, the predominant approach up to now has been adding the contributions to the diffu-
sion MRI signal from simple geometrical components and extracting model parameters of interest. Numerous biophysical models subdivide the
tissue into compartments described by spheres, ellipsoids, cylinders, and the extra-cellular space 12,13,14,16,20,21,22,17,23,24. Some model parameters
of interest include axon diameter and orientation, neurite density, dendrite structure, the volume fraction and size distribution of cylinder and
sphere components and the effective diffusion coefficient or tensor of the extra-cellular space. The need for a mathematically rigorous model of
the diffusion MRI signal arising from realistic cellular structures was re-iterated in recent review papers 25,26,27.

There is a gold-standard reference model of the diffusion MRI signal, it is the Bloch-Torrey partial differential equation (PDE) that describes the
time evolution of the complex transverse water proton magnetization subject to diffusion-encoding magnetic field gradient pulses. For this model
to be the gold-standard, it should be posed in realistic tissue and cell geometries, typically, heterogeneous media containing different cell structures
and the extra-cellular space. The spatial integral of the solution of the PDE provides a reference model for the diffusion MRI signal arising from
the geometry of interest. Because of the high computational cost of solving the Bloch-Torrey equation in complicated cell geometries, this gold
standard model has been used primarily as a “forward model” or “simulation framework”, in which one changes the inputs parameters such as cell
geometry, intrinsic diffusion coefficient, membrane permeability, and study the resulting changes to the MRI signal. This is in contrast to “inverse
models”, which are used to estimate the model parameters of interest from the MRI signal, the idea being that the “inverse models” have been
formulated in such a way so that the model parameters can be correlated to biological information in the imaging voxel. “Inverse models” include
the biophysical models cited above. Nevertheless, given the recent availability of vastly powerful computational resources and computer memory,
it is possible that simulation frameworks may become directly useful for parameter estimation in the future (for some recent works in this direction,
see 18,28).

In 29, we presented SpinDoctor, a MATLAB-based diffusion MRI simulation toolbox that solves the Bloch-Torrey PDE using the Finite Element
Method (FEM) and an adaptive time stepping method. SpinDoctor provides a user-friendly interface to easily define cell configurations relevant to
the brain white matter. In 30, we presented a module of SpinDoctor called the Neuron Module that enables diffusion MRI simulations for a group
of pyramidal neurons and a group of spindle neurons whose morphological descriptions were found in the neuron repository NeuroMorpho.Org 31.
The key to making accurate simulation possible is the use of high quality finite element meshes for the neurons. We refer the reader to 29,30 for
implementation details and timing comparisons with Monte-Carlo (random walk) type simulations.

Taking the Bloch-Torrey equation as the gold-standard reference model, a closed form representation of the reference signal has been derived
twenty years ago, that is based on the eigenvalues and eigenfunctions of the Laplace operator in the relevant cell geometry. This representation
frequently goes under the name of Matrix Formalism. The version that uses the impulse approximation of the diffusion-encoding sequence is first
found in 32 and the version that uses the piecewise constant approximation of the diffusion-encoding sequence is first found in 33. There have been
numerous works using Matrix Formalism in elementary geometries such as the line segment, the disk, and the sphere, as well as geometries which
can be written as tensor products of these elementary geometries. We cite 34,35,36 and refer the reader to the literature surveys on the Matrix
Formalism contained in those articles.

There are two advantages to theMatrix Formalism signal representation. First, the analytical advantage is that this representationmakes explicit the
link between the Laplace eigenvalues and eigenfunctions of the biological cell and its diffusionMRI signal. This clear linkmay help in the formulation
of reduced models of the diffusion MRI signal that is closer to the physics of the problem. Second, the computational advantage is that once the
Laplace eigendecomposition has been computed and saved, the diffusion MRI signal can be calculated for arbitrary diffusion-encoding sequences
and b-values at negligible additional cost. This will make it possible to use the Matrix Formalism as the inner loop of optimization procedures.

0Abbreviations:ADC, Apparent Diffusion Coefficient; BT, Bloch-Torrey; ECS, Extra-Cellular Space; FEM, Finite ElementMethod; FPK, Finite Pulse Karger
model; HADC, Homogenized Apparent Diffusion Coefficient MF, Matrix Formalism; MRI, Magnetic Resonance Imaging; ODE, Ordinary Differential Equation;
OGSE, Oscillating Gradient Spin Echo; PDE, Partial Differential Equation; PGSE, Pulsed-Gradient Spin Echo
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Until recently, Matrix Formalism, as a closed form signal representation, though mathematically elegant, has not been used as a practical way
of computing the diffusion MRI signal in complicated geometries. The calculation of the Laplace eigendecomposition in complicated geometries
using Monte-Carlo based simulations would be essentially impossible due to computational time and memory limitations. In a recent work 37, using
the FEM, we implemented inside SpinDoctor the computation of the Matrix Formalism representation for biological cells subject to impermeable
boundary conditions and showed its usefulness in understanding the diffusionMRI signal from realistic neuron geometries. In this work, we extend
our simulation framework to include geometries that contain permeable cell membranes. The Matrix Formalism has been previously applied with
permeable membranes for simple geometries like multilayered plates, spheres or cylinders 34,38, with up to thousands of permeable cell membranes
in the 1D-case 39. The formulation we propose is valid for arbitrary multi-compartment geometries with three-dimensional shapes. A major advan-
tage of this work is that once the eigenfunctions have been computed, many diffusion-encoding sequences, b-values, and diffusion directions can
be simulated at negligible additional cost.

2 THEORY

The geometrical configuration that we consider in this paper is a connected three-dimensional domain Ω =
⋃Ncmpt
i=1 Ωi ⊂ R3 consisting of Ncmpt

compartments {Ωi}1≤i≤Ncmpt . The permeable interface between two compartments is denoted byΓij = Ωi∩Ωj for i 6= j, (i, j) ∈ {1, . . . , Ncmpt}2.
For i = j, we let Γii = ∅ for the ease of notation. Finally, let ∂Ω denote the outer boundary of the domain, and Γi = Ωi ∩ ∂Ω its restriction to Ωi.
Note that for compartments that do not touch, we have Γij = ∅. Similarly, we have Γi = ∅ for compartments that do not touch the outer boundary.

If the geometry consists of Ncell cells enclosed in an extra-cellular space (ECS), the ECS will be the last compartment. For spherical cells, only the
ECS has an outer boundary, and all cells have an interface with the ECS. The cells may also contain nuclei. For cylindrical cells, the top and bottom
of each cylinder is an outer boundary. The cells may have myelin layers.

2.1 Bloch-Torrey PDE

In diffusion MRI, a time-varying magnetic field gradient is applied to the tissue to encode water diffusion. Denoting the effective time profile of the
diffusion-encoding magnetic field gradient by f , and letting the vector g ∈ R3 contain the amplitude and direction information of the magnetic
field gradient, the complex transverse water proton magnetization in the rotating frame satisfies the Bloch-Torrey PDE (BTPDE):

∂

∂t
Mi(x, t) = −iγf(t)g · xMi(x, t) +∇ ·Di∇Mi(x, t), x ∈ Ωi, i ∈ {1, . . . , Ncmpt}, (1)

where γ = 2.67513 × 108 rad s−1T−1 is the gyromagnetic ratio of the water proton, i is the imaginary unit, and Di is the intrinsic diffusion
coefficient in the compartment Ωi. The magnetization is a function of position x and time t, and depends on the diffusion gradient vector g and
the time profile f . We denote the restriction of the magnetization in Ωi byMi. Note that the magnetization may be discontinuous at the interfaces
Γij . In the following, inside volume integrals, we will denote byM(x, t) the global magnetization for x ∈ Ω, uniquely defined almost everywhere.

The initial conditions are assumed to be compartment-wise constant:

Mi(x, 0) = ρi, x ∈ Ωi, i ∈ {1, . . . , Ncmpt}, (2)

where ρi is the initial spin density in compartment Ωi.

The outer boundary conditions for the BTPDE are given by

Di∇Mi(x, t) · ni(x) = 0, x ∈ Γi, i ∈ {1, . . . , Ncmpt}, (3)

where ni is the unit outward pointing normal vector of compartment Ωi. This conserves the total number of spins in the domain. Note that we
may have Γi = ∅, as all the compartments do not necessarily touch the outer boundary.

The BTPDE also needs to be supplemented by interface conditions. We recall that the interface between Ωi and Ωj is Γij . The two interface
conditions on Γij are the flux continuity and a condition that incorporates a permeability coefficient κij ≥ 0 across Γij :

Di∇Mi(x, t) · ni(x) = −Dj∇Mj(x, t) · nj(x), x ∈ Γij , (i, j) ∈ {1, . . . , Ncmpt}2, (4)

Di∇Mi(x, t) · ni(x) = κij (cijMj(x, t)− cjiMi(x, t)) , x ∈ Γij , (i, j) ∈ {1, . . . , Ncmpt}2. (5)
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Here, the permeability coefficient characterizes the membrane only (κij = κji), and is assumed to be non-negative. If κij = 0, the interface Γij

behaves like an infinitely thin hard wall, similar to the outer boundary in Eq. (3).

The two weights cij and cji account for the spin density equilibrium between the two compartments. These may both be set to 1, in which case
a uniform spin density across compartments is favored in the absence of a gradient. For different initial spin densities ρi 6= ρj , we also allow for
non-symmetrical weights, for example cij = 2ρi

ρi+ρj
and cji =

2ρj
ρi+ρj

as proposed in 40. This ensures that the non-uniform intitial spin density is
preserved if the gradient g is zero. The normalization coefficient 2/(ρi + ρj) ensures that cij = cji = 1 if ρi = ρj .

Some commonly used time profiles (diffusion-encoding sequences) are the pulsed-gradient spin echo (PGSE) sequence 2 and the oscillating gradient
spin echo (OGSE) sequence 41,42. Here, we will consider the PGSE sequence, with two rectangular pulses of duration δ, separated by a time interval
∆− δ, for which the profile f is

f(t) =


1, t1 ≤ t ≤ t1 + δ,

−1, t1 + ∆ < t ≤ t1 + ∆ + δ,

0, otherwise,

(6)

where t1 is the starting time of the first gradient pulse, and Te is the echo time at which the signal is measured (with t1 + ∆ ≥ Te/2). In the
following, we will set t1 = 0 and Te = ∆ + δ for simplicity.

The diffusion MRI signal is measured at echo time t = Te. This signal is the spatial integral the final magnetizationM(·, Te):

S =

∫
x∈Ω

M(x, Te) dΩ(x), (7)

In a diffusion MRI experiment, the pulse sequence (time profile f ) is usually fixed, while g is varied in amplitude (and possibly also in direction). The
signal S is usually plotted against a quantity called the b-value. The b-value depends on g and f and is defined as

b(g, f) = γ2‖g‖2
Te∫

0

 s∫
0

f(t) dt

2

ds. (8)

For PGSE, the b-value is 2:
b(g, δ,∆) = γ2‖g‖2δ2 (∆− δ/3) . (9)

The reason for these definitions is that in a homogeneous medium, the signal attenuation is e−Db, whereD is the intrinsic diffusion coefficient.

2.2 Matrix Formalism signal representation

Using the Matrix Formalism 32,33, the diffusion MRI signal has the following representation for the PGSE sequence. Let {(φ, λ)} be the L2-
normalized eigenfunctions and eigenvalues associated to the generalized Laplace operator 1 on the connected domain Ω =

⋃Ncmpt
i=1 Ωi satisfying

−∇ ·Di∇φi(x) = λφi(x), x ∈ Ωi, i ∈ {1, . . . , Ncmpt}, (10)

where φi(x) denotes the restriction of φ(x) to compartment Ωi. The same boundary and interface conditions as for the BTPDE apply:

Di∇φi(x) · ni(x) = −Dj∇φj(x) · nj(x), x ∈ Γij , (i, j) ∈ {1, . . . , Ncmpt}2, (11)

Di∇φi(x) · ni(x) = κij
(
cijφ

j(x)− cjiφi(x)
)
, x ∈ Γij , (i, j) ∈ {1, . . . , Ncmpt}2, (12)

Di∇φi(x) · ni(x) = 0, x ∈ Γi, i ∈ {1, . . . , Ncmpt}. (13)

Let the solutions (φ, λ) to the above equations, (10-13), be denoted by {(φn, λn)}n∈N∗ . We assume the non-negative real-valued eigenvalues are
ordered in non-decreasing order:

0 = λ1 ≤ λ2 ≤ λ3 ≤ . . .

If the domain Ω consists of only one contiguous group of compartments connected through a chain of permeable membranes, only the first
eigenvalue will be zero, and the corresponding eigenfunction will be the only constant function. If there are Ngroup ≥ 2 groups of connected

1Here, the operator∇ ·D∇ with the described permeable interface conditions will be referred to as a generalized Laplace operator, as opposed to the
pure Laplace operator∇ · ∇.
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compartments completely separated by interior hard wall membranes, the first Ngroup eigenvalues will be zero:

0 = λ1 = · · · = λNgroup < λNgroup+1 ≤ . . . ,

and there will be Ngroup corresponding groupwise constant eigenfunctions. In the latter case, the equations may be rewritten separately for each
connected subdomain to obtain a set of eigenvalues with a multiplicity of one, but the formulation is also valid in the global form with multiple zero
eigenvalues. These two formulations will lead to an identical eigenfunction basis (up to a linear combination for the eigenvalues with multiplicity
higher than one), where the basis of each subdomain is a subset of the global eigenfunction basis.

Let L be the diagonal matrix containing the first Neig Laplace eigenvalues:

L = diag(λ1, λ2, . . . , λNeig ) ∈ RNeig×Neig . (14)

Let A(g) be the Neig ×Neig matrix defined by:
A(g) = gxA

x + gyA
y + gzA

z , (15)

where g = (gx, gy, gz)T is the gradient vector and Ax, Ay , and Az are three symmetric Neig × Neig matrices whose entries are the first order
moments in the coordinate directions of the product of pairs of eigenfunctions:

Axmn =

∫
Ω

xφm(x)φn(x) dΩ(x), (m,n) ∈ {1, . . . , Neig}2, (16)

Aymn =

∫
Ω

y φm(x)φn(x) dΩ(x), (m,n) ∈ {1, . . . , Neig}2, (17)

Azmn =

∫
Ω

z φm(x)φn(x) dΩ(x), (m,n) ∈ {1, . . . , Neig}2. (18)

Then the Bloch-Torrey operator
−∇ ·D∇+ iγg · x

in the Laplace eigenfunction basis is given by the complex-valued matrix K(g):

K(g) = L + iγA(g). (19)

The following matrix
H(g, f) = e−δK

∗
e−(∆−δ)Le−δK, (20)

gives the Matrix Formalism representation of the solution to the Bloch-Torrey PDE for the PGSE sequence. Denoting φ = (φ1, . . . , φNeig )
T the

vector of Laplace eigenfunctions and ν =
∫

Ω
ρ(x)φ(x) dΩ(x) the coefficients of the initial spin density in the Laplace eigenfunction basis, the

magnetization at the end of the gradient sequence is given by

MMF(x, Te) = φT(x)H(g, f)ν. (21)

The corresponding signal is
SMF(g, f) = ΦTH(g, f)ν, (22)

where Φ =
∫

Ω
φ(x) dΩ(x). If the spin density ρ is uniform across compartments (ρi = ρ for all i), then ν = ρΦ. If, additionally, all the

compartements are connected to the same domain through permeable membranes (Ngroup = 1), the expression simplifies to SMF(g, f) =

ρ|Ω|H11(g, f), where H11 is the element in the first row and first column of H, as only the constant eigenfunction remains after integrating
(Φ = (

√
|Ω|, 0, . . . , 0)T).

We note that in Eq. (20), the matrix L in the exponent is diagonal, and in this case, the matrix exponential is also diagonal. The notation ∗ denotes
the matrix complex conjugate transpose. In order to calculate the non-diagonal matrix exponential e−δK and its conjugate e−δK

∗
=
(
e−δK

)∗,
the scaling and squaring method 43,44 is used (the built-in matrix exponential function in MATLAB, expm, is called). For large Neig or many gradient
sequences (g, f), it may also be beneficial to approximate the resulting vector Hν without explicitly assembling the matrix H at all, by computing
the action of the matrix exponentials on the three successive vectors without computing the matrix exponentials themselves 45. This approach
may be used in a future version of SpinDoctor, in particular for other sequences than PGSE. However, for the purpose of theoretical analysis later,
here we explicitly diagonalize the matrix K(g),

K(g) = VBV−1, (23)

where V has the eigenvectors in the columns and B has the eigenvalues on the diagonal. Then e−δK = Ve−δBV−1 and e−δK
∗

=

(V−1)
∗

e−δB
∗
V∗, hence, H(g, f) can be written as

H(g, f) =
(
V−1

)∗
e−δB

∗
V∗ e−(∆−δ)L Ve−δBV−1. (24)
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3 METHOD

SpinDoctor 29 provides built-in options of constructing geometries relevant to the brain white matter, including

1. spherical cells with a nucleus;

2. cylindrical cells with a myelin layer;

3. an extra-cellular space enclosed either a) in a box or b) in a tight wrapping around the cells;

4. deformation of canonical cells by bending and twisting;

5. permeable membranes;

The partial differential equations are solved by P1 finite elements (the space of continuous piecewise linear functions on tetrahedral elements)
combined with built-in MATLAB routines for solving ordinary differential equations (ODEs). The finite element mesh generation is performed using
an external package called Tetgen 46. Each finite element mesh consists of

1. a list of Nnode nodes in three dimensions: (q1, . . . , qNnode ) = (qx, qy, qz)T ∈ R3×Nnode ;

2. a list of Nelement tetrahedral elements (4×Nelement indices referencing the nodes).

The list of nodes includes double nodes that are placed at the interfaces between compartments connected by permeable membranes. This allows
for representing discontinuous magnetization fields Mi and Mj (or φi and φj ) on the same boundary Γij . To distinguish between the different
compartments, let {1, . . . , Nnode} =

⋃Ncmpt
i=1 Ii with Ii ∩ Ij = ∅ for i 6= j. The set Ii contains the indices of the nodes representing compartment

Ωi, including interface nodes. In the adjacent compartments, the corresponding interface nodes will have different indices, distinct from Ii.

In SpinDoctor 29, the finite element space is the space of compartment-wise continuous piecewise linear functions on tetrahedral elements in three
dimensions. This space has a set of basis functions whose number is exactly the number of finite element nodes (including double nodes), and that
are defined on the entire domain Ω:

ϕk : Ω→ [0, 1], k ∈ {1, . . . , Nnode}.

Let the finite element nodes be denoted by q1, . . . , qNnode . The basis function ϕk , k ∈ Ii, is a piece-wise linear function, non-zero on the tetrahedra
of Ωi that touch the node qk , and zero on all other tetrahedra (including tetrahedra of other compartments different than Ωi that do touch qk).
At the interface Γij between two compartments, the value of ϕk is set to be the value it has inside its own compartment, distinct from that of the
adjacent compartment. On a tetrahedron of Ωi that touches qk , ϕk is equal to 1 on qk and it is equal to 0 on the other 3 vertices of the tetrahedron.
This completely describes the piece-wise linear function. The index sets may then be defined by Ii = {k = 1, . . . , Nnode | supp(ϕk) ⊂ Ωi}, the
set of indices of the finite element nodal functions whose supports lie entirely within Ωi.

Any function u in the finite element space can be written as a linear combination of the above basis functions:

u(x) =

Nnode∑
k=1

αkϕk(x) = αTϕ(x),

where α = (α1, . . . , αNnode )
T is the vector of coefficients and ϕ = (ϕ1, . . . , ϕNnode )

T is the vector of finite element nodal basis functions.

3.1 Finite element discretization of the Laplace operator

To discretize the Laplace operator with permeable boundary conditions on the membranes of the biological cells, we construct the following finite
element matrices: M,S,Q ∈ RNnode×Nnode , known in the FEM literature as the mass, stiffness, and flux matrices, respectively. They are defined as
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follows, for (k, l) ∈ {1, . . . , Nnode}2:

Mkl =

∫
Ω

ϕk(x)ϕl(x) dΩ(x), (25)

Skl =


∫

Ω
Di∇ϕk(x) · ∇ϕl(x) dΩ(x), (k, l) ∈ I2

i , i ∈ {1, . . . , Ncmpt},

0, otherwise,
(26)

Qkl =

Ncmpt∑
i=1

Ncmpt∑
j=1

Qijkl, (27)

the last being defined as the sum of interface integrals:

Qijkl =


κijcji

∫
Γij

ϕk(x)ϕl(x) dΓ(x), (k, l) ∈ I2
i ,

−κijcij
∫

Γij
ϕk(x)ϕl(x) dΓ(x), (k, l) ∈ Ii × Ij ,

0, otherwise,

(i, j) ∈ {1, . . . , Ncmpt}2. (28)

Note that the above formulation correctly accounts for corner nodes (if any) that belong to two different permeable boundaries.We also remind the
reader that i and j are compartment indices, while k and l are finite element nodal indices (representing the degrees of freedom for P1-elements).

The finite element discretization described above changes the continuous Laplace operator eigenvalue problem (10) to the following discrete,
generalized matrix eigenvalue problem: find (λ,p) ∈ R× RNnode such that

λMp = (S + Q)p, (29)

of which we will retain the Neig smallest eigenvalues and corresponding eigenvectors {(λn,pn)}1≤n≤Neig , with Neig ≤ Nnode. Note however that
there are in total Nnode solutions to the problem (29). Moving back to the space of functions (the function space P1), the eigenfunction φn(x)

associated to the eigenvalue λn is then

φn(x) =

Nnode∑
k=1

pknϕk(x) = pT
nϕ(x), n ∈ {1, . . . , Neig},

where the entries of the eigenvector pn are the coefficients of the eigenfunction φn in the finite element basis. Using matrix notation, this con-
version can also be written φ = PTϕ, where ϕ = (ϕ1, . . . , ϕNnode )

T, φ = (φ1, . . . , φNeig )
T, and P = (p1, . . . ,pNeig ) ∈ RNnode×Neig . The integrals

of the finite element discretized eigenfunctions are then given by Φ =
∫

Ω
φ(x) dΩ(x) = PTMo, where o = (1, . . . , 1)T ∈ RNnode . Similarly, the

coefficients of the initial spin density in the finite element discretized eigenfunction basis are given by ν =
∫

Ω
ρ(x)φ(x) dΩ(x) = PTMρ, where

ρ = (ρi(k))1≤k≤Nnode ∈ RNnode and i(k) ∈ {1, . . . , Ncmpt} is such that k ∈ Ii(k).

In our previous work 37, we depended on the Partial Differential Equation Toolbox of MATLAB to solve the general-
ized eigenvalue problem in Eq. (29), but this is no longer needed in our current implementation. The MATLAB syntax
[P, lambda] = eigs(S + Q, M, Neig, "smallestreal", "IsSymmetricDefinite", true) directly computes the Neig smallest eigen-
values λ = (λ1, . . . , λNeig ) and eigenfunction nodal coordinates P = (p1, . . . ,pNeig ) using an iterative algorithm, given the mass, stiffness,
and flux matrices M, S, and Q. The built-in MATLAB command eigs 47,48 can exploit the symmetry of M and compute a subset of
all the eigenvalues, meaning Neig can be much smaller than Nnode. Note that since the eigs command computes normalized vectors,
we have to renormalize the resulting finite element functions. This is done as follows: if p̃ is a normalized eigenvector of Eq. (29), i.e.
‖p̃‖22 =

∑Nnode
k=1 p̃2

k = 1), we define p = p̃√
p̃TMp̃

. Then the squared L2-norm of the associated eigenfunction φ = pTϕ is given by

‖φ‖22 =
∫

Ω
φ2(x) dΩ(x) =

∫
Ω

(
pTϕ(x)

)2
dΩ(x) = pT

∫
Ω
ϕ(x)ϕT(x) dΩ(x)p = pTMp = 1.

3.2 Computation of first order moment product matrices

To obtain the Matrix Formalism signal representation, we must calculate the first order moments in the three coordinate directions of the product
of pairs of eigenfunctions in Eq. (16-18). First, we define Jx, Jy , and Jz ; the matrices containing the first order moments of the product of pairs of
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finite element basis functions (where x = (x, y, z)T):

Jxkl =

∫
Ω

xϕk(x)ϕl(x) dΩ(x), (k, l) ∈ {1, . . . , Nnode}2, (30)

Jykl =

∫
Ω

y ϕk(x)ϕl(x) dΩ(x), (k, l) ∈ {1, . . . , Nnode}2, (31)

Jzkl =

∫
Ω

z ϕk(x)ϕl(x) dΩ(x), (k, l) ∈ {1, . . . , Nnode}2. (32)

We note that in our previous work 37, our code contained a numerical implementation of Jx, Jy , and Jz that had a slight error. We have since
corrected this error and we now describe the correct implementation. The matrices Jx, Jy , and Jz are assembled as coordinate weighted mass
matrices, where the three coordinate functions x 7→ x, y, z act as nodal weights in the assembly process, given by qx, qy , qz ; the vectors of x, y,
and z coordinates of the finite element nodes. We refer to 49 for details about the matrix assembly. Then it is clear that the first order moments of
the product of pairs of eigenfunctions can be written as:

Axmn =

∫
Ω

x φm(x)φn(x) dΩ(x) = pT
mJxpn, (m,n) ∈ {1, . . . , Neig}2, (33)

Aymn =

∫
Ω

y φm(x)φn(x) dΩ(x) = pT
mJypn, (m,n) ∈ {1, . . . , Neig}2, (34)

Azmn =

∫
Ω

z φm(x)φn(x) dΩ(x) = pT
mJzpn, (m,n) ∈ {1, . . . , Neig}2. (35)

In the condensed form, we have Au = PTJuP, u = x, y, z. These matrices are computed using a total of six matrix-matrix multiplications. It is
worth noting that while the three matrices Ju are sparse, P is dense.

3.3 Eigenfunction length scale

On a line segment of length L and diffusivity D, the eigenvalues (λ1, λ2, . . . ) of the generalized Laplace operator with Neumann boundary
conditions are

λn =

(
π(n− 1)

L

)2

D, n ∈ N∗. (36)

To make the link between the computed eigenvalue and the spatial scale of the eigenmode, we will convert the computed λn into a length scale
(from the line segment eigenvalue formula):

L(λ) =

+∞, λ = 0,

π
√

D
λ
, λ > 0,

(37)

and characterize the computed eigenmode by L(λn) instead of λn. The reference diffusivity D = |Ω|−1
∑Ncmpt
i=1 |Ωi|Di is taken as a volume

weighted mean of the diffusion coefficients (Di)1≤i≤Ncmpt .

We do not want to use the entire set of eigenvalues and eigenvectors {(λn,pn)}1≤n≤Nnode
of the matrix eigenvalue problem in Eq. (29), because

the size of M, S, and Q is determined by the finite element discretization (it is equal to Nnode, the number of finite element nodes). This means
that most of the rapidly oscillating eigenmodes in the matrix eigenvalue problem are linked to the finite element discretization, and not to the
physics of the problem. To link with the physics of the diffusion in the cell geometry, we set a restricted interval in which to keep the computed
eigenvalues. We set the interval to be [0, (π/Lmin)

2D], where Lmin is the shortest length scale of interest in the cell geometry. In this way, the
number of computed eigenmodes, Neig, will be much smaller than Nnode.

In order to choose the minimum eigenfunction length scale Lmin, a characteristic length scale LΩ
char for the geometry of interest should be defined.

Some examples of characteristic length scales are the average or smallest axon diameter for a geometry of axons, the average or smallest neuron
dendrite branch diameter (or length) for a neuron geometry, or possibly the diameter of the neuron cell body (soma). One approach to algorithmically
determine a characteristic length scale based on the geometry is given by

LΩ
char = min

1≤i≤Ncmpt
min
d∈R3

‖d‖=1

max
(x,y)∈Ω2

i

|dT(x− y)|, (38)

with d going over all the directions in 3 dimensions, and x, y going over all points in compartment Ωi. Given i and d, the inner expression identifies
the largest width of compartmentΩi in the direction d. For a geometry of cylinders with various diameters, the above expression will return exactly
the smallest cylinder diameter (provided all the cylinders are longer than their diameter).



9

Another characteristic length scalemay be determined from the diffusion term−∇·D∇ in the BTPDE, for which themean distance of displacement
of water molecules is given by

LDchar(Te) =
√

2dDTe, (39)

where d = 3 is the spatial dimension, andD = |Ω|−1
∑Ncmpt
i=1 |Ωi|Di. A third characteristic length scale is given by the shortest wavelength of the

oscillations induced by second term iγf(t)g · x in the BTPDE:

Lwave
char (G,D) =

max
g∈G
δ∈D

γ‖g‖δ

−1

, (40)

where G and D are the ranges of possible gradients and pulse durations to be considered. Note that this definition require upper bounds for the
possible gradient amplitudes ‖g‖ and pulse durations δ. If such information is available, we may setLchar = min{LΩ

char, L
D
char, L

wave
char }. Note also that

the discretization of Ω presents a characteristic length scale given by the average tetrahedral diameter for the given mesh. This number should at
least be smaller than the length scales given above, otherwise the mesh would not be sufficiently refined to accurately represent the solution to
the BTPDE.

Once the characteristic length scale has been defined, the minimum eigenfunction length scale can then be expressed as a scaled version of the
characteristic length scale. It is currently unclear what an appropriate scaling factor would be. However, using Lmin ∼ Lchar or Lmin ∼ Lchar/10 as
a first guess, one can compare the obtained matrix formalism signal with solutions that are known to be accurate for a few of the highest gradient
amplitudes in some directions in order to choose the right length scale. Given a computational budget, one could directly solve the BTPDE for this
comparison, choosing a length scale Lmin giving satisfactory relative errors for the sequences considered. After that one may launch computations
with an arbitrary number of gradient amplitudes, sequences, and directions based on the obtained length scale to compute the matrix formalism
signal.

The MATLAB command eigs can identify the Neig smallest eigenvalues of the problem in Eq. (29). If we choose this number to be large enough
such that L(λNeig ) ≤ Lmin, we can be sure to have found all the modes of interest. If Neig ≥ Nnode/2, the eig command is called instead, and
a full decomposition is performed. In both cases, we only retain the eigenvalues whose length scales are larger than Lmin to compute the Matrix
Formalism signal. In order to find the numberNeig, we can either make a conservative estimate (of the order ofNnode), and then remove the largest
eigenvalues, or we can start out with a smaller first guess for Neig and increment it if the smallest length scale obtained is too large. In particular,
having identified the correct number of eigenmodes for a given set of parameters, this number can serve as a new first guess if we change the
model parameters (diffusivityD, permeability κ).

4 RESULTS

The simultations were performed on four multi-compartment geometries, denoted by Ωsphere, Ωcyl, Ωtwist, and Ωflat. The geometries are shown in
Figure 1 (the renderings were made in in Paraview 50,51). The multilayered sphere and cylinder (Ωsphere and Ωcyl) have rotational invariances that
allow for comparing with known analytical solutions. The twisted geometry of 30 axons with an ECS (Ωtwist) allows for more complex interactions
between the cells, with large intercellular surface areas. The axons were twisted to break some of the vertical invariance. Finally, the flat geometry
of 30 axons and an ECS (Ωflat) allows for further visualisation and study of diffusion in the plane. The curved outer boundaries illustrate the nature
of the prescribed boundary conditions.

The geometries were generated with SpinDoctor as in 29. SpinDoctor creates the cell configuration and surface triangulation, while the finite
element mesh is generated by an external package called Tetgen 46. The refinement parameterH controls the maximum volume of the tetrahedra,
and is given in µm3.

The multilayered sphere and cylinder (Ωsphere and Ωcyl) both have inner, outer, and ECS radii of rin = 3.0µm, rout = 5.0µm, and recs = 7.5µm

respectively, with the cylinder having a height of h = 50.0µm. Three refinement levels were used, resulting in 1492, 3523, and 8023 nodes for
Ωsphere, and 4674, 10626, and 19755 nodes for Ωcyl. The coarsest and finest meshes are shown in Figure 1. Note that for Ωsphere, the coarser mesh
only has one interior point in the innermost compartment, and no interior points in the outer compartments. This is also the case for each slice of
the coarser mesh of Ωcyl.

The cylinders in the twisted geometry Ωtwist have radii ranging from 2µm to 6µm, and a height of h = 50µm. Their centers were chosen randomly,
and thenmanually repositioned to obtain amore compact configuration. A tightwrap ECS encloses the cylinders. After generating the finite element
mesh, the nodes were gradually twisted along the vertical axis to an angle of π/4, thus breaking the axial invariance. Because the deformation was
applied gradually, the quality of the tetrahedral elements was not reduced by any significance. One refinement level was used, withH = 0.5µm3.
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FIGURE 1 Finite element meshes of the different geometries used in the simulations. In order of appearance: Multilayered sphere (Ωsphere), multi-
layered cylinder (Ωcyl), thirty twisted axons (Ωtwist), and a section of thirty different axons (Ωflat). The inner compartments are shown in white and
red while the ECS-compartment is shown in green. For the multilayered cells, two different refinement levels are shown, with the coarser mesh
being to the left in each image. Some geometries are clipped, to show the structure of the inner compartments. The geometries were visualized in
Paraview.

The resulting mesh has 146002 nodes (including 95884 unique nodes) and 541957 tetrahedral elements. This means that the about 52.3% of the
unique nodes lie on an intercompartment interface (not on the outer boundary). It is worth noting that this percentage would go to zero if the mesh
was infinitely refined.

For the horizontal section geometry Ωflat, the cylinders were generated with height 1µm, z ∈ [−0.5µm, 0.5µm], and radii ranging from 1µm to
8µm, randomly placed according to the algorithm in SpinDoctor. With gradient directions restricted to the horizontal plane, the results on this
geometry are assumed to be representative of those obtained with a larger cylinder height, as diffusion only occurs horizontally. To investigate the
effect of the refinement parameter, three values ofH were used (see Figure 2):

1. H = 0.5µm3—this mesh has 13797 nodes (including 11084 unique nodes) and 35652 tetrahedral elements;

2. H = 0.2µm3—this mesh has 24692 nodes (including 20192 unique nodes) and 62335 tetrahedral elements;

3. H = 0.1µm3—this mesh has 40713 nodes (including 33845 unique nodes) and 114753 tetrahedral elements.

In order to compute the magnetization M and signal S, four approaches were used. The analytical matrix formalism solution is denoted by
“analytical”, the Karger solution by “Karger”, the finite element discretized matrix formalism solution by “MF”, and the finite element discretized
BTPDE solution by “BTPDE”. The last is given by MBTPDE(x, t) = ξT(t)ϕ(x) for x ∈ Ω (resulting in SBTPDE = ξT(Te)

∫
Ω
ϕ(x) dΩ(x)), where

ξ : [0, Te]→ CNnode is the solution to the following equation:

M
dξ

dt
= − (S + Q + iγf(t)J(g)) ξ(t), t ∈ [0, Te] (41)
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FIGURE 2 Finite element mesh of the geometry Ωflat. The element size is controlled by the refinement parameterH . Left: finite element mesh for
H = 0.5µm3. Right: zoom on some of the smallest axons (red rectangle on the left) for different refinements. The units are x, y, z : µm,H : µm3

.

with initial conditions ξk(0) = ρi(k) for k ∈ {1, . . . , Nnode}, where i(k) ∈ {1, . . . , Ncmpt} is such that k ∈ Ii(k). The above equation is solved in
SpinDoctor with build-inMATLAB routines for ordinary differential equation (ODE) systems. The time stepping is controlled by setting the absolute
and relative tolerances εabs and εrel of the MATLAB ODE solver ode15s 52. We refer the reader to 29 for details on how to use SpinDoctor.

For each compartment, the diffusivity and initial spin density were set to the constant values D = 0.002mm2/s and ρ = 1.0, respectively. In
the literature, most experimentally measured values of the permeability κ in biological cells range from 10−8m/s to 10−4m/s 53. The case of
impermeable membranes having been treated in our previous work, the simulations were mainly performed with values between 10−5m/s and
10−4m/s, with some simulations performed with κ = 10−3m/s to illustrate the mathematical correctness of the model for high permeabilities.

4.1 Validation on known analytical solutions

For simple geometries, analytical solutions may be obtained for the BTPDE. In this section, we compare the MF and BTPDE solutions to analytical
solutions for a 3-layered sphere and a 3-layered cylinder. The exact solutions were obtained by exploiting rotational symmetries so that the Laplace
eigenvalue problem is decomposed into radial and angular parts, as presented in 34,38. An adapted version of the corresponding code was used.
Two pulsed sequences (δ = 5ms, ∆ = 10ms) and (δ = 10ms, ∆ = 100ms) were considered, with b-values ranging from 0 to 10000s/mm2. The
gradient direction was set to g = (1.0, 0.0, 0.0)T. The interface permeability was set to κ = 10−4m/s. Different refinement levels were tested, as
is illustrated in Figure 1.

We briefly describe our implementation of the analytical approach. The analytical solution uses the same matrix formalism approach as presented
above, but decomposes the Laplace eigenfunctions into their radial and angular parts. The radial eigenvalues are obtained by finding the roots of
a function. A dichotomy approach was used for this purpose, where the radial eigenvalue space is swept using an assumed minimal distance ∆α

between the square root α of the radial eigenvalues λradial = α2, for each angular eigenmode. The step was set to ∆α2 = 10−8µs−1, and the
correct identification of the roots was further confirmed by plotting the function. In addition, the number of eigenvalues was truncated using the
length scale formula in Eq. (37), which was applied to the maximum radial eigenvalue to be kept, where the corresponding radial length scale was
set to L(α2

max) ≥ Lradial = 0.3µm. Values below this threshhold were found to produce no significant difference in the obtained signal.

In order to choose the eigenvalue truncation for the finite element matrix formalism solutions, minimum length scales of 3µm, 2µm, and 1µm were
tested. The results are shown in Figure 3. The finite element based matrix formalism has two main sources of error: finite element discretization
and Laplace eigenfunction basis truncation. In contrast, the above multilayered formulation only has errors from the eigenfunction basis truncation,
but these were negligible compared to the differences between the multilayered and finite element matrix formalism results.
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FIGURE 3 Relative errors |S−Sanalytical|/|Sanalytical| (not in percent) for BTPDE andMF signals with respect to the truncated analytical multilayerMF
signal. The first row is for the 3-layered sphere (Ωsphere), and the second for the 3-layered cylinder (Ωcyl). The units areL : µm, δ,∆ : ms, b : s/mm2.

The errors decrease with the refinement level (as indicated by the number of nodes). However, the mesh quality is not uniquely determined by the
number of nodes, as can be seen for Ωcyl (bottom row). Here, in the middle column, the mesh still have few interior points (which is also the case for
the coarse mesh). For the longer diffusion time, the errors increase linearly with the b-value for both BTPDE and MF, which is also expected. For
the shorter diffusion times, higher gradient amplitudes are required to produce the same b-values, which results in a more variable error profile.
The low errors observed for certain b-values can be due to resonance effects, where the magnetization oscillates with certain frequencies on the
symmetrical geometry. While L ∈ {1µm, 2µm} produces roughly the same errors as BTPDE, L = 3µm has higher errors for larger b-values, but
can also produce lower errors than the other length scales and BTPDE for lower b-values. This could be due to the length scale truncation acting
as a low pass filter for the magnetization, reducing oscillations due to the finite element discretization.

4.2 Validation of Matrix Formalism signal compared to the reference solution

For Ωflat, the diffusion MRI signals are averaged over 64 gradient directions uniformly distributed on a unit semicircle in the horizontal plane to
obtain a direction averaged signal:

S =
1

64

64∑
d=1

S(f, gd). (42)

where gd = ‖g‖
(
cos
(
π d

64

)
, sin

(
π d

64

)
, 0
)T.

To investigate the question of what range of Laplace eigenvalues is sufficient to accurately describe the diffusion MRI signal, we computed the
Bloch-Torrey PDE signals SBTPDE and theMatrix Formalism signals SMF for different permeability coefficients κ = 10−3m/s, 10−5m/s and different
gradient amplitudes ‖g‖ = 0.075T/m, 0.374T/m on three finite element meshes with Tetgen refinement parameters H = 0.5µm3, 0.2µm3,
0.1µm3. The ODE tolerances for SBTPDE were εabs = 10−6 and εrel = 10−4.

The signal SBTPDE on the finest mesh with H = 0.1µm3 is considered the reference solution. The signal SMF was computed for H =

0.5µm3, 0.2µm3 with two minimum length scales L = 3µm, 2µm. In Table 1, we show the mean relative error between the various simulations
and the reference solution, averaged over the 64 gradient directions. Two gradient amplitudes and three PGSE sequences (with δ = ∆ = 5ms,
10ms, 20ms) were simulated, making a range of b-values from 267s/mm2 to 53333s/mm2.
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κ ‖g‖ δ b

Reference Mean relative error (%)
BTPDE BTPDE MF
H0.1 H0.5 H0.2 H0.5 L3 H0.5 L2 H0.2 L3 H0.2 L2

10−3 0.075
10 267 0.676 0.05 0.01 0.06 0.07 0.03 0.03
20 2133 0.084 0.41 0.13 0.53 0.55 0.25 0.26

10−3 0.374
5 833 0.285 0.60 0.18 0.58 0.66 0.17 0.24
10 6666 0.008 0.29 0.09 0.42 0.16 0.18 0.04
20 53333 2.4e−4 0.93 0.25 1.35 0.65 0.55 0.05

10−5 0.075
10 267 0.794 0.12 0.04 0.12 0.13 0.04 0.05
20 2133 0.358 0.24 0.07 0.25 0.26 0.08 0.10

10−5 0.374
5 833 0.449 0.41 0.12 0.32 0.42 0.03 0.14
10 6666 0.098 0.19 0.10 0.50 0.22 0.44 0.13
20 53333 0.031 0.95 0.43 2.21 1.13 1.81 0.62

TABLE 1 Relative errors |S − Sref|/|Sref| × 100 (in percent) of SBTPDE
H and SMF

H,L with respect to the reference signal Sref for different refinements
H = 0.5µm3, 0.2µm3 and length scales L = 3µm, 2µm. The geometry is on Ωflat. The units are κ : m/s, ‖g‖ : T/m, δ : ms, b : s/mm2, H : µm3

and L : µm. The signal SBTPDE on the finest mesh with H = 0.1µm3 is considered the reference solution. For the reference signal, its normalized
valueS/S0 is shown, whereS0 = ρ|Ω| is the signal for zero b-weighting. The signal is an averaged signal, taken over 64 gradient directions uniformly
distributed on a unit semicircle in the horizontal plane. The two pulses were without a pause between them: δ = ∆. The geometry is Ωflat.

The mean relative errors between the reference solution and SBTPDE withH = 0.2µm3 range from 0.01% to 0.43%. This implies the errors of the
reference solution compared to the exact solution are in the same range. The mean relative error between the reference solution and SBTPDE with
H = 0.5µm3 range between 0.05% and 0.95%. Concerning the MF solutions, on the H = 0.5µm3 mesh, the mean relative errors ranged from
0.06% to 2.21% compared to the reference solution if L = 3µm was chosen as the eigenvalue length scale limit, and the errors ranged from 0.07%

to 1.13% if L = 2µm was chosen as the eigenvalue length scale limit. On the finer mesh, H = 0.2µm3, the errors ranged from 0.03% to 1.81%

using the L = 3µm eigenvalue limit, and the errors ranged from 0.03% to 0.62% using the L = 2µm eigenvalue limit. The highest relative errors
correspond to the cases with the highest b-values, for which the signal has the highest decay.

In Figure 4, the relative errors of theMF and BTPDE signals with respect to the BTPDE signal on the finest mesh are shown for different refinement
levels and length scales. It is clear that the error decreases as the mesh becomes finer. In addition, once an error threshhold is reached, decreasing
the L limit, meaning increasing the number of computed eigenfunctions, does not necessarily further reduce the error beyond the level of the
BTPDE signal for the same mesh. For lower b-values, higher length scales can be tolerated than for higher b-values. The MF errors may however
drop below those of the BTPDE signals. This can be due to the time approximation of the MF signal being exact (for the PGSE sequence), while
the time approximation for the BTPDE is done numerically (with relative and absolute tolerances εabs = 10−6 and εrel = 10−4).

In Table 2, the mean relative errors on Ωtwist over seven gradient directions are shown for the MF signal with respect to the BTPDE signal. Two
permeabilities κ = 10−4 and 10−5m/s, two sequences (δ,∆) ∈ {(5ms, 5ms), (10ms, 50ms)}, and four b-values b = 1000, 3000, 7000, and
10000s/mm2 were used, fixing the number of eigenvalues to 2000 and 3500, resulting in length scales between 3.754µm and 2.901µm. For the
longer sequences, the errors were of the order of 0.1% or lower for Neig = 2000, and between 0.01% and 0.03% for Neig = 3500. This suggests
that a smaller number of eigenvalues may be sufficient to represent the signal at a precision of 1%. At equivalent b-value, the shorter sequence
requires a much stronger gradient (‖g‖ = 1.295T/m for b = 10000s/mm2), resulting in high frequency oscillations that were not caught for
Neig = 2000. This can be seen for the high errors of 12% and 24%. Increasing the number of eigenfunctions to Neig = 3500 did however provide
a sufficient number of high wavenumber modes to correctly represent the signal, producing errors below 1%.

4.3 Comparing with the Karger model

The Karger model 54,55 computes the compartment magnetizations for narrow pulses. A recent extension of the Karger model to finite pulses is
the Finite Pulse Karger model (FPK) 56. Here we numerically compare the direction averaged signal attenuation of the BTPDE and MF solution to
the FPK solution on Ωtwist. The results are shown in Figure 5. The signal was computed in seven uniformly distributed directions on the sphere,
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FIGURE 4 Relative errors |S − Sref|/|Sref| (not in percent) for MF and BTPDE compared to the reference signal (64 directions averaged), with
δ = ∆. The geometry is Ωflat. The signal SBTPDE on the finest mesh withH = 0.1µm3 is considered the reference solution. The MF error is plotted
for different length scales. The units are κ : m/s, ‖g‖ : T/m, δ : ms,H : µm3, length scales µm.

κ δ ∆ b ‖g‖
|SBTPDE|
|S0|

MF mean relative error (%)
Neig = 2000 Neig = 3500

10−4 5 5

1000 0.409 0.334 0.559 0.109
3000 0.819 0.045 4.892 0.242
7000 1.083 0.018 12.687 0.411
10000 1.295 0.010 24.440 0.604

10−4 10 50

1000 0.055 0.438 0.018 0.007
3000 0.109 0.076 0.052 0.018
7000 0.145 0.028 0.066 0.026
10000 0.173 0.016 0.073 0.031

10−5 5 5

1000 0.409 0.374 0.643 0.104
3000 0.819 0.070 5.060 0.203
7000 1.083 0.031 12.549 0.366
10000 1.295 0.018 23.997 0.547

10−5 10 50

1000 0.055 0.513 0.021 0.006
3000 0.109 0.181 0.067 0.012
7000 0.145 0.114 0.108 0.015
10000 0.173 0.084 0.154 0.018

TABLE 2 Relative errors |SMF
L − SBTPDE|/|SBTPDE| × 100 (in percent) of SMF

L with respect to SBTPDE. The geometry is Ωtwist. The MF parameters are
Neig ∈ {2000, 3500}, resulting in L ∈ {3.754µm, 2.954µm} respectively for κ = 10−5, and L ∈ {3.662µm, 2.901µm} for κ = 10−4. The units are
κ : m/s, ‖g‖ : T/m, δ : ms, b : s/mm2,H : µm3 andL : µm. For the reference signal, its normalized value |SBTPDE|/|S0| is shown, where S0 = ρ|Ω|
is the signal for zero b-weighting. The signal is an averaged signal, taken over 7 gradient directions uniformly distributed on the unit sphere.

two gradient sequences (δ,∆) ∈ {(5ms, 5ms), (10ms, 50ms)}, and b-values ranging from 0s/mm2 to 4000s/mm2 (11 values for MF and BTPDE,
51 values for FPK). For the MF signal, Neig = 3500 eigenvalues were used, resulting in a minimum length scale of L = 2.954µm. While the MF
and BTPDE (reference) signal attenuations are indiscernible, the FPK signal attenuations are slightly stronger for higher b-values.

For each compartment Ωi, i ∈ {1, . . . , 31} (Ncmpt = 31 for Ωtwist), the six components of the symmetric diffusion tensor for the FPK model,

Di =


Dxx
i Dxy

i Dxz
i

Dxy
i Dyy

i Dyz
i

Dxz
i Dyz

i Dzz
i

 ,
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FIGURE 5 Signal attenuation |S|/|S0| for the BTPDE, MF, and Karger signals, averaged over 7 uniformly distributed directions in three dimensions.
The geometry is Ωtwist. The permeability is κ = 10−5m/s. The units are κ : m/s, δ,∆ : ms, b : s/mm2. There are 11 b-values for BTPDE and
MF, and 51 b-values for Karger. The Karger signals were computed after fitting a diffusion tensor to each compartment and diffusion time using a
homogenized apparent diffusion coefficient model.

were fitted using a least squares approach to apparent diffusion coefficients computed using a homogenized model 57 (HADC) in 50 uniformly
distributed directions on the unit sphere. One set of diffusion tensors was fitted for each diffusion time scale. The two sets of diffusion tensors,
(Dshort

i )1≤i≤31 and (Dlong
i )1≤i≤31, differ by the diffusion time (short: (δ,∆) = (5ms, 5ms); long: (δ,∆) = (10ms, 50ms)). Below we present the

obtained volume-averaged axon diffusion tensor

Daxon =

∑30
i=1 |Ωi|Di∑30
i=1 |Ωi|

and the ECS-diffusion tensor DECS = D31 for both diffusion times, as a fraction of the intrinsic diffusivityD = 0.002mm2/s:

Dshort
axon =


0.249 0.001 0.013

0.001 0.247 −0.006

0.013 −0.006 0.839

×D, Dshort
ECS =


0.585 −0.017 0.007

−0.017 0.587 −0.004

0.007 −0.004 0.865

×D,

Dlong
axon =


0.041 0.002 0.007

0.002 0.042 −0.008

0.007 −0.008 0.650

×D, Dlong
ECS =


0.480 −0.019 0.006

−0.019 0.482 −0.004

0.006 −0.004 0.673

×D.
A component of 1.000 × D would signify that the diffusion in the associated direction is unhindered by the cell membranes. For the shorter
diffusion time, fewerwater molecules interact with the cell membranes, as the average distance travelled by themolecules is shorter. As a result, the
components are closer to the intrinsic diffusivity than for the longer diffusion time. For both diffusion times, the vertical componentDzz is larger
than the other components, which indicates that diffusion in the vertical direction (z-direction) is privileged. Even after twisting the geometry, the
axons are still mostly oriented along the vertical axis. In constrast, the ECS-compartment (i = 31) presents less of a difference on the diagonal, as
diffusion in the horizontal plane is less hindered (the molecules can travel freely around the smaller axons). While the tensors may contain negative
values in the off-diagonal components, they all remain positive definite.

4.4 Permeability effects on the magnetization solution

In this section, we analyze how the permeability coefficient affects themagnetization solution onΩflat, and the influence of the boundary curvature.
The magnetization solutions were computed using the implementation of the Matrix Formalism method described previously. We computed the
direction averaged magnetizations for two permeabilities κ = 10−3m/s, 10−5m/s, two gradient amplitudes ‖g‖ = 0.075T/m, 0.374T/m and
four PGSE sequences with b = 200s/mm2, 1000s/mm2, 4000s/mm2, 10000s/mm2 with their corresponding diffusion times for δ = ∆. At ‖g‖ =

0.075T/m, δ ∈ {9.1ms, 15.5ms, 24.7ms, 33.5ms}, and at ‖g‖ = 0.374T/m, δ ∈ {3.1ms, 5.3ms, 8.4ms, 11.4ms}.

The resulting magnetizations for κ = 10−3m/s are shown in Figure 6. When the permeability is high, as in the case of κ = 10−3m/s, the cell
boundaries do not hinder the movement of the water molecules, and the domain behaves more like a homogeneous medium bounded only by
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FIGURE 6 The 64 directions averaged magnetization on Ωflat for two gradient amplitudes ‖g‖ (rows) and four b-values (columns). The diffusion
times were adjusted to obtain a constant b-value in each column. The permeability is κ = 10−3m/s. The units are κ : m/s, ‖g‖ : T/m, b : s/mm2,
x, y : µm. The magnetization is shown at the top layer (z = 0.5µm), but does not vary in the z-direction. Only the real part is plotted, as the
complex part is insignificant in comparison.

the exterior boundary. The magnetization should thus depend mainly on the b-value, which combine the effects of the gradient amplitude and
corresponding diffusion time. This does indeed seem to be the case in the figure. Addionally, the high curvature of the smallest axons does not
seem to affect the solution. In the corners of the domain, which are enclosed by curved boundaries, and to a lesser extend near the outer wall in
genereal, the attenuation is weaker, as the diffusion is restricted by the hard wall boundary conditions 27.

For the lower permeability (κ = 10−5m/s, see Figure 7), the magnetization attenuates less than for higher permeability at equivalent b-value. In
addition, the magnetization varies significantly with the amplitude ‖g‖ at equivalent b-value; this differs from the previous higher permeability
example. The magnetization value is higher in the cells than in the ECS; and the smaller the cell, the higher the magnetization value. Compared
to the high permeability example, the attenuation in the ECS is not only weak at the outer boundary, but also near the interior boundaries, which
now behave more like hard walls.

In order to investigate further the magnetization value in the different compartments, we computed the direction-averaged magnetizations,
normalized over the volume of each of the thirty cells of Ωflat (excluding the ECS, with index i = 31),

M̄i =
1

ρ|Ωflat
i |

∫
Ωflat

i

M(x, Te) dΩ(x), i ∈ {1, . . . , 30}, (43)

and plotted them against the cell volumes |Ωflat
i | in Figure 8. This is done in order to examine how the compartment size affects the magnetization

attenuation. For free diffusion with constant initial spin density, the integral of the final magnetization depends on the b-value alone. Its decay is
given by M̄ = e−Db, and does not depend on the integration domain. We can see that, for κ = 10−3m/s, the magnetization attenuates at the
same rate in most of the compartments, which corresponds to a rather flat baseline curve for each b-value, as compared to the more restricted
regime with lower permeability κ = 10−5m/s, whose magnetizations attenatue less in the smaller compartments. At κ = 10−5m/s, at higher cell
volumes, the curve flattens, which can be attributed to unrestricted diffusion inside the big cells (away from the cell boundaries). In addition, at
κ = 10−3m/s, we notice certain peaks in the curves, for example, at volumes 21.57µm3 and 44.17µm3. This is due to the diffusion being more
restricted near the domain boundary, which is a hard wall. In particular, the two cells with volumes 21.57µm3 and 44.17µm3 correspond exactly
to the two cells at two corners of the domain. Their large magnetizations can be attributed to the high curvature of the domain boundary around
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FIGURE 7 The 64 directions averaged magnetization on Ωflat for two gradient amplitudes ‖g‖ (rows) and four b-values (columns). The diffusion
times were adjusted to obtain a constant b-value in each column. The permeability is κ = 10−5m/s. The units are κ : m/s, ‖g‖ : T/m, b : s/mm2,
x, y : µm. The magnetization is shown at the top layer (z = 0.5µm), but does not vary in the z-direction. Only the real part is plotted, as the
complex part is insignificant in comparison.

them, which restricts the outward diffusion. In essence, the hard wall condition on the computational boundary reflects the spins back into those
two axons. As the permeability decreases, the magnetization inside each cell becomes less affected by the surrounding boundary-induced ECS
magnetization, and more affected by their own boundary. For κ = 10−5m/s, the peaks are still visible, but only at the lower gradient amplitude.
In addition, at κ = 10−5, both very small axons and very large axons have lower magnetization than the middle range of axons. The reason is the
following. In the very small axons, the spins enter and leave the axons very easily, so the small axons contain spins that have moved a large distance
(via the ECS). In the very large axons, the spins in the center of the axons move freely since they do not encounter the boundary. However, in the
middle range of the axons, the spins do not move freely inside the axons nor do many spins enter the axons from the ECS.

4.5 Eigenvalues and eigenfunctions of the Laplace operator

In Figure 9, we show the Laplace eigenvalues whose length scales are larger thanL = 3µm for Ωflat. This corresponds to all the Laplace eigenvalues
below the threshold determined by the length scale formula in Eq. (37). In the plot, the eigenvalues were normalized by the diffusivity, as they tend
to scale linearly with a change ofD. The eigenvalues increase at a linear pace, but for higher permeabilities, they increase faster, resulting in fewer
eigenvalues below the threshold. For L = 3µm, there are between 300 and 450 eigenvalues, depending on the permeability.

For all positive permeabilities, only the first eigenvalue is zero. However, for small permeabilities (κ = 10−9m/s, 10−5m/s), there is a significant
number of eigenvalues that are close to zero, before the eigenvalues then start to increase at a linear pace. This corresponds to an uncoupled
regime, where there is one constant eigenfunction for each compartment (31 in total), and thus 31 zero eigenvalues. For higher permeabilities
(κ = 10−4m/s, 10−3m/s, 10−2m/s, 1m/s), this is no longer the case; the eigenvalues increase linearly from the beginning.

In Figure 10, we show seven selected non constant Laplace eigenfunctions on Ωflat for two permeabilities. For κ = 10−5m/s, the eigenfunctions
are clearly affected by the cell membranes, and each eigenfunction behaves like a linear combination of independent functions restricted to one
axon at a time (or to the ECS), starting with a combination of nearly constant functions. This corresponds to the more uncoupled regime that was
observed in Figure 9. For lower indices, the eigenfunctions are nearly constant in the axons, while for higher indices, the eigenfunctions become
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FIGURE 8 The 64 directions averaged compartment magnetizations M̄i on Ωflat that were normalized by the compartment volumes (see Eq. (43)).
The ECS compartment is not shown, as its volume is equal to 2119µm3, ten times more than the largest axon. The units are κ : m/s, ‖g‖ : T/m,
b : s/mm2, volume: µm3.

localized, either to one axon or to the entire ECS. For κ = 10−4m/s, the functions are more connected, but still present jumps across the cell
membranes. They also admit some localization for higher indices, but they are never entirely restricted to one compartment at a time. Interestingly,
the eigenfunctions seem to coincide with the ones for κ = 10−5m/s for certain indices, for example 2, 150, or 410. But the high permeability
eigenfunctions typically also include some features in the neighboring compartments, where the low permeability eigenfunctions are restricted to
one compartment for the higher indices.

In Figure 11, we show twelve different Laplace eigenfunctions on Ωtwist for two permeabilities. For the higher permeability (κ = 10−4m/s), the first
functions have large length scales, and resemble directionalized sine waves with different orientations. For the lower length scale eigenfunctions,
the oscillations are higher, but do in some cases admit an orientation in each of the axons, as can be seen for eigenfunction number 55 or 400. For
the lower permeability (κ = 10−5m/s), the different compartments act more separated, as was the case for Ωflat. While the eigenfunctions in the
ECS resemble those for the higher permeability, with diffusion being less restricted in the ECS, the eigenfunctions in the 30 axons seem to be nearly
constant for the first 29 indices. For the higher indices, the eigenfunction support seem to be separated, where a function of one index only has
non-zero values one some of the axons at the time. In the figure, the opacity of the insignificant axons was reduced to 15% to show the supports.

4.6 Eigenvalues and eigenfunctions of the Bloch-Torrey operator

At high gradient amplitudes, it was demonstrated 58,59 that in certain geometries (intervals, disks, spheres and the exterior of arrays of disks), the
magnetization solution of the Bloch-Torrey equation exhibits localization near boundaries and interfaces. The analysis in those papers was based
on the eigenfunctions of the complex-valued Bloch-Torrey operator,

−∇ ·D∇+ iγg · x,
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FIGURE 9 Laplace eigenvalues on Ωflat, normalized by diffusivity (λn/D, given in µm−2), for six permeabilities κ (m/s). Left: All eigenvalues with
length scale above the minimum threshold L = 3µm. Right: zoom on the 50 most significant eigenvalues.

FIGURE 10 Seven selected non-constant Laplace eigenfunctions on Ωflat with their associated length scales for two permeabilities κ. The colormap
is unique to each plot, and is linear from blue to yellow. The actual values are not shown, but the eigenfunctions are orthogonal and normalized,
with the first eigenfunction being constant. The units are κ : m/s, x, y, L : µm. The eigenfunctions are shown at the top layer (z = 0.5µm), but do
not vary significantly in the z-direction for the length scales considered.

in contrast to the generalized Laplace operator−∇ ·D∇. The conversion between the eigenfunctions of the Bloch-Torrey operator (ψn)1≤n≤Neig

and the eigenfunctions of the Laplace operator (φn)1≤n≤Neig is given by

ψ(x) = V−1φ(x), ψ = (ψ1, . . . , ψNeig )
T, φ = (φ1, . . . , φNeig )

T (44)

where the columns of V contain the eigenvectors of the complex-valued matrix K(g). The eigenvalues of the Bloch-Torrey operator are exactly
the eigenvalues of K(g). We remind the reader that the eigenvalues of K(g),

µ1, . . . , µNeig , 0 < <µ1 ≤ · · · ≤ <µNeig ,

are found on the diagonal of the matrix B. We order the Bloch-Torrey (BT) eigenvalues and eigenfunctions by the magnitude of the real part of µi,
all of which are strictly greater than 0.

In Figure 12, we show the complex eigenvalues of the 100 first (in order of increasing real part) BT eigenfunctions on Ωflat and Ωtwist. We see that
at the higher gradient amplitude, the BT eigenvalues have a wider range in their imaginary parts than at the smaller gradient amplitude. In terms of
the magnetization, a larger range of the imaginary part indicates more time oscillations. For the higher permeablity, the minimum real parts increase
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FIGURE 11 Twelve selected Laplace eigenfunctions of various length scalesL on the geometryΩtwist for two permeabilities κ = 10−5m/s (first two
rows) and κ = 10−4m/s (last two rows). The 30 axons are shown in the first row for each permeability, and the ECS compartment in the second.
The colormap is unique to each plot, and is linear from blue to yellow. The actual values are not shown, but the eigenfunctions are orthogonal and
normalized, with the first eigenfunction being constant. In some of the plots, the axons where the eigenfunctions are close to zero compared to
the most significant axons have a lower opacity (15%). The units are κ : m/s, x, y, z, L : µm.

with the gradient amplitude, which reflects a faster decay dynamic. For κ = 10−5m/s, the minimum real parts hardly increase with the gradient
amplitude for Ωflat because the diffusion in the gradient direction is hindered by the cell boundaries in the gradient direction. For Ωtwist however,
the considered gradient direction has a vertical component. The vertical direction being rather unrestricted, as can be seen in the diffusion tensors
in section 4.3 (despite the domain being twisted), the real parts of the eigenvalues do increase with the gradient amplitude. In order for signal
attenuation to occur, the water molecules must be allowed to travel a certain distance without being hindered by cell membranes.

In Figure 13, we show some of the first Bloch-Torrey eigenfunctions on Ωflat for two gradient directions, two gradient amplitudes and two per-
meabilities. For κ = 10−5m/s, each of the first 10 BT eigenfunctions is limited to one axon, and have nearly constant values on their respective
supports. As the gradient direction changes, the BT eigenfunctions stay on the same supports, but their eigenvalues may change slightly, possibly
leading to a reordering of the eigenvalues. For this reason, the BT eigenfunction index may change, as can be seen for BT eigenfunctions numbers
1 and 2 at ‖g‖ = 0.075T/m. Eigenfunction 44 varies more, and is either limited to one axon or fills a larger and more diffuse zone in the ECS
while still being localized. For κ = 10−4m/s, the eigenfunction supports extend beyond the cell membranes, and intersect with the supports of
neighboring BT eigenfunctions. However, the first eigenfunctions still have most of their mass inside the axons. Higher index eigenfunctions, as
eigenfunction 44, may be supported on the ECS.

In Figure 14, we show the mangitude of five complex-valued BT eigenfunctions on Ωtwist for two permeabilities. The same phenomenon as for Ωflat

is observed; the functions have clear, disjoint supports, limited to one axon at the time, and the higher permeability functions are slightly leaking
into the ECS. However, unlike Ωflat, the lower permeability eigenfunctions are never close to constant in their respective axons, but vary in the
unrestricted direction.
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FIGURE 12 The 100 first complex Bloch-Torrey eigenvalues on Ωflat (top row) and Ωtwist (bottom row) for two permeabilies. The eigenvalues are
divided by the diffusivity (µ/D, given in µm−2). For Ωflat, the direction is g/‖g‖ = (1, 0, 0)T, and for Ωtwist, the gradient direction is g/‖g‖ =

(−2/3, 2/3, 1/3)T. The units are κ : m/s, ‖g‖ : T/m.

In order to examine how the BT eigenmodes affect the signal representation, the magnetization was computed on Ωflat using a restricted number
of BT eigenvalues in Eq. (24), while keeping all the Laplace eigenvalues (for a given minimum length scale L). The resulting relative errors with
respect to the corresponding BTPDE-signals are shown in Figure 15. For shorter diffusion times, more components are needed to describe the
signal, as less diffusion has occured, and more of the details remain. More components are also needed for κ = 10−5m/s than for κ = 10−3m/s,
since the compartments are more isolated and the signal attenuates less. In most of the cases considered, an error of less than one percent can
be attained by keeping the first 50-150 BT eigenfunctions. The remaining BT eigenmodes are redundant, and do not further decrease the error.
Although the error decreases globally as the number of components increases, it is not guaranteed to decrease monotonically. This is because the
BT eigenfunctions are not used to represent the solution during the entire gradient sequence, but only during the first part, and during the third
part in a conjugate form. At t = 0, the initial spin density is first projected onto the Laplace eigenfunctions, before it is reprojected onto the BT
eigenfunctions (multiplying the initial density with V−1 in Eq. (24)). Each BT component is then attenuated and shifted exponentially according to
the corresponding BT eigenvalue for a duration δ. The resulting magnetization is then expressed in the Laplace eigenfunction basis at time t = δ

(multiplying the BT coefficient vector with V), even in the case considered, where δ = ∆. These coefficients are reprojected onto the conjugate BT
eigenfunction basis (multiplication with V∗), before they are once again attenuated and shifted according to the conjugate complex eigenvalues
(same attenuation, but inverse complex phase-shift). The conjugate BT coefficients are finally expressed in the Laplace basis (multiplying by V−∗)
at the final time step t = Te. Because the matrix V is not unitary (K is not hermitian), the operation at t = δ (multiplying by V∗V) changes the BT
coefficients. Using a larger subset of the BT indices in V and V−1 (keeping all the Laplace indices) is thus not directly linked to a decrease in the
resulting error. It does however allow for the study of the contribution of each BT eigenmode.
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FIGURE 13 Magnitude of the first few complex-valued Bloch-Torrey eigenfunctions on Ωflat for two values of κ (rows), two gradient directions
(columns), and two gradient amplitudes (columns). The directions are g33/‖g33‖ = (0, 1, 0)T and g49/‖g49‖ = (−

√
2/2,
√

2/2, 0)T. Because
the BT eigenfunctions are “localized”, multiple eigenfunctions are plotted on the same domain (the magnitudes are summed up). The numbers
correspond to the eigenfunction indices, and are placed in the center of mass of each eigenfunction support (where the magnitude is above 10%
of its maximum value). At κ = 10−5m/s, there is no overlap in the supports of the plotted BT eigenfunctions. At κ = 10−4m/s, there is some
overlap in the supports of the plotted BT eigenfunctions that are close to each other. The units are κ : m/s, ‖g‖ : T/m, x, y : µm. Only the top
layer of the eigenfunctions is shown (z = 0.5µm).

4.7 Computational time

In Table 3 and 4 we give the computational times for Ωflat and Ωtwist respectively. All the simulations were performed on a server computer with 12
processors (Intel (R) Xeon (R) E5-2667 @2.90 GHz), 192 GB of RAM, running CentOS 7, using MATLAB R2019a. It is clear that once the Laplace
eigendecomposition has been computed, the Matrix Formalism signal representation can be obtained rapidly for many sequences, b-values, and
gradient directions. We note that givenNeig eigenfunctions, the number of associated model parameters of the Matrix Formalism representation is
Neig+3Neig(Neig−1)/2, because thematrixL is diagonal and the threematricesAx,Ay , andAz are symmetric. The computational times are given
for one gradient direction, while the Laplace eigendecomposition times are independent of the gradient direction. For Ωtwist, all the simulations
were not performed at once, and the performance may depend on the traffic on the server computer at the time of computation. The MF timings
for Ωtwist include the assembly of the nodal coordinates of magnetization field at t = Te, given byPHν – a dense matrixP ∈ RNnode×Neig multiplied
by a dense vector Hν ∈ CNeig . WithNnode = 146002 andNeig ∈ {2000, 3500}, this operation can be significant. For Ωflat, the signal was computed
directly with Eq. (22), reducing the computational time.

5 DISCUSSION

We described a numerical implementation of the Matrix Formalism representation of the solution to the Bloch-Torrey PDE for permeable interior
compartments and we have shown it to accurately represent the solution for a wide range of diffusion times and b-values. By using the Laplace
eigenfunctions as a basis for the function space of solutions to the Bloch-Torrey PDE, the diffusion MRI signal can be computed for different
gradient pulse sequences at low additional cost, once the Laplace eigendecomposition has been performed. By choosing to represent the Laplace
eigenmodes using a length scale, the different eigenmodes can be linked to the physical length scales of the problem. Furthermore, this reduces
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FIGURE 14 Magnitude of five complex-valued BT eigenfunctions on the geometry Ωtwist for two permeabilities κ = 10−5m/s (first row), κ =

10−4m/s (second row), one gradient amplitude ‖g‖ = 0.150T/m, and one gradient direction g/‖g‖ = (−2/3, 2/3, 1/3)T. All compartments have
an opacity of 60%. The units are κ : m/s, ‖g‖ : T/m, x, y, z : µm.

FIGURE 15 Relative difference |SMF − SBTPDE|/|SBTPDE| (not in percent) between MF and BTPDE direction averaged signals on Ωflat, for different
number of BT eigenvalues used. The minimum length scale is L = 3µm. The sequence is PGSE, δ = ∆. At equivalent b-bvalue, a higher gradient
amplitude indicates a shorter diffusion time. The units are κ : m/s, ‖g‖ : T/m, b : s/mm2.

the computional time of the Matrix Formalism representation, as only a small subset of the Laplace eigenmodes are needed, as compared to the
number of nodes in the finite element mesh.

The Matrix Formalism representation is not just of computational value, but also has analytical advantages. Replacing the finite element nodal
basis (ϕj)1≤j≤Nnode by the Laplace eigenfunction basis (φn)1≤n≤Neig and the BT eigenfunction basis (ψn)1≤n≤Neig is advantageous because the
operators become diagonal and each mode can be studied independently of the others. The decay of the magnetization between the two gradient
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κ ‖g‖ δ b
BTPDE (s) MF (s)

H0.5 H0.2 H0.5 L3 H0.5 L2 H0.2 L3 H0.2 L2

10−3

Laplace eigendecomposition→ 103.218 213.267 249.202 510.955

0.075
5 33 8.636 18.548 0.073 0.392 0.085 0.503
10 267 11.316 23.461 0.075 0.422 0.092 0.548
20 2133 16.508 33.712 0.080 0.463 0.099 0.582

0.374
5 833 17.722 33.819 0.076 0.452 0.089 0.595
10 6666 32.628 62.361 0.080 0.483 0.099 0.628
20 53333 57.327 109.962 0.084 0.519 0.103 0.667

10−5

Laplace eigendecomposition→ 134.275 226.226 275.265 568.945

0.075
5 33 8.702 18.172 0.097 0.490 0.105 0.605
10 267 11.329 23.208 0.098 0.522 0.103 0.636
20 2133 19.702 40.506 0.108 0.586 0.113 0.677

0.374
5 833 18.319 34.362 0.105 0.528 0.113 0.645
10 6666 36.317 70.450 0.113 0.570 0.117 0.669
20 53333 62.384 120.167 0.121 0.624 0.127 0.738

TABLE 3 Computation times for the signal on Ωflat for given diffusion-encoding sequences and gradient amplitudes, averaged over 64 directions.
The units are κ : m/s, ‖g‖ : T/m, δ : ms, b : s/mm2, H : µm3 and L : µm. All the computation times are in seconds. For MF, the Laplace
eigendecomposition is only performed once for each permability coefficient. For κ = 10−3m/s, there are 374 eigenvalues for L = 3µm and 751
for L = 2µm. For κ = 10−5m/s, there are 436 eigenvalues for L = 3µm and 821 eigenvalues for L = 2µm.

pulses of the PGSE sequence is controlled by the Laplace eigenvalues. During the two gradient pulses, the magnetization attenuates according to
the real part of the BT eigenvalues and is phase-shifted according to the complex part. The BT eigenfunctions are more localized than the Laplace
eigenfunctions, which can allow the analysis of the contribution of local regions to the diffusion MRI signal as possible future work. A possible way
to build reduced models of the diffusion MRI signal in the brain white matter would be the inclusion of the most significant BT eigenfunctions for
the type of cylinder geometries we simulated in this paper. The significant BT eigenfunctions would depend on the desired range of axon radii and
on the range of diffusion times and b-values for which the reduced model is expected to be accurate. A library of BT eigenfunctions could be saved
for many axon radii, and for the ECS associated with embedded axons of many radii distributions. This library can be used to build reduced models.

The positive permeability on the interior compartment boundaries resulted in new numerical challenges beyond the impermeable case that we
addressed in our previous work. In this paper, we described how we overcame those challenges. In addition, we showed the effects of the inter-
face permeability coefficient on the magnetization solution, on the Laplace eigenmodes, and on the Bloch-Torrey eigenmodes. The effects of the
compartment boundaries become significant at lower permeabilities for both the Laplace eigenmodes and the BT eigenmodes. We have illustrated
with numerical examples that the magnetization distribution is clearly affected by the exterior boundary as well as the boundaries of the interior
compartments. At higher permeabilities, the diffusion is less restricted in the interior of the domain, and the outer boundary of the domain hin-
ders the magnetization attenuation more than the interior cell boundaries. At lower permeabilities, the interior compartment boundaries hinder
the diffusion strongly, with the smallest compartments impeding the magnetization attenuation the most.

Before our work, Matrix Formalism, as a closed form signal representation, though mathematically elegant, has not been used as a practical way
of computing the diffusion MRI signal in complicated geometries. The calculation of the Laplace eigendecomposition in complicated geometries
that include permeable interfaces using Monte-Carlo based simulations would be essentially impossible due to computational time and memory
limitations. We have shown that, using the FEM, we were able to make the numerical computation of the Matrix Formalism achievable for such
geometries. Our numerical implementation is available in an updated version of the SpinDoctor toolbox.

In this article, we considered compartments with constant diffusion coefficients and the piece-wise constant PGSE sequence. TheMatrix Formalism
representation can also be extended to consider compartment-wise constant diffusion tensors instead of diffusion coefficients, outer boundary
relaxivity, T2-relaxation, and arbitrary magnetic gradient sequences, by using a piecewise constant approximation of the sequence 33. The new
version of SpinDoctor has support for diffusion tensors, outer boundary relaxivity, T2-relaxation, and arbitrary diffusion-encoding sequences,
including sin- and cos-type oscillating gradient spin echo (OGSE) sequences. Future work includes additional simulations using these extensions,
including the non-uniform initial spin density formulation presented in the theory section, and a more systematic study of the contributions to the
diffusion MRI signal from different geometrical length scales by analyzing the significant Laplace and BT eigenmodes at low interface permeability.
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κ δ ∆ b ‖g‖ BTPDE (s)
MF (s)

Neig = 2000 Neig = 3500

10−4

Laplace eigendecomposition→ 29112 40339

5 5

1000 0.409 16838 37 197
3000 0.819 23082 40 211
7000 1.083 26893 43 218
10000 1.295 17214 43 218

10 50

1000 0.055 6747 34 173
3000 0.109 8667 36 188
7000 0.145 9704 37 187
10000 0.173 10492 37 192

10−5

Laplace eigendecomposition→ 20676 39387

5 5

1000 0.409 10028 38 188
3000 0.819 13885 41 203
7000 1.083 15411 41 218
10000 1.295 16602 44 218

10 50

1000 0.055 6783 34 172
3000 0.109 8840 35 188
7000 0.145 9708 38 187
10000 0.173 10515 38 188

TABLE 4 Average computation times per gradient direction for Ωtwist, given in seconds. The Laplace eigendecomposition is only performed once
for each permability coefficient, and is independent of the gradient direction. With Neig ∈ {2000, 3500}, the minimum length scales are L ∈
{3.662µm, 2.901µm} for κ = 10−4m/s and L ∈ {3.754µm, 2.954µm} for κ = 10−5m/s. The units are κ : m/s, δ,∆ : ms, b : s/mm2, and
‖g‖ : T/m.

6 CONCLUSION

We presented a numerical implementation of the Matrix Formalism representation for the diffusion MRI signal in domains that include permeable
interfaces. The Matrix Formalism representation is based on Laplace eigenfunctions, which only need to be computed once per geometry, in
contrast to the alternative method which directly solves the Bloch-Torrey PDE for each diffusion encoding gradient sequence. We described
the computational techniques based on a finite element discretization and showed that our implementation to be accurate for a wide range of
common simulation parameters.We also illustrated the effects of themagnitude of the permeability coefficient on the eigen-decompositions of the
Laplace and the Bloch-Torrey operators. This numerical implementation is available in an updated version of the diffusion MRI simulation toolbox
SpinDoctor.
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