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a b s t r a c t

The numerical simulation of the diffusion MRI signal arising from complex tissue micro-structures is
helpful for understanding and interpreting imaging data as well as for designing and optimizing MRI
sequences. The discretization of the Bloch-Torrey equation by finite elements is a more recently devel-
oped approach for this purpose, in contrast to random walk simulations, which has a longer history.
While finite element discretization is more difficult to implement than random walk simulations, the
approach benefits from a long history of theoretical and numerical developments by the mathematical
and engineering communities. In particular, software packages for the automated solutions of partial dif-
ferential equations using finite element discretization, such as FEniCS, are undergoing active support and
development. However, because diffusion MRI simulation is a relatively new application area, there is
still a gap between the simulation needs of the MRI community and the available tools provided by finite
element software packages. In this paper, we address two potential difficulties in using FEniCS for diffu-
sion MRI simulation. First, we simplified software installation by the use of FEniCS containers that are
completely portable across multiple platforms. Second, we provide a portable simulation framework
based on Python and whose code is open source. This simulation framework can be seamlessly integrated
with cloud computing resources such as Google Colaboratory notebooks working on a web browser or
with Google Cloud Platform with MPI parallelization. We show examples illustrating the accuracy, the
computational times, and parallel computing capabilities. The framework contributes to reproducible
science and open-source software in computational diffusion MRI with the hope that it will help to speed
up method developments and stimulate research collaborations.

� 2019 Elsevier Inc. All rights reserved.
1. Introduction

The numerical simulation of the diffusion MRI signal arising
from complex tissue micro-structures is helpful for understanding
and interpreting imaging data as well as for designing and optimiz-
ing MRI sequences. It can be classified into two main groups. The
first group is referred to as Monte-Carlo simulations in the litera-
ture and previous works include [1–5]. Software packages include
the UCL Camino Diffusion MRI Toolkit [6], which has been widely
used in the field. The second group of simulations relies on solving
the Bloch-Torrey PDE in a geometrical domain, either using finite
difference methods (FDM) [7–10], typically on a Cartesian grid,
or finite element methods (FEM), typically on a tetrahedral grid.
Previous works on FEM include [11] for the short gradient pulse
limit of some simple geometries, [12] for the multi-compartment
Bloch-Torrey equation with general gradient pulses, and [13] with
the flow and relaxation terms added. In [14], a simplified 1D man-
ifold Bloch-Torrey equation was solved to study the diffusion MRI
signal from neuronal dendrite trees. FEM in a high-performance
computing framework was proposed in [15,16] for diffusion MRI
simulations on supercomputers. An efficient simulation method
for thin media was proposed in [17]. A comparison of the Monte-
Carlo approach with the FEM approach for the short pulse limit
was performed in [11], where FEM simulations were evaluated to
be more accurate and faster than the equivalent modeling with
Monte-Carlo simulations. Recently, SpinDoctor [18], a Matlab-
based diffusion MRI simulation toolbox that discretizes the
Bloch-Torrey equation using finite elements, was released and
shown to be hundreds of times faster than Monte-Carlo based
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simulations at the same level of accuracy for other diffusion
sequences.

The discretization of the Bloch-Torrey equation by finite ele-
ments is a more recently developed approach for the purpose of
dMRI simulations, in contrast to random walk simulations, which
have a longer history. While finite element discretization is more
difficult to implement than random walk simulations, the
approach benefits from long-established theoretical and numerical
developments by the mathematical and engineering communities.
In particular, software packages for the automated solutions of par-
tial differential equations using finite element discretization, such
as FEniCS [19,20], are subject to active support and development.
However, because diffusion MRI simulation is a relatively new
application area, there is still a gap between the simulation needs
of the MRI community and the available tools built on top of these
finite element software packages.

The deployment of FEniCS containers [21] opens a new direc-
tion to improve productivity and sharing in the scientific comput-
ing community. In particular, it can dramatically improve the
accessibility and usability of high-performance computing (HPC)
systems. In this paper, we address two potential difficulties in
using FEniCS for diffusion MRI simulation. First, we simplified soft-
ware installation by the use of FEniCS containers that are com-
pletely portable across multiple platforms. Second, we provide a
simulation framework written in Python and whose code is open
source. This simulation framework can be seamlessly integrated
with cloud computing resources such as Google Colaboratory note-
books (working on a web browser) or with Google Cloud Platform
with MPI parallelization.

One of the advantages of the simulation framework we propose
here over the Matlab-based SpinDoctor [18] is that the Python code
is free, whereas SpinDoctor requires the purchase of the software
Matlab. Many researchers are now adopting Python since it is a
free, cross-platform, general-purpose and high-level programming
language. Plenty of Python scientific packages are available with
extensive documentation such as SciPy for fundamentals of scien-
tific computing, NumPy for large and multi-dimensional arrays and
matrices, SymPy for symbolic computation, IPython for the
enhanced interactive console, Pandas for data structures & analy-
sis, Matplotlib for comprehensive 2D plotting. In addition, parallel
computing for finite elements is relatively easy to implement
within FEniCS, thus, this framework has advantages over SpinDoc-
tor for very large scale problems.

The disadvantage of this simulation framework compared to
SpinDoctor is the current lack of high-order adaptive time-
stepping methods in Python tailored to the kind of ODEs systems
coming from finite element discretization, whereas such time-
stepping methods are available in Matlab. Thus, in contrast to
SpinDoctor where an adaptive, variable order, time-stepping
method is used, the time-stepping method in the proposed frame-
Fig. 1. A composed domain X ¼ X0 [
work is the h-method, with a fixed time step size. The h-method is
second-order accurate if h is chosen to be 1

2.
The simulation framework we propose meets the following

needs:

1. the specification of an intrinsic diffusion tensor and a T2-
relaxation coefficient in each geometrical compartment;

2. the specification of a permeability coefficient on the interface
between the geometrical compartments;

3. the periodic extension of the computational domain (assumed a
box);

4. the specification of general diffusion-encoding gradient pulse
sequences;

5. the simulation of thin-layer and thin-tube media using a dis-
cretization on manifolds.

Since this framework is based on FEniCS, packaged as an image,
it inherits all functionalities of FEniCS related to mesh generation,
mesh adaptivity, finite element matrices construction, linear sys-
tem solve, solution post-processing and display, as well as the
underlying FEniCS computational optimization related to the
above tasks. Finally, the framework is conceived with cloud com-
puting and high performance computing in mind, thus, it.

1. supports Cloud Computing with Google Colaboratory and Goo-
gle Cloud Platform;

2. allows for MPI parallelization.

The paper is organized as follows. In Section 2 we recall the dif-
fusion MRI simulation model based on the Bloch-Torrey equation.
Then, we propose a portable simulation framework in Section 3 for
which the numerical validation and the comparison are carried out
in Section 4. Several simulations examples are shown in Section 5.
We share some perspectives about the proposed framework in Sec-
tion 6. The paper is finalised with a conclusion in Section 7.
2. Theory

The evolution of the complex transverse magnetization Uðx; tÞ
over time t can be described by the Bloch-Torrey equation [22].
For simplicity we consider a medium composed of two compart-
ments, X ¼ X0 [X1, each of which may be disconnected (see
Fig. 1a). The equation takes the following form

@Uðx; tÞ
@t

¼ �icf ðtÞg � xUðx; tÞ � Uðx; tÞ
T2ðxÞ þ r � DðxÞrUðx; tÞð Þ; ð1Þ

where i is the complex unit (i2 ¼ �1), c ¼ 2:67513� 108 rad s�1 T�1

is the gyromagnetic ratio of the water proton, and g is the diffusion
gradient including gradient strength g ¼ kgk and gradient direction
X1 (a), and a PGSE sequence (b).



V.-D. Nguyen et al. / Journal of Magnetic Resonance 309 (2019) 106611 3
q ¼ g
kgk. In the general case, DðxÞ is the diffusion tensor, a symmetric

positive definite 3� 3 matrix. T2 relaxation is the process by which
the transverse magnetization decays or dephases.

On the interface C between different compartments the magne-
tization is allowed to be discontinuous via the use of a permeabil-
ity coefficient j [23]

sDrU � n0t ¼ 0;
DrU � n0
� � ¼ �jsUt; ð2Þ

for x 2 C ¼ @X0 \ @X1 and nk is a normal vector to the interface C
and pointing outward the volume Xk. Here f�g and s � t denote the
average and the jump operators defined on the interface C, i.e.

fag ¼ a0 þ a1
2

; sat ¼ a0 � a1:

The temporal profile f ðtÞ can vary for different applications and
the most commonly used diffusion-encoding sequence in diffusion
MRI literature is called the Pulsed-Gradient Spin Echo (PGSE)
sequence [24]. For this sequence, one can write f ðtÞ in the follow-
ing way (see also Fig. 1b):

f ðtÞ ¼
1; 0 6 t 6 d;

�1; D < t 6 Dþ d;

0; otherwise:

8><
>: ð3Þ

The quantity d is the duration of the diffusion-encoding gradi-
ent pulse and D is the time delay between the start of the two
pulses. Beyond the PGSE, the Oscillating Gradient Spin Echo (OGSE)
[25], nonstandard diffusion sequences such as double diffusion
encoding [26–29] and multidimensional diffusion encoding [30]
can be modelled.

Concerning the boundary conditions (BCs) on the exterior
boundaries @X, there are two options that are very often employed.
One is placing the spins to be simulated sufficiently away from @X
and impose simple BCs on @X such as homogeneous Neumann con-
ditions. This supposes that the spins would have a low probability
of having arrived at @X during the diffusion experiment. Another
option is to place the spins anywhere desired, but to assume that
X is repeated periodically in all space directions to fill Rd, for exam-

ple, X ¼Qd
k¼1½ak; bk�. So, one can mimic the phenomenon where the

water molecules can enter and exit the computational domain.
Under this assumption of periodic continuation of the geometry,
the magnetization satisfies pseudo-periodic BCs on @X [8]

Um ¼ Usei hkðtÞ;

DmrUm � n ¼ DsrUs � nei hkðtÞ;
ð4Þ

where

Um ¼ Uðx; tÞjxk¼ak
; Us ¼ Uðx; tÞjxk¼bk

;

rUm � n ¼ rUðx; tÞ � n jxk¼ak
; rUs � n ¼ rUðx; tÞ � n jxk¼bk

;

and

hkðtÞ :¼ c gk ðbk � akÞF ðtÞ; k ¼ 1; � � � ;d; F ðtÞ ¼
Z t

0
f ðsÞds:

Here we use ‘m’ and ‘s’ to indicate master and slave components
of the pseudo-periodic BCs. The master-slave method corresponds
to the implementation of the periodic BCs [31].

The MRI signal S is the total transverse magnetization Uðx; tÞ
over X measured at the echo time T

S ¼
Z
x2X

Uðx; TÞ dx: ð5Þ

The signal is usually plotted against the gradient strength
g ¼ kgk or a quantity called the b-value which is defined as

b ¼ c2kgk2
Z T

0
F ðsÞ2 ds: ð6Þ
3. Method

For software portability, we consider two container technolo-
gies which are Docker [32] and Singularity [33]. They allow for
bundling the whole collection of software packages that a user
needs in a single file, that can be shared and used by collaborators.
This would make a huge impact in scientific applications, where
reproducibility is a core concern [34]. In particular, this enables
us to develop software that other users can easily test. A software
update reduces to a matter of downloading the newest version of a
single file and different versions can coexist next to each other for
easy consistency checks. We choose Docker for the IPython note-
books and Singularity for the deployment on HPC infrastructure.
They follow the same workflow as the following.



4 V.-D. Nguyen et al. / Journal of Magnetic Resonance 309 (2019) 106611
3.1. Diffusion MRI simulation library

The solution of the Bloch-Torrey equation and other functional-
ities related to diffusion MRI simulations have been packaged into
the Python library DmriFemLib, saved in GitHub.https://github.-
com/van-dang/DMRI-FEM-Cloud/blob/master/DmriFemLib.py.

Due to considerations related to the way FEniCS envisions the
PDE solution workflow, and the fact that the PDE from the diffusion
MRI simulation problem has some important differences from the
typical PDEs for which FEniCS was designed, we made the follow-
ing choices regarding the implementation of the numerical method
that are different than the choices made in the Matlab-based tool-
box SpinDoctor. These choices are:
1. the permeable interface conditions are imposed by the use of
the partition of unity finite element method (PUFEM) [35,16];

2. the pseudo-periodic BCs coming from the periodic extension of
the computational box are imposed on either side of the box
face by a PDE transformation;

3. in case of a non-periodic mesh, the necessary pseudo-periodic
BCs are imposed by using an artificially permeability coefficient
on the box face whose magnitude is inversely proportional to
the finite element mesh size [15,16];

4. the implicit Crank-Nicolson method is chosen as the time-
stepping method [13]. It is especially important to ensure the
stability with the use of the artificial permeability coefficient;
3.2. Mesh generation

Dealing with meshes is one of the most challenging problems in
FEM and we inherit what has been done in Python and FEniCS
regarding this issue. For simple geometries, one can internally

use some built-in meshes. Meshing a box X ¼ ½0;10�3 with given
resolutions nx, ny, nz is simply done by the following commands.
For more complicated geometries, it is recommended to use
mshr [36], the mesh generation component of FEniCS, to generate
simplicial DOLFIN meshes in 2D and 3D from geometries described
by Constructive Solid Geometry or from surface files, utilizing
CGAL and Tetgen as mesh generation backends. The commands
below are used to generate a two-layered disk:
More generally, our framework accepts meshes in the DOLFIN
XML format [37]. In this paper, the meshes were generated with
GMSH [38], Salomé [39], and ANSA [40]. The GMSH script (.geo)
and Salomé script (.py) are available at https://github.com/van-
dang/DMRI-FEM-Cloud/tree/mesh and they are distributed
through examples discussed later in the paper. GMSH can be
embedded in our framework.
All the formats need to be converted to DOLFIN XML format by
the use of either dolfin-convert available with FEniCS or
MESHIO [41]. To convert a mesh from .msh to .xml in a Colabora-
tory notebook, we just simply call.

https://github.com/van-dang/DMRI-FEM-Cloud/blob/master/DmriFemLib.py
https://github.com/van-dang/DMRI-FEM-Cloud/blob/master/DmriFemLib.py
https://github.com/van-dang/DMRI-FEM-Cloud/tree/mesh
https://github.com/van-dang/DMRI-FEM-Cloud/tree/mesh


Fig. 2. For multi-compartment domains, the compartments need to be sorted into two groups, oddgroup (blue) marked with odd numbers and evengroup (light-blue)
marked with even numbers which are referred to as the partition_marker such that in each group, the compartments should be completely disconnected. It is, therefore,
enough to use a phase function with two values 0 and 1 to impose the permeability. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 3. A typical Google Colaboratory notebook for diffusion MRI simulation.
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For a multi-compartment domain, a partition_marker is
used to assign each compartment to an identity that allows for
defining nonuniform initial conditions, discontinuous diffusion
tensors and discontinuous T2-relaxation. It is a MeshFunction in
FEniCS defined as the following.
To impose the interface conditions between compartments, we
use a phase function which is Uh in Eq. (A.6). This function initially
supports two-compartment domains since it has only two values 0
and 1. To apply for a multi-compartment domain, the compart-
ments need to be sorted into two groups oddgroup and even-

group. The permeability is imposed at the intermediate
interfaces between the two groups. In each group, however, there
is no interface between two compartments or in other words, they
are completely disconnected (see Fig. 2).

We defined a routine called CreatePhaseFunc to create the
phase function and the partition_marker. If the sub-meshes
corresponding to compartments are given, these two functions
can be created as follows.
The partition_marker can be generated and saved to a DOL-
FIN XML file, for instance partition_marker.xml. The file struc-
ture below shows that the elements (cells) with indices of 0 and 1
are assigned with partition marker 3 and 4 respectively.
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In case the partition markers are defined with GMSH by the use
of ‘‘physical groups”, the file can be simply generated by calling our
built-in routine GetPartitionMarkers
With a given partition_marker.xml, the phase function is
generated by.
It requires extra care to generate periodic meshes to use the
strong imposition of the pseudo-periodic BCs (see A.1). GMSH sup-
ports this by Periodic mapping which is equivalent to Projec-

tion routine in Salomé. As part of the framework, we developed
the scripts to generate periodic meshes with cells are available in
GMSH https://github.com/van-dang/DMRI-FEM-Cloud/blob/mesh/
CirclesInSquare.geo and in Salomé https://github.com/van-dang/
DMRI-FEM-Cloud/blob/mesh/SpheresInBox.py.
3.3. The main workspace

The workflow is carried out in the main workspace which is
either web-based Jupyter notebooks or a script-based interface.
The library DmriFemLib and other functionalities need to be
loaded here.

https://github.com/van-dang/DMRI-FEM-Cloud/blob/mesh/CirclesInSquare.geo
https://github.com/van-dang/DMRI-FEM-Cloud/blob/mesh/CirclesInSquare.geo
https://github.com/van-dang/DMRI-FEM-Cloud/blob/mesh/SpheresInBox.py
https://github.com/van-dang/DMRI-FEM-Cloud/blob/mesh/SpheresInBox.py
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3.3.1. Python notebooks
Google Colaboratory [42] is a free Jupyter notebook environ-

ment that requires no setup and runs entirely in the cloud. It can
connect to either a hosted runtime provided by Google Cloud or
a local runtime. The hosted runtime allows us to access free
resources for up to 12 h at a time and the current one, used to
obtain the results presented in this paper, has the following
configuration:

� Operating system: Ubuntu 18.04.2 LTS
� Processors: 2 x Intel(R) Xeon(R) CPU @ 2.30 GHz
� RAM: 13 GB
In order to check the configuration you can run the following
commands.
Fig. 3 shows a typical structure of our Google Colaboratory
notebooks where the simulations can run directly since the setup
of the FEniCS environment is done within the notebook.

The installation of FEniCS is quite straightforward in the hosted
runtime. The command lines are just the same as the installation
on Ubuntu.
For longer executions, it is more convenient to connect to the
local runtime. To this end, one can execute the following command
lines to create a local runtime to which the notebook can connect.
This command creates a Docker container from the latest stable
FEniCS version at the time of writing, given with the fenics_tag
variable. Inside this container, we install a Jupyter extension devel-
oped by Google Colaboratory’s developers and then run a Jupyter
notebook from within the container on port 8888.
3.3.2. Script-based interface
For the script-based interface with parallel executions, the

workspace is available at https://github.com/van-dang/DMRI-
FEM-Cloud/blob/master/GCloudDmriSolver.py.
Users can pre-process the inputs for one- and multi-
compartment domain by respectively using the functions imple-
mented at https://github.com/van-dang/DMRI-FEM-Cloud/
blob/master/PreprocessingOneCompt.py https://github.com/van-
dang/DMRI-FEM-Cloud/blob/master/PreprocessingMultiCompt.py.
This workspace can work with Docker image by launching the
following command from a Mac or Linux terminal.

https://github.com/van-dang/DMRI-FEM-Cloud/blob/master/GCloudDmriSolver.py
https://github.com/van-dang/DMRI-FEM-Cloud/blob/master/GCloudDmriSolver.py
https://github.com/van-dang/DMRI-FEM-Cloud/blob/master/PreprocessingOneCompt.py
https://github.com/van-dang/DMRI-FEM-Cloud/blob/master/PreprocessingOneCompt.py
https://github.com/van-dang/DMRI-FEM-Cloud/blob/master/PreprocessingMultiCompt.py
https://github.com/van-dang/DMRI-FEM-Cloud/blob/master/PreprocessingMultiCompt.py


Fig. 4. Simulations of diffusion inside a three-layered disk of ½5;7:5;10� lm with different settings of the initial conditions for a PGSE sequence with D ¼ 43100 ls and
d ¼ 10600 ls. (a) show the initial conditions with [0, 1, 0]. The signals are strongly dependent on how the initial conditions are set up (b). The accuracy of the simulations is
verified by comparing with the reference signal for the uniform distribution of the initial conditions.
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However, in the HPC context, Singularity is preferable to Docker
due to the security, the accessibility, the portability, and the
scheduling issues [33]. Fortunately, it is straightforward to build
a Singularity image from a Docker image and for our framework,
the command lines are as follows.
3.3.3. Code structure
Although the interfaces are different between the web-based

and the script-based workspaces, they have similar structures with
three main classes.

� MRI_parameters manages the diffusion pulses such as
sequence type, b-values, g-value and the conversion between
them.

� MRI_domain manages the finite element meshes, function
spaces, domain sizes, diffusion tensors, permeability, and
boundary markers.
Fig. 5. The artificial permeable method approaches the pseudo-periodic BCs. The time-st
recall that the artificial permeable method is useful for non-periodic computational box
� MRI_simulation manages the initial conditions, time-
stepping sizes, linear solvers, solutions, and post-processing.

In MRI_domain, the boolean variable IsDomainMultiple is
used to switch between the single-compartment and the
multi-compartment domains. Both strong and weak imposition
of the pseudo-periodic BCs have some advantages and disadvan-
tages. The strong imposition works efficiently with periodic
meshes with higher accuracy compared to the weak imposition.
In some cases, it is, however, not practical to generate periodic
meshes. We allow for both options by the use of a boolean variable
IsDomainPeriodic. When it is True, Eq. (A.1) is solved, other-
wise, Eq. (1) is solved.

In what follows, we show how to define an arbitrary diffusion
sequence and how to use partition_marker to define some
input parameters on heterogeneous domains.
ep size needs to be small to achieve the same accuracy. It is, however, important to
es.



Fig. 6. Three-layered structures and their signals for a PGSE with D ¼ 43100 ls; d ¼ 10600 ls. The time step size is Dt ¼ 200 ls.

Fig. 7. T2-effects of diffusion inside a three-layered cylinder for a PGSE with D ¼ d ¼ 10 ms, permeability j ¼ 10�5 m=s to the magnetization at b ¼ 4000 s=mm2 (a, b, c), and
to the signals for b between 0 and 4000 s=mm2 (d).

V.-D. Nguyen et al. / Journal of Magnetic Resonance 309 (2019) 106611 9



Fig. 8. Simulated signals inside a disk of radius 5 lm (a) for different temporal profiles: PGSE, Double PGSE, cos-OGSE, sin-OGSE, Trapezoidal PGSE, and Double Trapezoidal
PGSE with d ¼ D ¼ 10000 ls (b). The simulated signals match very well the reference signals for the PGSE and cos-OGSE. The signals with OGSE sequences decay faster
compared to the others.
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3.3.4. General diffusion-encoding sequence
The framework allows for arbitrary temporal profiles f ðtÞ. Dur-

ing the simulation, we need to compute its integralF ðtÞ ¼ R t
0 f ðsÞds

and convert between b-value and the gradient strength g-value fol-
lowing Eq. (6). SymPy is used to compute the symbolic integration.
So, users only need to provide the expression of f ðsÞ to the function
member fs_sym of the class MRI_parameters(). F ðtÞ and the
Table 1
Timing in minutes of neuron simulations on Google Colaboratory for a PGSE sequence
with D ¼ 43100 ls; d ¼ 10600 ls and different time step sizes Dt.

Neuron Mesh size Dt ¼ 50 ls Dt ¼ 100 ls

04b_pyramidal7aACC 615146 vertices 119 64
25o_spindle17aFI 51792 vertices 21 10

03b_pyramidal2aACC 27811 vertices 6 3
conversion between b-value, g-value are automatically done. For
example, a cos-OGSE sequence

f ðsÞ ¼
cosðx sÞ; if s 6 d;

� cos xðs� sÞð Þ; if s < s 6 dþ s;
0; otherwise;

8><
>: ð7Þ

with x ¼ 2 np
d ; s ¼ dþD

2 can be simply defined as the following
3.3.5. Initial conditions
By default, we initialize the spins to be one everywhere. How-

ever, it is possible to define discontinuous initial conditions which
are illustrated in the following code snippet.



Fig. 9. A comparison between signals inside a neuron from the drosophila melanogaster for a standard 3D mesh and the corresponding 1Dmanifolds. For Dt ¼ 200 ls, it costs
only 3 s for 1D manifolds but 380 s for 3D to compute the signal for one b-values with the same accuracy.

Fig. 10. The mesh of an extracellular space with 462420 vertices and 926058 tetrahedrons (a). It was reconstructed from the medical segmentation published at http://
synapseweb.clm.utexas.edu/2013kinney (see also [46]). Two directions in the xz-plane give quite similar signals showing that the domain is quite isotropic in these directions
and they both are distinguishable to the signals in the y-direction (b).

V.-D. Nguyen et al. / Journal of Magnetic Resonance 309 (2019) 106611 11
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3.3.6. Diffusion coefficients and tensors
We allow for a general definition of the diffusion tensor with

d� d components

DðxÞ ¼ djkðxÞ
� �

j¼1::d;k¼1::d; ð8Þ

where djkðxÞ is cell-based piecewise continuous. We loop through
all elements (cells) and the value can be determined by the coordi-
nates of the cell midpoint p = cell.midpoint() or a given
partition_marker.
3.3.7. T2-relaxation coefficient
By default T2-relaxation is set to be 1e16. However, users can

define it similarly to the diffusion entry. The following code shows
how to define T2 for a three-compartment domain.
3.4. Solution visualization and post-processing

After solving the Bloch-Torrey equation, the solutions are saved,
visualized and the signals are computed following Eq. (5) in a rou-
tine called PostProcessing. Matplotlib [43] is used for simple
visualizations. For more advanced features, Paraview [44] can be
externally used for the saved solutions.

4. Numerical validation and comparison

Unless stated otherwise, the simulations were performed for
a PGSE with D ¼ 43100 ls; d ¼ 10600 ls; b-values between 0
and 10000 s=mm2, and the diffusion coefficient of
D ¼ 3� 10�3 mm2=s. The membrane between the compartments,
if any, is permeable with the permeability of j ¼ 10�5 m=s. The
simulated signals are compared to the reference ones computed
by the matrix formalism (MF) method [45].

We provide a complete simulation method of diffusion inside
the multilayered structures such as concentric disks, cylinders,
spheres, and torus with the mesh generation software GMSH [38].

First, we study diffusion inside a three-layered disk of
½5;7:5;10� lm with different settings of the initial conditions.
Fig. 4a shows the setting IC_array=[0, 1, 0] as discussed in
Section 3.3.5. The solver is available at https://colab.re-
search.google.com/github/van-dang/DMRI-FEM-Cloud/blob/mas-
ter/DiscontinuousInitialCondition.ipynb.
The time step size of Dt ¼ 200 ls is used. The signals are shown
in Fig. 4b where we show that the signals are strongly dependent
on how we set up the initial conditions. The accuracy of the simu-
lations is verified by comparing with the reference signal for the
uniform distribution of the initial conditions.

To reduce the computational domain, one can assume that the
domain is periodically repeated and our framework provides two
options for this purpose. With a periodic mesh, it is strongly rec-
ommended to solve Eq. (A.1) with periodic boundary conditions
(Eq. A.2). However, it is usually challenging to generate such a peri-
odic mesh. So, we also provide an approximation using an artificial
permeability coefficient [15,16] (see also in B) for non-periodic
meshes. To illustrate this capacity, we consider a square

https://colab.research.google.com/github/van-dang/DMRI-FEM-Cloud/blob/master/DiscontinuousInitialCondition.ipynb
https://colab.research.google.com/github/van-dang/DMRI-FEM-Cloud/blob/master/DiscontinuousInitialCondition.ipynb
https://colab.research.google.com/github/van-dang/DMRI-FEM-Cloud/blob/master/DiscontinuousInitialCondition.ipynb
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X ¼ ½�5 lm;5 lm�2 including some permeable periodic cells with
the permeability j ¼ 10�5 m=s (see Fig. 5a). The signals were com-
puted for a PGSE with D ¼ 13000 ls; d ¼ 10000 ls;q ¼ ½1;1;0�ffiffi

2
p (see

Fig. 5b). We see that the artificial-permeability method approaches
the pseudo-periodic BCs. To achieve the same accuracy, the
artificial-permeability method needs Dt ¼ 10 ls which is ten times
as smaller as the periodic BCs. The solver is available at https://co-
lab.research.google.com/github/van-dang/DMRI-FEM-Cloud/blob/
master/PeriodicDomains.ipynb.

We now consider discontinuous diffusion tensors mentioned in
Section 3.3.6 to study diffusion in three-layered structures includ-
ing a disk, a sphere and a torus whose radii are 5;7:5 and 10 lm
respectively (see Fig. 6a, b, and c). For the torus, the radius from
the center of the hole to the center of the torus tube is
R ¼ 20 lm. The simulated signals match very well to the reference
signals with the time step size of Dt ¼ 200 lm (see Fig. 6d). The
Python source code is available at https://colab.
research.google.com/github/van-dang/DMRI-FEM-Cloud/blob/mas-
ter/MultilayeredStructures.ipynb.

The three-layered cylinder is again used to illustrate the effect
of T2-relaxation to the magnetization and the signal attenuation.
The gradient direction is q ¼ ½0;1;0� which is perpendicular to
the cylinder axis. As expected, the transverse magnetization decays
faster for smaller T2 (Fig. 7a, b, and c). The signals SðbÞ are quite dif-
ferent when T2 varies (Fig. 7d). Here we also show that our signals
approximate accurately the reference ones calculated by the
matrix formalism (solid curve in the figure) [45]. In short, T2-
Fig. 11. The simulation performance is verified for a single computational node on t
embedded in a box presented in Section 7.6 in [16]. The strong scaling on Tegner is good
number of cores (2, 4, 6, 8) on Google Cloud, the scaling is less good. It is because the wo
per process ratio with the mesh size of 2.5 M tetrahedrons.
relaxation can be used as one of the sources of the image contrast.
The Python source code is available at https://colab.re-
search.google.com/github/van-dang/DMRI-FEM-Cloud/blob/mas-
ter/T2_Relaxation.ipynb.

Now, we use the solver to compare the signals inside a disk of
radius 5lm for some temporal profiles: PGSE, Double PGSE, cos-
OGSE, sin-OGSE, Trapezoidal PGSE, and Double Trapezoidal PGSE
with d ¼ D ¼ 10000 ls (see Fig. 8b). The solver is available at
https://colab.research.google.com/github/van-dang/DMRI-FEM-
Cloud/blob/master/ArbitraryTimeSequence.ipynb.

The simulated signals match very well the reference signals for
the PGSE and cos-OGSE. The signals with OGSE sequences decay
faster compared to the others (see Fig. 8a).
5. Simulation examples

5.1. Realistic neurons

We consider a population of 36 pyramidal and 29 spindle neu-
rons. They are distributed in the anterior frontal insula (aFI) and
the anterior cingulate cortex (ACC) of the neocortex of the human
brain. They share some morphological similarities such as having a
single soma and dendrites branching on opposite sides. This popu-
lation consists of 20 neurons for each type in aFI, and 9 spindles, 16
pyramidals in ACC. We have published these volume meshes at
https://github.com/van-dang/RealNeuronMeshes.
he neuron 04b_pyramidal7aACC and for multiples nodes on the mouse neuron
both on one node (32 CPUs) and multi-node (scaling up to 500 CPUs). For a small

rkload and data partition per process are greatly exceeding the ideal work and data

https://colab.research.google.com/github/van-dang/DMRI-FEM-Cloud/blob/master/PeriodicDomains.ipynb
https://colab.research.google.com/github/van-dang/DMRI-FEM-Cloud/blob/master/PeriodicDomains.ipynb
https://colab.research.google.com/github/van-dang/DMRI-FEM-Cloud/blob/master/PeriodicDomains.ipynb
https://colab.research.google.com/github/van-dang/DMRI-FEM-Cloud/blob/master/MultilayeredStructures.ipynb
https://colab.research.google.com/github/van-dang/DMRI-FEM-Cloud/blob/master/MultilayeredStructures.ipynb
https://colab.research.google.com/github/van-dang/DMRI-FEM-Cloud/blob/master/MultilayeredStructures.ipynb
https://colab.research.google.com/github/van-dang/DMRI-FEM-Cloud/blob/master/T2_Relaxation.ipynb
https://colab.research.google.com/github/van-dang/DMRI-FEM-Cloud/blob/master/T2_Relaxation.ipynb
https://colab.research.google.com/github/van-dang/DMRI-FEM-Cloud/blob/master/T2_Relaxation.ipynb
https://colab.research.google.com/github/van-dang/DMRI-FEM-Cloud/blob/master/ArbitraryTimeSequence.ipynb
https://colab.research.google.com/github/van-dang/DMRI-FEM-Cloud/blob/master/ArbitraryTimeSequence.ipynb
https://github.com/van-dang/RealNeuronMeshes
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The solver is available at https://colab.research.google.
com/github/van-dang/DMRI-FEM-Cloud/blob/master/RealNeurons.
ipynb.

Table 1 shows the computational time in minutes of neuron
simulations on Google Colaboratory for a PGSE sequence with
D ¼ 43100 ls; d ¼ 10600 ls; b ¼ 4000s=mm2 and two different
time step sizes Dt ¼ 50;100 ls. The relative difference in signals
between them is within 4%. With D ¼ 100 ls it costs about an hour
for the largest neuron with 615146 vertices whereas it costs only
3 min with a small neuron with 27811 vertices.

In addition to the standard approach using volume elements,
we also allow for simulating on manifolds following the method
developed in [17]. Fig. 9 shows a comparison between signals
inside a neuron from the drosophila melanogaster for a standard
3D mesh and the corresponding 1D manifolds. For Dt ¼ 200ls, it
costs only 3 s for 1D manifolds but 380 s for 3D to compute the sig-
nal for one b-values with the same accuracy. For more details, it is
recommended to look at the solver available at https://colab.re-
search.google.com/github/van-dang/DMRI-FEM-Cloud/blob/mas-
ter/Manifolds.ipynb.
5.2. Extracellular space

It is challenging to perform simulations on extracellular space
(ECS) due to the geometrical complexity. The thickness of ECS is
tiny compared to the computational domain. It is extremely
time-consuming to use Monte-Carlo approaches. If the reflection
condition is applied, the particle undergoes multiple reflections
until no further surface intersections are detected, and if the rejec-
tion method is applied, the time step sizes need to be very small to
be accurate.

In this section, we show that it is efficient to use our framework.
We tested with the ECS extracted from the medical segmentation
published at http://synapseweb.clm.utexas.edu/2013kinney (see
also [46]). The volume mesh is shown in Fig. 10a with 462420 ver-
tices and 926058 tetrahedrons The processed meshes are available
in the following link https://github.com/van-dang/DMRI-FEM-
Cloud/raw/mesh/2E_ExtraCellular_group_10um_vol.xml.zip.

The Google Colab-based solver is available in the following link
https://colab.research.google.com/github/van-dang/DMRI-FEM-
Cloud/blob/master/ExtracellularSpace.ipynb.

The timing per b-value is about 30 min on Google Colaboratory
for the time discretization Dt ¼ 1 ms. With half of this time-step
size, i.e., Dt ¼ 500 ls, it takes about an hour for
b ¼ 10000 s=mm2 on Google Colaboratory and the difference in
the signals compared to Dt ¼ 1000 ls is only 1%. The signals for
three principle gradient directions are shown in Fig. 10b. Two
directions in the xz-plane give quite similar signals showing that
the domain is quite isotropic in these directions and they both
are distinguishable from the signals in the y-direction.
5.3. Parallelization

Now we verify the simulation performance with the Singularity
image on a 12-month free trial of Google Cloud Platform
(https://cloud.google.com) and Tegner (PDC - KTH). The script-
based interface is used. It shares the core functionalities with the
Python Notebook interface and supports all the functionalities dis-
cussed in the paper except the artificial permeability implementa-
tion which is still in development. So, the mesh needs to be
periodic to have the pseudo-periodic BCs in the parallel execution.

First, we show the simulation performance on one computa-
tional node on the neuron 04b_pyramidal7aACC (Fig. 11a) with
the mesh size of about 0.6 M vertices (2.5 M tetrahedrons) and
the time discretization of Dt ¼ 200 ls. A PGSE with
D ¼ 43100 ls; d ¼ 10600 ls is used. The commands to execute
the simulation with the FEniCS image are follows.
On Tegner with 20 processors, it costs about 7 min per one b-
value whereas on Google Cloud with 8 processors, it costs about
30 min.

Then, we verify with 25 computational nodes on the sample
presented in Section 7.6 [16]. The sample consists of a pyramidal
neuron of an adult female mouse [47] embedded in the center of
a computational domain X ¼ ½�300;300� � ½�250;250��
½�100;100� lm3 (Fig. 11b). We assume that there is a permeable
membrane with j ¼ 10�5 m=s between the neuron and the extra-
cellular space. The whole mesh (box + neuron) has about 1.5 M
vertices (8.5 M tetrahedrons). The neuron itself consists of
131996 vertices and 431326 tetrahedrons. The whole mesh and
sub-mesh (neuron) are available for download at https://github.
com/van-dang/DMRI-FEM-Cloud/raw/mesh/volume_box_N_18_7_
3_5L_fine.xml.zip https://github.com/van-dang/DMRI-FEM-Cloud/
raw/mesh/volume_N_18_7_3_5L_fine.xml.zip.

Below are the commands to execute the simulation with the
FEniCS image.

https://colab.research.google.com/github/van-dang/DMRI-FEM-Cloud/blob/master/RealNeurons.ipynb
https://colab.research.google.com/github/van-dang/DMRI-FEM-Cloud/blob/master/RealNeurons.ipynb
https://colab.research.google.com/github/van-dang/DMRI-FEM-Cloud/blob/master/RealNeurons.ipynb
https://colab.research.google.com/github/van-dang/DMRI-FEM-Cloud/blob/master/Manifolds.ipynb
https://colab.research.google.com/github/van-dang/DMRI-FEM-Cloud/blob/master/Manifolds.ipynb
https://colab.research.google.com/github/van-dang/DMRI-FEM-Cloud/blob/master/Manifolds.ipynb
http://synapseweb.clm.utexas.edu/2013kinney
https://github.com/van-dang/DMRI-FEM-Cloud/raw/mesh/2E_ExtraCellular_group_10um_vol.xml.zip
https://github.com/van-dang/DMRI-FEM-Cloud/raw/mesh/2E_ExtraCellular_group_10um_vol.xml.zip
https://colab.research.google.com/github/van-dang/DMRI-FEM-Cloud/blob/master/ExtracellularSpace.ipynb
https://colab.research.google.com/github/van-dang/DMRI-FEM-Cloud/blob/master/ExtracellularSpace.ipynb
https://cloud.google.com
https://github.com/van-dang/DMRI-FEM-Cloud/raw/mesh/volume_box_N_18_7_3_5L_fine.xml.zip
https://github.com/van-dang/DMRI-FEM-Cloud/raw/mesh/volume_box_N_18_7_3_5L_fine.xml.zip
https://github.com/van-dang/DMRI-FEM-Cloud/raw/mesh/volume_box_N_18_7_3_5L_fine.xml.zip
https://github.com/van-dang/DMRI-FEM-Cloud/raw/mesh/volume_N_18_7_3_5L_fine.xml.zip
https://github.com/van-dang/DMRI-FEM-Cloud/raw/mesh/volume_N_18_7_3_5L_fine.xml.zip
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The simulation with 500 processors costs about 20 min per b-
value with Dt ¼ 200 ls.

The strong parallel scaling is shown in Fig. 11c. Ideally, one
expects that the timing is reduced by half when the number of
the processors is doubled. Assume that we start with p0 processors
and measure the timing Tp0 . Then, we increase the number of the
processors to p (p P p0) and measure the timing Tp. In general,
the ideal scaling (the blue curve in Fig. 11c) is

Tp0

Tp
¼ p

p0
:

We now compare between the realistic scaling of our frame-
work and this ideal linear scaling for p0 ¼ 8;100 on Tegner and
p0 ¼ 2 on Google Cloud. The strong scaling on Tegner is good both
on one node (32 CPUs) and multi-node (scaling up to 500 CPUs).
For a small number of cores (2, 4, 6, 8) on Google Cloud, the scaling
is less good. It is because the workload and data partition per pro-
cess are greatly exceeding the ideal work and data per process ratio
with the mesh size of 2.5 M tetrahedrons.
6. Discussion

The proposed framework can be viewed as the Python version
of the Matlab-based SpinDoctor. As verified in [18] for SpinDoctor,
this present framework is supposed to be faster and more accurate
than Monte-Carlo simulation packages such as Camino. More
importantly, our approach benefits from a long history of theoret-
ical and numerical developments by the mathematical and engi-
neering communities. It enhances software reliability which is
one of the core concerns in medical applications. Additionally, this
framework inherits all of the PDE solution functionalities of FEniCS.
Thus, extensions and generalizations of the present dMRI simula-
tion problem, including the coupling with flow, the simulation on
deforming domains like the heart, or the coupling of simulations
in manifolds with simulations in 3D domains would be
straightforward.

We also focused on advanced software engineering features
such as portability and parallelization. As other cloud-based soft-
ware developments, this framework brings reproducible science
and open-source software to computational diffusion MRI. It
speeds up the method development process since the results are
easy to confirm and new methods can be easily developed on top
of the existing methods. New algorithms written as Google Colab-
oratory notebooks can quickly circulate in the MRI community and
this allows for active collaboration between research groups. With
the parallelization on supercomputers, the simulations lasting
weeks can be now reduced to hours or minutes. It enables us to
develop, in the near future, real-time simulations of diffusion
MRI in which the computer simulation runs at the same rate as
the actual physical system.

Since SpinDoctor couples the finite element discretization with
optimized adaptive ODE solvers, it is more efficient than our
framework in terms of time discretization. The analogous ODE sol-
vers written in Python can be found in the SciPy Library [48] but
they are not ready to use within our framework: they do not yet
efficiently support the mass matrix and the sparse Jacobian matrix.
The lumped mass matrix approach can be used to fix the first issue
but more investigations are needed to resolve the latter issue.

Generating finite element meshes frommedical segmentation is
very challenging. Complicated surface meshes currently need to be
processed outside the framework to obtain a good quality finite
element mesh. Streamlining this process is an interesting direction
of future investigation and it may be well worthwhile to develop
algorithms to automate this process.
7. Conclusions

We proposed a portable simulation framework for computa-
tional diffusion MRI that works efficiently with cloud technology.
The framework can be seamlessly integrated with cloud computing
resources such as Google Colaboratory notebooks working on a
web browser or with Google Cloud Platform with MPI paralleliza-
tion. Many simulation needs of the field were addressed by the use
of advanced finite element methods for both single- and multi-
compartment diffusion domains, with or without permeable mem-
brane and periodic boundaries. We showed the accuracy, the com-
putational times, and parallel computing capabilities through a set
of examples, while mentioning straightforward future extensions.
The framework contributes to reproducible science and open-
source software in computational diffusion MRI. We hope that it
will help to speed upmethod developments and stimulate research
collaborations.
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Appendix A

The methods imposed in our framework are based on the parti-
tion of unity finite element method (PUFEM) to manage the inter-
face conditions [16]. Both weak and strong implementation of the
periodicity with some advantages and disadvantages are included.
The h-method is used for the time discretization.

A.1. Strong implementation of the pseudo-periodic BCs

The complex-valued and time-dependent term in the pseudo-
periodic boundaries make it too difficult to implement in a
standard FEM software package. So, one can transform the
pseudo-periodic BCs to the periodic ones. Following [10,12], one
can choose to transform the magnetization to a new unknown
uðx; tÞ:
uðx; tÞ ¼ Uðx; tÞei cF ðtÞ g�x:

The Bloch-Torrey PDE (1) is then transformed to [12]

@u
@t

¼ �icF g � Druþru � Dgð Þ � cFð Þ2g � Dgu� u
T2

þr � Druð Þ;
ðA:1Þ

with periodic BCs

um ¼ us;

Dmrum � n ¼ Dsrus � n
ðA:2Þ

The homogeneous Neumann boundary condition of U leads to

Dru � n ¼ icF uDg � n:
The interface conditions (Eq. (2)) are changed to

sDru � n0t ¼ 2 icF uDg � n0f g;
Dru � n0f g ¼ �jsutþ i cF

2 suDg � n0t
ðA:3Þ

Since the magnetization is discontinuous (m0 –m1 on the inter-
face), Eq. (A.3) shows the flux is also discontinuous.

Following the same PUFEM approach proposed in [16], we
obtain the following weak form

@

@t
u;v

� �
X0[X1

¼ Fðu; v; tÞ;

where

Fðu;v ; tÞ ¼ � icF g � Druþru � Dgð Þ;vð ÞX0[X1

� cFð Þ2 g � Dguþ u
T2

;v
� �

X0[X1

� Dru;rvð ÞX0[X1
þ

< �jsutþ icF
2

suDg � n0t; svt>Cþ
< 2 icF uDg � n0f g; fvg>Cþ
< icF uDg � n;v>CN

0 [CN
1
: ðA:4Þ

We consider a partition of the time domain
0 ¼ t0 < t1 < . . . < tN ¼ T associated with the time intervals
In ¼ ðtn�1; tn� of length kn ¼ tn � tn�1 and un be an approximation

of uðx; tÞ for a given a triangulation T h at t ¼ tn.
The PUFEM with the time-stepping h-method is stated as: Find
un
h ¼ ðun

h;0;u
n
h;1Þ 2 Vh such that

un
h � un�1

h

kn
;vh

� �
X0[X1

¼ hFðun
h;vh; tnÞ þ ð1

� hÞFðun�1
h ;vh; tn�1Þ; ðA:5Þ

for all vh ¼ ðv0;h; v1;hÞ 2 Vh, where a; bð ÞX0;h[X1;h
¼ ð1�UhÞa0; b0ð ÞXh

þ
Uha1; b1ð ÞXh

, and Uh is an element-wise constant function:

Uh ¼ 1; in X1;h;

0; in X0;h:
ðA:6Þ

The bilinear and linear forms are defined by

aðun
h; vhÞ ¼ un

h
kn
;vh

	 

X0[X1

� hFðun
h;vh; tnÞ;

LðvhÞ ¼ un�1
h
kn

; vh

	 

X0;h[X1;h

þ ð1� hÞF un�1
h ;vh; tn�1

� �
:

ðA:7Þ
Appendix B. Weak implementation of the pseudo-periodic BCs

The pseudo-periodic BCs (Eq. (4)) can be implemented weakly
through the use of an artificial permeability coefficient, je

[15,16]. The artificial permeability condition at the external bound-
aries take two equations for the master side and the slave side of
the mesh. For the master side, it has the following form

DmrUm � nm ¼ je Us ei hms � Um
� �

; ðB:1Þ
and for the slave-side it has the following form

Dsrus � ns ¼ je Um ei hsm � Us
� �

; ðB:2Þ
where Us ¼ UðxsÞ;Um ¼ UðxmÞ; hms ¼ �hsm ¼ c g � ðxs � xmÞF ðtÞ.
When the master side is considered (Eq. B.1), xm is the mesh point
and xs is the projection of xm onto the slave side. Similarly, when the
slave side is considered (Eq. B.2), xs is the mesh point and xm is the
projection of xs onto the master side. So, the points always align
each other but they do not need to be the mesh grid at the same
time. So, this method allows for non-matching meshes.

The artificial permeability coefficient je can be chosen to be
consistent with the Nitsche’s method for the Dirichlet BCs [49]
(see also a review in [50] and references therein), i.e
je ¼ max D

h

� �
where h is the element size.

To overcome the CFL constraints, the following operator split-
ting can be used to have an unconditionally stable scheme

DmrUm � nm � je Un�1
s ei h

n
ms � Un

m

	 

;

DsrUs � ns � je Un�1
m ei h

n
sm � Un

s

	 

;

ðB:3Þ

where Un and Un�1 are the approximations at the current and pre-
vious time step respectively.

Without imposing the weak pseudo-periodic, the PUFEM with

the time-stepping h-method is stated as: Find Un ¼ ðUn
0;U

n
1Þ 2 Vh

such that

Un � Un�1

kn
; vh

 !
X0[X1

¼ hFðUn;vh; tnÞ þ ð1� hÞFðUn�1;vh; tn�1Þ;

ðB:4Þ
for all vh ¼ ðvh

0;vh
1Þ 2 Vh, where

FðU; v; tÞ ¼ �icf ðtÞg � xU � U
T2

;v
� �

X0[X1

� DrU;rvð ÞX0[X1
� j sUt; svth i; ðB:5Þ
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and a; bð ÞXh
0[Xh

1
¼ ð1�UhÞa0; b0

	 

Xh

þ Uha1; b1

	 

Xh
;Uh is an

element-wise constant function.
The bilinear and linear forms are defined by

aðUn;vhÞ ¼ Un

kn
;vh

	 

X0[X1

� hFðUn;vh; tnÞ;

LðvhÞ ¼ Un�1

kn
; vh

	 

X0[X1

þ ð1� hÞF Un�1;vh; tn�1
	 


:
ðB:6Þ

The linear system of equations corresponding to the bilinear
and linear forms (Eq. (B.6)) is

AUn ¼ F; ðB:7Þ
where

A ¼ M ðknÞ�1 � h � ic f n þ 1
T2

� �
J � S � I

� �
: ðB:8Þ

Here M and S are referred to as the mass and stiffness matrices
respectively, J and I are corresponding to the first and third terms
on the right-hand side of F (Eq. (B.5)), i.e ðg � xU;vÞ and j sUt; svth i.

To impose the weak periodic BCs, we plug Eq. (B.3) to the linear
and bilinear forms

a�ðUn
h;vhÞ ¼ aðUn

h;vhÞ þ hje Un
h; vhC0

m[C1
m
þ Un

h;vh

 �
C0
s [C1

s

	 

;

L�ðvhÞ ¼ LðvhÞ þ ð1� hÞje Un�1
s;h ei h

n
ms ;vhC0

m[C1
m
þ Un�1

m;h e
i hnsm ; vhC0

s [C1
s

	 

:
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