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a b s t r a c t

High resolution Manganese Enhanced Magnetic Resonance Imaging (MEMRI), which uses manganese as a
T1 contrast agent, has great potential for functional imaging of live neuronal tissue at single neuron scale.
However, reaching high resolutions often requires long acquisition times which can lead to reduced
image quality due to sample deterioration and hardware instability. Compressed Sensing (CS) techniques
offer the opportunity to significantly reduce the imaging time. The purpose of this work is to test the fea-
sibility of CS acquisitions based on Diffusion Limited Aggregation (DLA) sampling patterns for high res-
olution quantitative T1-weighted imaging. Fully encoded and DLA-CS T1-weighted images of Aplysia
californica neural tissue were acquired on a 17.2T MRI system. The MR signal corresponding to single,
identified neurons was quantified for both versions of the T1 weighted images. For a 50% undersampling,
DLA-CS can accurately quantify signal intensities in T1-weighted acquisitions leading to only 1.37% dif-
ferences when compared to the fully encoded data, with minimal impact on image spatial resolution.
In addition, we compared the conventional polynomial undersampling scheme with the DLA and showed
that, for the data at hand, the latter performs better. Depending on the image signal to noise ratio, higher
undersampling ratios can be used to further reduce the acquisition time in MEMRI based functional stud-
ies of living tissues.

� 2017 Elsevier Inc. All rights reserved.
1. Introduction

Recent advances in the static magnetic field strength of mag-
netic resonance scanners and in the radio-frequency (RF) detector
designs has allowed magnetic resonance microscopy (MRM) to
reach spatial resolutions suitable for functional imaging of single
cells [1–3]. However, in order to reach the full potential of MRM
it is necessary to reduce the currently long acquisition times
required for obtaining high resolution images. Based on the fact
that MR images, among other types of images, are compressible,
an image can be reconstructed from a small number of random
measurements [4]. This finding opened the field of Compressed
Sensing (CS) which can significantly reduce the MRI scan time
and found numerous applications in preclinical [5] and clinical
[6] imaging.

In CS, high-quality images can be obtained from data sampled
well below the Nyquist rate provided that the sampling pattern
is incoherent, the images are sparse in a transform domain, and a
sparsity-promoting iterative reconstruction is used [4]. The CS
method has been previously utilized for the acceleration of T1
weighted acquisitions for knee cartilage quantification [7] as well
as for MEMRI [8]. In case of the MEMRI study, CS with random k-
space undersampling patterns was employed for fast cardiac T1
mapping in mice [8], demonstrating the feasibility and perfor-
mance of this approach. Both studies used random undersampling
schemes in the high frequency domain while fully sampling the
low frequency domain, which has been shown to reach a similar
performance to that of the polynomial undersampling algorithms
[8]. Recently we have introduced a different approach for under-
sampling the k-space based on using the diffusion limited aggrega-
tion (DLA) random growth model to obtain reduced acquisition
patterns in the phase encoding directions [9]. We have demon-
strated that this DLA-CS algorithm performs better than the poly-
nomial approach and validated its use in high resolution T2
weighted imaging. In the present study we implement DLA-CS
for T1 weighted acquisitions in order to perform high-resolution
quantitative functional MEMRI and we evaluate its performance.
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2. Methods

2.1. Undersampling pattern generation

The undersampling pattern generation for DLA-CS RARE (Rapid
Acquisition with Relaxation Enhancement) acquisitions was previ-
ously reported by Nguyen et al. [9]. Briefly, the two phase encoding
directions in a Cartesian 3D trajectory were undersampled using an
acquisition pattern based on the diffusion limited aggregation ran-
dom growth model [10] with the k-space points in the resulting
patterns always being restricted to be a subset of the fully sampled
k-space points.

In this study, following the same procedure, acquisition pat-
terns were generated for seven undersampling ratios ranging from
30% to 90% for a T1 weighted FLASH (Fast Low Angle Shot) acquisi-
tion. For each undersampling ratio, 300 sets of undersampling pat-
terns, each consisting of 100 candidates, were created. From each
set, the one pattern (out of 100) with the lowest Point Spread Func-
tion was selected. Hence, 300 patterns were produced for each
undersampling ratio, making a total of 300 � 7 = 2100 patterns.
The 2100 patterns were applied to a library of six fully sampled
T1 weighted images of Aplysia californica buccal ganglia. In order
to compare the CS and fully sampled images, the root mean square
errors (RMSE) were calculated according to the equation:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðSi � S0iÞ
2

n

s
ð1Þ

where Si and S0i are the signal intensities of voxel i in the fully
encoded image and the undersampled image, respectively, and n
is the total number of pixels. For each undersampling ratio, the
averaged RMSE over the six images in the library was computed.
The DLA undersampling pattern with the lowest RMSE was selected
(the RMSE for the six data sets can be found in Supporting Table S1)
and was implemented in Paravision 5.1 (Bruker BioSpin, Ettlingen,
Germany) starting from the standard FLASH pulse sequence.

Examples of k-space undersampling patterns are shown in
Fig. 1. The k-space was undersampled along the two phase encod-
ing directions and the pattern was repeated for every point in the
read direction.

For comparison, seven undersampling patterns based on the
polynomial undersampling method [11] were also generated, fol-
lowing the same procedure.

2.2. Data acquisition

All MRI acquisitions were performed at 19 �C on a 17.2 T system
(Bruker BioSpin, Ettlingen, Germany) equipped with 1 T/m gradi-
phase 2
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Fig. 1. DLA acquisition patterns for 50%, 70% and 90% undersampling ratios. Th
ents. The RF transceiver used for imaging was a custom-built sole-
noidal single-microcoil with an inner diameter of 2.4 mm, the
design of which has been described previously [1]. Two types of
acquisitions were performed for each sample: a RARE acquisition,
providing T2 contrast (TR = 3000 ms, TE = 20 ms, acceleration fac-
tor AF = 4, 25 mm isotropic resolution, 1 average, 1 repetition) and
a FLASH acquisition providing T1 contrast (TR = 150 ms,
TE = 2.441 ms, 3 averages, 2 repetitions, 25 lm isotropic resolu-
tion) in fully encoded and CS variants. The FOV was either
10 � 2.2 � 2.2 mm3 or 10 � 2.0 � 2.0 mm3 (depending on the size
of the ganglia) corresponding to matrix sizes of 400 � 88 � 88 and
400 � 80 � 80 and fully encoded FLASH acquisition times, per rep-
etition, of 58 and 48 min, respectively. For each sample, the RARE
and FLASH acquisitions had identical FOVs. Since the FOV size
was not found to influence the DLA performance, the two groups
were pooled together.
2.3. Sample preparation

A total of fourteen Aplysia californica (Aplysia Resources Center,
University of Miami, FL, USA) were used in this study. Images
acquired on ganglia from six animals were used for generating
the library necessary to optimize the DLA and polynomial based
CS trajectories. Six other animals were used for acquiring fully
sampled data sets. Besides providing reference images, these data
sets were retrospectively undersampled in order to determine the
optimal undersampling ratio. Finally, two animals were used to
acquire both fully encoded and DLA-CS images. These data were
also retrospectively undersampled. For all experiments the ani-
mals were food deprived for 48 h prior to the beginning of the
experiment in order to increase their food seeking behavior and
maximize the intracellular Mn2+ accumulation as described previ-
ously [2]. On the day of the experiment, the animals were
injected with 100 mM MnCl2 solution (500 ll per 100 g body
weight; NaCl 345 mM, KCl 10 mM, MgCl2 25 mM, MnCl2
100 mM, pH = 7.5) and were left in the aquarium for 45 min with
unrestricted access to food (seaweed). The animals were then
anesthetized with isotonic MgCl2 solution (50 ml per 100 g body
weight; MgCl2 360 mM, HEPES 10 mM, pH = 7.5). Buccal ganglia
were resected and inserted in 1.5 mm ID borosilicate glass capil-
laries (Vitro-Com, Mountain Lakes, NJ, USA) containing artificial
sea water (ASW; NaCl 450 mM, KCl 10 mM, MgCl2 30 mM, MgSO4

20 mM, CaCl2 10mM, pH = 7.5) and then slid inside the transcei-
ver for MRI. The Aplysia buccal ganglia contain large neurons,
some of which are up to 200–300 lm in diameter [12,13] and
can therefore be resolved with the spatial resolution employed
here.
90%

pling ratio

e undersampling was performed along the two phase encoding directions.
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Fig. 3. Fully encoded T1 weighted FLASH image and corresponding undersampled
images after CS reconstruction (50%, 70% and 90% undersampling ratios). The CS
images shown here were obtained by retrospectively undersampling the fully
encoded k-space data. The hyperintense regions are neurons which accumulated
Mn2+. Nominal spatial resolution for the fully encoded dataset: 25 lm isotropic.
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2.4. Image reconstruction and analysis

The fully encoded images were processed directly in Paravision
5.1 software. CS undersampled data were reconstructed following
the Split-Bregman algorithm provided by Goldstein and Osher in
2009 [14], which was extended for this study to a 3D version with
total variation (TV) penalty and Haar wavelet transform. Briefly, if
we denote the undersampled Fourier transform corresponding to
the undersampled pattern Fu and W the Haar wavelet transform,
the reconstructed image m is obtained by solving the following
optimization problem:

minmkWmk1 þ TVðmÞ such that kFum� fk22 < r2 ð2Þ

where f is the undersampled k-space data, r is the variance of the

noise and TVðmÞ ¼ krmk2 ¼ P
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrxmjÞ2 þ ðrymjÞ2 þ ðrzmjÞ2

q
,

rim representing the spatial derivative (i = x, y, z).
The CS reconstruction was implemented in Matlab with an

approximate reconstruction time of 8 min per dataset. The original
2D reconstruction code can be found in Ref. [15].

In order to evaluate the extent of resolution loss between the
fully encoded and undersampled images, we computed the Pear-
son’s Correlation Coefficient (PCC) [16]:

PCC ¼
P

iðSi � SmeanÞðS0i � S0meanÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðSi � SmeanÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðS0i � S0meanÞ

2
q ð3Þ

where Si and S0i represent signal intensities of voxel i in the fully
encoded and retrospectively undersampled image, respectively,
and Smean and S0meanare the corresponding mean signal intensity val-
ues over all voxels. The PCC was calculated in manually drawn ROIs
containing the ganglia and encompassing approximately 50,000
voxels for both DLA and polynomial methods.

The performance of the DLA and polynomial CS strategies was
further evaluated by comparing signal intensities measured in
individual neurons and in water in fully encoded and retrospec-
tively undersampled images. Five biggest neurons in the Aplysia’s
buccal ganglia (B1, B2, B3, B6 and B9) were identified and manually
segmented on RARE (T2 weighted) images (Fig. 2a). (Note that as
the buccal ganglia are bilaterally symmetric, one sample contains
two neurons of each type.) The corresponding ROIs were co-
registered to the FLASH (T1 weighted) images and the mean signal
intensity for each of them was calculated (Fig. 2b).

Finally, signal intensities from fully encoded and DLA prospec-
tively undersampled T1-weighted data sets were compared. The
Anatomical RAREa

250 µm

Fig. 2. Schematic representation of the ROI selection for signal intensity quantification. T
information about the sample anatomy and a T1 weighted FLASH (b) reflecting the intra
image and the corresponding ROIs were co-registered with the FLASH image. The drawn
25 lm isotropic.
signal intensity quantification was performed by normalization
against thewater signal. To correct for possible RF inhomogeneities,
the images were normalized in a position-dependent manner: the
signal intensity of each voxel in the transverse plane (perpendicular
to the longitudinal axis of the receiver coil) was normalized against
the mean signal intensity of all voxels corresponding to ASW in this
plane: S�i ¼ Si

SASW
, where Si and S�i are the signal intensities of voxel i

before and after normalization, respectively. Details regarding this
normalization procedure can be found in Ref. [2].

3. Results

Examples of fully encoded and retrospectively DLA-CS under-
sampled T1 weighted images of the buccal ganglia are shown in
Fig. 3. In a first step we estimated the performance of the DLA-CS
Functional FLASHb

wo acquisitions were performed for each sample: a T2 weighted RARE (a), providing
cellularly accumulated Mn2+ ions. Neurons were manually segmented on the RARE
ROIs correspond to neurons B9 (red), B6 (orange) and B3 (green). Spatial resolution:
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approach and compared it to polynomial CS for seven different
undersampling ratios both in terms of image resolution (character-
ized by PCC expressing relative resolution loss between the two
image sets) and relative signal intensity error (Fig. 4). As can be
seen in Fig. 4a, the PCC values calculated between the CS and fully
encoded images for DLA-CS undersampling are higher than those
for polynomial CS, for both one and two repetitions. The PCC
between the DLA-CS and fully encoded images for undersampling
ratios higher than 50% drops to values below 0.8, generally consid-
ered as the threshold for a strong correlation. We observe an
increase in PCC when averaging the signal over two repetitions.

The relative signal intensity error was calculated according to:

100� Smean�S0mean
Smean

, where Smean and S0mean are average signal intensities,
for a given ROI, in the non-normalized fully encoded images and CS
images retrospectively undersampled from the same raw data set,
respectively. Measurements were performed in water (water ROI)
and neuron bodies (cells ROI). For the latter the signal intensities
were measured in the five biggest cells (B1, B2, B3, B6 and B9)
and averaged. The relative error between the average signal inten-
1
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Fig. 5. Bland–Altman plots showing the difference in the normalized signal intensi
undersampled dataset (a) and the 50% retrospectively undersampled dataset (b). Each
(2 samples, 10 neurons per sample).
sities of fully encoded and CS images, for all the undersampling
ratios considered and both undersampling schemes, are displayed
in Fig. 4b. DLA-CS undersampling results in lower signal intensity
error than polynomial CS in the cell ROI. In addition, we notice that
this error is inferior to 7% for all undersampling ratios considered.
However, for undersampling ratios larger than 60% the error corre-
sponding to the cells ROI and the water ROIs diverge, which could
introduce a bias in the signal intensity quantification. The different
behavior of the signal intensity error in water versus cell bodies at
large undersampling ratios is most likely due to the loss in spatial
resolution (increased blurring) as indicated by the PCC results
(Fig. 4a). Surprisingly, the signal intensity error did not show SNR
dependence (no difference between one and two repetitions).
However, not only does the standard deviation of the error for
the cell ROIs increase with the undersampling ratio (Fig. 4b) but
we also found it to be significantly higher for one repetition when
compared to two repetitions (Supporting Table S2). Specifically, a
student t-test showed statistical significance between the SD of
the signal intensity error for one and two repetitions for the cell
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ing ratios. (a) PCC between fully encoded and CS encoded images as a function of
ated according to Eq. (3) over the ganglia region containing approximately 50,000
between the fully encoded and CS images (the data represented is the average over

pectively. Error bars represent standard deviations. The data was obtained from 6
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ty values estimated from the fully sampled dataset and the 50% prospectively
point corresponds to the average signal intensity measured in individual neurons
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ROI (p = 0.0005) while for the water ROI no difference was found
(p = 0.26).

Considering a PCC = 0.8 as the threshold for acceptable resolu-
tion loss, we chose an undersampling of 50% for the DLA pattern
for our next experiments which aimed at evaluating the perfor-
mance of DLA-CS acquisitions for single neuron MEMRI signal
intensity quantification. The difference in the normalized signal
intensity between fully encoded and compressed images was cal-
culated for 20 neurons in two different Aplysia buccal ganglia (10
neurons per ganglia) according to: S�mean � S�0mean, with S�mean and
S�0mean being the average signal intensities calculated for a given
ROI for fully encoded and CS images, respectively, after performing
image normalization against water as described in the Methods
section. The results for 50% prospectively and retrospectively
undersampled datasets are shown in Fig. 5. The average difference
in the normalized signal intensity values was 1.37% and 0.50% for
the prospectively and retrospectively undersampled data sets,
respectively.

4. Conclusion and discussion

It has been shown previously that MEMRI can be used to per-
form functional imaging of the buccal network of Aplysia californica
as the manganese ions accumulate differentially in animals
exposed to different food stimuli (2). The purpose of this work
was to reduce the acquisition time of such MEMRI protocols by
implementing DLA-CS undersampling patterns (6) and evaluate
whether a quantitative analysis of the signal enhancement remains
feasible. To address this issue, we obtained and compared fully
encoded and DLA compressed T1 weighted FLASH images of Aplysia
californica buccal ganglia.

The performance of the DLA-CS FLASH acquisition was evalu-
ated and compared to the conventional polynomial undersampling
scheme at various undersampling ratios. DLA-CS undersampling
was found to outperform the polynomial CS at all undersampling
ratios considered in this work. When using DLA-CS, we found an
undersampling ratio of 50% acceptable both in terms of image res-
olution and signal intensity quantification. Regarding single neu-
ron signal intensity quantification we found, on average, a 1.37%
percentage error between the fully sampled and prospectively
undersampled data. This error was observed to be higher than
the error measured using retrospective undersampling of the fully
encoded data, which was found to be 0.50%. One of the reasons for
which the retrospective CS outperforms prospective CS is that the
retrospective and the fully encoded datasets share the same noise
realization. In addition, the difference between the two undersam-
pling scenarios can be also due to experimental errors such as
hardware instability, subtle changes in the sample position in the
B0 field (resulting from vibrations associated with the strong
encoding gradients), or slight sample modification.

When evaluating the Pearson Correlation Coefficient between
the fully encoded and the undersampled images we notice that
the performance of the DLA-CS technique is influenced by the
image signal to noise ratio, in agreement with earlier studies [8],
suggesting that higher accelerations are possible for higher SNR
data.

To summarize, our results demonstrate that the DLA-CS strat-
egy proposed here can significantly accelerate data collection in
high resolution quantitative T1-weighted FLASH acquisitions of
neuronal tissues. Even though the acquisitions times remain long
when compared to fast techniques, such as EPI or spiral imaging,
the DLA-CS appears to be a promising approach at high magnetic
fields and high spatial resolutions, where single shot acquisitions
are not feasible. Moreover, the DLA-CS is not limited to magnetic
resonance microscopy and could be also applied to preclinical
and clinical studies, where shortening the acquisition time is
equally desirable.
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