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Abstract
The effect on the MRI signal of water diffusion in biological tissues in the
presence of applied magnetic field gradient pulses can be modelled by a
multiple compartment Bloch–Torrey partial differential equation. We present
a method for the numerical solution of this equation by coupling a standard
Cartesian spatial discretization with an adaptive time discretization. The time
discretization is done using the explicit Runge–Kutta–Chebyshev method,
which is more efficient than the forward Euler time discretization for diffusive-
type problems. We use this approach to simulate the diffusion MRI signal from
the extra-cylindrical compartment in a tissue model of the brain gray matter
consisting of cylindrical and spherical cells and illustrate the effect of cell
membrane permeability.

Keywords: diffusion MRI, Bloch–Torrey PDE, finite difference, simulation

(Some figures may appear in colour only in the online journal)

1. Introduction

Biological tissue is a heterogeneous medium, consisting of cells of various sizes and shapes
distributed in the extra-cellular space. The cells are separated from each other and from the
extra-cellular compartment by the cell membranes. Diffusion magnetic resonance imaging
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(dMRI) is an imaging modality that subjects the tissue to various magnetic field gradients and
gives a measure of the average displacement of water molecules over a time period on the
order of tens of milliseconds.

If the water exchange time between the cells and the extra-cellular space is long compared
to the measured diffusion time, then the cell membranes can be approximated as impermeable
to water passage. In this case, various analytical and semi-analytical expressions have been
obtained for the dMRI signal arising from inside the cells (Crank 1975, Callaghan 1997,
Pfeuffer et al 1998, Sukstanskii and Yablonskiy 2002). To generalize these results to the
complex cellular geometries of biological tissues, geometrical models of the tissue as spherical
and oriented cylindrical cells embedded in extra-cellular space were proposed for the brain
white matter (Assaf and Basser 2005, Sen and Basser 2005) and gray matter (Jespersen et al
2007). The dMRI signal is then decomposed as the sum of the signals from two different
tissue compartments: with the signal from the cylindrical cells being an analytical expression,
and the signal from the spherical cells plus the extra-cellular space being Gaussian with an
effective diffusion tensor.

If the cell membranes are permeable, but not so permeable so that the whole tissue can
be treated as one compartment, the analysis of the dMRI signal becomes more difficult. If
the cells are assumed to be of a special shape: spheres, cubes, or cylinders, and placed on a
periodic lattice, then various approximate analytical formulae have been obtained in the long
diffusion time limit (Latour et al 1994, Hasselman and Johnson 1987, Torquato and Rintoul
1995). In Latour et al (1994), Szafer et al (1995) approximate analytical formulae for the
effective long time diffusion coefficient were applied to the dMRI signal.

Because the analytical results and models of the dMRI signal cited above are subject to
certain assumptions such as long diffusion times, it is important to test the various assumptions
against a richer numerical model of the dMRI signal that makes less stringent assumptions,
as a bridge between analytical models and experimental conditions. Simulation using such
numerical models can give new insights that may lead to more accurate analytical models of
tissue water diffusion in the future, for use in the estimation of tissue parameters from the
experimental signal.

In this paper, we focus on the multiple compartment Bloch–Torrey partial differential
equation (PDE), which is a generalization of the Bloch–Torrey PDE (Torrey 1956) to
heterogeneous diffusion spatial domains. This PDE models the water proton magnetization
subject to diffusion-encoding magnetic field gradient pulses and the dMRI signal is given as
the integral of the solution of the PDE at echo time. The numerical solution of the multiple
compartment Bloch–Torrey has been considered in the past (Hwang et al 2003, Xu et al
2007, Harkins et al 2009, Russell et al 2012). The main difference between our approach
and those in the previous works is that we use an efficient adaptive time-stepping method,
called the Runge–Kutta Chebyshev (RKC) method (Sommeijer et al 1998), that takes time
steps commensurate with the desired accuracy of the time integration at any given point in the
simulation. In the case of moderate desired accuracy, we show that this approach is preferred
to the explicit forward Euler method used previously in Hwang et al (2003), Xu et al (2007),
Harkins et al (2009), Russell et al (2012) where the time step size is limited by numerical
stability.

Finally, we use this numerical method to study a particular model of the dMRI signal in the
brain gray matter given in Jespersen et al (2007), where the neurites are modelled by cylinders.
In particular, we examine two assumptions of this model. The first is that the extra-cylindrical
compartment, which includes the extra-cellular space and non-cylindrical cells such as glial
cells (that we model by spheres), can be considered to undergo Gaussian diffusion. The second
is that the signal contribution from the cylinders can be considered to be in ‘no-exchange’
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with the signal contribution from the extra-cylindrical compartment. We study the validity of
these assumptions by simulating the dMRI signal at different diffusion times and varying the
cell membrane permeabilities.

2. Theory

We model the effect on the MRI signal of the water proton magnetization in a biological tissue
in the presence of magnetic field gradient pulses by a multiple compartment Bloch–Torrey
PDE (Torrey 1956, Price et al 1998). In the most general case, each compartment corresponds
to an individual cell, with an additional compartment being the extra-cellular space (which can
be contiguous or not). We can also group all cells of a certain type into a single compartment.
We denote the compartments by �l, l = 1, 2, 3, . . . , and their associated intrinsic diffusion
coefficients by Dl . If all the compartmental intrinsic diffusion coefficients are equal, then we
will refer unambiguously to the intrinsic diffusion coefficient, and denote it with a superscript
0, as D0, where D0 = Dl, l = 1, 2, . . .

The union of the compartments
⋃

l=1 �l comprises the tissue. Supposing the diffusion-
encoding sequence with the time profile f (t), and the diffusion gradient vector g containing
amplitude and direction information of the linear magnetic field gradient, we use the Bloch–
Torrey PDE model in each compartment: for r ∈ �l , we have

∂Ml(r, t|g)

∂t
= −I f (t)(γ g · r)Ml (r, t|g) + ∇ · (Dl∇Ml(r, t|g)) − Ml(r, t|g)

(T2)l
, (1)

where γ is the gyromagnetic ratio of the water proton, I is the imaginary unit, and (T2)
l gives

the T2 relaxation in �l . The magnetization in the entire sample is defined piecewise by the
Ml’s. The PDE in (1) needs to be supplemented by interface conditions where �l and �n come
in contact. We denote the interface between �l and �n by �ln. One interface condition is the
continuity of flux:

Dl(∇Ml(a, t|g) · nl(a)) = −Dn(∇Mn(a, t|g) · nn(a)), a ∈ �ln, (2)

where nl(a) and nn(a) are the outward-point normals to �l and �n at a, so in fact
nl(a) = −nn(a). This ensures the conservation of magnetization. The second interface
condition is:

Dl(∇Ml(a, t|g) · nl(a)) = κ ln(Ml(a, t|g) − Mn(a, t|g)), a ∈ �ln. (3)

This incorporates a permeability coefficient κ ln across �ln which models the ease with which
water crosses the interface. The larger the κ ln, the easier the passage of water.

For a pulsed-gradient spin echo (PGSE) (Stejskal and Tanner 1965) sequence, made of
two rectangular pulses (duration δ, separated by a time interval � − δ) the profile f (t) is:

f (t) =
⎧⎨
⎩

1, t1 � t � t1 + δ,

−1, t1 + � < t � t1 + � + δ,

0, elsewhere,
(4)

where t1 is the start of the first pulse with t1 +� > T E/2, TE is the echo time when the signal
is measured.

The PDE and interface conditions in (1)–(3) must be supplemented with an initial
condition:

M(r, 0|g) = ρ l, r ∈ �l, for l = 1, 2, . . . , (5)

where ρ l is the water density in �l . The total signal attenuation is:

S(g, t) :=
∑

l

∫
r∈�l Ml(r, t|g) dr∑

l ρ
lV l

, (6)
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where V l is the volume of �l . In the case of a compartment �l that does not exchange water
with the domain outside of �l , if we want to study the contribution to the dMRI signal from
this compartment, we define the partial signal attenuation due to �l :

Sl(g, t) :=
∫

r∈�l Ml(r, t|g) dr

ρ lV l
, (7)

which will be useful to study the contribution to the total signal from the different physical
compartments. The dMRI signal is measured at echo time t = T E � � + δ.

In a homogeneous medium, the signal attenuation is e−D0b, where D0 is the intrinsic
diffusion coefficient, and the b-value is a weighting factor that combines the effects of the
imaging and diffusion gradients (Le Bihan et al 1986) and which is:

b(g, δ,�) = γ 2‖g‖2δ2(� − δ/3) (8)

for the PGSE sequence (Stejskal and Tanner 1965). In biological tissue, the signal attenuation
is not a simple decaying exponential in b and the slope of log S(b) at b = 0 is not simply related
to the intrinsic diffusion coefficients of the physical compartments. Theoretical analysis of the
signal attenuation as a function of the b-value is difficult for general gradient pulses and is
usually done only in the NP limit. Let u(r, t, |r0) be the probability of finding water molecules
originally at r0 (t = 0) in position r at time t, then the signal in the narrow pulse (NP) limit is:

SNP(‖g‖δγ ,�) =
∫

r0∈R3

∫
r∈R3

e−I‖g‖δγ (r−r0 )·ug u(r,�, |r0)dr dr0, (9)

where ug := g/‖g‖ is the normalized gradient direction. We chose the independent variable
in SNP to be ‖g‖δγ because the interior integral over r in (9) is just a one dimensional Fourier
transform, with the Fourier variable being ‖g‖δγ and the spatial variable being (r − r0) · ug,
leading us to the property relating derivatives of the Fourier transform and the moments of the
original function:

I2n d2nSNP

d(‖g‖δγ )2n
(‖g‖δγ ,�) =

∫
r0∈R3

∫
r∈R3

e−Igδγ (r−r0 )((r − r0) · ug)
2nu(r,�|r0)dr dr0.

In a dMRI experiment, the pulse sequence profile f (t) is most often fixed while g is
varied in amplitude, so we can treat � as a constant and use the new independent variable
b = γ 2‖g‖2δ2� to obtain for SNP(b):

dnSNP

d bn
(0,�) = (−1)nn!

(2n)!

1

�n

∫
r0∈R3

∫
r∈R3

((r − r0) · ug)
2nu(r,�|r0)dr dr0. (10)

Thus in the NP limit, the analytical derivatives of S give the moments of the probability density
function u(r, t, |r0), averaged over all starting positions r0. For general pulse sequences, (10)
is not exact.

The first and second analytical derivatives of S can be related to the apparent diffusion
coefficient (ADC) and the apparent Kurtosis (AK) (Chabert et al 2005, Jensen et al 2005,
Frohlich et al 2006) computed in dMRI:

ADC0 = −d log S

db
(0) = −dS

db
(0), (11)

AK0 = 3
d2 log S

db2
(0)

(
d log S

db
(0)

)−2

= 3
d2S

db2
(0)

(
dS

db
(0)

)−2

− 3, (12)

where we denoted the quantities by ADC0 and AK0, respectively, to emphasize that the
analytical derivatives of log S(b) are taken at b = 0. The ADC0 and the AK0 are interesting
because the ADC0 gives an indication of the mean squared distance traveled by water
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molecules, averaged over all the compartments, and AK0 gives an indication of the deviation
from Gaussian diffusion. We computed ADC0 and AK0 by fitting log S(b) at a set of b by
polynomials in a least squares sense. We start with a polynomial of degree 1 (where the second
derivative is set to 0) and increase the polynomial degree until the ADC0 of the polynomial fit
of degree n and the ADC0 the fit of degree n + 1 are within 1 percent (relative error) of each
other and for AK0 we allow five per cent relative error.

3. Method

Our approach solves the multiple compartment Bloch–Torrey PDE in three dimensions by
coupling a standard Cartesian spatial discretization that allows permeable membranes to the
RKC method (Sommeijer et al 1998), which is an adaptive time-stepping method that enforces
a user-specified time integration error tolerance at each spatial discretization point.

3.1. Cartesian spatial discretization

In the spatial discretization, we use a rectangular computational domain C = [0, L] × [0, L] ×
[0, L] that contains a configuration of cells and a Cartesian discretization of C. We use the
same transformation on the Bloch–Torrey PDE as Russell et al (2012), where a change of
variable is made so that the unknown function to be solved becomes

m(r, t|g) := M(r, t|g) eIγ g·r ∫ t
0 f (s)ds. (13)

We include here the interface condition at the intersection of two different compartments
because this was not explicitly described in Russell et al (2012). We denote by {x1, . . . xW } and
{y1, . . . , yW } and {z1, . . . , zW } the discretization points in the x, y, z coordinates, respectively:

xi = ih − h/2, y j = jh − h/2, zk = kh − h/2,

where the h is the side length of one discretization element. The diffusion coefficient at
ri jk ≡ (xi, y j, zk) will be denoted by Di jk. We define g := (gx, gy, gz) and

A := (Ax, Ay, Az) := (gx, gy, gz)γ

∫ t

0
f (s) ds.

The discretization formula for m is:
∂mi jk(t)

∂t
= −mi jk(t)

(T2)i jk
+ 1

h2

×
((

D∗
i+ 1

2 , jk
(e−IAxhmi+1, j,k(t) − mi jk(t)) − D∗

i− 1
2 , jk

(mi jk(t) − eIAxhmi−1, j,k(t))
)

+
(

D∗
i, j+ 1

2 ,k
(e−IAyhmi, j+1,k(t) − mi jk(t)) − D∗

i, j− 1
2 ,k

(mi jk(t) − eIAyhmi, j−1,k(t))
)

+
(

D∗
i j,k+ 1

2
(e−IAzhmi j,k+1(t) − mi jk(t)) − D∗

i j,k− 1
2
(mi jk(t) − eIAzhmi j,k−1(t))

))
.

(14)

If the diffusion coefficient is continuous in x at (xi+ 1
2
, y j, zk), then D∗

i+ 1
2 , jk

= Di jk. Otherwise,
D∗ is given by

D∗
i+ 1

2 , jk
= 1(

1
2

(
1

D(xi+1)
+ 1

D(xi )

) + 1
κ i,i+1h

) . (15)

Similarly in the other coordinate directions.
Same as (Xu et al 2007, Russell et al 2012), we assume the computational domain C is

extended by periodic copies of itself to handle the diffusion of water molecules close to the
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boundary of C. The boundary conditions on m are periodic on the faces of C, as was shown in
Russell et al (2012). The spatial discretization in (14) gives rise to a system of ODEs in time
which we will solve by a time stepping method described in the next section.

3.2. RKC time stepping method

We solve the system of ODEs in (14) using the RKC method (Sommeijer et al 1998). We
briefly describe this method as it applies to the solution of

d{mi jk(t)}
dt

= F(t, {mi jk(t)}),
where F is the discrete Laplacian plus the T2 decay term defined in the right-hand side of
(14). The details of the RKC method can be found in the paper referenced above. To go from
{mi jk}n ≈ {mi jk(tn)} to {mi jk}n+1 ≈ {mi jk(tn+1)}, the following s stages are taken:

Y 0 = {mi jk}n,

Y 1 = Y 0 + μ1τF(tn, {mi jk}n),

Y j = μ jY j−1 + ν jY j−2 + (1 − μ j − ν j)Y 0 + μ̃τF(tn + c j−1τ,Y j−1)

+ γ̃ τF(tn,Y 0), 2 � j � s,

{mi jk}n+1 = Y s,

where τ = (tn+1 − tn) and the coefficients are determined by Chebyshev polynomials.
The two important things to note about the RKC method are that the local time error at

tn+1 can be estimated as:

errn+1 = 1
15 (12({mi jk}n − {mi jk}n+1) + 6τ (F(tn, {mi jk}n) + F(tn+1, {mi jk}n+1))),

and that the time step can be made stable no matter how large it is by increasing the number
of stages s. Specifically, the stability criterion is (Sommeijer et al 1998):

(tn+1 − tn)RKC � �tmax
RKC := 0.653s2

max eig( jacF(t, {mi jk}(t))) ≈ 0.653 s2 h2

6D0
. (16)

Essentially, the RKC method chooses a tn+1 where the error term above is smaller than the
user-specified tolerance and the number of stages s is increased so that tn+1 − tn is a stable
step. Because the time step can be enlarged as O(s2) whereas the computational time only
increases as O(s), this means that the RKC method with larger time steps computes the solution
faster than taking many smaller steps of the forward Euler method. The number of stages s
is typically between 30–50 in the simulations we have performed. In addition, because of the
existence of a 3-term recurrence relation for Chebyshev polynomials. the storage requirement
does not increase with s, it stays constant at five times the number of unknowns.

In contrast, for the forward Euler method, the stability criterion for a spatial discretization
h is

(tn+1 − tn)FE � �tmax
FE := h2

6D0
. (17)

For moderate accuracy requirements, it is usually much more efficient to increase s according
to (16) to get a time step that is appropriate for the desired accuracy than being limited by the
stability condition of (17).

Because it is difficult to judge the computational time which depends on the computer on
which the simulation was performed, we define a quantity called the computational efficiency
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of the RKC method over the forward Euler method, ERKC(tn) at the RKC time point tn, in the
following way:

ERKC(tn) = (tn+1 − tn)/PRKC(tn, tn+1)

�tmax
FE

, (18)

where PRKC(tn, tn+1) is the number of Laplacian evaluations in advancing from tn to the next
tn+1 using the RKC method. The maximum time step of the forward Euler method �tmax

FE is
given in (17). The number of Laplacian evaluations in advancing from t to t + �t using the
forward Euler method is 1. The quantity ERKC(tn) measures how much faster the RKC method
runs compared to the forward Euler method on the interval [tn, tn+1].

4. Numerical results and discussion

We implemented the above method as a Fortran90 program. The implementation of
the RKC method comes from the publicly available Fortran code downloaded from
www.netlib.org/ode/rkc.f. Our simulations were performed on a Dell network server (Intel
Xeon E5-2667 processor 2.90 GHz), running the program as a serial code.

4.1. A dMRI signal model for brain gray matter

In the brain gray matter, neurons, consisting of a large neuronal body and long extensions
(axons and dendrites), are densely packed. There are also glial cells which do not have these
long extensions. The extra-cellular space accounts for only a small fraction of the total volume.
In Jespersen et al (2007), a simplified model of the dMRI signal was proposed:

S(b) = (1 − vc)e−Decb + vcSc(b), (19)

where vc is the volume fraction of all the diffusion compartments exhibiting cylindrical
symmetry and everything outside of these cylindrical compartments is assumed to undergo
Gaussian diffusion with an effective diffusion coefficient Dec, where the superscript ‘ec’ stands
for extra-cylindrical. The term Sc(b) is the signal due to the cylindrical compartments under
the assumption that they are impermeable with respect to the extra-cylindrical compartment.
In the gray matter, where there is no a-priori orientation preference for the neurites (axons and
dendrites), the cylindrical compartments consist of the neurites themselves. We are interested
in simulating the dMRI signal from regions of the brain where the neurites can be thought of
as oriented more or less randomly.

4.2. DMRI signal from the extra-cylindrical compartment

First we study the dMRI signal from the compartment consisting of the extra-cellular space
and the spherical cells. We begin by constructing a geometry consisting of generally oriented
cylinders and spheres. In the computational box C = [−12.5 μm, 12.5 μm]3, we placed
Nc = 250 randomly-placed points (uniformly distributed in C). At each point, we extended
an infinite cylinder of radius Rc oriented in a random direction (drawn uniformly from the
unit sphere) and cut the cylinder off at the boundaries of C. The size of C is chosen for
the simulation of the extra-cylindrical space, where we observed that the effective diffusion
coefficient was no more than 10−3 mm2 s−1, meaning a diffusion distance of 15 μm in 40 ms.
This size ensures that most molecules see C no more than twice during 40 ms. The cylindrical
volume fraction will be denoted vc. We also distribute Ns = 10 randomly-placed spheres of
radius Rs in C and denote the spherical cells volume fraction by vs. The volume fraction of the
extra-cellular space will be denoted ve = 1 − vc − vs. See figure 1(a) for a rendering of the
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(a) (b)

Figure 1. (a) A rendering of the simulation geometry consisting of 250 randomly placed
and oriented cylinders and ten randomly placed spheres (zoomed-in view). (b) A cross
section view of the discretized mesh of the geometry with h = 0.125 μm (zoomed-in
view).

geometry with Rc = 1.25 μm, Rs = 4 μm, ve = 0.15 and vs = 0.15. We discretized C by a
regular mesh with spatial spacing h. See figure 1(b) for a cross section view of the discretized
mesh at h = 0.125 μm.

At the start of the simulation, we placed water molecules uniformly in the spherical
cells and the extra-cellular space and placed no water molecules inside the cylinders.
We made the cylindrical cells impermeable so that the water molecules are blocked from
entering the cylinders during the simulation. We varied the spherical cell permeability: κs =
0 m s−1(impermeable), 10−5 m s−1, 10−4 m s−1,∞(infinitely permeable), and we computed
the ADC0 and AK0 from b-values: 0, 250, 500, 750, 1000, 1250, 1500, 1750, 2000 s mm−2.
The RKC tolerance was set to tol = 10−4, after doing a preliminary simulation for free
diffusion where we saw that the relative signal error was less than 0.005 at b = 2000 s mm−2,
which is sufficiently accurate for the dMRI application where there is significant experimental
noise in the measured signal.

We chose a constant intrinsic diffusion coefficient D0 = 3×10−3 mm2 s−1 in the cells and
the extra-cellular space and neglected the T2 relaxation term. The diffusion-encoding gradient
sequence simulated was PGSE, δ = 2.5 ms and we varied � = 10 ms, 20 ms, 30 ms, 40 ms.
We simulated the dMRI signal on two meshes with h = 0.25 μm and h = 0.125 μm.

We examine the results for the mesh with h = 0.125 μm (marked by stars). In figure 2,
we see that at κs = 0 m s−1 (solid line) and κs = 10−5 m s−1 (dash-dots), the ADC0 decreases
from 0.4×10−3 mm2 s−1 to 0.2×10−3 mm2 s−1 as the diffusion time is increased from 10 ms
to 40 ms, while the AK0 goes from 1.8 to 2.7 for κs = 10−5 m s−1 and from 2 to 3.5 for
κs = 0 m s−1. At κs = 10−4 m s−1 (dashes), the ADC0 decreases from 0.55 × 10−3 mm2 s−1

to 0.45 × 10−3 mm2 s−1, while the AK0 stays around 1.2. At κs = ∞ m s−1 (dots), the ADC0

decreases from 1.05 × 10−3 mm2 s−1 to 0.85 × 10−3 mm2 s−1, while the AK0 stays around
0.6. Thus we see that the AK0 is quite high between 10 ms and 40 ms for the different values
of the spherical cells permeability. Because the AK0 is so high at finite permeability, this set
of simulations put to question the assumption that the extra-cellular space and the spherical
cells can be considered as one physical compartment experiencing Gaussian diffusion at the
above diffusion times when the b-values are as high as 2000 s mm−2 .

From the same figure, we also see that when we use a coarser mesh with h = 0.25 μm
(marked by circles), the values of ADC0 and AK0 are slightly shifted, with the ADC0 being
lower at the coarser discretization, which is easily explained by the cylinders having more
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(a) (b)

Figure 2. In the extra-cylindrical compartment comprising the spherical cells (vs =
0.15) and the extra-cellular space (ve = 0.15) and where the water molecules are
stopped from entering the cylindrical cells, the ADC0 and the AK0 are computed for the
signal arising only from this compartment. Four values of spherical cell permeability:
κ s = 0 m s−1 (solid line), κ = 1 × 10−5 m s−1 (dash-dots), κ = 1 × 10−4 m s−1

(dashes), κ = ∞ m s−1 (dots), were simulated on two meshes with spatial discretization
h = 0.25 μm (circles) and h = 0.125 μm (stars). (a) ADC0. (b) AK0.

(a) (b) (c)

Figure 3. Fixing the positions of the cylinders and spheres as in figure 2 and setting
κ s = 0 to study the ADC0 of the spherical cells and the extra-cellular space separately
as Rc and Rs are varied. Legend: circles: Rc = 1 μm, Rs = 4 μm (ve = 0.28,
vs = 0.15); crosses: Rc = 1 μm, Rs = 5 μm (ve = 0.25, vs = 0.25); stars:
Rc = 1.25 μm, Rs = 4 μm (ve = 0.15, vs = 0.15). (a) ADC0(EX + SPH).
(b) ADC0(EX). (c) ADC0(SPH).

‘jagged’ surfaces. However, the behaviour of the ADC0 and AK0 as a function of κs and
diffusion time is consistent with the results from the finer mesh.

To study the effect of Rc and Rs on the dMRI signal, we set κs = 0 and computed
the ADC0 and AK0 in the extra-cellular and the spherical compartments separately. Making
κs = 0 means we do not have to account for the exchange between them and can focus on the
shape of the compartments. We fixed the positions of the cylinders and spheres as the previous
example and simulated three cases:

(i) Rc = 1 μm, Rs = 4 μm, ve = 0.28, vs = 0.15 (circles in figure 3),

(ii) Rc = 1 μm, Rs = 5 μm, ve = 0.25, vs = 0.25 (crosses in figure 3),

(iii) Rc = 1.25 μm, Rs = 4 μm, ve = 0.15, vs = 0.15 (stars in figure 3).
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(a) (b) (c)

Figure 4. (a) Efficiency of RKC over the forward Euler time stepping method for
two discretizations of the extra-cylindrical compartment whose results are shown in
figure 2. The efficiency of the RKC method is how much faster the RKC method
runs than the forward Euler method during the course of simulation (=ERKC defined
in (18)). (b) and (c) Study of numerical error associated with slanted cylinders when
using a Cartesian discretization mesh. DMRI signals were computed by putting water
molecules only inside a single impermeable cylinder oriented 45◦ with respect to the
diffusion gradient direction. ‘x-dir’: cylinder oriented parallel to [1 0 0]. ‘x–y-directions’:
cylinder oriented parallel to [1,1,0]. (b) For both cylinder orientations, the log S(b) are
straight lines in b, but with slightly differing slopes. The theoretical value of ADC0

should be ADCcyl
0 = D0/2 = 1.5×10−3 mm2 s−1. (c) ADC0 relative error in per cent =

(ADC0 − ADCcyl
0 )/ADCcyl

0 × 100 for ‘x–y-directions’ cylinders at � = 10 ms. The line
connecting the four data points is the linear fit of the logarithm of h to the logarithm of
the ADC0 error.

In figure 3 we show the ADC0 of the extra-cellular compartment (EX), the spheres
compartment (SPH), and the combined extra-cylindrical compartment (EX + SPH). We see
that it is the extra-cellular space that dominates the ADC0 of the combined compartment
in the range of diffusion times 10–40 ms. When the spheres are larger, even though the
diffusion inside of the spheres is more significant, it does not compensate for the decreased
diffusion in the extra-cellular space. Thus, to study the cell features beyond the extra-
cellular space, one must look beyond the ADC0 and to information contained in the higher
b-values.

4.3. Performance of the numerical method

We show the efficiency of the RKC time-stepping method over the forward Euler method for the
example shown in figure 2 for the PGSE sequence, δ = 5 ms,� = 40 ms, at b = 1000 s mm−2,
using the two spatial meshes: h = 0.25 μm and h = 0.125 μm. The efficiency at a RKC time
step [tn, tn+1] is defined as the ratio of the number of Laplacian evaluations needed by the RKC
method to advance the solution from tn to tn+1 to the number of Laplacian evaluations required
by the forward Euler method to advance from tn to tn+1. We see in figure 4(a) that during the time
the gradient is turned off: 2.5 ms � t � 40 ms, the efficiency of the RKC method varies from 1
to 90, meaning, as a rough estimate, the RKC method is about 45 times faster than the forward
Euler method during the full simulation. When h = 0.125 μm, efficiency of the RKC method
varies from 1 to 40, meaning a rough estimate that RKC is 20 times faster than the forward
Euler method during the full simulation. The reason for the difference is that on a coarse spatial
mesh, the solution error cannot be reduced by time refinement. In this case, RKC takes very
large time steps, with a large number of stages. When h is smaller, then the time discretization
error can be made lower by making the time steps smaller. In this case, RKC takes small time
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steps. Reassuringly, we see that RKC takes small steps when the gradient suddenly changes
value: at t = 0, 2.5 ms and t = 40 ms, because the time refinement is needed there. Thus, we
see that in general the RKC method is much faster than the forward Euler method for diffusion
problems where the time accuracy requirement is much less restrictive than the numerical
stability requirement for forward Euler. Also, the RKC time steps are completely adapted to
the problem to be solved, refining where the gradient suddenly changes. The computational
time on the mesh h = 0.25 μm (1003 unknowns) is around 2 min per b-value and it is 30 min
per I-value on the mesh h = 0.125 μm (2003 unknowns) on a Dell network server (Intel Xeon
E5-2667 processor 2.90 GHz), while running the program as a serial code.

To simulate the total tissue with cylindrical cells in water exchange with the extra-
cylindrical compartment, it would be indispensable to create a geometry of densely packed
thin cylinders, where the cylinders do not cross each other. We were not able to define such
a geometry because straight cylinders cross each other at many places if there are a lot of
them in a small volume. This problem of defining non-crossing cylinders was not important
in the previous section where we simulated the diffusion in the extra-cylindrical compartment
because we only needed the space outside of the cylinders. However, this problem prevents
us from simulating the complete problem of diffusion in a tissue model containing densely
packed, randomly oriented, permeable cylindrical cells.

Instead, here we simply study the discretization errors associated with the ‘jagged surface’
of a slanted cylinder due to a Cartesian mesh when simulating diffusion inside this cylinder.
This may be useful in the future when the problem of non-crossing cylinders placement has
been solved and the simulation of the full tissue model can be done. For a thin straight
impermeable cylinder oriented along the direction o, the dMRI signal due to water diffusion
inside the cylinder is approximately e−(D0 cos2 α)b, where cos α = g · o/(‖g‖‖o‖), making the
theoretical ADCcyl

0 = D0 cos2 α, AKcyl
0 = 0.

We simulated the PGSE sequence: δ = 2.5 ms, � = 10 ms. The intrinsic diffusion
coefficient was set to D0 = 3 × 10−3 mm2 s−1 inside the impermeable cylinder. First we
placed a straight cylinder of length 50 μm and radius Rc = 1 μm oriented parallel to the x-axis
(o = [1, 0, 0]) and set the gradient direction to be 45◦ from the x-axis: g/‖g‖ = [1, 1, 0]/

√
2,

making α = π/4 and ADCcyl
0 = D0/2 = 1.5 × 10−3 mm2 s−1. We placed water molecules in

the centre of the cylinder, covering 4 μm along the length of the cylinder. The computation
box is C = [−25, 25] μm × [−2, 2] μm × [−2, 2] μm and the mesh has spatial discretization
h = 0.25 μm. Next, we rotated the cylinder to o = [1, 1, 0]/

√
2 and now measured the

diffusion in the direction g/‖g‖ = [1, 0, 0]. The theoretical ADCcyl
0 is the same. We use the

computation box C = [−25, 25] μm × [−25, 25] μm × [−2, 2] μm and three meshes with
spatial discretizations h = 0.25, h = 0.125, h = 0.0625 μm. We see in in figure 4(b) that
the log S(b) curves are straight lines in b for all the configurations but their slopes differ.
This is numerical error associated with the Cartesian discretization of the slanted cylinder
so we conducted a convergence study of the ADC0 of the ‘x–y-directions’ cylinders at four
discretization steps: h = 0.25, 0.125, 0.0625, 0.0315 μm, using the computational domain
C = [−25, 25] μm × [−25, 25] μm × [−h/2, h/2] μm. We computed the ADC0 from two
b-values: ADC0 = −(log S(250)− log S(0))/250. We see in figure 4(c) that ADC0 converges
to the exact value ADCcyl

0 with first order in h.

4.4. Effects of cylindrical cells permeability

If all the cylinders are thin and straight with their orientations uniformly distributed in a sphere,
and are impermeable (as supposed in the model of Jespersen et al (2007)), then it is easy to
show that:

451



Phys. Med. Biol. 59 (2014) 441 J-R Li et al

Sc(b) ≈
∫ π

φ=0

∫ 2π

θ=0 e−D0 cos φ2b sin φ dθ dφ

4π
, log Sc(b) = −D0

3
b + 2

45
(D0)2b2,

ADCcyl
0 = D0

3
, AKcyl

0 = 12

5
.

Now, we use an indirect calculation to show that if the cylindrical cells are permeable and the
permeable signal is fitted to the no-exchange model of (19), then a first order effect on vc is
that vc would be under-estimated, a simulation result that supports the finding of Jespersen
et al (2010), in the case where the cylinders model dendrites (which are permeable to water).
We do this indirectly because of we were not able to do a direct simulation of densely
packed randomly oriented non-crossing cylinders embedded in the extra-cellular space,
due to the difficult of defining the positions of the non-crossing cylinders, as explained
previously.

We suppose that, in the absence of cylindrical cell permeability, the signal is given by
(19). We note here that, of course, we have shown in the previous section that the Gaussian
diffusion assumption in the extra-cylindrical compartment may not be accurate, but in this
section we will just assume the Gaussian diffusion because we want to isolate the effect of the
no-exchange assumption.

At relatively low b-values, we can use the following simple approximation of Sc(b):

Sc(b) = e−ADCcyl
0 b+ 1

6

(
ADCcyl

0

)2
AKcyl

0 b2

. (20)

We use (20) rather than the more complicated analytical representation in Jespersen et al (2007)
because we just want to calculate a leading order change in the estimated vc. Thus, it is sufficient
to just use two terms in the b-value to approximate Sc(b). We fix ADCcyl

0 = 1.0×10−3 mm2 s−1

and AKcyl
0 = 12/5 to be the values that we analytically computed above for straight cylinders

with orientations that are uniformly distributed on the unit sphere, where we supposed that the
intrinsic D0 = 3.0 × 10−3 mm2 s−1. In addition, we assume the true volume fraction of the
cylindrical cells to be vc = 0.7 and the effective diffusivity of the combined compartment of
the spherical cells and the extra-cellular space to be Dec = 0.3 × 10−3 mm2 s−1, as simulated
for vs = 0.15, ve = 0.15 previously (see figure 2), where we chose the value associated with
the κs = 10−5 m s−1 and � = 40 ms.

Given vc, Dec, ADCcyl
0 , AKcyl

0 defined above, we can now compute the ADC0 and AK0 of
the no-exchange model:

ADC0 = (1 − vc)Dec + vcADCcyl
0 , (21)

AK0 = 3(1 − vc)(Dec)2 + 3vc
(
ADCcyl

0

)2 + vc
(
ADCcyl

0

)2
AKcyl

0 − 3(ADC0)
2

(ADC0)2
. (22)

Then we create a permeable signal by arguing that at relatively low (but non-negligible)
cylindrical cells permeability, the ADC0 should remain unchanged, while the AK0 should
decrease. Thus, we ask the question, if one lowers the AK0 of the no-exchange model to
AK0(1 − ε) to account for cylindrical cells permeability while keeping the ADC0 the same,
what happens to the estimated vc and Dec if we fix ADCcyl

0 and AKcyl
0 at their original

values? We note here that of course, it is not possible to write down the complete permeable
signal just from knowing the impermeable signal and the permeability coefficient κ . What we
assume about the permeable signal is just that the ADC0 stays the same with respect to the
impermeable signal and the AK0 is decreased by a certain amount compared to the impermeable
signal.

We set the two expressions in (21) and (22) equal to ˜ADC0 = ADC0 and ÃK0 =
AK0(1 − ε), and solve for the ṽc and D̃ec associated with the permeable signal, while keeping

452



Phys. Med. Biol. 59 (2014) 441 J-R Li et al

(a) (b)

Figure 5. The results of fitting ˜ADC0 = ADC0 and ÃK0 = AK0(1 − ε) of a permeable
signal to the no-exchange model in (19), (20). As ε, the percentage reduction of AK0,
increases, ṽc is more and more under-estimated compared to its true value of 0.7 and D̃ec

is more and more over-estimated compared to its true value of Dec = 0.3×10−3 mm2 s−1.
(a) Estimated vc. (b) Estimated Dec.

the original ADCcyl
0 and AKcyl

0 . We show the results in figure 5 for ε from 0 to 50 per cent.
We see that ṽc is under-estimated compared to its true value of 0.7 as ε increases. We also
see that D̃ec is over-estimated compared to its true value of Dec = 0.3 × 10−3 mm2 s−1. This
is a simple analysis of one factor that may contribute to the under-estimation of vc due to
permeable cylindrical cells observed in Jespersen et al (2010). There of course may also be
other contributing factors that we did not account for in this analysis.

5. Conclusions

We presented a method for the numerical solution of the multiple compartments Bloch–Torrey
partial differential equation by coupling a standard Cartesian spatial discretization with an
adaptive time discretization using the explicit Runge–Kutta–Chebyshev method and showed
that it is more efficient than the forward Euler time discretization. This method can be easily
implemented on multiple processors to shorten the computational time because all interactions
between the unknowns are local and it suffices to divide the computational domain into sub-
domains that are loaded on the different processors.

We used this method to simulate the extra-cylindrical compartment dMRI signal in a tissue
model of the brain gray matter consisting of cylindrical cells, spherical cells, and the extra-
cellular space, and noted that the signal contribution from the extra-cylindrical compartment
may not be Gaussian at some relevant dMRI diffusion times. We also computed that, as a
first order effect, neglecting cylindrical cells permeability would result in an under-estimation
of the cylindrical cells volume fraction if using a no-exchange model of the diffusion signal
attenuation.
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