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Abstract
The nerve cells of theAplysia aremuch larger thanmammalian neurons. Using theAplysia ganglia to
study the relationship between the cellular structure and the diffusionMRI signal can potentially shed
light on this relationship formore complex organisms.Wemeasured the dMRI signal of chemically-
fixed abdominal ganglia of theAplysia at several diffusion times. At the diffusion timesmeasured and
observed at low b-values, the dMRI signal ismono-exponential and can be accurately represented by
the parameter ADC (ApparentDiffusionCoefficient).We performed numerical simulations of water
diffusion for the large cell neurons in the abdominal ganglia after creating geometrical configurations
by segmenting high resolution T2-weighted (T2w) images to obtain the cell outline and then
incorporating amanually generated nucleus. The results of the numerical simulations validate the
claim that water diffusion in the large cell neurons is in the short diffusion time regime at our
experimental diffusion times. Then, using the analytical short time approximation (STA) formula for
theADC,we showed that in order to explain the experimentally observed behavior, it is necessary to
consider the nucleus and the cytoplasm as two separate diffusion compartments. By using a two
compartment STAmodel, wewere able to illustrate the effect of the highly irregular shape of the cell
nucleus on theADC.

1. Introduction

Using diffusion-encoding MRI to get tissue micro-
structure information in the mamalian brain has been
the focus ofmuch experimental andmodeling work in
recent years (Assaf et al 2008, Alexander et al 2010,
Zhang et al 2011, 2012, Burcaw et al 2015, Palombo
et al 2017, 2016, Ning et al 2017). Biological quantities
of interest include axon diameter (Assaf et al 2008,
Zhang et al 2011, Burcaw et al 2015) and orientation
(Alexander et al 2010, Zhang et al 2012), neurite
density (Alexander et al 2010, Zhang et al 2012), and
more recently, fiber structure (Palombo et al 2017).
Experimental protocols that are robust and specific in
the identification of these biological quantities have
been subject of much research. The experimental
parameters that can be varied include the diffusion
time and themagnitude and direction of the diffusion-
encoding gradients. When the MRI signal is acquired
at low gradient magnitudes, the signal contains only

information about the Apparent Diffusion Coeffi-
cent (ADC).

The incoherent motion of water molecules during
the diffusion encoding time causes a signal attenuation
from which the ADC can be calculated (Hahn 1950,
Stejskal and Tanner 1965, Bihan et al 1986). For
unrestricted diffusion, the root mean square displace-
ment of molecules is given by x dD t2 0=¯
(Berg 1993, Zhong and Gore 1991) where d=1, 2, 3,
for one, two and three dimensions, D0 is the intrinsic
diffusion coefficient, and t is the diffusion time. In bio-
logical tissue, the diffusion is usually hindered or
restricted (e.g. by cell membranes) and the mean
square displacement is smaller than in the case of
unrestricted diffusion. Intuitively, more hinderance or
restriction will occur for more molecules as the diffu-
sion time increases, so we expect that the experimen-
tally determined ADC will decrease with increasing
diffusion time (Stejskal and Tanner 1965, Tanner and
Stejskal 1968, Grebenkov 2007, Özarslan et al 2006).
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As a result, the extent of the ADC decrease can be
potentially used to gather information about the tissue
micro-structure; by acquiring several diffusion weigh-
ted images with different diffusion times and fitting
the data to a model. For example in (Dietrich et al
2014, Weber et al 2009), the authors determined cell
size and membrane distance based on diffusion MRI
with multiple diffusion times. Numerous biophysical
models have been proposed, usually subdividing the
tissue into compartments described by spheres, ellip-
soids, cylinders, and the extra-cellular space (Assaf
et al 2008, Alexander et al 2010, Zhang et al 2011, Bur-
caw et al 2015, Fieremans et al 2011, Panagiotaki et al
2012, Jespersen et al 2007). However, it is difficult to
connect the geometrical parameters contained in these
models to the ground truth values due to the complex-
ity of the brain tissue.

In the mammalian brain, the sizes of neurons and
glial cells are on the order of micrometers (Fiala et al
2012), whereas the size of the imaging voxel is on the
order of hundreds of micrometers. This makes it
extra-ordinarily difficult to disentangle the validation
of ADC models from the problem of figuring out the
underlying tissue geometry that gave rise to the mea-
sured signal.One approach to completely separate the
ADC model validation from geometrical uncertainty
is the construction and imaging of special phantoms,
examples of which include carrot slices (Dietrich et al
2014), spheres filled with a gel in each cell component
(Lavdas et al 2013), physical phantoms constructed
from resected rat spinal cord (Campbell et al 2005),
polyfil fibers wound on a spherical polyamide spindle
(Moussavi-Biugui et al 2011), and straight X-crossings
of polyester fibers (Pullens et al 2010). In the phan-
toms, the geometry can be said to be known more or
less exactly. However, there is a big gap between the
tissue cellular environment and the phantoms. In
particular, cells have a nucleus, organelles, and the
cells and cell components have a range of sizes and
shapes. These effects are certainly present in the ima-
ging of biological tissue and make the direct applica-
tion of phantom studies results to brain imaging
potentially immature.

The precedent considerations motivate our pre-
sent work of imaging a neural network with much lar-
ger components (compared to mammalian cells) for
which the geometrical information is easier to ascer-
tain than for the mammalian brain tissue. The advan-
tage of Aplysiaʼs nervous system is that the cellular
structure is relatively simple, with some of the largest
cells identifiable in the T2w images we acquire along
with the diffusion weighted images. We consider our
work an intermediary between the imaging of the
mammalian brain tissue and the imaging of specially
constructed phantoms. In this sense, we use the Aply-
sianeural network as a ‘biological phantom’ for dMRI.

Because the Aplysia cells are much larger than
the mammalian neural cells, for a given diffusion-
encoding sequence, the relevant diffusion time regime

is longer for the Aplysia than for mammalian neurons.
As a result, it is possible to work with the short diffu-
sion time approximation while using the standard
Pulsed Gradient Spin Echo (PGSE) (Stejskal and
Tanner 1965) sequence, instead of resorting to more
specialized sequences such as Oscillating Gradient
(OGSE) (Does et al 2003) sequences.

2.Materials andmethods

2.1. Animalmodel
The neural system of the Aplysia californica consists of
five pairs of ganglia: buccal, cerebral, pleural, pedal, and
abdominal (Kandel and Kupfermann 1970). The
abdominal ganglion was chosen in this imaging study
because the cellular network is verywell known in terms
of position and morphology of single cell neurons and
axonal orientation (Conn and Kaczmarek 1989, Musio
and Bedini 1990). Moreover, the abdominal ganglion
or single neurons from the abdominal ganglion have
been investigated using magnetic resonance micro-
scopy (MRM) and diffusion MRM studies (Schoeniger
et al 1994, Hsu et al 1997, Grant et al 2001, Lee et al
2015). The abdominal ganglion diagram is shown in
figure 1.

In this imaging study, we focused on the large neu-
ron cells. There are many large neuron cells in the
abdominal ganglion with radii of at least 75 μm that
are visible by inspection in the high resolution (26 μm
isotropic) T2w images. Some of these include neurons
L2 to L9, L11, R2 to R8, R14 andR15 (labeled L or R for
left or right hemiganglion, e.g. see in (Kupfermann
et al 1974)). The single cell neurons with radii smaller
than 75μm are not included in this group. We note
that the sizes of these identified neurons are not fixed,
they vary as a function of the age and the weight of the
animal. The large cell neurons contain a nucleus, cyto-
plasm and are probably surrounded by small satellite
(glial) cells (Lee et al 2015). The satellite cells are very
small cells, 3μm maximum in radius, without a
nucleus (Conn and Kaczmarek 1989, Musio and
Bedini 1990, Lee et al 2015).

Figure 1.TheAplysia abdominal ganglion diagram (seemore
detail in (Kupfermann et al 1974, Chiu andZare 1998,
Kadakkuzha et al 2013)).

2

Biomed. Phys. Eng. Express 5 (2019) 045036 K-VNguyen et al



Several large cell neurons of radii greater than
75 μm (up to 210 μm) that are easily identifiable in the
T2w imagewere selected for this study.

2.2. Sample preparation
Six Aplysia californica (National Resource for Aplysia,
Miami, FL, USA) were used in this study. The animals
were anesthetized by injection of an isotonic magne-
sium chloride solution (MgCl2, 360 mM; HEPES,
10 mM; pH=7.5). All chemicals were purchased
from Sigma-Aldrich (Lyon, France). The abdominal
ganglion was resected and fixed with PFA 4% by
immersion for 10 minutes and then washed three
times in PBS pH=7.4. For imaging, the abdominal
ganglion was inserted into a 2.0 mm inner diameter
(ID) glass capillary filled with fluorinert and then slid
inside the transceiver coil.

2.3. Image acquisition
All experiments were performed at room temperature
(≈19 °C) on a 17.2 T system (Bruker BioSpin, Ettlingen,
Germany) equipped with 1.0 Tm−1 gradients. Radio-
frequency transceiverswere home-builtmicro-coilswith
inner diameters of 2.4mm, the design of which has been
described in (Jelescu et al 2013, Radecki et al 2014).
Typically, a T2w image and five to seven diffusion
weighted images were acquired for each sample. The T2
weighted image was acquired using a Rapid Acquisition
with Refocused Echoes (RARE) with the following
parameters: TR=1500ms, TEeff=48ms, acceleration
factorAF=8, isotropic spatial resolution 26 μm,matrix
size of 400×88×88, 8 averages for an acquisition time
of 3 hours 14 minutes. The acquisition parameters for
the diffusion-weighted images (DP-FISP pulse sequence
with bipolar diffusion gradients (Lu et al 2012)) were
TE/TR=1.63/1000ms, 2 averages, isotropic spatial
resolution 52 mm , 3 directions x y z, ,  ( ), four sam-
ples acquired with seven diffusion encoding times
(δ=2.5 ms, 5, 7.5, 10, 12, 15, 20, 25D = [ ] ms),
one sample acquired with six diffusion encoding times
(δ=2.5 ms, 5, 10, 12, 15, 20, 25D = [ ] ms) and
one sample acquired with five diffusion encoding times
(δ=2.5 ms, 5, 10, 15, 20, 25D = [ ] ms). All diffu-
sion weighted images were acquired with 8 b-values
([70, 100, 200, L, 700] s mm−2), and matrix size of
200×44×44. The diffusion acquisition time was 2
hours 5 minutes for one diffusion time, 3 directions, 8
b-values. All acquisitions were acquired with a FOV of
10.4×2.3×2.3 mm3. The average signal-to-noise
ratios (SNRs) of the DW images were 31 at b=
70 smm−2 and13 at b=700 s mm−2.

2.4. Image analysis
The T2w images were manually co-registered with the
diffusion-weighted images. For each of the six imaged
ganglia, several three dimensional ROIsweremanually
segmented slice by slice on the T2w image.We show in
figure 2 the T2w image and the physical locations of 3

large cells ROIs from ganglion number 2. In total, we
have selected for further analysis 21 ROIs of large cell
neurons. The ROIs were manually segmented such
that each ROI contains the voxels associated with only
one neuron. We selected only the neurons that were
clearly indentifiable on the T2w image based on the
signal intensity, contrast, and the position within the
ganglion (see diagram infigure 1).

The dMRI signals corresponding to the ROIs were
processed to compute the experimental ADC using a
linear fit of the logarithm of the signal versus the
b-value. Even for large cell neurons, there might be,
although less pronounced, some anisotropy due to the
shape of the cells as well as the shape and position of
the nucleus. For these reasons we averaged the ADC in
the three directions, x, y, and z, to obtain themean dif-
fusivity, MD (Le Bihan et al 2001, Mori and
Zhang 2009, Basser et al 1994, Kingsley 2006):

ADC ADC ADC
MD

3
.

x y z=
+ +

2.5. Simulations
The dMRI signal is the total transverse water proton
magnetization at the echo time (TE).We simulated the
transverse water proton magnetization by solving the
Bloch-Torrey equation (Torrey 1956)
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where ıis the imaginary unit, Dl is the intrinsic
diffusion coefficient in the geometrical compartment
Ωl, and γ is the gyromagnetic ratio of the proton. The
complex-valued magnetizationM(x, t) is a function of
position x and time t, and depends on the diffusion-
encoding gradient magnetic field t f tG g=( ) ( ). The
amplitude and direction information of the diffusion-
encoding gradient is contained in the vector g 3Î
and the time profile of the effective gradient magnetic
field is f (t). For the PGSE sequence, the effective time
profile is defined by:
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where δ is the duration of the gradient pulses and Δ

the delay between the start of the two pulses. The signal
ismeasured at the echo timeTE,with 2δ�TE<2Δ.

We solved the above equation subject to imperme-
able boundary conditions on∂Ωl:

D M tx x, 0, , 2l ln = Î ¶W( ) · ( )

where ν is the outward normal vector and imposed the
initial condition:

M x x, 0 1, , 3l= Î W( ) ( )

meaning uniform spin density in all Ωl. The diffusion
MRI signal is the integral ofmagnetization at TE:
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S M dx x, TE . 4
l x lòå=

ÎW
( ) ( )

The numerical method for solving equations (1)–(3)
was adapted from (Li et al 2013).

The b-value (Bihan et al 1986), in case of the PGSE
sequence is:

b g g, , 3 .2 2 2d g d dD = D - ( ) ( )

TheADCcan be calculated as:

ADC
b

S b

S
log

0
. 5

b 0
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¶
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( )

The ADC obtained from the numerically simu-
lated dMRI signal was computed in the same way and
using the same b-values as for experimental data.

In what follows we describe the geometrical con-
figurations used in the simulations. To create compu-
tational domains in which to perform numerical
simulations of large cell neurons, we segmented the
cell outline of one particular large cell neuron. This cell
outline (denoted by Ωcell) was segmented from the
anatomical T2w image of the large neuron ROI (see
figure 3(a)) and was used for all simulations of large
cell neurons. We note that Ωcell is a slightly elongated

Figure 2.T2w image of the abdominal ganglion (Aplysia# 2) and the selected ROIs: (a) 3D representation showing the selected ROIs;
(b)-(d) three slices from the T2w image. The scale bar represents 260 μm.

Figure 3.Geometrical configuration of a large single cell neuron: the cell outline obtained from cell ROI#7 (a); A nucleuswith
irregular shapewasmanually generated (b); The nucleuswasmanually placed inside the cell outline (c): cell nucleus (red) and
cytoplasm (green). Different cell sizes were generated by scaling (R 60eff = μm (d) andReff=40 μm (e)).
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ellipsoid. In addition, we created by hand several
examples of irregularly shaped nuclei, Ωn, as in
figure 3(b). The shape of the nucleus was inspired by
the high resolution images in (Lee et al 2015). The gen-
erated Ωn, when placed inside Ωcell, takes up between
25%–30% volume fraction. Even though not visible in
the T2w images, there may be a small volume (up to
5%) of satellite cells (very small cells, 3μm maximum
radius, without nucleus (Conn and Kaczmarek 1989,
Musio and Bedini 1990, Lee et al 2015)) surrounding
the single cell neurons. However, since the volume of
the satellite cells is small and to simplify the study, we
did not include the satellite cells in the simulations.

By placing Ωn in Ωcell we obtained several geome-
trical configurations. To take into account the effect of
the size of the cells on the ADC, we simply scaled the
reference geometry such thatΩcell had the desired total
volume, leading to effective cell radii ranging from
100 μmto 210 μm (figure 3).

The simulated dMRI signal for the large cell neu-
rons can be generated by solving the Bloch-Torrey
equations inΩcell with two compartments: the nucleus
Ωn and the cytoplasm Ωc=Ωcell−Ωn. The intrinsic
diffusivities in the cytoplasm and nucleus, Dc and Dn,
respectively, were chosen to range from 0.5 μm2/ms
to 2.4 μm2/ms as described in the literature (Lee et al
2015). The total signal in a large cell neuron is:

S v S v S1 , 6cell n c n n= - +( ) ( )

where vn is the volume fraction of the nucleus, Sc and
Sn are the signals in the cytoplasm and the nucleus,
respectively.

2.6. Analytical formula of theADC in short diffusion
time regime
A well-known formula for the ADC in the short
diffusion time regime is the following short time
approximation (STA) (Mitra et al 1992, 1993):
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where S

V
is the surface to volume ratio and D0 is the

intrinsic diffusivity coefficient. In the above formula
the pulse duration δ is assumed to be very small
compared to Δ. A recent correction to the above
formula, taking into account the finite pulse duration
δ (Schiavi et al 2016) is the following:
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When δ=Δ, the valueCδ,Δ is approximately D .

3. Results

3.1. Experimental time-dependent ADC
The experimental dMRI signals at multiple diffusion
times in the large cell neuron ROIs are shown in
figure 4. It is clear that in the range of b-values used
here, from 70 to 700 s mm−2, the logarithm of the
signal is a linear function of b-value, meaning that the
ADC is sufficient to describe the signal in this range.
Higher order effects such as a Kurtosis (Chabert et al
2005, Frøhlich et al 2006, Jensen et al 2005, Jensen and
Helpern 2010) term need not be considered. More-
over, the signals in the x, y, and z directions do not
show significant anisotropy.

The time-dependent ADC measured over the 21
ROIs of large cell neurons are shown in table 1. We
found that, when the diffusion time is increased from

Figure 4.The dMRI signals atmultiple diffusion times in large cell neuronROI#1,Reff≈164.97 μm (a); and large cell neuron
ROI#10,Reff≈101.34 μm (b). From top to bottomwe represent the scaled signals forΔ from5 ms to 25 ms. The different colors
represent the different gradient directions, red, blue, and black stand for x, y, and z directions, respectively.
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5 to 25 ms, the average experimental ADC drops by
9.45% in large cell neurons.

3.2. Validation of the STAby numerical simulations
in large cell neurons
Assuming a free diffusivity of 2.00 μm2/ms, the
average diffusion displacement is between 7.7 and
17.3 μm for the diffusion times between 5 and 25 ms.
From the point of view of diffusing water molecules,
the diffusion displacement is much smaller than the
size of the large cell neurons. Hence, we should be able
to apply the mathematical model ADCSTA to the
measured ADC in the large cell neurons. Nevertheless,
we first used numerical simulations to compare the
simulated ADC with ADCSTA (specifically, we used
equation (8)).

We constructed several geometrical configura-
tions for the large cell neurons, consisting of a nucleus
and surrounding cytoplasm, based on three types of
nucleus shapes and positions of the nucleus inside the
cell, as shown infigure 5.

To perform simulations, we scaled the configura-
tions 1-4 (figure 5) so that they each have the effective
radius of 100 μm. We referred to information from
published literature (Lee et al 2015) to choose reason-
able biological parameters: Dc=0.67μm2/ms and
Dn=2 μm2/ms.

We solved the Bloch-Torrey equation for config-
urations 1-4 in each of the following three domains to
obtain the simulated ADC at diffusion times between
5 ms and 25 ms. In figure 6 we show the averaged dif-
fusion time dependent ADC over x, y, and z gradient
directions for: a) the nucleus compartment only (only
nucleus); b) the cytoplasm compartment only (only
cytoplasm); c) a combined compartment including
both the nucleus and the cytoplasmwith no hindrance
to water diffusion between them (no hinderance); d) a
combined compartment including the nucleus and
the cytoplasm with limited exchange for which we
computed the ADC as the weighted average of the

Table 1.Mean and standard deviations (SD) of
experimental ADCs in large cell neurons ROIs
(N=21). The average ADCswere observed to
drop by 9.45%.

Δ (ms) Mean (μm2/ms) SD (μm2/ms)

5 0.974 0.096

7.5 0.957 0.085

10 0.938 0.087

12 0.915 0.080

15 0.914 0.080

20 0.897 0.081

25 0.882 0.087

Drop 9.45%

Figure 5.Generated geometrical configurations using the same cell outline (green), containing three different shapes of nucleus (red)
(a, b-c, and d). The positions of nucleus inside the cytoplasm are different in (b and c) but the nucleus shape is the same. The cell
outline is the same for the four configurations, and it is generated from the T2w image (large cell ROI#7). The volume fraction of the
nucleus in the four configurations is approximately 25%.
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ADCs in nucleus and cytoplasm (nucleus+cytoplasm).
The close agreement between the numerically simu-
lated ADC and the STA formula is clear for all 3 com-
putational domains in the 4 geometrical configura-
tions. Therefore, we are justified in using the STA
formula to compare with the experimental ADC for
large cell neurons instead of running further numer-
ical simulations.

We note that the averaged-ADC drop of the com-
bined nucleus and cytoplasm (no hinderance)
between Δ=5 ms and Δ=25 ms is under 2.5%
for all four configurations (both STA and simula-
tion), whereas the weighted average of the STA ADC
of the nucleus and cytoplasm compartments with
limited exchange (STA: nucleus+cytoplasm) drops by
6.7% for configuration 1, by 5.1% for configurations
2 and 3, and by 4.1% for configuration 4. Moreover,
the weighted average of the simulated ADC for this
domain (Simulation: nucleus+cytoplasm) drops by

6.8% for configuration 1, by 5.4% for configurations
2 and 3, and by 4.7% for configuration 4. Let us now
compare these values with experimental results we
described earlier: when the diffusion time is
increased from 5 to 25 ms, the average experimental
ADC drops by 9.45% in large cell neurons. To achieve
the larger ADC drop of the experimental data using
numerical simulations, wewould need to increase the
surface to volume ratios of the two compartments.
However, it is extremely difficult to manually adjust
the finite element mesh to increase the surface to
volume ratios. This requires moving the points of the
finite element mesh manually, while satisfying con-
straints on the compartment volume fractions, the
nuclear volume fraction being between 25% and 30%
(Jelescu 2013, Lee et al 2015). For this reason, once we
have established the validity of the STA formula as a
good approximation to the simulated ADC at
R 100 meff  m , we will use the STA formula instead

Figure 6. Simulation and STA formula results of the ADC averaged over x, y, and z gradient directions for configurations 1-4 in three
computational domains: the nucleus compartment (only nucleus); the cytoplasm compartment (only cytoplasm); a combined
compartment including both the nucleus and the cytoplasmwith no hinderance towater diffusion between them (no hinderance) and
a combined compartmentwith limited exchange (nucleus+cytoplasm). The simulated ADCs are designated bymarkers and the STA
formulas designated by lines.
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of the simulated ADC, since we can easily adjust the
surface to volume ratios in the STA formula without
constructing a finite elementmesh.

We see that the two compartment (nucleus and
cytoplasm) with limited exchange computational
domain is the best description of the diffusion in the
large cell neurons among the four domains considered
and that a more irregular nucleus results in a larger
ADC drop. We now expand on these ideas using the
STA formula.

3.3. Comparing the STA formulawith the
experimental ADC for large cell neurons
3.3.1. One compartment STAmodel
If the hinderance to water diffusion between the two
compartments can be neglected, then the nucleus
and the cytoplasm can be combined into one compart-
ment, with a single diffusion coefficient. This corre-
sponds to the simulations performed in the third
computational domain (the combined compartment).
From the experimental ADC, by fitting ADC =
AC B, +d D using equation (8), we can find the
coefficientsA and B, fromwhich the surface to volume
ratio can be obtained:

A B
D S

V
B D

4

3 dim
, . 110

0
p

= - = ( )

If we further assume the shape is a sphere, then

A B
D

R
B D

4

3

1
, , 120

0
p

= - = ( )

from which an estimated cell radius can be obtained.
Note that the cell neuron outlines are actually not
spherical, and the quantitaty S/V depends on the size
and the shape of the cell neuron outlines. However, we
prefer to use the quantity effective radiuswhich is more
intuitive and familar than the quantity S/V.

We denote by

R D
D

A

4

3

1
, 13est 0

0

p
= - ( )

the estimated cell radius determined by applying the
STA formula to the experimental ADC The idea is to
compare the Rest with the visually obtained effective
radius, denoted Reff, of the 21 large cell ROIs. The
results are shown in table 2. It is clear that the cell size
is severely underestimated: Rest is on average only 25%
of Reff. This suggests that a one compartment model is
not sufficient to describe the diffusion in the large cell
neurons of the Aplysia, which is a conclusion we
already alluded to in the previous section.

3.3.2. Two compartment STAmodel
When the cell is made up of different components
such as cytoplasm and nucleus, under the short
diffusion time and low b-value regime, the water
exchange between the cytoplasm and the nucleus can
be assumed to be limited enough so that the water
exchange does not affect the ADC, then the ADC is the
weighted average of the ADC in the individual
compartments:

Table 2.Results obtained by fitting the experimentalADC(Δ)with equation (8)
(ADC AC B,= +d D ) for 21 large cell neuronROIs. The effective radius (Reff) of
each cell was estimated from the T2w image. The estimated cell radius (Rest)was
found by using equation (13).

ROI# Reff ( mm ) A ( m ms2 3 2m ) B ( m ms2m ) Rest ( mm )

1 101.3 −0.063 4 1.212 15.8

2 109.6 −0.035 1 1.218 28.8

3 113.9 −0.016 5 0.983 44.6

4 115.4 −0.026 7 0.982 27.4

5 115.8 −0.025 5 1.039 31.3

6 121.2 −0.060 0 1.150 15.5

7 126.0 −0.057 4 1.111 15.3

8 126.3 −0.043 3 1.032 18.2

9 129.6 −0.065 7 1.253 16.1

10 130.4 −0.024 4 0.953 28.7

11 134.2 −0.029 6 1.113 29.8

12 140.7 −0.033 3 0.967 21.5

13 149.7 −0.054 3 0.980 13.5

14 150.4 −0.032 1 1.051 25.2

15 151.8 −0.035 4 1.186 27.5

16 155.7 −0.031 0 1.040 25.8

17 160.5 −0.020 6 1.059 39.8

18 160.5 −0.028 4 0.970 25.3

19 162.6 −0.017 9 1.085 47.4

20 165.0 −0.014 5 1.042 55.1

21 207.8 −0.012 1 0.857 49.2
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where f V

V
n= is nucleus volume fraction, Dn and Dc

are the intrinsic diffusivity coefficients of nucleus
and cytoplasm components, S

V
n

n
and S

V
c

c
are the surface

by volume ratios for the nucleus and cytoplasm
components.

The quantities S

V
n and S

V
c are related to the shape

and size of the nucleus and the cell outline. The outline
of the large cell neurons can be seen on the T2w images
to be spheroid or somewhat ellipsoid. Recall that the
volume fraction of the nucleus is f. It is easy to show
that if the nucleus and the large cell neuron outline are
spheres, then

S

V

f

R

S

V

S

V R
3 , and 3

1
. 15n c n

2 3

eff eff

= = + ( )

The shape of the nucleus inside the cell cannot be seen
on the T2w images. Therefore, we referred to the
information from published literature (Lee et al 2015)
to manually construct a three-dimensional configura-
tion consisting of an irregularly shaped nucleus placed
inside an ellipsoid (see Configuration 1, figure 5(a)).
For this configuration, we numerically computed the
surface to volume ratios:

S

V

f

R

S

V

S

V R
8.119 6 , and 4.539

1
.

16

n c n
2 3

eff eff

= = +

( )

We then manually constructed another irregularly
shaped nucleus (Configuration 2, figure 5(b)) and
numerically computed the surface to volume ratios:

S

V

f

R

S

V

S

V R
6.053 , and 4.539

1
. 17n c n

2 3

eff eff

= = + ( )

For Configuration 3 (see figure 5(c)), we simply
moved the nucleus with respect to Configuration 2,
therefore, the above surface to volume ratios stay
the same. Finally, a third nucleus shape (essentially
an ellipsoid) was constructed manually (Configura-
tion 4, figure 5(d)) and the numerically computed
ratios are:

S

V

f

R

S

V

S

V R
4.589 4 , and 4.539

1
.

18

n c n
2 3

eff eff

= = +

( )
It is easy to show that the shapes of the large neu-

ron cell outline and the nucleus affect the surface to
volume ratios through the parametersQ1 andQ2 :

S

V
Q

f

R

S

V

S

V
Q

R
, and

1
. 19n c n

1

2 3

eff
2

eff

= = + ( )

The parameter Q indicate the non-smoothness of
the shape, for a sphere, Q=3, for the ellipsoids we
generated, Q≈4.5, the more irregular the shape,
the higher the Q. The nucleus shape that corresponds
the best to the literature reports (Lee et al 2015) about
Aplysianeurons is inConfiguration 1, whereQ=8.1.

Now,we state the two compartment STAmodel:

ADC Q f D D

Q D
R

C

fD f D

4

3 dim
1

1 ,

20

cmpt
n c

c

n c

STA
2

1
2 3 3 2 3 2

2
3 2

eff
,

p
= - +

+

+ + -

d D

[ ( )

]

[ ( ) ]
( )

which we will apply to the experimental ADC. This
can be stated as a linear regression problem:

y c c x, 210 1= -˜ ˜ ˜ ( )

where the dependent variable y ADC cmpt
STA
2= is the

diffusion time-dependant ADC, and the independant
variable is x C

R

1
,

eff
= d D˜ .

First we combined the data from 21 ROIs and the
multiple diffusion times to solve one regression pro-
blem and obtained the following fitted values:

c fD f D1 0.980 43, 22n c0 = + - =˜ [ ( ) ] ( )

c Q f D D

Q D

4

3 dim

1.902 6, 23

n c

c

1 1
2 3 3 2 3 2

2
3 2

p
= +

+ =

˜ [ ( )

] ( )

where the numerical fitting is shown in figure 7(a).
From equation (22) we plot the relationship between
Dn, Dc and f for plausible choices of f (between 0.15
and 0.35, see figure 7(b)). We see an inverse relation-
ship betweenDc andDn and this inverse relationship is
steeper at higher f. This also helps us bound reasonable
values ofDn, sinceDc should not be too small.

In the following, we will limitDn to the rangeDnä
[1, 2.4] μm2/ms. We plot the relationship betweenQ1

and {Dn, Q2}, where D 1, 2.4n Î [ ] μm2/ms, Q2ä
[3,10]. We recall thatQ2=3 implies a spherical shape
of the cell outline, and Q2=4.5 implies an ellipsoid
shape. The higher the value, the more irregular the
shape. We choose two values of f ( f=0.15 and f=
0.35) subject to the constraints in equations (22)–(23).
The resulting values forQ1 are shown in contour plots
in Figs. 7(c)–(d).

Since the large cell neuron outline has an ellipsoid
shape, we can assume that Q2≈4.5. When f=0.15
(figure 7(c)), looking at the line Q2=4.5, we see the
range forQ1 is between 4 and 5, which is too low, given
the information from the literature on the shape of the
nucleus (much more irregular than an ellipsoid). At
f=0.35 (figure 7(d)), the range of Q1 is even lower,
less than 4. Therefore, it is clear that there are some
inaccuracies in the above fitting procedure. We
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suspect that this is due to the noise in the measured
ADCs as well as to errors in the estimated radii of the
cells (whichwas donemanually).

To compensate for the error and uncertainty in the
ADCs and the cell radii, we next solved the linear
regression problem for eachROI separately:

y c c x, 24i i
0 1= - ( )

where the dependent variable y ADC cmpt
STA
2= is the

diffusion time-dependant ADC, and the independant
variable is x=Cδ,Δ. This way, we obtain 21 values of
c0
i and 21 values of c1

i . Thefitted values will be then:

c fD f D1 , 25i
n c0 = + -[ ( ) ] ( )

c

Q f D D Q D R

4

3 dim

,

26

i

n c c
i

1

1
2 3 3 2 3 2

2
3 2

eff

p
=

´ + +[ ( ) ]
( )

where we expect inaccuracies in R i
eff . Therefore, we set

thefitting error of c0
i (equation (25)) to zero and obtain

Dc
i as a function of the continuous variables f andDn:

D f D
c fD

f
,

1
.c

i
n

i
n0=

-

-
( )

On the other hand, we will not set equation (26) to
zero, because we expect the fitting errors (normalized
below),

Err f Q D Q

c R
Q f D

D f D c Q D f D c

, , ,

4

3 dim

, , , , 1 ,

i
n

i
eff
i n

c n
i

c n
i

1 2

1
1

2 3 3 2

0
3 2

2 0
3 2

p
=

+ + -

( )

[ (

( ) ) ( ) ] ∣

i=1,L, 21, will not reach zero due to the inaccura-
cies in R i

eff (and theADC). Knowing that the physically
plausible values of f should stay in the range
0.15�f�0.35, we plot in figure 8 the c1

i
fitting error,

Err f Q D Q, , ,i
n1 2( ), as a function of D f D D,c

i
n n( )

andQ1, for one choice ofDn=1.8 μm2/ms andQ2=
4.5, in the first 4 listed ROIs. The range of D f D,c

i
n( ) in

figure 8 is determined by the the range of fä[0.15,
0.35]. It can be seen that Err f Q D Q, , ,i

n1 2( ) is much
more dependent onQ1 than onDc (and hence f ). This
observation holds in general in the range ofDn andQ2

of interest. Therefore, in searching forQ1, we will first
remove its dependence on f by averaging
Err f Q D Q, , ,i

n1 2( ) over all fä[0.15,0.35].
We now proceed to find Q1 that solves the follow-

ingminimization problemover all the ROIs:

Q D Q E Q D Q

E Q D Q E Q D Q

, min , , ,

, , , , , 27

n
Q

total
n

total
n

i

i
n

1
min

2 1 2

1 2
1 21

1 2

1

å

=

º
= 

( ) ( )

( ) ( ) ( )

where the averaged (over fä[0.15,0.35]) fitting error
for eachROI is defined as:

Figure 7. a) Linear regression fitting of the experimental ADC for the 21ROIs for different (5 and 7) diffusion times; b)Relationship
betweenDn,Dc and f from equation (22); c-d)Q1 as a function ofDn andQ2, based on the bestfit c0 and c1 for all the ROIs and all
diffusion times.
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The solution to the minimization problem in
equation (27) depends on the parameters Dn and Q2,
but not on f and Dc. We make this clear by using the
notation Q D Q,n1

min
2( ).

In figure 9(a) we show the total fitting error
E Q D Q, ,total

n1 2( ) for one particular choice of Dn and
Q2, and for this choice, Q D Q, 7.8n1

min
2 =( ) , resulting

in the total fitting error E Q D Q, , 0.294total
n1 2 »( ) .

We thendo an exhaustive search in Dn ä [1,
2.4] μm2/ms andQ2 ä [3, 10]. We show in figure 9(b)
the contour plot for the value of Q D Q,n1

min
2( ). We

found no solutions when Dn�1.4 μm2/ms and we
found the range of Q D Q,n1

min
2( ) to be between

Q D Q5 , 10n1
min

2 ( ) given the ranges Dnä[1.4,
2.4] μm2/ms and Q2ä[3, 10]. If we take as plausible
the value of Q2 to be between 4 and 5 (indicating an
ellipsoid) and the value of Dn to be between
1.4 μm2/ms and 1.8 μm2/ms, we get a range of
between 7.5 and 9 for Q D Q,n1

min
2( ), indicating a very

irregular shaped nucleus, in agreement with the litera-
ture (Lee et al 2015). We show in figure 9(c) the con-
tour plot of the Dc / Dn ratio as a function of Dn and
Q2. For plausible values ofQ2, between 4 and 5, and of
Dn, between 1.4 μm

2/ms and 1.8 μm2/ms, this ratio is

between 0.45 and 0.65, again in agreement with the
literature.

Finally, in figure 9(d) we plot the mean values and
the standard deviations of E Q D Q, ,i

n1
min

2( ) for each
ROI i over the ranges of D 1.4, 2.4n Î [ ]μm2/ms and
Q2 ä [3, 10] searched. This shows that the obtained
minimum fitting error in each ROI is stable across the
searched space ofDn andQ2.

The fact that we found no solutions for Dn<1.4
means that Dn�1.4 μm2/ms, which is a range of Dn

that is consistent with the literature reports on the
nucleus ADCs in Aplysia neurons (Schoeniger et al
1994, Grant et al 2001). The nucleus diffusivity is
known to be high compared to the cytoplasm diffusiv-
ity. It was not obvious from the outset that we would
be able to pinpoint Dn to be no smaller than
1.4μm2/ms. This came out merely from insisting on
the nucleus shape parameter Q1 to be between 3
and 10.

In addition, because we know that big cell neurons
are certainly ellipsoid in shape, we were able to con-
strain the possible values ofQ2. This constraint in turn
allowed us to conclude that Q1 is between 7.5 and 9,
which is a reasonable range for an irregular nucleus

Figure 8.Contour plots of the c1
i
fitting error, Err i( f,Q1,Dn,Q2), as a function of D f D D,c

i
n n( ) andQ1, for one choice of

Dn=1.8 μm2/ms andQ2=4.5, in thefirst 4 listed ROIs. The range of D f D,c
i

n( ) is determined by the the range of fä[0.15, 0.35].

E Q D Q
Q f D D f Q D f
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shape. Without formulating the linear regression pro-
blem for each ROI separately, as we described above,
the obtained Q1 would be less than 5, which is much
too low to be true.

4.Discussion

To study the diffusion time dependence of the dMRI
signal and evaluate if measurements at multiple
diffusion times can give additional information about
the tissue microstructure, we imaged the Aplysia
abdominal ganglia at high resolution and several
diffusion times. Given the very long experimental
times, we used chemically-fixed samples. However,
one should keep in mind that the aldehyde fixatives
used may significantly alter tissue MRI properties.
Shepherd and colleagues reported in (Shepherd et al
2009) that the rat cortical slices fixed by immersion in
4% formaldehyde solution demonstrated 21% and
81% reductions in tissue T1 and T2, respectively. By
washing fixed tissues with PBS to remove free for-
maldehyde solution T2 can be recovered. In addition,
the membrane permeability was increased after fixa-
tion with 4% formaldehyde (Shepherd et al 2009).
However, we find it a worthwhile trade-off since cell
(sub-)structures are mostly preserved in the fixation

process and this allows us to obtain high resolution
data at multiple diffusion times for which in-vivo or
fresh tissue imagingwould not be possible.

We have acquired and analyzed the diffusion time-
dependent dMRI data in theAplysia neuronal network
for large cell neurons. The time-dependent ADC at
diffusion times ranging from Δ=5 ms to Δ=
25 ms were presented. In the spirit of using theAplysia
as a biological phantom for diffusion MRI we con-
ducted an analytical and numerical study in the case of
the large cell neurons. The cell outline of these large
neurons can be seen in the T2-weighted images, giving
a reliable (but still approximate) estimate of the cell
size. We chose to sum up the signal values over all the
pixels of a manually generated ROI that contains one
individual neuron, instead of using it at pixel level, in
order to approach the experimental conditions in
mammalian neuro-imaging where the cells are con-
tained entirely in one voxel. By retaining only one cell
in the ROI, we eliminate much of the uncertainty
regarding the geometry of the diffusionmedium being
imaged. We know that the signal comes from the seg-
mented cell andwe know the size of the segmented cell
up to some level of error. This is what we mean by a
‘biological phantom’.

This phantom retains much of the complexity of
the cellular make-up (nucleus, cytoplasm) that is also

Figure 9. (a): Totalfitting errorE total(Q1,Dn,Q2) for one particular choice ofDn andQ2. For this choice, Q D Q, 7.8n1
min

2 =( ) ,
resulting in a total fitting error E total(Q1,Dn,Q2)≈0.294. (b): contour plot for the value of Q D Q,n1

min
2( ) as a function ofDn andQ2.

There were no solutions whenDn�1.4 μm2/ms.Given the plausiblevalue ofQ2 to be between 4 and 5 (indicating an ellipsoid), the
range of 7.5 and 9 is obtained for Q D Q,n1

min
2( ), indicating a very irregular shaped nucleus. (c): the contour plot for theDc /Dn ratio as

a function ofDn andQ2. (d): themean values and the standard deviations of E Q D Q, ,i
n1

min
2( ) for eachROI i over the range ofDnä

[1.4, 2.4] μm2/ms andQ2ä [3, 10], indicating stablefitting of the ADC in eachROI in the searched range ofDn andQ2.
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relevant tomammalian neuro-imaging while reducing
the uncertainty about the cellular size. For example,
we addressed the question of whether the nucleus and
the cytoplasm should be modeled as two separate dif-
fusion compartments, at least in the short diffusion
time regime which is the case for large cell neurons in
our experiments. We showed that indeed, two com-
partment diffusion fits the data better than combining
them into a single diffusion compartment. Using the
one compartment STA model resulted in a serious
under-estimation of the cell size. This is relevant for
mammalian imaging as the neurons have similar cel-
lular make-up as the Aplysia, only smaller in size.
Thus, for short time diffusion imaging (using oscillat-
ing gradients, for example), our results suggest that
some modeling error could be due to the presence of
the nucleus, since often diffusion in the soma is mod-
eled by one compartment diffusion for mammalian
neuro-imaging studies. Supported by numerical simu-
lations and after taking into account the noise in the
experimental ADC aswell as the uncertainty in cell size
due tomanual segmentation, we established that a two
compartment STA model is adequate to explain the
behavior of the experimentally obtained ADC This
result also suggests that dMRI may be potentially used
to probe the shape of the cell nucleus, which could be
indicative of certain cellular abnormalities (Webster
et al 2009).

Additionally, we showed that even if one has some
information regarding the geometry of the cells being
imaged, aswedo for theAplysianeurons, it is important
to account for the uncertainty in the prior knowledge
(in our case, the size of the cells frommanual segmenta-
tion). We propose fitting the intended model individu-
ally to each neuron instead of using averaged quantities.
While this is somewhat counter-intuitive since one
would have assumed that averaging over all the large
cell neurons would reduce noise in the model fitting
procedure, we showed that this is not the case for the
fitting of the two compartment short-timeADCmodel,
and we suspect this is due to the error in the estimated
cell size from the segmentationprocedure.

Weproducednumerical simulations that showed the
two compartment STA model is a valid approximation
during the diffusion times ranging from Δ=5 ms to
Δ=25 ms for large cells (R 100 meff  m ). The use of
the STA formula where one can tune the volume frac-
tions of the nuclear and cytoplasm compartments as well
as their surface to volume ratios increases the types of
geometries that are accessible to modeling, in particular,
those geometries for which the generation of finite ele-
mentmesheswouldbe verydifficult.

In our work, we considered low b-values at multi-
ple diffusion times to capture the large length scale
geometrical structure information about the large
neurons of the Aplysia. At the smaller length scales of
mamalian cells, it would be important to consider
higher b-values and possibly fitting non-linear models
such as in (Ingo et al 2014, Gatto et al 2019).

In this study, we modeled the cellular and nuclear
membranes as impermeable interfaces and repre-
sented the diffusion in each compartment by a diffu-
sion coefficient, Dc and Dn, respectively. This is a
simplification. Knowledge about the intra-cellular and
intra-nucleur structures may be incorporated into the
model if they become available. For example, the neu-
rofilamentary structure of the giant axon of the squid
was studied in (Beaulieu and Allen 1994) and found to
result in an anistropic diffusion ratio of 1.2±0.1.
Membrane permeabilty, for example, may start to play
a role at higher b-values and longer diffusion times
beyond the regime where the STA model is valid. In
the future, the intracellular vesicular and membrane-
based organelles may be considered as well. We men-
tion that the influence of different intracellular pro-
teins and cell pathologies in mamalian cells have been
studied and reviewed in (Colvin et al 2011, Harkins
et al 2009,Matsumoto et al 2009, Sotak 2004).

Given the importance of the morphological fea-
tures of the cellular nucleus in this study, the addition
of higher magnification histology and nuclear coun-
terstaining with 3D reconstruction could help to
obtain better ground truth information of the real geo-
metrical contribution of the neuronal nucleus to the
dMRI signal, and would be a useful future direction to
explore.

5. Conclusions

We have acquired and analyzed the diffusion time-
dependent dMRI data in theAplysia neuronal network
for large cell neurons.We found that it is not sufficient
to approximate the ADC using a one compartment
short time approximation (STA)model. Using the one
compartment STA model resulted in a serious under-
estimation of the cell size. Supported by numerical
simulations and by taking into account the noise in the
experimental ADC aswell as the uncertainty in cell size
due to the segmentation procedure, we established
that a two compartment STA model is adequate to
explain the behavior of the experiementally
obtainedADC.

Acknowledgments

This work was funded by grant ANR-13-BSV5-0014-
01 (project ANImE) and by the doctoral school EOBE,
University Paris Sud, XI, 91405Orsay, France.

Animal experiments

All animal experiments were conducted in strict
accordance with the recommendations and guidelines
of the European Union and the French National
Committee.

13

Biomed. Phys. Eng. Express 5 (2019) 045036 K-VNguyen et al



ORCID iDs

Jing-Rebecca Li https://orcid.org/0000-0001-
6075-5526

References

AlexanderDC,Hubbard P L,HallMG,Moore EA, PtitoM,
ParkerG J andDyrby TB 2010Orientationally invariant
indices of axon diameter and density fromdiffusionMRI
NeuroImage 52 1374–89

Assaf Y, Blumenfeld-Katzir T, Yovel Y andBasser P J 2008Axcaliber:
amethod formeasuring axon diameter distribution from
diffusionMRIMagn. Reson.Med. 59 1347–54

Basser P,Mattiello J and LeBihanD 1994MRdiffusion tensor
spectroscopy and imagingBiophys. J. 66 259–67

BeaulieuC andAllen P S 1994Water diffusion in the giant axon of
the squid: implications for diffusion-weightedmri of the
nervous systemMagn. Reson.Med. 32 579–83

BergH1993RandomWalks in Biology Princeton Paperbacks
(Princeton,NJ: PrincetonUniversity Press)

BihanDL, Breton E, LallemandD,Grenier P, Cabanis E and
Laval-JeantetM1986MR imaging of intravoxel incoherent
motions: application to diffusion and perfusion in neurologic
disordersRadiology 161 401–7

BurcawLM, Fieremans E andNovikovDS 2015Mesoscopic
structure of neuronal tracts from time-dependent diffusion
NeuroImage 114 18–37

Campbell J S, Siddiqi K, RymarVV, Sadikot A F and PikeGB 2005
Flow-based fiber trackingwith diffusion tensor and q-ball
data: Validation and comparison to principal diffusion
direction techniquesNeuroImage 27 725–36

Chabert S,MolkoN,Cointepas Y, Le Roux P andLe BihanD2005
Diffusion tensor imaging of the human optic nerve using a
non-CPMG fast spin echo sequence J.Magn. Reson. Imaging
22 307–10

ChiuDT andZare RN1998Assaying for peptides in individual
aplysia neuronswithmass spectrometryProc. of theNational
Academy of Sciences 95 3338–40

ColvinDC, LovelessME,DoesMD, Yue Z, Yankeelov TE and
Gore J C 2011 Earlier detection of tumor treatment response
usingmagnetic resonance diffusion imagingwith oscillating
gradientsMagn. Reson. Imaging 29 315–23

ConnP andKaczmarek L 1989The bag cell neurons of aplysia. a
model for the study of themolecularmechanisms involved in
the control of prolonged animal behaviorsMolecular
Neurobiology 3 237–73

DietrichO,Hubert A andHeiland S 2014 Imaging cell size and
permeability in biological tissue using the diffusion-time
dependence of the apparent diffusion coefficient Phys.Med.
Biol. 59 3081

DoesMD, Parsons EC andGore J C 2003Oscillating gradient
measurements of water diffusion in normal and globally
ischemic rat brainMagn. Reson.Med. 49 206–15

Fiala J, Spacek J andHarris K 2012Dendrite Structure (Oxford:
OxfordUniversity Press) cited By 1

Fieremans E, Jensen JH andHelpern J A 2011Whitematter
characterizationwith diffusional kurtosis imaging
NeuroImage 58 177–88

Frøhlich A F,Østergaard L andKiselev VG2006 Effect of
impermeable boundaries on diffusion-attenuatedMR signal
Journal ofMagnetic Resonance (SanDiego, Calif. : 1997) 179
223–33

Gatto RG, YeAQ,Colon-Perez L,Mareci TH, Lysakowski A,
Price SD, Brady ST, KaramanM,MorfiniG andMagin R L
2019Detection of axonal degeneration in amousemodel of
huntington’s disease: comparison between diffusion tensor
imaging and anomalous diffusionmetricsMagn. Reson.
Mater. Phys., Biol.Med. (https://doi.org/10.1007/s10334-
019-00742-6)

Grant S, BuckleyD,Gibbs S,WebbA andBlackband S 2001MR
microscopy ofmulticomponent diffusion in single neurons
Magn. Reson.Med. 46 1107–12

GrebenkovD S 2007NMR survey of reflected Brownianmotion
Rev.Mod. Phys. 79 1077

HahnEL 1950 Spin echoes Phys. Rev. 80 580–94
Harkins KD,Galons J P, SecombTWandTrouard TP 2009

Assessment of the effects of cellular tissue properties on adc
measurements by numerical simulation ofwater diffusion
Magn. Reson.Med. 62 1414–22

Hsu EW,AikenNR andBlackband S J 1997A study of diffusion
isotropy in single neurons by usingNMRmicroscopyMagn
ResonMed 37 624–7

IngoC,Magin R L, Colon-Perez L, TriplettWandMareci TH2014
On randomwalks and entropy in diffusion-weighted
magnetic resonance imaging studies of neural tissueMagn.
Reson.Med. 71 617–27

Jelescu IO 2013Magnetic resonancemicroscopy of Aplysia neurons
: studying neurotransmitter-modulated transport and
response to stressPhDThesisUniversity Paris Sud. Thèse de
doctorat dirigée par Le Bihan, Denis Physique Paris 11 2013

Jelescu IO,Nargeot R, BihanDL andCiobanu L 2013Highlighting
manganese dynamics in the nervous system of aplysia
californica usingMEMRI at ultra-highfieldNeuroImage 76
264–71

Jensen JH andHelpern J A 2010MRI quantification of non-
Gaussianwater diffusion by kurtosis analysisNMRBiomed.
23 698–710

Jensen JH,Helpern J A, Ramani A, LuHandKaczynski K 2005
Diffusional kurtosis imaging: the quantification of non-
gaussianwater diffusion bymeans ofmagnetic resonance
imagingMagn. Reson.Med. 53 1432–40

Jespersen SN,KroenkeCD,Østergaard L, Ackerman J J and
YablonskiyDA 2007Modeling dendrite density from
magnetic resonance diffusionmeasurementsNeuroImage 34
1473–86

Kadakkuzha BM,AkhmedovK,CapoTR, Carvalloza AC,
FallahiM and Puthanveettil S V 2013Age-associated
bidirectionalmodulation of gene expression in single
identified r15 neuron of aplysiaBMCGenomics 14 880

Kandel ER andKupfermann I 1970The functional organization of
invertebrate gangliaAnnual Review of Physiology 32 193–258
PMID: 4906119.

KhanAR, CorneaA, Leigland LA,Kohama SG, Jespersen SN and
KroenkeCD2015 3D structure tensor analysis of light
microscopy data for validating diffusionMRINeuroImage
111 192–203

Kingsley P B 2006 Introduction to diffusion tensor imaging
mathematics: Part I. tensors, rotations, and eigenvectors
Concepts inMagnetic Resonance Part A 28A 101–22

Kupfermann I, CarewT J andKandel ER 1974 Local, reflex, and
central commands controlling gill and siphonmovements in
aplysia Journal of Neurophysiology 37 996–1019

Lasek R J, Lee CK and Przybylski R J 1972Granular extensions of
the nucleoli in giant neurons of aplysia californica J Cell Biol
55 237–42

Lavdas I, BehanKC, Papadaki A,McRobbieDWandAboagye EO
2013Aphantom for diffusion-weightedMRI (DW-MRI)
J.Magn. Reson. Imaging 38 173–9

Le BihanD,Mangin J F, PouponC,ClarkCA, Pappata S,
MolkoN andChabriatH 2001Diffusion tensor imaging:
concepts and applications J.Magn. Reson. Imaging 13 534–46

LeeCH, Flint J J, Hansen B andBlackband S J 2015 Investigation of
the subcellular architecture of L7 neurons of aplysia
californica usingmagnetic resonancemicroscopy (MRM) at
7.8microns Sci. Rep. 5 11147

Li J R, CalhounD, PouponC andBihanDL2013Numerical
simulation of diffusionMRI signals using an adaptive time-
steppingmethod Phys.Med. Biol. 59 441–54

Lu L, ErokwuB, LeeG, Gulani V, GriswoldMA,Dell KMand
FlaskCA2012Diffusion-prepared fast imagingwith

14

Biomed. Phys. Eng. Express 5 (2019) 045036 K-VNguyen et al

https://orcid.org/0000-0001-6075-5526
https://orcid.org/0000-0001-6075-5526
https://orcid.org/0000-0001-6075-5526
https://orcid.org/0000-0001-6075-5526
https://orcid.org/0000-0001-6075-5526
https://doi.org/10.1016/j.neuroimage.2010.05.043
https://doi.org/10.1016/j.neuroimage.2010.05.043
https://doi.org/10.1016/j.neuroimage.2010.05.043
https://doi.org/10.1002/mrm.21577
https://doi.org/10.1002/mrm.21577
https://doi.org/10.1002/mrm.21577
https://doi.org/10.1016/S0006-3495(94)80775-1
https://doi.org/10.1016/S0006-3495(94)80775-1
https://doi.org/10.1016/S0006-3495(94)80775-1
https://doi.org/10.1002/mrm.1910320506
https://doi.org/10.1002/mrm.1910320506
https://doi.org/10.1002/mrm.1910320506
https://doi.org/10.1148/radiology.161.2.3763909
https://doi.org/10.1148/radiology.161.2.3763909
https://doi.org/10.1148/radiology.161.2.3763909
https://doi.org/10.1016/j.neuroimage.2015.03.061
https://doi.org/10.1016/j.neuroimage.2015.03.061
https://doi.org/10.1016/j.neuroimage.2015.03.061
https://doi.org/10.1016/j.neuroimage.2005.05.014
https://doi.org/10.1016/j.neuroimage.2005.05.014
https://doi.org/10.1016/j.neuroimage.2005.05.014
https://doi.org/10.1002/jmri.20383
https://doi.org/10.1002/jmri.20383
https://doi.org/10.1002/jmri.20383
https://doi.org/10.1073/pnas.95.7.3338
https://doi.org/10.1073/pnas.95.7.3338
https://doi.org/10.1073/pnas.95.7.3338
https://doi.org/10.1016/j.mri.2010.10.003
https://doi.org/10.1016/j.mri.2010.10.003
https://doi.org/10.1016/j.mri.2010.10.003
https://doi.org/10.1007/BF02740607
https://doi.org/10.1007/BF02740607
https://doi.org/10.1007/BF02740607
https://doi.org/10.1088/0031-9155/59/12/3081
https://doi.org/10.1002/mrm.10385
https://doi.org/10.1002/mrm.10385
https://doi.org/10.1002/mrm.10385
https://doi.org/10.1016/j.neuroimage.2011.06.006
https://doi.org/10.1016/j.neuroimage.2011.06.006
https://doi.org/10.1016/j.neuroimage.2011.06.006
https://doi.org/10.1016/j.jmr.2005.12.005
https://doi.org/10.1016/j.jmr.2005.12.005
https://doi.org/10.1016/j.jmr.2005.12.005
https://doi.org/10.1016/j.jmr.2005.12.005
https://doi.org/10.1007/s10334-019-00742-6
https://doi.org/10.1007/s10334-019-00742-6
https://doi.org/10.1002/mrm.1306
https://doi.org/10.1002/mrm.1306
https://doi.org/10.1002/mrm.1306
https://doi.org/10.1103/RevModPhys.79.1077
https://doi.org/10.1103/PhysRev.80.580
https://doi.org/10.1103/PhysRev.80.580
https://doi.org/10.1103/PhysRev.80.580
https://doi.org/10.1002/mrm.22155
https://doi.org/10.1002/mrm.22155
https://doi.org/10.1002/mrm.22155
https://doi.org/10.1002/mrm.1910370425
https://doi.org/10.1002/mrm.1910370425
https://doi.org/10.1002/mrm.1910370425
https://doi.org/10.1002/mrm.24706
https://doi.org/10.1002/mrm.24706
https://doi.org/10.1002/mrm.24706
https://doi.org/10.1016/j.neuroimage.2013.03.022
https://doi.org/10.1016/j.neuroimage.2013.03.022
https://doi.org/10.1016/j.neuroimage.2013.03.022
https://doi.org/10.1016/j.neuroimage.2013.03.022
https://doi.org/10.1002/nbm.1518
https://doi.org/10.1002/nbm.1518
https://doi.org/10.1002/nbm.1518
https://doi.org/10.1002/mrm.20508
https://doi.org/10.1002/mrm.20508
https://doi.org/10.1002/mrm.20508
https://doi.org/10.1016/j.neuroimage.2006.10.037
https://doi.org/10.1016/j.neuroimage.2006.10.037
https://doi.org/10.1016/j.neuroimage.2006.10.037
https://doi.org/10.1016/j.neuroimage.2006.10.037
https://doi.org/10.1186/1471-2164-14-880
https://doi.org/10.1146/annurev.ph.32.030170.001205
https://doi.org/10.1146/annurev.ph.32.030170.001205
https://doi.org/10.1146/annurev.ph.32.030170.001205
https://doi.org/10.1016/j.neuroimage.2015.01.061
https://doi.org/10.1016/j.neuroimage.2015.01.061
https://doi.org/10.1016/j.neuroimage.2015.01.061
https://doi.org/10.1002/cmr.a.20048
https://doi.org/10.1002/cmr.a.20048
https://doi.org/10.1002/cmr.a.20048
https://doi.org/10.1152/jn.1974.37.5.996
https://doi.org/10.1152/jn.1974.37.5.996
https://doi.org/10.1152/jn.1974.37.5.996
https://doi.org/10.1083/jcb.55.1.237
https://doi.org/10.1083/jcb.55.1.237
https://doi.org/10.1083/jcb.55.1.237
https://doi.org/10.1002/jmri.23950
https://doi.org/10.1002/jmri.23950
https://doi.org/10.1002/jmri.23950
https://doi.org/10.1002/jmri.1076
https://doi.org/10.1002/jmri.1076
https://doi.org/10.1002/jmri.1076
https://doi.org/10.1038/srep11147
https://doi.org/10.1088/0031-9155/59/2/441
https://doi.org/10.1088/0031-9155/59/2/441
https://doi.org/10.1088/0031-9155/59/2/441


steady-state free precession (DP-FISP): A rapid diffusionmri
technique at 7 TMagn. Reson.Med. 68 868–73

MatsumotoY et al2009 In vitro experimental studyof the relationship
between the apparent diffusion coefficient and changes in
cellularity and cellmorphologyOncologyReports22641–8

Mitra P P, Sen PN and Schwartz LM1993 Short-time behavior of
the diffusion coefficient as a geometrical probe of porous
mediaPhys. Rev.B 47 8565–74

Mitra P P, Sen PN, Schwartz LMand LeDoussal P 1992Diffusion
propagator as a probe of the structure of porousmedia Phys.
Rev. Lett. 68 3555–8

Mori S andZhang J 2009Encyclopedia of Neuroscience ed LR Squire
(Oxford: Academic) pp 531–8

Moussavi-Biugui A, Stieltjes B, FritzscheK, SemmlerWand
Laun F B 2011Novel spherical phantoms for q-ball imaging
under in vivo conditionsMagn. Reson.Med. 65 190–4

MusioC andBedini C 1990 Fine structure and axonal organization
in the buccal ganglia nerves ofaplysia (mollusca, gastropoda)
Zoomorphology 110 17–26

Ning L,Özarslan E,Westin C F andRathi Y 2017Precise inference
and characterization of structural organization (picaso) of
tissue frommolecular diffusionNeuroImage 146 452–73

PalomboM, Ligneul C,NajacC, LeDouce J, Flament J, Escartin C,
Hantraye P, Brouillet E, BonventoG andValette J 2016New
paradigm to assess brain cellmorphology by diffusion-
weightedMR spectroscopy in vivo Proc. of theNational
Academy of Sciences 113 6671–6

PalomboM, Ligneul C andValette J 2017Modeling diffusion of
intracellularmetabolites in themouse brain up to very high
diffusion-weighting: Diffusion in longfibers (almost)
accounts for non-monoexponential attenuationMagn.
Reson.Med. 77 343–50

Panagiotaki E, Schneider T, SiowB,HallMG, LythgoeMF and
AlexanderDC2012Compartmentmodels of the diffusion
MR signal in brainwhitematter: A taxonomy and
comparisonNeuroImage 59 2241–54

Pullens P, Roebroeck A andGoebel R 2010Ground truth hardware
phantoms for validation of diffusion-weightedMRI
applications J.Magn. Reson. Imaging 32 482–8

RadeckiG,Nargeot R, Jelescu IO, Le BihanD andCiobanu L 2014
Functionalmagnetic resonancemicroscopy at single-cell
resolution in Aplysia californica Proc. of theNational Academy
of Sciences 111 8667–72

HaddarH, Li J R and Schiavi S 2018Understanding the Time-
Dependent EffectiveDiffusionCoefficientMeasured by
DiffusionMRI: the IntraCellular Case SIAM Journal on
AppliedMathematics 78 (2) 774-800

Schoeniger J, AikenN,Hsu E andBlackband S 1994Relaxation-time
and diffusion nmrmicroscopy of single neurons J.Magn.
Reson.B 103 261–73

ShepherdTM,Thelwall P E, StaniszG J andBlackband S J 2009
Aldehydefixative solutions alter the water relaxation and
diffusion properties of nervous tissueMagn. Reson.Med. 62
26–34

SotakCH2004Nuclearmagnetic resonance (nmr)measurement of
the apparent diffusion coefficient (adc) of tissuewater and its
relationship to cell volume changes in pathological states
Neurochem. Int. 45 569–82

Stejskal EO andTanner J E 1965 Spin diffusionmeasurements: spin
echoes in the presence of a time-dependent field gradient
J. Chem. Phys. 42 288–92

Tanner J E and Stejskal EO1968 restricted self-diffusion of protons
in colloidal systems by the pulsed-gradient, spin-echo
method JCP 49 1768–77

TorreyHC1956 Bloch equations with diffusion terms Phys. Rev.
104 563–5

WeberT,ZienerCH,KampfT,HeroldV,BauerWRand JakobPM
2009Measurement of apparent cell radii using amultiplewave
vectordiffusion experimentMagn.Reson.Med. 611001–6

WebsterM,WitkinK L andCohen-FixO2009 Sizing up the
nucleus: nuclear shape, size and nuclear-envelope assembly
J. Cell Sci. 122 1477–86

ZhangH,Hubbard P L, ParkerG J andAlexanderDC2011Axon
diametermapping in the presence of orientation dispersion
with diffusionMRINeuroImage 56 1301–15

ZhangH, Schneider T,Wheeler-Kingshott CA andAlexanderDC
2012NODDI: Practical in vivoneurite orientation dispersion
and density imaging of the human brainNeuroImage 61
1000–16

Zhong J andGore J C 1991 Studies of restricted diffusion in
heterogeneousmedia containing variations in susceptibility
Magn. Reson.Med. 19 276–84

Özarslan E, Basser P J, Shepherd TM, Thelwall P E, Vemuri BC and
Blackband S J 2006Observation of anomalous diffusion in
excised tissue by characterizing the diffusion-time
dependence of themr signal J.Magn. Reson. 183 315–23

15

Biomed. Phys. Eng. Express 5 (2019) 045036 K-VNguyen et al

https://doi.org/10.1002/mrm.23287
https://doi.org/10.1002/mrm.23287
https://doi.org/10.1002/mrm.23287
https://doi.org/10.3892/or_00000484
https://doi.org/10.3892/or_00000484
https://doi.org/10.3892/or_00000484
https://doi.org/10.1103/PhysRevB.47.8565
https://doi.org/10.1103/PhysRevB.47.8565
https://doi.org/10.1103/PhysRevB.47.8565
https://doi.org/10.1103/PhysRevLett.68.3555
https://doi.org/10.1103/PhysRevLett.68.3555
https://doi.org/10.1103/PhysRevLett.68.3555
https://doi.org/10.1016/B978-008045046-9.00315-6
https://doi.org/10.1016/B978-008045046-9.00315-6
https://doi.org/10.1016/B978-008045046-9.00315-6
https://doi.org/10.1002/mrm.22602
https://doi.org/10.1002/mrm.22602
https://doi.org/10.1002/mrm.22602
https://doi.org/10.1007/BF01632808
https://doi.org/10.1007/BF01632808
https://doi.org/10.1007/BF01632808
https://doi.org/10.1016/j.neuroimage.2016.09.057
https://doi.org/10.1016/j.neuroimage.2016.09.057
https://doi.org/10.1016/j.neuroimage.2016.09.057
https://doi.org/10.1073/pnas.1504327113
https://doi.org/10.1073/pnas.1504327113
https://doi.org/10.1073/pnas.1504327113
https://doi.org/10.1002/mrm.26548
https://doi.org/10.1002/mrm.26548
https://doi.org/10.1002/mrm.26548
https://doi.org/10.1016/j.neuroimage.2011.09.081
https://doi.org/10.1016/j.neuroimage.2011.09.081
https://doi.org/10.1016/j.neuroimage.2011.09.081
https://doi.org/10.1002/jmri.22243
https://doi.org/10.1002/jmri.22243
https://doi.org/10.1002/jmri.22243
https://doi.org/10.1073/pnas.1403739111
https://doi.org/10.1073/pnas.1403739111
https://doi.org/10.1073/pnas.1403739111
https://doi.org/10.1137/16M1107474
https://doi.org/10.1006/jmrb.1994.1039
https://doi.org/10.1006/jmrb.1994.1039
https://doi.org/10.1006/jmrb.1994.1039
https://doi.org/10.1002/mrm.21977
https://doi.org/10.1002/mrm.21977
https://doi.org/10.1002/mrm.21977
https://doi.org/10.1002/mrm.21977
https://doi.org/10.1016/j.neuint.2003.11.010
https://doi.org/10.1016/j.neuint.2003.11.010
https://doi.org/10.1016/j.neuint.2003.11.010
https://doi.org/10.1063/1.1695690
https://doi.org/10.1063/1.1695690
https://doi.org/10.1063/1.1695690
https://doi.org/10.1063/1.1670306
https://doi.org/10.1063/1.1670306
https://doi.org/10.1063/1.1670306
https://doi.org/10.1103/PhysRev.104.563
https://doi.org/10.1103/PhysRev.104.563
https://doi.org/10.1103/PhysRev.104.563
https://doi.org/10.1002/mrm.21848
https://doi.org/10.1002/mrm.21848
https://doi.org/10.1002/mrm.21848
https://doi.org/10.1242/jcs.037333
https://doi.org/10.1242/jcs.037333
https://doi.org/10.1242/jcs.037333
https://doi.org/10.1016/j.neuroimage.2011.01.084
https://doi.org/10.1016/j.neuroimage.2011.01.084
https://doi.org/10.1016/j.neuroimage.2011.01.084
https://doi.org/10.1016/j.neuroimage.2012.03.072
https://doi.org/10.1016/j.neuroimage.2012.03.072
https://doi.org/10.1016/j.neuroimage.2012.03.072
https://doi.org/10.1016/j.neuroimage.2012.03.072
https://doi.org/10.1002/mrm.1910190215
https://doi.org/10.1002/mrm.1910190215
https://doi.org/10.1002/mrm.1910190215
https://doi.org/10.1016/j.jmr.2006.08.009
https://doi.org/10.1016/j.jmr.2006.08.009
https://doi.org/10.1016/j.jmr.2006.08.009

	1. Introduction
	2. Materials and methods
	2.1. Animal model
	2.2. Sample preparation
	2.3. Image acquisition
	2.4. Image analysis
	2.5. Simulations
	2.6. Analytical formula of the ADC in short diffusion time regime

	3. Results
	3.1. Experimental time-dependent ADC
	3.2. Validation of the STA by numerical simulations in large cell neurons
	3.3. Comparing the STA formula with the experimental ADC for large cell neurons
	3.3.1. One compartment STA model
	3.3.2. Two compartment STA model


	4. Discussion
	5. Conclusions
	Acknowledgments
	Animal experiments
	References



