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The Bloch-Torrey partial differential equation can be used to describe the evolution of the transverse
magnetization of the imaged sample under the influence of diffusion-encoding magnetic field gradients
inside the MRI scanner. The integral of the magnetization inside a voxel gives the simulated diffusion MRI
signal. This paper proposes a finite element discretization on manifolds in order to efficiently simulate
the diffusion MRI signal in domains that have a thin layer or a thin tube geometrical structure. The vari-
able thickness of the three-dimensional domains is included in the weak formulation established on the
manifolds. We conducted a numerical study of the proposed approach by simulating the diffusion MRI
signals from the extracellular space (a thin layer medium) and from neurons (a thin tube medium), com-
paring the results with the reference signals obtained using a standard three-dimensional finite element
discretization. We show good agreements between the simulated signals using our proposed method and
the reference signals for a wide range of diffusion MRI parameters. The approximation becomes better as
the diffusion time increases. The method helps to significantly reduce the required simulation time, com-
putational memory, and difficulties associated with mesh generation, thus opening the possibilities to
simulating complicated structures at low cost for a better understanding of diffusion MRI in the brain.

� 2019 Elsevier Inc. All rights reserved.
1. Introduction

Diffusion magnetic resonance imaging (dMRI) is a non-invasive
technique that makes use of the diffusional process of water mole-
cules to probe the micro-structure of biological tissues. After being
discovered to be useful in detecting troke in its acute phase in
1990s [1,2], dMRI has been used to image almost every part of
the human body. In the brain, the micro-structure is extraordinar-
ily complicated: cells such as neurons and glials cells crowd
together, leaving a tortuous extracellular space (ECS). Neurons
are made of a central body (soma) to which are attached long pro-
trusions called neurites (axons and dendrites), the axons being
long cylinders and the dendrites having a tree structure. In a neu-
ron, the diameter of the soma is on the order of 10 lm, the diam-
eter of the dendrite segments can range from a few micrometers to
less than half a micrometer, and the total length of all the dendrite
segments is on the order of several millimeters [3,4]. Fig. 1a shows
the morphology of dendritic trees reproduced from [5]. The neuron
on the top left from the drosophila melanogaster has 123 dendrite
branches with the average diameter of 1 lm. The human neuron
on the right has 585 dendrite branches and the average diameter
of 0:3 lm. The two neurons have soma surface areas of 3:14 lm2

and 693:5 lm2, respectively. The ECS is the space outside of the
cells (such as neurons and glial cells) that has a complicated geo-
metrical structure because the cells are irregularly shaped and
packed tightly together. A recent study indicates that the average
thickness of the ECS in the in vivo rat cortex is between 38 and
64 nm (see the review [6] and citations therein). In Fig. 1b we show
the extracellular space (marked in red) of a small region of the rat
cortex [6–8].

The extraction of quantitative micro-structure information from
dMRI measurements has sustained a vast amount of research. By
simulating individual structures such as neurons and the extra-
cellular space, one hopes to build up a model of the dMRI signal
at the voxel or the region-of-interest level that combines these
individual structures. Water exchange between the structures
through cell membranes can be added to the basic model later.

The predominant approach up to now has been building the
dMRI signal from simple geometrical components and models:
(1) analytical diffusion models in cylinders, spheres, etc.; (2) Gaus-
sian diffusion tensor in extra-cellular space; and then extracting
the model parameters: volume fraction and size distribution of
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Fig. 1. (a) Morphology of dendritic trees reproduced from [5]. The neuron on the left from the drosophila melanogaster has 123 dendrite branches and the average diameter
of 1 lm. The human neuron on the right has 585 dendrite branches and the average diameter of 0:3 lm. The two neurons have soma surface areas of 3:14 lm2 and
693:5 lm2, respectively. (b) The extracellular space (marked in red) of a small region of the rat cortex with the scale bar of 1 lm. The image was reprinted from [7] with
permission from Elsevier and Prof. Eva Syková. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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cylinder and sphere components, intrinsic and effective diffusion
coefficients and tensors [9–11]. To to deepen the understanding
of the relationship between cellular structure and the dMRI signal
in complicated geometries, one needs to rely on numerical simula-
tions. In the same vein, improving the efficiency of dMRI simula-
tions can accelerate the computational procedure in the
estimation of model parameters and allows the use of more com-
plicated geometrical components such as trees structures. Numer-
ical simulations also provide a cheap and powerful tool to
investigate the effect of different pulse sequences and tissue fea-
tures on the measured signal which can be used for development,
testing, and optimization of novel MRI pulse sequences [16,17].

Two main groups of approaches to the numerical simulation of
dMRI are (1) using random walkers to mimic the diffusion process
in a geometrical domain; (2) solving the Bloch-Torrey partial differ-
ential equation (PDE), which describes the evolution of the trans-
verse water proton magnetization under the influence of
diffusion-encoding magnetic field gradients pulses. The first group
is referred to as Monte-Carlo simulations in the literature and pre-
vious works include [18–20,13]. A GPU-based acceleration of
Monte-Carlo simulation was proposed in [21]. The second group
of simulations rely on solving the Bloch-Torrey PDE in a geometrical
domain, either using finite difference methods (FDM) [22–25], typ-
ically on a Cartesian grid, or finite elementmethods (FEM), typically
on a tetrahedral grid. For previous work on FEM, it is recommended
to refer to [26] for the short gradient pulse limit of some simple
geometries, to [27] for the multi-compartment Bloch-Torrey equa-
tion with general gradient pulses, and to [28] with the flow and
relaxation terms added. In [29], a simplified 1D manifold Bloch-
Torrey equation was solved to study the dMRI signal from neuronal
dendrite trees. A high performance FEM computing framework was
proposed in [30,31] for large-scale dMRI simulations on supercom-
puters. A comparison of the Monte-Carlo approach with the FEM
approach is beyond the scope of this paper. Such a comparison for
the short pulse limit was done in [26], where FEM simulations were
evaluated to be much more accurate and faster than the equivalent
modeling with Monte-Carlo simulations.

Based on the numerical simulations, a study in [12] shows the
effect of neuronal dendrite tree structures to the dMRI signal in
brain tissue. More recently, complicated components have been
used for diffusion-weighted MR spectroscopy (using several
metabolites), with neurons and astrocytes being represented by
one-dimensional tree structures [13]. The model parameters in this
case were the mean values and the standard deviations of branch
lengths and branch numbers, as well as the intrinsic diffusion coef-
ficient. The use of one-dimensional components in that study was
justified by the long diffusion times (from 52 ms up to 2002 ms).
The extraction of morphological properties of two different types
of neurons was preliminarily evoked in [14]. Similarly, studying
the diffusion characteristics of the extracellular space can reveal
information about its structure, and models are emerging based
on MRI [15,7].

The focus of this paper is the simulation of dMRI signals in thin
structures, which is usually memory-demanding and time-
consuming. For Monte-Carlo approaches, if the reflection condition
is applied, the particle undergoes multiple reflections until no fur-
ther surface intersections are detected [20,21], and if the rejection
method [32] is applied, the time step sizes need to be small to be
accurate. This process becomes extremely time-consuming if the
layer is thin. Similarly for FEM and FDM, because of the thin geo-
metrical structures of the neurons and the ECS, it requires tiny ele-
ments or grid sizes to describe the geometry correctly and at the
same time maintain the mesh quality. A naive mesh generator
would generate an excessively large number of elements. The time
step sizes also need to be small to ensure the accuracy and stability
of the methods.

Based on the fact that the radius of the dendrites and the thick-
ness of the ECS are much smaller than the diffusion displacement
of interest, it is commonly accepted that the diffusion in the ‘thin’
direction quickly reaches steady-state, whereas the interesting
physics occurs in a lower dimensional manifold perpendicular to
the ‘thin’ direction. Therefore, the topological dimension of the
computational domain can be reduced to make MRI simulations
more efficient. The work in this paper is related to an approach
developed in [29] to model dendrite trees as one-dimensional
linked segments, where the neurite thickness is assumed to be
constant in the entire tree. The interaction of the one dimensional
tree structure with the three-dimensional soma was also included,
and a study of the diffusion MRI signal for such domains was made
[12]. In this paper, variable segment diameters are included into
the formulation for dendrite trees, and this approach is extended
to the ECS of variable thickness. An underlying lower dimensional
manifold is assumed in one dimension for the dendrite tree and in
two dimensions for the ECS. These manifolds are approximated by
a surface triangulation (union of straight segments for dendrite
trees and union of flat panels for the ECS). The discretization is for-
mulated on the surface triangulation nodes. The Cartesian Lapla-
cian operator is projected onto the surface triangulation, and the
unknown magnetization is multiplied by a factor that is the layer
thickness for the ECS and the cross section area for the dendrite
tree. A numerical study is conducted to compare the simulated dif-
fusion MRI signals using the proposed method with reference sig-
nals computed using standard three-dimensional volume finite
elements.
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The proposed method was implemented with the open source
software FEniCS [33,34], which was started in 2003 to realize the
vision of efficiently solving PDEs by FEM with a high-level mathe-
matical notation. Formulating FEM on lower-dimensional mani-
folds is today possible in FEniCS either through a direct extension
of the framework to manifolds [35], or by a CutFEM approach
[36]. The direct approach is chosen since the generality of CutFEM
is not needed. The FEniCS framework allows for the automated
solution of many classes of PDEs of key societal and academic
importance. FEniCS opens the way for an automated approach
since it provides rapid development and efficient implementation,
as well as a framework for reliable control of errors in the solution.
The reliability is especially critical in medical applications.

The paper is organized as follows. First, in Section 2 we present
the Bloch-Torrey PDE and propose a numerical solution that con-
sists of a space discretization on a surface triangulation and review
the h�method as the time discretization. We describe the imple-
mentation of the proposed method on the FEniCS platform in Sec-
tion 3 where the equation is decomposed into two sub-equations,
for the real and imaginary parts. Then we give details about the
numerical simulations in Section 4, including information about
the meshes and the dMRI parameters. In Section 5, we present
numerical results, showing the reliability of the numerical solu-
tions as well as good agreements between the proposed approach
and reference solutions. In Section 6 we discuss the fact that the
proposed method approaches the reference solution as diffusion
time increases, resulting in a drastic reduction in the computa-
tional time. Finally, in Section 7, we provide conclusions and pro-
pose future developments.
2. Theory

2.1. The Bloch-Torrey equation

The complex transverse water proton magnetization u in a
three-dimensional domain X can be modeled by the Bloch-Torrey
PDE [37]:

@u x; tð Þ
@t

þ icG xð Þf tð Þu x; tð Þ � r � Dru x; tð Þð Þ ¼ 0; x 2 X ð1Þ

where i is the imaginary unit (i2 ¼ �1), D is the intrinsic diffusion
coefficient, G xð Þ ¼ g � x; g contains the amplitude and direction
information of the applied diffusion-encoding magnetic field gradi-
ent, c ¼ 2:67513� 108 rad s�1 T�1 denotes the gyro-magnetic ratio
of water proton, and f tð Þ indicates the time profile of the
diffusion-encoding magnetic field gradient sequence.

The most commonly used time profiles f tð Þ to encode the diffu-
sion include the pulsed-gradient spin echo sequence (PGSE)
sequence [38] and the oscillating gradient spin echo (OGSE)
Fig. 2. A PGSE sequence (a) and
sequence [39]. The PGSE consists of two rectangular pulses of dura-
tion d, separated by a time interval D� d (Fig. 2a):

f tð Þ ¼
1; 0 6 t 6 d;

�1; D < t 6 Dþ d;

0; otherwise:

8><>: ð2Þ

The OGSE consists of two oscillating pulses of duration r, each
containing n periods, separated by a time interval s� r (Fig. 2b).
For a cosine OGSE [40,39], the profile f tð Þ is

f tð Þ ¼
cos n 2p

r t
� �

; 0 < t 6 r;
� cos n 2p

r t � sð Þ� �
; s < t 6 sþ r;

0; otherwise:

8><>: ð3Þ

In this paper, the water exchange between compartments is
neglected, yielding the homogeneous Neumann boundary
condition:

Dru x; tð Þ � n ¼ 0; x 2 @X: ð4Þ
where n is the unitary normal vector pointing outward the bound-
ary. Assuming a uniform excitation of the magnetization in the
imaging voxel, the initial condition is u x; 0ð Þ ¼ 1. The signal is mea-
sured at the echo time, TE, with TE > dþ D for the PGSE and
TE > rþ s for the OGSE. The diffusion MRI signal is the total mag-
netization averaged over the computational domain X:

S gð Þ ¼ 1
jXj

Z
X
u x; TEð Þdx: ð5Þ

The signal is usually plotted against a quantity called the
b�value. For the PGSE, the b-value is [38]:

b g; d;Dð Þ ¼ c2kgk2d2 D� d
3

� �
: ð6Þ

For the cosine OGSE with the number of periods n in each of the
two durations r, the corresponding b-value is [23]:

b g;rð Þ ¼ c2kgk2 r3

4n2p2 : ð7Þ

It is commonly agreed that a reasonable choice for the effective
diffusion time, tD, of the PGSE sequence is:

tD ¼ D� d
3
;

and for cosine OGSE it is [39]:

tD ¼ r
4n

:

The unhindered mean squared displacement in three-
dimensions is

MSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
6DtD

p
:

a cos-OGSE sequence (b).
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In the next section, a finite element discretization on manifolds
is derived in order to simulate the diffusion MRI signal in a thin
layer or in a thin tube structure.

2.2. FEM formulation: from volumes to manifolds

The three-dimensional domain of simulation, X � R3, is
assumed to be described by a lower dimensional manifold C (of
dimension two in the case of the ECS, of dimension one in the case
of the dendrite tree) and a variable cross section V, in other words:

X ¼ ex þ bx� �
; ex 2 C; bx 2 V ex� �� �

:

In the case of ECS,

C � R2;V ex� � � R1

whereas in the case of dendrite trees,

C � R1;V ex� � � R2:

Let Q ¼ H1 Xð Þ be a Sobolev space, i.e.

H1 Xð Þ ¼ v : X ! C j
Z
X
v2 þ jrvj2 dx < 1

	 

:

To construct the weak form of Eq. (1) we multiply both sides
with a test function v 2 Q and integrate over X, we then haveZ
X

_uv dX ¼ �
Z
X
icf tð ÞG xð Þuv dXþ

Z
X
r � Druð Þv dX:

After applying the Green’s first identity to the diffusion term,
we obtainZ
X

_uv dX ¼ �
Z
X
icf tð ÞG xð Þuv dXþ

Z
@X

Dru � nv ds�
Z
X
Dru � rv dX:

The homogeneous Neumann boundary conditions (Eq. (4)) on
@X cancel out the boundary term and giveZ
X

_uv dX ¼ �
Z
X
icf tð ÞG xð Þuv dX�

Z
X
Dru � rv dX: ð8Þ

We denote the surface triangulation of C by T ¼ SiEi. Assume
we have available the cross-section V ex� � at each node ex of T .
Specifically, for the ECS, let ex1; ex2; ex3 be the three nodes of the tri-
angle Ei, then the six points:ex1 þ a1n ex1

� �
; ex2 þ a2n ex2

� �
; ex3 þ a3n ex3

� �� �
where n exj

� �
; j ¼ 1;2;3 is perpendicular to C at exj, and

a1 2 a1; b1½ �; a2 2 a2; b2½ �; a3 2 a3; b3½ �; ak; bk½ � � R
(a)

Fig. 3. In case the element is a tapered cylinder, the basis functions are defined on the
triangle prism, the basis functions are defined on the triangle E formed by midpoints of
make up the volume element Ei. In Fig. 3 we show the typical finite
element for the ECS (Fig. 3b) and the dendrite tree (Fig. 3a).

Since our main interest is in performing diffusion simulations
where the diffusion distance is large compared to the size of V,
we choose to enforce the following constraints on the solution:

u ex þ bx� � ¼ u ex� �; ex 2 T ; ex þ bx 2 X: ð9Þ
In other words, the solution is constant on V ex� �. Using the

above constraint, we can simply solve for the values of the FEM
solution at ex 2 T .

We choose a continuous Galerkin discretization Q h associated
with a volume mesh of N nodes xkf gk¼1...N and use standard basis
functions ukf gk¼1...N to give rise to the following representations:

uh ¼
XN
k¼1

Ukuk; Gh uh ¼
XN
k¼1

Gh
kUkuk: ð10Þ

where Uk and Gh
k are discretized values of uh and Gh at the mesh

node xk.
On each element E 2 Xh, Eq. (8) becomesZ

E

_uh vh dE ¼ �
Z
E
icf tð ÞGh uh vh dEþ

Z
@E@X

Druh � nvh ds

�
Z
E
Druh � rvh dE: ð11Þ

Note that the boundary term is automatically canceled due to
the flux conservationX
E0

Z
@E0@X

Druh � nvh ds ¼ 0; ð12Þ

here E0 indicates the elements sharing the same boundary @E.
Choose vh ¼ uj; j ¼ 1 . . .N and substitute Eq. (10) to Eq. (11), we

obtain the following discrete equation

XN
k¼1

_Uk

Z
E
ukuj dEþ icf tð ÞGh

k Uk

Z
E
ukuj dEþDUk

Z
E
ruk �ruj dE

� �
¼ 0:

ð13Þ
Since ukf g is defined on T , the integral on E is decomposed and

Eq. (13) becomesXN
k¼1

_Uk

Z
E
ukuj gk dEþ ic f tð ÞGh

k Uk

Z
E
ukujgk dE

�
þ DUk

Z
E
rEuk � rEujgk dE

�
¼ 0 ð14Þ
(b)

edge E connecting two center points of circular bases (a). In case the element is a
edges perpendicular to the middle surface (b).
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where gk is the cross-section area gk ¼ jV xkð Þj and rE denotes the

projection of the gradient operator on E. For simplicity, from now
on we use r to denote rE.

Let g xð Þ ¼ jV xð Þj be the continuous function of the thickness
and E0 indicate the elements sharing the same boundary @E, the
flux conservation Eq. (12) becomesX
E0

Z
@E0

Druh � nv gds ¼ 0 ð15Þ

which is implicitly imposed through the implementation of Eq. (14).
Eq. (5) now becomes

Sm gð Þ ¼
Z
C
g xð ÞdC

� ��1 Z
C
uh TEð Þg xð ÞdC: ð16Þ

In case g is constant, Eq. (16) is simplified to [29]

Sm gð Þ ¼ 1
jCj

Z
C
uh TEð ÞdC: ð17Þ

We also note that Eq. (14) allows solving the equation on sur-
face meshes and the thickness is added to the equation analyti-
cally. The space–time discretization of Eq. (14) with the
h�method (used also in [28,31]) reads

XN
k¼1

Unþ1
k � Un

k

Dt

Z
E
ukuj gk dEþ icGh

kF Unþh
k

� � 

�
Z
E
ukujgk dEþ DUnþh

k

Z
E
ruk � rujgk dE

�
¼ 0 ð18Þ

where h 2 0;1½ �;Dt ¼ tnþ1 � tn, and

Unþh
k ¼ hUnþ1

k þ 1� hð ÞUn
k ;

F Unþh
k

� �
¼ h f tnþ1� �

Unþ1
k þ 1� hð Þ f tnð ÞUn

k :

The explicit Forward Euler and implicit Backward Euler meth-
ods correspond to h ¼ 0 and h ¼ 1. Here, we use h ¼ 1

2 to have an
implicit, unconditionally stable, and second-order method referred
to as a Crank-Nicolson method.We will describe the detailed
implementation in FEniCS in the next Section.
3. Implementation

FEniCS does not officially support complex-valued PDEs
although this problem is under development [41]. So, to imple-
ment the proposed method in the current versions of FEniCS, we
need to first decompose Eq. (18) into two equations for the real
part and imaginary part. Then, we couple the two equations again
into the linear and bilinear forms. For simplicity, we can write Eq.
(18) as the followingZ
E

unþ1
h �un

h

Dt
vgdEþ ic

Z
E
GF unþh

h

� �
vgdEþD

Z
E
runþh

h �rvgdE¼ 0:

ð19Þ
Since un

h is complex-valued, we can write un
h ¼ un;r

h þ iun;i
h and

decompose Eq. (19) into two equations

R
E

unþ1;r
h

�un;r
h

Dt vr gdE� c
R
E GF unþh;i

h

� �
v r gdEþ D

R
E runþh;r

h � rv r gdE ¼ 0;R
E

unþ1;i
h

�un;i
h

Dt v i gdEþ c
R
E GF unþh;r

h

� �
v i gdEþ D

R
E runþh;i

h � rv i gdE ¼ 0:

ð20Þ
We choose to test the first equation with v ¼ v r and the second

equation with v ¼ v i.
The linear and bilinear forms corresponding to Eq. (20) are
defined as

a unþ1
h ;v

� �¼ 1
Dt

R
Eu

nþ1;r
h v rgdEþ RE unþ1;i

h v igdE
� �

� hF tnþ1;unþ1
h

� �
;

L vð Þ ¼ 1
Dt

R
Eu

n;r
h v rgdEþ RE un;i

h v igdE
� �

þ 1� hð ÞF tn;un
h

� �
ð21Þ

where

F tn;un
h

� � ¼ c f tnð Þ
Z
E
Gun;i

h v
r gdE� D

Z
E
run;r

h � rv r gdE

� c f tnð Þ
Z
E
Gun;r

h v i gdE� D
Z
E
run;i

h � rv igdE:

Eq. (21) was implemented in FEniCS C++ and Python as shown
in the A. In the next section, we will describe the numerical study
of the proposed method.
4. Numerical study

We conduct a numerical study of the proposed approach by
simulating the diffusion MRI signal of thin tube and thin layer
domains. The three methods to be compared are:

1. Reference solution (Method 1), the standard three-dimensional
finite element discretization, with tetrahedral elements [31].

2. Proposed method (Method 2), the formulation on manifolds tak-
ing into account variable cross-section, as described in this paper.

3. Previous method (Method 3), the formulation on manifolds with
a uniform cross-section [29]. In other words, gk ¼ �g;8k in Eq.
(14), where �g is the averaged value.

4.1. Simulated domains

The simulation geometries are the following:

1. Tree, see Fig. 4.
The 3D tree has variable cross-section. Each branch is modeled
as a tapered cylinder with two different radii: r1 and r2. Here
r1 ¼ 2;1;0:5f glm and r2 ¼ 1;0:5;0:2f glm correspond to three
generations of the tree. The total length is 1211 lm.

2. Neuron, see Fig. 5a.
The 3D neuron is from the drosophila melanogaster [5,42], with
the average dendrite diameter being 1 lm, total length being
2462 lm. The 1D neuron is manually generated by connecting
the centers of the cross-sections of the dendrite segments of the
3D neuron.

3. Thick Plane, see Fig. 5b.
The thickness varies between 0:5 lm and 4 lm. Analytically,
the thickness is expressed as g x; y; zð Þ ¼ 9

4 � x
10 � z

50. The corre-
sponding 2D plane is ABCD with A 12:5;0;25ð Þ;
B 12:5;0;�25ð Þ;C �12:5;0;�25ð Þ;D �12:5;0;25ð Þ.

4. Model ECS (extra-cellular space), see Fig. 6.
This is made of random planes whose thickness varies between
0:3 lm and 0:9 lm. The thickness function g is shown on the
corresponding 2D manifold domain in Fig. 6b.

4.2. Mesh generation

The surface meshes for the above geometries were generated
either with Salome [43] or from a medical segmentation with
ANSA [44]. To generate the volume finite element mesh, we
wrapped the STL mesh and generated a watertight surface mesh
from ANSA. The surface meshes of the Tree, the Thick Plane and
the Model ECS were generated from manually defined geometries



Fig. 4. A tree with variable cross-sections (a). Each branch is modeled as a tapered cylinder with two different radii r1 and r2 (b). Here r1 ¼ 2;1;0:5f glm and
r2 ¼ 1;0:5;0:2f glm correspond to three generations of the tree. The corresponding 1D tree is shown in (c).

Fig. 5. 3D neuron (a). A thick plane with variable thickness g x; y; zð Þ ¼ 9=4� x=10� z=50 (b).

Fig. 6. An artificial ECS made of random planes whose thickness varies between 0:3 lm and 0:9 lm (a). The function of thickness g is shown on the corresponding 2D
manifold (b).
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with the help of Boolean Operations in Salome in which we
need to remove some gaps and intersections. For the Neuron, we
downloaded the morphology file fru-M-100383.swc from the
website [5,42]. It was then converted to the STL file format.

In Section 2.2, we idealized the thin domains as one layer of
special elements along a manifold to establish the formulas. How-
ever, it is not practical to generate a volume finite element mesh
consisting of one layer of elements, at least not in a robust way
with existing finite element meshing resources. Therefore, the
standard finite element meshes used to generate reference signals
in the next section have elements that are much smaller than the
thickness of the thin layers.

Table 1 shows the size of the volume and manifold meshes used
for numerical simulations, corresponding to the above described
domains. The thickness of the 3D tree varies significantly: between
0.2 and 2 lm. This kind of domain needs to be meshed with a large
number of tetrahedra and it is the most expensive.
4.3. DMRI parameters

In the following, we will use the following format to describe
the dMRI parameters of the simulations:

PGSE d;Dð Þ
OGSE r ¼ sð Þ

	
; ug � g

kgk ; b;

where for the OGSE sequence, we always use the cosine
OGSE with n ¼ 2 and r ¼ s. The time unit is (ms) and the b unit

is (s=mm2).
4.3.1. B-value

We simulated b�values between 0 and 4000 s=mm2 which con-
tain the feasible range of the vast majority of existing MRI scanners
[45–47].



Table 1
Information about the volume and manifold meshes corresponding to the geometries on which numerical simulations were performed. The length unit is (lm).

Sample Thickness hmin hmax hmean # vertices # elements

Tree 1D 0.2–2 0.5 0.5 0.5 1216 1215
Tree 3D 0.03 0.5 0.08 761175 3411547

Neuron 1D 1 0.4 1.9 0.9 1335 1342
Neuron 3D 0.03 0.9 0.3 65260 199973

Plane 2D 0.5–4 0.2 0.4 0.3 5869 11436
Plane 3D 0.2 0.8 0.4 24379 103595

Model ECS 2D 0.3–0.9 0.08 0.9 0.6 21986 46336
Model ECS 3D 0.004 6.0 0.4 87580 293792
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4.3.2. Diffusion time
The effective diffusion time tD varies for different applications

but can be between 0.38 and 40 ms for the OGSE (see a review
in [48]). For a PGSE, tD is larger and can be up to � 1 s [13]. In this
paper, tD is varied between 5 and 500 ms for the PGSE and between
1:3 ms and 6:3 ms for the OGSE.

4.3.3. Gradient directions
At the most complicated, the simulations were performed over

a set G of 270 gradients, quasi-uniformly distributed on a sphere
(as used in [14]). The distribution of the three corresponding

b�values, 1000;2000, and 3000 s=mm2, over the 270 gradient
directions in that study is shown in Fig. 7. Here / represents the
horizontal azimuth angle measured on the xy�plane from the
x�axis in the counterclockwise direction, and h represents the azi-
muth angle measured from the z�axis in the spherical coordinates.

5. Results

The simulations on manifolds and small-scale volumes were
performed with FEniCS 1.8.0 [34,31] on a stationary desktop
(Intel(R) Core(TM) i7-3770 CPU@3.40 GHz) equipped with Linux
Ubuntu 16.04 LTS, where timing comparisons were carried out.
For large-scale volumes, the simulations were performed with
FEniCS-HPC [49,30,31] on the KTH Beskow supercomputer [50]
with 32 MPI processes for each b�value. A Krylov solver is used
Fig. 7. The distribution of b�values over the 270 gradient directions on a sphere,
used in the numerical simulations. Here / represents the horizontal azimuth angle
measured on the xy�plane from the x�axis in the counterclockwise direction, and h
represents the azimuth angle measured from the z�axis in the spherical
coordinates.
with the biconjugate gradient stabilized method and the block-
Jacobi preconditioner from the PETSc library. The water diffusion
coefficient used is D ¼ 3� 10�3mm2=s.

The accuracy of our manifold model (Eq. (14)), compared to the
full 3D model (Eq. (8)), is measured using the relative difference
between the signals, computed by Eqs. (5) and (16), i.e.:

R ¼ jS gð Þ � Sm gð Þj
S gð Þ : ð22Þ

Rmax and Rmean are used to indicate the maximum and the mean
value of R over all gradient directions.

Before presenting the results of the simulations using the
meshes described in Table 1, we check that the results are reliable
by refining the spatial mesh and the time step of the Crank-
Nicolson method. We generated refined meshes with a mean ele-
ment size that is half of the original meshes; two Crank-Nicolson
time steps, Dt ¼ 0:02 ms and Dt ¼ 0:04 ms, were used. The dMRI
parameters were:

PGSE 10;10ð Þ; ug ¼ 1;1;1½ �ffiffiffi
3

p ; b ¼ 4000 s=mm2
:

The computed signals for the Tree, the Neuron, and the Model
ECS are shown in Table 2. The biggest change in the simulated sig-
nal is about 1.3% for Model ECS. Such small changes show that the
numerical solution is stable and the meshes listed in Table 1 are
adequate for comparing the proposed method and the reference
solution. In addition, it can be seen in the table that the computa-
tion times on the manifolds are significantly smaller than on 3D
domains. In particular, the 1D simulations take negligible time.

From now on, we fix the time step size to be Dt ¼ 0:04 ms for all
simulations in the following sections.

5.1. Tree

We first compare the signals of Methods 1, 2, and 3 for four
PGSE sequences, with the following dMRI parameters:

PGSE 1;5ð Þ;
PGSE 1;10ð Þ;
PGSE 1;40ð Þ;
PGSE 1;200ð Þ;

8>>><>>>: ug 2 G; b 2 1000;2000;3000f g:

The corresponding MSDs are 9:2 lm;13:2 lm;26 lm and
60 lm. The results are shown in Fig. 8. The proposed method
(Method 2) gives a good approximation to the reference model
(Method 1) and the approximation gets better at longer diffusion
times. The relative differences are 12.5%, 6.8%, 4.6% and 3.0%,
respectively. The constant cross-Section 1D model (Method 3)
gives a much worse approximation in this case with the relative
differences being 120%, 100%, 56% and 37%, respectively.

Now we compare Method 1 and Method 2 for two cosine OGSE
sequences (Eq. (3)). The following dMRI parameters were used:



Table 2
The mesh sizes and the time-step size are reduced by half to observe the signals changes for d ¼ D ¼ 10 ms and b ¼ 4000 s=mm2.

Original mesh Refined mesh
Sample (Dt ¼ 0:04 ms) (Dt ¼ 0:02 ms)

signal hmean Timing (s) Signal hmean

Tree 1D 0.1883 0.50 1.0 0.1893 0.25
Tree 3D 0.2040 0.08 9897.0 0.2042 0.05

Neuron 1D 0.2551 0.90 1.0 0.2566 0.45
Neuron 3D 0.2521 0.30 812.5 0.2540 0.16

Model ECS 2D 0.0375 0.60 79.6 0.0381 0.28
Model ECS 3D 0.0352 0.40 1614.7 0.0357 0.26

Fig. 8. A comparison of signals on the tree shown in Fig. 4 for four PGSE sequences with D ¼ 5 ms;D ¼ 10 ms;D ¼ 40 ms and D ¼ 200 ms (a). The variable cross-section model
gives a good approximation to the 3D model and the approximation gets better at longer diffusion times. The relative differences are 12.5%, 6.8%, 4.6% and 3.0%, respectively.
The constant cross-Section 1D model gives a much worse approximation in this case with the relative differences being 120%, 100%, 56% and 37%, respectively. Fig. (b) shows
the signals at D ¼ 5 ms for which the relative difference is much smaller for Method 2 than for Method 3.
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OGSE 20ð Þ
OGSE 40ð Þ

	
ug 2 G; b 2 1000;2000;3000f g;

The relative difference is about 15.5% at r ¼ s ¼ 20 ms. Simi-
larly, the approximation gets better at longer diffusion time and
the relative error is less than 5% at r ¼ s ¼ 40 ms (Fig. 9).
5.2. Neuron

Now we consider the Neuron and compare Method 1 and
Method 2 for three cosine OGSE sequences (Eq. (3)). The following
dMRI parameters were used:

OGSE 10ð Þ
OGSE 30ð Þ
OGSE 50ð Þ

8><>: ug 2 G; b 2 1000;2000;3000f g;

The results are shown in Figs. 10a and b in which the relative
difference is less than 17% for all gradient directions and the mean
relative difference is around 4%. Again, the approximation gets bet-
Fig. 9. Signals for cosine OGSE sequences in the variable-thickness tree compared to the
better at the longer diffusion time. The maximum relative difference is about 5% for r ¼
ter at longer diffusion time and the maximum of the relative differ-
ence drops to 7% for r ¼ s ¼ 30 ms.

Simulations were also performed with the following PGSE
sequences:

PGSE 5;10ð Þ;
PGSE 20;80ð Þ;
PGSE 20;500ð Þ;

8><>: ug 2 G; b 2 1000;2000;3000f g;

The corresponding MSDs are 12 lm;36 lm and 94 lm respec-
tively. The maximum relative difference is about 12% for
D ¼ 5d ¼ 5ms and drops to 3% for D ¼ 200d ¼ 200 ms.

5.3. Thick plane

Now we compare signals computed by Method 1, 2, and 3 for
the Thick Plane for the following dMRI parameters:

PGSE 1;40ð Þ
PGSE 1;200ð Þ

	
;

ug ¼ 1;0;0½ �
ug ¼ 1;1;1½ �ffiffi

3
p

(
; b ¼ 1000;2000;3000;4000f g;
reference signals for r ¼ s ¼ 20 ms and r ¼ s ¼ 40 ms (b). The approximation gets
s ¼ 40 ms (b).



Fig. 10. Signals for 1D and 3D models of the Neuron for a cosine OGSE sequence with r ¼ s ¼ 10 ms and n ¼ 2 versus 270 gradients distributed in a sphere.

Fig. 11. Computed signals on a thick plane with variable thickness g x; y; zð Þ ¼ 9=4� x=10� z=50 for D ¼ 40d ¼ 40 ms (a), D ¼ 200d ¼ 200 ms (b) and two gradient directions
ug ¼ 0;0;1½ �;ug ¼ 1;1;1½ �ffiffi

3
p . The variable cross-Section 2Dmodel approximates accurately the full model whereas the constant cross-section model gives a good approximation for

ug ¼ 0;0;1½ � and a less good approximation for ug ¼ 1;1;1½ �ffiffi
3

p with around 13% in maximum relative difference.

Fig. 12. The simulations were performed for the Model ECS (Fig. 6) with two PGSE sequences D ¼ 40d ¼ 40 ms and D ¼ 200d ¼ 200 ms. The signals in the 2D manifold
domain in comparison to the 3D model are shown in (a). The maximum relative difference for D ¼ 40 ms is about 17% and decreases to 9% for D ¼ 200 ms (b). The large errors
only occur for a few gradient directions and the averaged difference over all gradient directions is about 4% for both cases.
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The variable cross-section model approximates accurately the
full model whereas the constant cross-section model gives good
approximations for ug ¼ 0;0;1½ � but a less accurate approximation

for ug ¼ 1;1;1½ �ffiffi
3

p , with around 13% maximum relative difference

(Figs. 11a, b).
Fig. 13. The relative error R goes to zero linearly with gmax=MSD.
5.4. Model ECS

In the last set of simulations, we compare Method 1 and
Method 2 for the model ECS. The dMRI parameters are:

PGSE 1;40ð Þ
PGSE 1;200ð Þ
PGSE 1;500ð Þ

8><>: ;ug 2 G; b 2 1000;2000;3000f g;

Fig. 12a shows the signals in the 2D manifold domain in com-
parison to the 3D model. The maximum relative difference for



Table 3
The relative error R gets smaller as g=MSD gets smaller and a huge speedup is obtained by the manifold model over the full 3D model.

Sample Sequence tD MSD Rmean Rmax Speedup
(thickness g) ms ms lm (%) (%) (times)

Tree PGSE 1;5ð Þ 4.7 9.2 3.8 12.5
(0.2–2 lm) PGSE 1;10ð Þ 9.7 13.2 2.5 6.8 > 9000

PGSE 1;40ð Þ 39.7 26.7 1.0 4.5
PGSE 1;200ð Þ 199.7 60 1.0 3.0
OGSE 20ð Þ 2.5 6.7 4.7 15.5
OGSE 40ð Þ 5 9.5 2.2 5.0

Neuron PGSE 5;10ð Þ 8 12 1.0 4.0 > 800
1 lm PGSE 20;80ð Þ 73 36 1.0 3.0

PGSE 20;500ð Þ 493 94 1.0 2.5
OGSE 10ð Þ 1.3 4.7 4.1 15.7
OGSE 30ð Þ 3.8 8.2 2.3 7.9
OGSE 50ð Þ 6.3 10.6 1.9 5.4

ECS PGSE 1;40ð Þ 40 27 4.3 17.2 > 20
(0.3–0.9 lm) PGSE 1;200ð Þ 200 60 4.5 9.4

PGSE 1;500ð Þ 499.7 94.8 0.5 2.0
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D ¼ 40 ms is about 17% and decreases to 9% for D ¼ 200 ms
(Fig. 12b). However, the large errors only occur for a few gradient
directions and the averaged difference over all gradient directions
is about 4% for both cases.

6. Discussion

We proposed an efficient finite element discretization for the
diffusion MRI simulation of thin layer and thin tube domains that
works for general pulse sequences. By transferring the variable
thickness to the variational form on a manifold, our proposed
approach (Method 2) approximates the full 3D model (Method 1)
much better than the previous manifold model [29] with a con-
stant thickness (Method 3). Fig. 8 shows that in some cases, the
improvement can be large. In fact, it stands to reason that if the
thickness is not uniform, Method 3 does not converges to Method
1 as the effective diffusion time tD tends to infinity.

Fig. 13 shows the convergence of Method 2 to Method 1 and
there is a linear relationship between R and gmax=MSD (the fitting
line does not cross the origin exactly due to numerical errors of the
finite element solution).

In Table 3 we summarize the accuracy and the computational
efficiency of our proposed method (Method 2) compared to the ref-
erence method (Method 1). It shows that the computational timing
on the manifolds is significantly reduced compared to the full 3D
models. The 1D manifolds give the largest benefit since two topo-
logical dimensions were removed and it can run thousands of
times faster. The improvement of the 2D manifold is less signifi-
cant but the computation is still 20 times faster.

As discussed in [26], the FEM approach is much more efficient
than the Monte-Carlo simulations for the short pulse limit. It is
expected that the conclusions comparing FEM with Monte-Carlo
simulations apply to the general Bloch-Torrey PDE. Thus, the
approach we propose here (Method 2) can be used to replace the
Monte-Carlo simulations in [13], especially since the use of one-
dimensional components in that study was justified by the long
diffusion times. In addition, our approach can also contribute to
the extraction of morphological properties of different types of
neurons that was preliminarily evoked in [14] using HARDI-type
acquisitions. Similarly, extracting information about the ECS using
manifold models is an exciting prospect.

This new approach helps to reduce significantly both the com-
putational cost of the solver and the complexity of mesh genera-
tion for FEM simulations. For a large number of experiments in
this paper, the 3D simulations required the KTH Beskow supercom-
puter [50] whereas the simulations of the reduced models were
still fast on a personal laptop. Interestingly, since the manifold sim-
ulations are less memory-demanding and less time-consuming, we
could perform them in a free cloud machine, Colab notebooks [51],
that requires no setup. It would make the simulation of diffusion
MRI very straightforward. This package is available upon request.

In the future, unknown fields defined over domains of different
topological dimensions can be coupled as proposed in [52] to sim-
ulate more complex geometries.
7. Conclusions

We proposed an efficient finite element discretization for the
diffusion MRI simulation of thin layer and thin tube domains.
The new method works for general pulse sequences and we found
a linear relationship between the accuracy of our method and the
ratio between the thickness of the ”thin” dimension and the unhin-
dered diffusion distance. Using our formulation, the full 3D simu-
lations are reduced to computations either on one-dimensional
manifolds for neurites or on two-dimensional manifolds for the
extra-cellular space while maintaining computational accuracy.
This approach can be used to investigate the morphological prop-
erties of brain cells that are out of reach of existing techniques.

In the future, the proposed discretization can be coupled with
full 3D models as mixed-dimensional partial differential equations
defined over domains of differing topological dimensions to enable
simulations of diffusion MRI on more complicated geometries. The
implementation of the method on supercomputers is also an inter-
esting direction.
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Appendix A. Implementation in FEniCS
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