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a b s t r a c t

We consider a wave equation with fractional-order dissipative terms modeling visco-
thermal losses on the lateral walls of a duct, namely theWebster–Lokshin model. Diffusive
representations of fractional derivatives are used, first to prove existence and uniqueness
results, then to design a numerical scheme which avoids the storage of the entire history
of past data. Two schemes are proposed depending on the choice of a quadrature rule in
the Laplace domain. The first one mimics the continuous energy balance but suffers from
a loss of accuracy in long time simulation. The second one provides uniform control of the
accuracy. However, even though the latter is more efficient and numerically stable under
the standard CFL condition, no discrete energy balance has been yet found for it. Numerical
results of comparisons with a closed-form solution are provided.

© 2009 Elsevier B.V. All rights reserved.

0. Introduction

TheWebster–Lokshin system is a dissipative model that describes acoustic waves traveling in a duct with visco-thermal
losses at the lateral walls. This system couples a wave equation with spatially-varying coefficients with absorbing terms
involving fractional-order integrals and derivatives. The main goal of this article is to propose an efficient numerical
discretization of this type of model that, in particular, would avoid storing the solution from all the past time steps, because
that would be too computationally penalizing in long time simulations.
Our approach is based on the so-called diffusive representations of the fractional integral where, roughly speaking, the

fractional-order time kernel in the integral is represented by its Laplace transform. This allows for efficient time domain
discretization because the value of the integral at each time step can be updated from the value at the previous time step
by operations which are local in time (contrary to a naive discretization of the fractional integral where global-in-time
operations are required). However, these representations require the evaluation of an integral over the Laplace variable
domain. We propose and analyze two schemes based on the choice of the quadrature rule associated with this integral.
The first one is inspired by the continuous stability analysis of the initial boundary value problem associated with the

coupled system: a wave equation with a diffusive representation. The scheme is constructed so that it preserves the energy
balance at the discrete level. This is done, however, at the expense of a loss of accuracy with the simulation time.
The second approach is numerically more efficient and provides uniform control of the accuracy with respect to the

simulation time. The idea of this approach is inspired by the work in [1] and follows the detailed development in [2]: the
convolution integral is split into a local part and a historical part, where for the latter one can exploit the exponential decay
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of the Laplace kernels to choose quadrature rules that provide uniform error bounds in time. Essentially, the number of
quadrature points in the Laplace domain is O(− log(∆t))where∆t denotes the time step. Thus, ifM is the number of time
steps, the numerical schemewe propose requires O(M log(M))work and O(log(M))memory, compared to O(M2)work and
O(M) memory of a naive discretization. We note that even though the second scheme is more efficient and seems to be
numerically stable under the standard CFL condition, no discrete energy balance has been yet found for it. Note that, for half
order derivative, an error of O(h2 +∆t3/2) has been observed.
The paper is organized as follows. In Section 1, the model is briefly presented. We recall in Section 2 diffusive

representations and obtain a semi-group formulation. In Section 3 the first numerical scheme is presented and the stability
via the energy method is proved. In Section 4, an optimized quadrature is introduced in order to compute fractional
derivatives with an a priori error estimate. The latter is used on themodel in Section 1 to design a second numerical scheme,
then we present numerical results showing the performance of the schemes.

1. Model under study

We focus on the one-dimensional Webster–Lokshin model in a simplified form

∂2t w + a(z)∂
2−β
t w + b(z)∂tw −

1
r2(z)

∂z(r2(z)∂zw) = 0, (1)

for t > 0 and z ∈ [0, 1], where β ∈ (0, 1), r, a, b ∈ L∞([0, 1];R+); the radius of the duct satisfies r ≥ r0 > 0. The
Riemann–Liouville fractional integral operator ∂−βt is defined by

(∂
−β
t f )(t) :=

1
Γ (β)

∫ t

0

f (τ )
(t − τ)1−β

dτ . (2)

Working with (p, v) := (∂tw,−r2(z)∂zw) leads to the first order system:

∂tp = −r−2∂zv − bp− a∂
−β
t (∂tp), (3)

∂tv = −r2∂zp, (4)

which we supplement with the boundary conditions:

p0(t) := p(z = 0, t) = u(t), (5)
v1(t) := v(z = 1, t) = 0. (6)

We assume initial values and are interested in the relation between input u(t) = p(z = 0, t) and output y(t) = p(z = 1, t).
More general models allow for a c(z)∂1−β

′

t w term in (1), as well as boundary conditions of the impedance type instead
of (5)–(6), both at z = 0 and z = 1. The additional term can be treated in a similar manner as ∂2−βt w.

2. Diffusive representation, semi-group formulation and well-posedness

This section recalls first known results on diffusive representations (we refer to [3] and [4, Section 5] for the treatment
of completely monotone kernels, and [5] for links between diffusive representations and fractional integral and differential
operators). We then present their application to our model problem and some theoretical results on the well-posedness of
the obtained coupled system (proofs of these results are available in [6]).

2.1. Diffusive representations

The main idea is the representation of the convolution kernel as an integral of a family of decaying exponentials with
respect to a positive measure. In other words, we utilize the following identity:

1
Γ (β)

1
(t − τ)1−β

= Gβ

∫
∞

0
e−ξ(t−τ)ξ−βdξ, (7)

where Gβ := 1
Γ (β)Γ (1−β) =

sinβπ
π
, which in essence states that the convolution kernel in (2) is the Laplace transform of

Gβξ−β .
One can easily check that the dynamical system with input f ∈ L2([0, T ]) and output θ [β](f ) ∈ L2([0, T ]):

∂tϕ(ξ, t) = −ξϕ(ξ, t)+ f (t), ∀ξ ∈ R+, (8)

θ [β](f )(t) = Gβ
∫
∞

0 ϕ(ξ, t)ξ−βdξ, (9)

given ϕ(ξ, 0) = 0, provides a (diffusive) representation of the fractional integral ∂−βt ; in other words, (8) and (9) realizes
the input–output relation θ [β](f ) = ∂−βt f . It is clear that the state ϕ is such that Eϕ :=

Gβ
2

∫
∞

0 |ϕ|
2ξ−βdξ <∞.
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Similarly, if f ∈ H1([0, T ]), the same dynamical system (8) with output:

θ̃ [1−β](f )(t) := Gβ

∫
∞

0
[f (t)− ξϕ(ξ, t)] ξ−βdξ, (10)

given ϕ(ξ, 0) = 0, provides a diffusive representation of the fractional derivative ∂1−βt . Here, the state ϕ is such that
Ẽϕ :=

Gβ
2

∫
∞

0 |ϕ|
2ξβdξ . Note that one has

∂
1−β
t f = θ̃ [1−β](f ) = θ [β](∂t f ). (11)

2.2. Rewriting the model as a coupled system

Using (8)–(10), the global system (3)–(6) can be put in the abstract form of a boundary control system (see e.g. [7]):
∂tX +AX = 0 andBX = u, with X = (p, v, ϕ)T. The key point to the theoretical analysis of this boundary control system
is the following energy balance:

d
dt

(
1
2

∫ 1

0
|p(z, t)|2r2(z)dz +

1
2

∫ 1

0
|v(z, t)|2r−2(z)dz +

∫ 1

0
a(z )̃Eϕ(z, t)r2(z)dz

)
= −

∫ 1

0
‖p− ξϕ‖2Hβ a(z)r

2(z)dz −
∫ 1

0
|p|2b(z)r2(z)dz + v(z = 0, t)u(t), (12)

with Hβ defined in the Appendix. The natural energy space is the following Hilbert space:

H = L2p × L
2
v × L

2(0, 1; H̃β; ar2dz). (13)
Then, the operatorA ismaximalmonotone, and for the uncontrolled problem,weget the following result (see theAppendix).

Theorem 2.1. ∀X0 ∈ D(A), ∃!X(t) ∈ C1([0,+∞[;H)
⋂
C0([0,+∞[;D(A)) such that ∂tX + AX = 0 on [0,+∞[, and

X(0) = X0.

Taking the control u into account, one can get the same regularity for the strong solutions under the hypothesis
u ∈ C0([0, T ]). In the case u ∈ L2(0, T ) and X0 ∈ H , only weak solutions can be found.

3. A stable numerical scheme

Let ∆t and h = 1/N be, respectively, the time and spatial step sizes, N is the number of discretization points of [0, 1].
We set zi = ih, zi+ 12 = (i+

1
2 )h and denote

pni ≈ p(ih, n∆t); v
n+ 12
i+ 12
≈ v

((
i+
1
2

)
h, (n+

1
2
)∆t

)
; θ̃ni ≈ θ̃ (ih, n∆t).

Then a second order centered explicit scheme associated with (3) and (4) can be written as

pn+1i − p
n
i

∆t
= −

1
r2(zi)

v
n+ 12
i+ 12
− v

n+ 12
i− 12

h
− b(zi)

pn+1i + p
n
i

2
− a(zi)(∂

1−β
t pi)n+

1
2 , (14)

for n > 0 and 0 < i ≤ N and

v
n+ 12
i+ 12
− v

n− 12
i+ 12

∆t
= −r2

(
zi+ 12

) pni+1 − pni
h

, (15)

where (∂1−βt pi)n+
1
2 is an approximation of (∂1−βt pi) at t = (n + 1

2 )∆t . Motivated by the energy balance of the continuous
model (12), we choose here to use the identity, ∂1−β(pi) = θ̃ [1−β](pi) and set

(∂
1−β
t pi)n+

1
2 =

(
θ̃n+1i + θ̃ni

)
/2,

where θ̃ni is an approximation of θ̃
[1−β](pi)(n∆t). This approximation requires the evaluation of the integral in (10). Let

(ξj, ρj(β))1≤j≤Nξ some quadrature rule associated with the evaluation of Gβ
∫
∞

0 h(ξ)ξ
−βdξ . Then we set

θ̃ni =

Nξ∑
j=1

ρj(β)(pni − ξjϕ
n
i,j), (16)

where ϕni,j ≈ ϕ(ξj, zi, n∆t) satisfies

ϕn+1i,j = e
−ξj∆tϕni,j +

1− e−ξj∆t

ξj

pn+1i + p
n
i

2
, (17)
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which has been derived from the expression ϕ(ξ, z, t) =
∫ t
0 e
−ξ(t−s)p(z, s)ds by exact integration of the right hand side

between n∆t and (n+ 1)∆t .
Based on Bode diagrams for fractional integrals, a possible and commonly used choice of the nodes ξj is a geometric

grid of the ξ axis defined by a lower bound ξm, an upper bound ξM , and the number of points Nξ ; in this case, we define

ξj =
(
ξM
ξm

) j−1
Nξ−1 ξm ,; j = 1, . . . ,Nξ . The weights ρj(β) are obtained for instance by applying the trapezoidal rule. Choosing

Nξ , together with ξm and ξM is indeed an issue, which has been studied in e.g. [8].
The following stability lemma holds for any choice of quadrature of the form (16)with positive quadratureweights ρj(β).

Let γ = max
{
r(zi+ 12 )/r(zi+1), r(zi+ 12 )/r(zi), i = 1, . . . ,N − 1

}
then we have:

Lemma 3.1. The scheme defined by (14)–(17) is L2-stable under the CFL condition: γ∆t < h.

Proof. Without loss of generality we shall consider the case of b = 0 and study the scheme with p0 = 0, i.e. with no input.
Let us introduce a so-called discrete wave energy associated with our scheme as defined by

En =
h
2

N−1∑
i=0

∣∣r(zi)pni ∣∣2 + 1

r
(
zi+ 12

)2 vn+ 12i+ 12
v
n− 12
i+ 12

+ h
4

∣∣r(zN)pnN ∣∣2 . (18)

Then using (15), it is easy to see that there exists a constant C > 0, independent of n, such that

En ≥ C
N∑
i=1

∣∣r(zi)pni ∣∣2 + ∣∣∣∣(vn+ 12i− 12
+ v

n− 12
i− 12

)/
2r
(
zi− 12

)∣∣∣∣2 .
It is then sufficient to prove that En remains bounded with respect to n. Denoting ωj :=

ξj∆t
2
1+e−ξj∆t

1−e−ξj∆t
, let us introduce now

Ẽnϕ :=
1
2

Nξ∑
j=1

ρj(β)ωjξj

(
N−1∑
i=1

a(zi)|ϕni,j|
2
+
1
2
a(zN)|ϕnN,j|

2

)
(19)

as the energy associated with the derivative term ∂1−βt . After some careful manipulations, see [6, ch. 3], one obtains the
following balance:

En+1 − En

∆t
= −v

n+ 12
N p

n+ 12
N −

Ẽn+1ϕ − Ẽnϕ
∆t

−

Nξ∑
j=1

ρj(β)ω
2
j

(
N−1∑
i=1

a(zi)
∣∣∣∣ϕ̇n+ 12i,j

∣∣∣∣2 + 12a(zN)
∣∣∣∣ϕ̇n+ 12N,j

∣∣∣∣2
)
, (20)

with the short-hand notation ϕ̇
n+ 12
i,j :=

ϕn+1i,j −ϕ
n
i,j

∆t . Therefore, the total energy En := En + Ẽnϕ, is non-increasing with n. Hence
En remains uniformly bounded with respect to n and the L2 stability is proved under the CFL γ∆t < h. �

In summary, mimicking the energy balances of the continuous model, a numerical scheme has been designed, which
proves to be stable under a standard CFL condition. One drawback of this scheme is that no error bounds are provided with
respect to quadrature rules of the form (16), which makes it difficult to use. The following section is dedicated to the design
of efficient and accurate computation of (9) or (10) independently from stability analysis of the coupled scheme.

4. Optimized weights for diffusive representations

We follow, with slight modifications, the approach of [1] where the special case β = 1
2 was considered. Detailed

exposition of this approach appears in [2].
Due to the fact that as τ approaches t , the support of e−ξ(t−τ) becomes infinite, we write θ [β](f )(t) as the sum of a local

(in time) part:

θ [β,loc](f )(t) =
1

Γ (β)

∫ t

t−∆t

1
(t − τ)1−β

f (τ )dτ , (21)

and a historical part:

θ [β,hist](f )(t) = Gβ

∫
∞

0

∫ t−∆t

0
e−ξ(t−τ)ξ−β f (τ )dτdξ . (22)
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We use for θ [β,loc](f )(t) the approximation :

θ [β,loc](f )(t) ≈
1

Γ (β)
f
(
t −

∆t
2

)
∆tβ

β
, (23)

and build a quadrature in ξ for∫
∞

0
e−ξ(t−τ)ξ−βdξ ≈

M∑
j=1

e−ξj(t−τ)ξ−βj wj, (24)

where thewj’s are theweights of the quadrature rule, whichwill be accurate for all τ ∈ [0, t−∆t]. Removing the integrable
singularity ξ−β at the origin will make the design of the quadrature simpler, so we make the change of variables, γ = 1

1−β ,

η = ξ
1
γ , to obtain∫
∞

0
e−ξ(t−τ)ξ−βdξ =

∫
∞

0
γ e−(η

γ (t−τ))dη.

In essence, we will construct a quadrature with an error tolerance of ε:∣∣∣∣∣
∫
∞

0
e−(η

γ τ)dη −
L∆t,ε∑
j=1

e−[(η
∆t,ε
j )γ τ ]

w
∆t,ε
j ,

∣∣∣∣∣ ≤ ε, (25)

valid for all τ ∈ [∆t, tf ], wherewe have used the superscripts∆t and ε to indicate that the position, weight, and the number
of quadrature nodes are dependent on these quantities.
First, we reduce the domain of integration to a finite interval. From the relation∫

∞

ηf

e−η
γ τdη ≤

e−(ηf
γ∆t)Γ ( 1

γ
)

γ∆t(
1
γ )

we find that choosing ηf =

(
− log γ ε/3∆t

l
Γ (l)

∆t

)l
, l = 1

γ
= 1− β , ensures that

∣∣∣∣∫ ∞
0
e−η

γ τdη −
∫ ηf

0
e−η

γ τdη
∣∣∣∣ ≤ ε

3
. (26)

The parameter τ varies from ∆t to tf and we need to construct a single quadrature which accurately approximates the
integral for this one-parameter family of integrands. Over any fixed subinterval in [a, b], the integrand e−η

γ τ varies from
identically 1 to identically 0. A quadrature must approximate accurately this range of behavior. It is not difficult to see that

the region of the most rapid range in the integrand e−η
γ τ occurs at the inflection point, ηi =

(
γ−1
γ τ

) 1
γ
.

To capture the clustering of support of the integrands toward η = 0 as τ becomes larger, we follow the development in
[1] and use Gauss–Legendre quadrature points on dyadic intervals.
On a dyadic interval [a, b], we choose the smallest order Gauss–Legendre quadrature which accurately computes the

integral to a tolerance ε
3(b−a) . In other words, we choose the smallest L

a such that given the Gauss–Legendre quadrature on
[a, b], ηa1, . . . , η

a
La ,w

a
j , . . . , w

a
La , of order L

a, the following is satisfied:∣∣∣∣∣
∫ b

a
e−η

γ τdη −
La∑
j=1

e−(η
a
j )
γ τ
waj ,

∣∣∣∣∣ ≤ ε

3(b− a)
(27)

for all τ ∈ [τmin, τmax], where τmin and τmax are chosen by solving the following equations:

e−a
γ τmax = q,

e−b
γ τmin = 1− q.

The number q is a small factor to indicate that the support of τ > τmax is mostly outside of [a, b] and that for τ < τmin the
integrand is almost identically 1. Hence, the only relevant τ for which the tolerance in (27) needs to be tested is between
τmin and τmax. The number of quadrature points needed on [a, b] is determined numerically by testing (27) for a range of
values of τ in [τmin, τmax].
If a tf is chosen, then we solve for the largest amin of the form amin = 2jmin satisfying

e−a
γ
mintf ≤ q, (28)

i.e., e−η
γ tf is negligible outside of [0, amin], and we treat the interval [0, amin] like explained for the interval [a, b], by

numerically satisfying (27). But the number τmax is now simply tf . Clearly, if amin ≤ ε
3 this interval can be neglected. Thus, if
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Table 1
Number of quadrature nodes L∆t,ε for β = 1

2 . The first number is L
∆t,ε for tf = 10, the second (in parenthesis) is L∆t,ε for tf = ∞.

∆t ε = 10−1 ε = 10−2 ε = 10−3

10−1 9 (13) 12 (22) 22 (54)
10−2 16 (18) 28 (48) 28 (60)

Table 2
Relative L2-error of t → p(1, t) in terms of ∆t . A linear regression of the logarithmic values indicates a slope of 1.6. The number of quadrature points
corresponds to ε = 10−4 .

∆t 10−2 10−2/2 10−2/4 10−2/8

L∆t,ε(tf = 20) 30 52 58 60
Error 0.0716 0.0349 0.0138 0.0023

tf = ∞ is chosen, the smallest dyadic interval to be treated is [2jmin , 2jmin+1] where jmin is the largest integer satisfying
2jmin < ε

3 .
The number of required quadrature nodes, L∆t,ε , for a given∆t and ε, is O(− log∆t,− log ε). In Table 1, L∆t,ε for β = 1

2
are given for two values of tf : tf = 10 and tf = ∞.

5. Modified scheme with splitting between local and historical parts

Motivated by the analysis of the previous section, we choose here to use the identity, ∂1−βt (pi) = θ [β](∂tpi) and use
the splitting of θ [β](f ) in local and historical parts to compute an approximation of it. Hence we propose to couple scheme
(14)-(15) with

(∂
1−β
t pi)n+

1
2 =

∆tβ

Γ (β)β2∆t
(pn+1i − p

n−1
i )+ Gβ

L∆t,ε∑
j=1

wjξ
−β

j e
−ξj∆t(ϕ̃ni,j + ϕ̃

n−1
i,j )/2,

where (ξj, wj)j=1,...,L∆t,ε is the quadrature associated with β and a given tolerance ε as derived in Section 4, and

ϕ̃ni,j = e
−ξj∆t ϕ̃n−1i,j + e

−ξj∆t/2(pni − p
n−1
i ), (29)

which is the centered approximation associated with ∂t(eξ t ϕ̃) = eξ t∂tp.
Unfortunately, the stability analysis derived in Section 3 does not apply to this scheme and this is mainly due to the shift

introduced in the evaluation of the historical part. Let us notice however that numerical experiments suggest that the CFL
is the same as for the first scheme.

6. Validation on a reference case

We conclude this work with a numerical validation in the case of the Lokshin model, i.e., when r(z) = r0 (the duct is a
cylinder) and b = (a/2)2. In this case, a closed-form solution is available in both time and frequency domains (see [9]). In
the frequency domain, the Laplace transforms satisfy P(z = 1, s) = H(s)U(s), where,

H(s) ∝
e−Υ (s)

1+ e−2Υ (s)
=

∞∑
k=0

(−1)ke−(2k+1)Υ (s), forRe(s) > 0,

with Υ (s) = s+ a
2

√
s. Hence, in the time domain, the output p(z = 1, t) = h ? u can be decomposed into wave-trains, due

to the fact that

h(t) =
∞∑
k=0

(−1)kψ (2k+1)a(t − (2k+ 1)),

where ψa(t) = a
2
√
π t3/2

exp(− a
2

4t ) for t > 0.
The following numerical experiments correspond to the use of the second scheme (Section 5) and to a = 0.4, β = 1/2,

and r0 = 1. We used a Gaussian incident pulse and applied a CFL coefficient (∆t/h) = 0.99.
Fig. 1 shows very good agreements between exact and numerical solutions in the Fourier domain: this experiment

correspond to ε = 10−3, tf = ∞ and ∆t = 10−2 which requires the use of 60 quadrature nodes (see Table 1). The time
domain response of exact and numerical solutions almost coincide and therefore only one plot is shown in Fig. 1 right.
Table 2 indicates how the expected accuracy O(∆t3/2) is achieved by our numerical scheme with a few quadrature points.

7. Conclusion and perspectives

Based on diffusive representations, two numerical schemes have been derived for a fractional wave equation, one is
stable with no error bound, whereas the second is efficient with no proof of stability.
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Fig. 1. Frequency domain response (left) and time domain response (right).

The theoretical and numerical work has been carried out here on a simplified model with a fractional derivative only,
and Dirichlet and Neumann boundary conditions. It is also possible to incorporate both in the continuous model and its
discretized versions a fractional integral for the internal damping, together with more realistic boundary conditions of the
impedance type, thus introducing some external damping, as was done in [6].
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Appendix. Functional spaces

For the pressure variable, we denote L2p := L
2(0, 1; r2(z)dz) and

H1p :=
{
p ∈ L2p,

∫ 1

0

[
p2 + (∂zp)2

]
r2(z)dz < +∞

}
.

For the velocity variable, we denote L2v := L
2(0, 1; r−2(z)dz) and

H1v :=
{
v ∈ L2v,

∫ 1

0
[v2 + (∂zv)

2
]r−2(z)dz < +∞

}
.

For the diffusive variable, we denote Hβ = L2(R+,Gβξβ−1dξ), H̃β = L2(R+,Gβξβdξ), and Vβ =

L2
(
R+,Gβ(1+ ξ)ξ−βdξ

)
.

For the state X = (p, v, ϕ)T, the natural energy space is:H = L2p × L
2
v × L

2(0, 1; H̃β; ar2dz), and with V = H1p × H
1
v ×

L2(0, 1; H̃β; ar2dz) ⊂ H , the domain ofA is:

D(A) =
{
X ∈ V,

∣∣p(z = 0) = 0, v(z = 1) = 0, (p− ξϕ) ∈ L2(0, 1; Vβ; ar2dz)} .
Themonotonicity ofA follows from the identity:

∀X ∈ D(A), (AX, X)H =
∫ 1

0
‖p− ξϕ‖2Hβ ar

2dz +
∫ 1

0
|p|2br2dz ≥ 0.

Moreover, from [10], with full proofs in [6, ch. 2], the operator A is maximal monotone; thus, due to the Hille–Yosida
theorem, the original problem is well-posed, and we get Theorem 2.1.
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