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A MACROSCOPIC MODEL FOR THE DIFFUSION MRI SIGNAL
ACCOUNTING FOR TIME-DEPENDENT DIFFUSIVITY∗
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Abstract. Diffusion magnetic resonance imaging (dMRI) encodes water displacement due to
diffusion and is a powerful tool for obtaining information on the tissue microstructure. An important
quantity measured in dMRI in each voxel is the apparent diffusion coefficient (ADC), and it is
well established from imaging experiments that, in the brain, in vivo, the ADC is dependent on
the measured diffusion time. To aid in the understanding and interpretation of the ADC, using
homogenization techniques, we derived a new asymptotic model for the dMRI signal from the Bloch–
Torrey equation governing the water proton magnetization under the influence of diffusion-encoding
magnetic gradient pulses. Our new model was obtained using a particular choice of scaling for
the time, the biological cell membrane permeability, the diffusion-encoding magnetic field gradient
strength, and a periodicity length of the cellular geometry. The ADC of the resulting model is
dependent on the diffusion time. We numerically validated this model for a wide range of diffusion
times for two-dimensional geometrical configurations.
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1. Introduction. The image contrast in water proton diffusion magnetic reso-
nance imaging (dMRI) comes from the differing average water displacement due to
diffusion in the imaged tissue at different spatial positions [19]. A major application
has been in detecting acute cerebral ischemia minutes after stroke [27, 44]. DMRI has
been used to detect and differentiate a wide range of physiological and pathological
conditions in the brain, including tumors [25, 39, 43] and myelination abnormalities
(for a review, see [20]). It also has been used to study brain connectivity (for a review,
see [18]) and in functional imaging [21] as well as in cardiac applications [7, 8, 36].

An ideal dMRI experiment consists in applying two very short pulses, each of
duration δ, of the gradient magnetic field B = g · x, with a 180 degree spin reversal
between the two pulses, in order to encode the average water displacement in the im-
aged sample due to diffusion in the direction of g, during the measured diffusion time
of ∆, where ∆ denotes the delay between the start of the two pulses [38]. The assump-
tion that the pulse duration is short, δ � ∆, is called the narrow pulse assumption,
and under this assumption the concept of diffusion time is unambiguous.

Under the narrow pulse assumption, after the first pulse, the complex phase due to
spins that were at position x0 before the pulse is eiδγg·x0 , where γ = 42.576 MHz/Tesla
is the gyromagnetic ratio of the water proton. Because the gradient magnetic field
is turned off after the first pulse, the phase of the spins does not change until the
application of the radio-frequency (RF) pulse to apply the 180 degree spin reversal.
After the 180 degree RF pulse, the complex phase becomes e−iδγg·x0 . The phase of
the spins stays the same until the application of the second pulse, after which the
complex phase due to spins ending up at position xf becomes eiδγg·(xf−x0). The
dMRI signal S (total water proton magnetization in a physical volume V, called a
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voxel) due to the spins originally at x0 is

S =

∫
V

P (x,x0,∆)ρ(x0)eiδγg·(x−x0)dx,

where P (x,x0,∆) is the proportion of the original spins starting at x0 that end up
at x a time ∆ later and ρ(x0) is the density of spins at x0. If water is freely diffusing
with the isotropic diffusion coefficient σ, then

P (x,x0,∆) =
e−
‖x−x0‖

2

4πσ∆

(4πσ∆)3/2

is the diffusion (heat) Green’s function in free space. If we assume the diffusion
displacement is small compared to the side lengths of the voxel (which is true for
dMRI), then using the well-known result about the Fourier transform of P we obtain

(1.1) S = ρ(x0)e−σ‖γδg‖
2∆,

where the Fourier variable is γδg. We will denote

q := ‖γg‖

and the gradient direction by

ug := g/‖g‖.

In the general case, without the narrow pulse assumption, it is easy to show that the
signal is

(1.2) S = ρ(x0)e−σq
2δ2(∆−δ/3).

Though the notion of the measured diffusion time is ambiguous without the narrow
pulse assumption, the MR community has variously used the term diffusion time to
mean ∆, ∆ − δ/3, or ∆ + δ. In this paper, we will use the phrase “diffusion time–
dependent” to mean dependent on ∆ and δ.

An important quantity in dMRI is the apparent diffusion coefficient (ADC), and
it is usually obtained by measuring S for a given ∆, δ, ug at several values of q and
fitting the following formula:

logS = logS0 − (ADC)q2δ2(∆− δ/3),(1.3)

where S0 is the dMRI signal when q = 0. Obviously, ADC = σ in the case of free
diffusion.

In the context of dMRI, brain tissue diffusion is not free, and this is evidenced
by the fact that the fitted ADC depends on the applied gradient strength ‖g‖, its
direction ug, and diffusion time (∆ and δ). In fact, it is hoped that a signal model
more accurate and complicated than (1.2) would provide additional information on
the tissue microstructure. As a consequence, there have been many proposed exten-
sions to (1.2), formulated heuristically, by dMRI researchers. For example, the dMRI
signal as a sum of multiple exponentials was proposed in [10, 24, 28, 30], a term that
is O(q4δ4(∆− δ/3)2) was added to (1.3) in [6, 14], and P was replaced by fractional
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932 HOUSSEM HADDAR, JING-REBECCA LI, AND SIMONA SCHIAVI

order diffusion in [5, 22, 23]. In [46], the signal model is an integral of a contin-
uum of Gaussian diffusion groups, each with a different effective diffusion coefficient.
In [33] the signal model is an expansion in a perturbation of the mean diffusivity.
The models of [3, 15, 37] separate the cylindrical-shaped axons and dendrites from
the space outside them to make two diffusion compartments and assume there is no
water exchange between them. The Karger model [16] supposes multiple Gaussian
diffusion compartments, where the water exchange between the compartments is de-
scribed by simple constant rate terms that can be added to the diffusion terms, and
these assumptions enable the formulation of a system of coupled ordinary differential
equations (ODEs) that describes the time evolution of the total magnetization in the
different compartments.

The previously mentioned models can be characterized as phenomenological mod-
els that incorporate certain physical assumptions and insights about the spatial and
time scales of water diffusion in a complex geometrical environment. On the other
hand, one can also proceed mathematically starting from a detailed and accurate
description using partial differential equations (PDEs). The Bloch–Torrey PDE [42]
can be used to describe the water proton magnetization at all spatial positions in a
voxel once the positions and shapes of the biological cells and the permeability of
the cell membranes are prescribed. Obviously, this very accurate microscopic descrip-
tion cannot be used as a practical model of the dMRI signal because its inputs—the
complete geometrical description of the biological cells in a voxel and its immediate
neighbors—are too complicated compared to the physically obtainable data. This is
the motivation for formulating asymptotic models from the Bloch–Torrey PDE.

Two simple asymptotic models are the following. In the short time limit where
only a small fraction of random walkers have encountered the membrane, the signal
model given in [31], which is a general case of the formula in [26], is

logSshort := logS0 +Dshort(∆)q2δ2(∆),(1.4)

where the diffusion time–dependent effective diffusion coefficient Dshort(∆) in the
presence of multiple geometrical subdomains Yj , each with boundary Γjk and intrinsic
diffusion coefficient σj , is

(1.5) Dshort(∆) :=
∑
j

vjD
j
short(∆),

where vj is the volume fraction of subdomain Yj and

(1.6) Dj
short(∆) := σj

[
1− |Γj |

d|Yj |

(
4
√
σj∆

3
√
π
− κ∆

)]
,

d being the space dimension, and κ is the membrane permeability.
In the long time limit when the diffusion becomes effectively Gaussian, then the

signal model is exponential:

(1.7) logSlong := logS0 − (ug
TDlongug)q2δ2(∆− δ/3),

where Dlong ∈ Rd ×Rd is the long time effective diffusion tensor. It was shown in [9]
that in the case of periodic media, where Y =

∏
i=1···d[0, Li] is a periodicity box of

the medium, then

(1.8)
(
Dlong

)
il

:=
1

|Y |
∑
j

∫
Yj

σj(x)∇uji (x) · el dx,
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where the functions uji (x), i = 1, . . . , d, are defined piecewise on Yj and satisfy the
time-independent PDE:

(1.9)

div
(
σj(x)∇uji (x)

)
= 0 in Yj ,

σj(x)∇uji (x) · ν − σk(x)∇uki (x) · ν = 0 on Γjk,

σj(x)∇uji (x) · ν = κ(uji (x)− uki (x)) on Γjk,

uji (x + Liei) = uji (x) + Li on ∂Y,

uji (x + Llel) = uji (x), l 6= i, on ∂Y.

If Y only contains simple geometries such as cubes and spheres, analytic formulae for
Dlong have been formulated [13, 17, 40, 41].

In a previous work [11] we derived an asymptotic model from the Bloch–Torrey
equation using periodic homogenization techniques by choosing a particular scaling
of time, the membrane permeability, the diffusion-encoding gradient amplitude, and
a periodicity length of the medium. The resulting model is valid for long diffusion
times when the signal may nevertheless exhibit a non-Gaussian behavior due to water
exchange between the subdomains. The assumption of low membrane permeability
means the exchange is governed by linear kinetics and gives the signal model a par-
ticularly simple form as the solution of a system of coupled ODEs. Indeed, it was
found that this model generalizes the Karger model, which was a dMRI signal model
formulated heuristically by physicists for long diffusion times, but which is subject
to the restriction that the duration of the pulses of a diffusion-encoding sequence is
much shorter than the delay between the pulses. In contrast to the Karger model,
our model in [11] is not restricted to the case where the pulse duration is small. For
this reason we named our model the finite-pulse Karger (FPK) model.

A deficiency of the Karger and the FPK signal models is that they do not re-
produce the experimentally observed (see [35] and the references contained therein)
dependence of the ADC on ∆ (and δ in the nonnarrow pulse case).

For this reason, in this paper, we chose a scaling different from that used to
derive the FPK model, and we derived a new asymptotic dMRI signal model whose
ADC depends on ∆ and δ, again using periodic homogenization. We numerically
validate, in some two-dimensional geometries, that the ADC of the new asymptotic
model is a good approximation of the ADC of the Bloch–Torrey PDE description
over a wide range of ∆ and δ. We note that even though our new asymptotic model is
derived using periodic homogenization, the use of the model is not limited to periodic
domains. We cite the nonperiodic homogenization approach in porous media [1, 2],
where the difference between the periodic and the nonperiodic cases is in the definition
and interpretation of the macroscopic model coefficients.

Our new asymptotic model requires the solution of several homogeneous diffusion
equations with source terms defined on the biological cell membranes. Unlike in [11],
we could not put this model in the form of a system of coupled ODEs. However, we
believe that this model can be further simplified since homogeneous diffusion equations
with boundary sources terms have been extensively studied in the literature, and this
will be the focus of future work. We believe that a mathematical homogenization
approach is a useful complement to the phenomenological approach used by physicists,
as seen by the FPK model of [11], formulated by homogenization, that elucidates and
generalizes the phenomenological Karger model. It is very possible that the new
asymptotic model that we derive in this paper can elucidate results about the time-
dependent diffusivity in heterogeneous media obtained by physicists (see, for example,
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934 HOUSSEM HADDAR, JING-REBECCA LI, AND SIMONA SCHIAVI

[31, 32]). The novel result of this paper is a time-dependent ADC model that can
lend itself to systematic mathematical analysis. It is hoped that future work in the
analysis of this new ADC model will lead to a characterization of the time-dependent
ADC in terms of tissue-related quantities such as the average surface to volume ratio
and the dominant Laplace eigenfunctions of the biological cells that are contained in
an imaging voxel. The ultimate goal is of course the estimation of these tissue-related
quantities from the measured dMRI signal.

This paper is organized as follows. Section 2 introduces the Bloch–Torrey PDE
that describes the complex transverse water proton magnetization due to diffusion-
encoding magnetic field gradient pulses and poses the problem on the microscopic
scale in a heterogeneous domain. For simplicity, we make the hypothesis that the
domain to be modeled is periodic, which allows us to apply periodic homogenization
theory. In section 3 we make the formal homogenization of our model problem in
the periodic context, using a particular choice of scaling for the time, the biological
cell membrane permeability, the diffusion-encoding magnetic field gradient strength,
and the periodicity length of the cellular geometry. We give the description of our
asymptotic dMRI signal model and its ADC. In section 4 we numerically validate
the asymptotic model for some two-dimensional geometrical configurations. We show
the convergence for both the signal and the ADC. We then show that the ADC
of our new model is a good approximation of the ADC of the reference model (the
microscopic description using the Bloch–Torrey PDE) over a wide range of times.
Section 5 contains our conclusions.

2. Problem setting. For a volume Ω ⊂ Rd of biological tissue, we denote by
ΓI ⊂ Rd−1 the union of the boundaries of biological cells, in other words, the cell
membranes, in Ω. In this paper, we assume the cell membranes are represented as
(d − 1)-dimensional objects. The cell membranes ΓI thus delimit two subdomains:
the extracellular domain Ωe (e for extracellular) and the intracellular domain Ωc (c
for cellular). The domain Ωext then represents the union of the extracellular and
intracellular open domains:

Ωext ≡ Ω \ ΓI ≡ Ωe ∪ Ωc .

2.1. Bloch–Torrey equation. The complex transverse water proton magneti-
zation M can be described by the following Bloch–Torrey PDE [42] with the jump on
ΓI :
(2.1)

∂

∂t
M(x, t) + ιqug · xf(t)M(x, t)− div(σ(x)∇M(x, t)) = 0 in Ωext×]0, T [ ,

σ∇M · ν|ΓI = κJMKΓI on ΓI ,
Jσ∇M · νKΓI = 0 on ΓI ,
M(·, 0) = Mini in Ωext×]0, T [
and appropriate boundary conditions on ∂Ω,

where ν is the exterior normal to Ωc, [·]ΓI is the jump (extracellular minus intra-
cellular) on ΓI , κ is the membrane permeability coefficient, ι is the imaginary unit,
and Minit is the initial magnetization. The physical meaning of the parameter q is
q = ‖γg‖, where γ is the gyromagnetic ratio of the water proton, g gives the ampli-
tude and direction of the diffusion-encoding gradient, and ug = g/‖g‖ ∈ Rd is the
unit vector in the direction of g.
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For simplicity of notation, the microscopic scale diffusion is assumed to be iso-
tropic, and hence it is described by an intrinsic diffusion coefficient σ(x) ∈ R rather
than a tensor. The case of the tensor can be treated in a similar way but with
more cumbersome notation. The function f(t) gives the time profile of the diffusion-
encoding magnetic field gradient pulses. For the classic pulsed gradient spin echo
(PGSE) sequence [38], simplified to include only the parameters relevant to diffusion
(the imaging gradients are ignored),

f(t) =

1, ts < t ≤ ts + δ,
−1, ts + ∆ < t ≤ ts + ∆ + δ,
0 elsewhere,

where ts is the start of the first pulse and we made f(t) negative in the second pulse
to include the effect of the 180 degree spin reversal between the pulses. The time at
which the signal is measured is called the echo time TE ≥ δ+ ∆. For simplicity, since
ts does not play a role in the results of this paper, we set ts = 0. For the same reason,
we set TE = δ+ ∆ in this paper. The dMRI signal is then the total magnetization at
t = δ + ∆:

(2.2) S =

∫
V

M(x, δ + ∆)dx,

where M is the solution of (2.1), and V is the voxel. We observe that, because the
diffusion displacement in dMRI (O(10µm)) is usually very small compared to the size
of the voxel (O(1mm)), the boundary conditions on ∂Ω in (2.1) can be any appropriate
artificial boundary conditions because the support of the solution will be away from
∂Ω during the simulation time. The logarithm of the signal is usually plotted against
a quantity called the b-value,

(2.3) b := q2

∫ ∆+δ

0

(∫ t

0

f(s) ds

)2

dt = q2δ2

(
∆− δ

3

)
,

because in a homogeneous medium,

(2.4) logS = logS0 − σ b.

The b-value is a very important quantity in dMRI because the b-values are usually
kept constant across different experiments. For different choices of ∆ and δ, the
values of q are adjusted according to (2.3) so that the same set of b-values is used to
compute the dMRI signal. The range of b-values is usually chosen so that the signal
attenuation, S/S0, varies in a physically detectable range. This range will depend on
the application and tissue type (brain, heart, etc.).

To obtain the ADC from a dMRI experiment, one fixes the choice of ∆ and δ,
computes the necessary q’s to obtain several b-values that give an attenuation S/S0

that is not too small (closer to 1 than to 0), and computes the slope of logS versus
the b-values. To make the concept of the ADC mathematically rigorous, we choose
the following definition:

ADC := − 1

δ2(∆− δ/3)

∂(logS)

∂(q2)

∣∣∣∣
q2=0

,(2.5)

where the analytical derivative of logS is taken at q2 = 0 (while ∆ and δ are fixed).
We can write the derivative with respect to q2 because, due to the symmetry of

D
ow

nl
oa

de
d 

02
/2

6/
19

 to
 1

28
.9

3.
16

2.
21

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

936 HOUSSEM HADDAR, JING-REBECCA LI, AND SIMONA SCHIAVI

diffusion, only even powers of q appear in S. With this definition, we note that ADC
may depend on ug and time (∆ and δ). In the narrow pulse limit, in a heterogeneous
medium, the physical meaning of ADC is that it is the mean squared distance traveled
by water molecules (averaged over all starting positions) divided by 2∆.

2.2. Periodicity length. We will use the techniques of periodic homogeniza-
tion. This means we will assume that the volume to be modeled, Ω, can be described
as a periodic domain: there exists a period εL0, which represents the average size
of a representative volume of Ω and which is small compared to the size of Ω. For
simplicity, we will assume the periodicity box is a cube. We define the normalized
periodicity box to be Y = [0, L0]d and let Y = Ye ∪ Yc, where Ye is the extracellular
domain and Yc is the intracellular domain. Yc is an open set that may be made of
several disconnected parts. We denote the boundary of Yc by ∂Yc ≡ Γm. We thus
have

Ωεe =
⋃

z∈Zd
ε(Ye + zL0), Ωεc =

⋃
z∈Zd

ε(Yc + zL0), Ωεext = Ωεe ∪ Ωεc,

and Γεm = ∂Ωεe \ ∂Ω =
⋃

z∈Zd
ε(Γm + zL0).

Of course, the diffusion coefficient will be assumed to be periodic as well; i.e., there
exists σ̂ ∈ L∞(Y ) such that σ(x) = σ̂(x

ε ), with

σ̂ =

{
σe in Ye,
σc in Yc.

The most common and practical choice for σe and σc is to consider them both as
constant so that σ̂ is piecewise constant. With this more precise description of the
domain, our reference model can be rewritten as
(2.6)

∂
∂tMε(x, t) + ιq ug · xf(t)Mε(x, t)− div(σ̂ε∇Mε(x, t)) = 0 in Ωεext×]0, T [ ,
σ̂ε∇Mε · ν|Γεm = κεJMεKΓεm

,
Jσ̂ε∇Mε · νKΓεm

= 0,
Mε(·, 0) = Mini in Ωεext,

where σ̂ε = σ̂(x
ε ). Finally, we will assume that the time profile f belongs to L∞(]0, T [)

and that the initial data Mini is defined on Ω independently of ε and it is constant in
each compartment.

3. An asymptotic model. In this section, we derive the new asymptotic model.

3.1. Transformed Bloch–Torrey equation. As was already observed in [11],
Mε does not satisfy the Bloch–Torrey equation in all Ωεext, but only in Ωεe and Ωεc
separately with jump conditions on the interfaces. We transform the Bloch–Torrey
equation by defining a new unknown M̃ε almost everywhere on Rd×]0, T [ by

M̃ε(x, t) = Mε(x, t)e
ιq ug·xF (t),

where

F (t) :=

∫ t

0

f(s)ds.
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Multiplying the equations of the system (2.6) by eιqug·xF (t) and using the definition

of M̃ε, we obtain the following transformed PDE:
(3.1)

∂

∂t
M̃ε(x, t)− div

(
σ̂ε∇M̃ε(x, t)− ιqugF (t)σ̂εM̃ε(x, t)

)
+ ιqugF (t)σ̂ε∇M̃ε(x, t) + q2F (t)2σ̂εM̃ε(x, t) = 0 in Ωεext×]0, T [ ,

σ̂ε∇M̃ε · ν − ιqugF (t)σ̂εM̃ε · ν = κεJM̃εKΓεm
on Γεm×]0, T [ ,

Jσ̂ε∇M̃ε · ν − ιqugF (t)σ̂εM̃ε · νKΓεm
= 0 on Γεm×]0, T [ ,

M̃ε(·, 0) = Mini in Ωεext.

3.2. Choice of scaling. As explained previously, we have chosen the scaling of
the periodicity length to be

(3.2) L = εL0,

where L0 has the unit of length. We note that ε is without dimension.
We keep the same scaling of the membrane permeability as was used in [11]:

(3.3) κ = εκ0,

where κ0 has the unit of length/time. Other scalings of permeability may be chosen
(and lead to other asymptotic models), but because biological cell membranes impede
the movement of water, the permeability should be “small.” Certainly, a physically
realistic choice should have the property that κε → 0 as ε→ 0.

Now we come to the choice of the scaling of b, which depends on both q and time
(through the values of δ and ∆). We set the scaling of time to be

(3.4) t = εατ,

which implies

δ = εαδ0 and ∆ = εα∆0,

and F becomes

Fε(t) = εαF0

(
t

εα

)
= εαF0(τ) .

We note that τ has the unit of time. We set the scaling of the gradient strength to
be

(3.5) q =
q0

εγ
,

and q0 has the unit of 1
length×time . In consequence, the scaling on b is

(3.6) b = q2

∫ ∆+δ

0

F 2(t)dt =
q2
0

ε2γ
ε2αδ2

0

(
εα∆0 −

εαδ0
3

)
= ε3α−2γb0 .

Before we choose the values of α and γ definitively, we use the periodic homog-
enization techniques [4] to develop M̃ε using two-scale asymptotic expansions for Ωεe
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and Ωεc, along with the new time scaling, for general α and γ. We write

(3.7) M̃ε(x, t) =


M̃e
ε (x, t) =

∞∑
i=0

εiM̃ie(x,y, τ) in Ye,

M̃ c
ε (x, t) =

∞∑
i=0

εiM̃ic(x,y, τ) in Yc,

where

y =
x

ε
and τ =

t

εα

and the functions M̃ie(x,y, τ) and M̃ic(x,y, τ) are defined on Ω × Ye×]0, T/εα[ and

Ω×Yc×]0, T/εα[ , respectively, and the M̃ij are assumed Y -periodic in y. The aim of
this ansatz is to obtain a new problem in which the different scales are linked.

To get the PDEs for each of the M̃ie and the M̃ic, we start by noticing that for
j ∈ { c, e },

∂

∂t
M̃ij(x,y, τ) = ε−α

∂

∂τ
M̃ij(x,y, τ) ,

∇M̃ij(x,y, τ) = ∇xM̃ij(x,y, τ) + ε−1∇yM̃ij(x,y, τ),

and therefore

div
(
σj(y)∇M̃ij(x,y, τ)− ιqugF (t)σj(y)M̃ij(x,y, τ)

)
+ divx

(
σj(y)∇xM̃ij(x,y, τ)

)
+ ε−2divy

(
σj(y)∇yM̃ij(x,y, τ)

)
+ ε−1

(
divy

(
σj(y)∇xM̃ij(x,y, τ)

)
+ divx

(
σj(y)∇yM̃ij(x,y, τ)

))
− εα−γdivx

(
ιq0ugF0(τ)σj(y)M̃ij(x,y, τ)

)
− εα−γ−1divy

(
ιq0ugF0(τ)σj(y)M̃ij(x,y, τ)

)
.

Substituting these relations into the transformed Bloch–Torrey PDE (3.1) and using
the ansatz in (3.7), we obtain the following PDE for j ∈ { c, e }:

∞∑
i=0

εi−α
∂

∂τ
M̃ij + εi+2α−2γq2

0ug · ugF0(τ)2σjM̃ij

+ εi+α−γιq0ugF0(τ)σj(∇xM̃ij + ε−1∇yM̃ij)− εidivx(σj∇xM̃ij)

− εi−1divx(σj∇yM̃ij)− εi−1divy(σj∇xM̃ij)− εi−2divy(σj∇yM̃ij)

+ εi+α−γdivx(ιq0ugF0(τ)σjM̃ij) + εi+α−γ−1divy(ιq0ugF0(τ)σjM̃ij) = 0.(3.8)

To obtain the analogous conditions for the traces, for x ∈ Γεm, we write the ansatz

for the jumps of M̃ε and its fluxes,

(3.9) JM̃ε(x, t)KΓεm
=

∞∑
i=0

εi
(
M̃ie(x,y, τ)− M̃ic(x,y, τ)

)D
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and

(3.10) Jσ̂ε∇M̃ε · ν − ιqugFσ̂εM̃ε · νKΓεm

=

∞∑
i=0

(
σe∇M̃ie(x,y, τ) · ν − ιq0ugF0(τ)σeM̃ie(x,y, τ) · ν

− σc∇M̃ic(x,y, τ) · ν − ιq0ugF0(τ)σcM̃ic(x,y, τ) · ν
)
.

The conditions for the traces, j ∈ { e, c }, are then

∞∑
i=0

εi+1κ0

(
M̃ie − M̃ic

)
=ε−1σj∇yM̃0j · ν + ε0

(
σj∇yM̃1j + σj∇xM̃0j − ιq0ugF0σjM̃0j

)
· ν

+

∞∑
i=1

εi
(
σj∇yM̃i+1j + σj∇xM̃ij − ιq0ugF0σjM̃ij

)
· ν .(3.11)

The initial conditions, for j ∈ { e, c }, are

M̃0j(·, ·, 0) = Mini,

M̃ij(·, ·, 0) = 0 ∀i ≥ 1.

As our purpose was to find an accurate approximation of the (time-dependent)
ADC for low b-values, whose scaling is

(3.12) b = εθb0 ,

where θ = 3α− 2γ, we require θ > 0. We also need the time to be small since, if not,
the effective diffusion would become Gaussian, and therefore the ADC would not be
time-dependent. Hence we require that α > 0.

Analyzing (3.8) we are led to choose α and γ so that the term εi+2α−2γq2
0ug ·

ugF
2
0 σM̃ij appears in the early values of i since this is the term that contains quanti-

ties related to the b-value. The choice α = γ = 0, which implies b = O(1), was made
in our previous work [11], which resulted in an ADC that is time-independent. We
then tried α = γ = 1, which implies b = O(ε), but this choice also led to an ADC
that is time-independent.

This means that the scaling in b is not sufficiently small. We thus proceeded to
the scaling b = O(ε2), which resulted from the choice

(3.13) α = γ = 2 .

For this choice, the interesting term appears in the PDE for M̃2j , j ∈ { e, c }. In
what follows, we thus fix the choice of α and γ to be that in (3.13) and derive the
corresponding asymptotic model.

3.3. Asymptotic model corresponding to α = γ = 2. We recall that
the functions M̃ie(x,y, τ) and M̃ic(x,y, τ) are defined on Ω× Ye×]0, T/εα[ and Ω×
Yc×]0, T/εα[ , respectively, and the M̃ij are assumed Y -periodic in y. To produce our
new asymptotic model up to O(ε2), we substitute α = γ = 2 and match the terms
in front of the same power of ε of (3.8). We then get the following periodicity box
problems for the first three orders: i = 0, 1, 2.
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The problem for M̃0j is then given by

(3.14)


−divy

(
σj∇yM̃0j

)
+

∂

∂τ
M̃0j = 0 in Yj×]0, T/εα[ ,

σj∇yM̃0j · ν = 0 on Γm,

M̃0j(·, 0) = Mini in Yj ,

M̃0j is Y -periodic.

Since the initial conditions is constant, we deduce that

(3.15) M̃0j ≡Mini, j ∈ { e, c } .

The periodic box problem for M̃1j is

−divy

(
σj∇yM̃1j + σj∇xM̃0j − ιq0ugF0σjM̃0j

)
= − ∂

∂τ
M̃1j

− ιq0ugF0σj∇yM̃0j + divx

(
σj∇yM̃0j

)
in Yj×]0, T/εα[ ,

σj∇yM̃1j · ν + σj∇xM̃0j · ν − ιq0ugF0σjM̃0j · ν = 0 on Γm×]0, T/εα[ ,

M̃1j(·, 0) = 0 in Yj ,

M̃1j is Y -periodic,

which, recalling that M̃0j is a constant (3.15), simplifies to
(3.16)

−divy

(
σj∇yM̃1j − ιq0ugF0σjMini

)
= − ∂

∂τ
M̃1j in Yj×]0, T/εα[ ,

σj∇yM̃1j · ν − ιq0ugF0σjMini · ν = 0 on Γm×]0, T/εα[ ,

M̃1j(·, 0) = 0 in Yj ,

M̃1j is Y -periodic.

It can be easily verified that M̃1j is purely imaginary and that the imaginary part

of M̃1j , for each j ∈ {c, e}, can be decomposed into the sum of d functions, ωjl ,
l = 1, . . . , d, where d is the spatial dimension,

(3.17) =
(
M̃1j(x,y, τ)

)
=

d∑
l=1

(q0Mini)ω
j
l (y, τ) (ug · el) in Yj ,

where the ωjl ’s do not depend on the gradient direction ug or q0 and are solutions of
−divy

(
σj∇yω

j
l − F0σjel

)
= − ∂

∂τ
ωjl in Yj×]0, T/εα[ ,

σj∇yω
j
l · ν − F0σjel · ν = 0 on Γm×]0, T/εα[ ,

ωjl (·, 0) = 0 in Yj ,

ωjl is Y -periodic.
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Now we consider the periodicity box problem satisfied by M̃2j :
(3.18)

−divy

(
σj∇yM̃2j + σj∇xM̃1j − ιq0ugF0σjM̃1j

)
= − ∂

∂τ
M̃2j in Yj×]0, T/εα[

− q20F0σjM̃0j − ιq0ugF0σj∇yM̃1j − ιq0ugF0σj∇xM̃0j

+ divx

(
σj∇yM̃1j + σj∇xM̃0j − ιq0ugF0σjM̃0j

)
,

σj∇yM̃2j · ν + σj∇xM̃1j · ν − ιq0ugF0σjM̃1j · ν = κ0

(
M̃0e − M̃0c

)
on Γm×]0, T/εα[ ,

M̃2j(·, 0) = 0 in Yj ,

M̃2j is Y -periodic.

Recalling again that M̃0j ≡ Mini is constant in the whole domain, σj is piecewise

constant, and M̃1j is purely imaginary, we use the divergence theorem on the real

part of (3.18) to obtain the compatibility condition for M̃2j (j ∈ { e, c }):

−
∫
Yj

∂

∂τ
<
(
M̃2j

)
−
∫
Yj

q2
0F

2
0 σjM̃0j +

∫
Yj

q0ugF0σj∇y=
(
M̃1j

)
= 0 .

Integrating in time, we obtain
(3.19)∫
Yj

<
(
M̃2j

)
= −q2

0

∫ τ

0

F 2
0

∫
Yj

σjMini + q0ug

d∑
l=1

∫ τ

0

F0

∫
Yj

σj (q0Mini)∇yω
j
l ug · el .

We immediately remark that with the identical constant initial conditions for both
compartments we lose the boundary term κ0(M̃0e − M̃0c), which is the only informa-
tion that we have on the membrane’s permeability. This means that our model would
not be applicable for situations where water exchange between the geometrical com-
partments is significant enough to affect the ADC, which is the first order moment
with respect to q2.

3.4. Asymptotic dMRI signal model and its ADC. In practice, the dMRI
signal is measured at t = TE = ∆ + δ, so our reference signal is

Sref (q,ug) =

∫
Mε(x, TE) dx ,

where Mε is the solution of the Bloch–Torrey PDE (2.6). The volume of integration
above is assumed large enough to contain the support of the solution (again, we remind
the reader that the voxel is large compared to diffusion displacement in dMRI). Then,
remembering our ansatz (3.7) and the fact that we found the first three terms, the
signal of our new asymptotic model is

Snew(q,ug) :=

2∑
i=0

εi
(∫

Ye

M̃ie(·, TE/ε2) +

∫
Yc

M̃ic(·, TE/ε2)

)
=

∫
Ye

(
Mini + ε2<M̃2e(·, TE/ε2)

)
+

∫
Yc

(
Mini + ε2<M̃2c(·, TE/ε2)

)
= Mini (|Ye|+ |Ye|) +

∫
Ye

ε2<M̃2e(·, TE/ε2) +

∫
Yc

ε2<M̃2c(·, TE/ε2).

We recall that M̃0j(x, τ) = Mini in Yj for all τ and the real part of M̃1j is equal to
zero, j ∈ { e, c }. Thus, our new model approximates the reference model up to fourth
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order in ε (because the odd powers of ε are zero):

Sref (q,ug) = Snew(q,ug) +O(ε4).

Recalling (3.19), we define effective diffusion tensors in the geometrical compartments,
j ∈ {c, e}, in the following way:

(
D
eff

j

)
il

(τ) :=
1

|Yj |

∫
Yj

σj

(
ei · el −

q2
0

∫ τ
0
F0

∂
∂yl
ωji

b0

)
, i, l = 1, . . . , d,

so that in more compact form,∫
Yj

<
(
M̃2j

)
= −q2

0

∫ τ

0

F 2
0

∫
Yj

σj Mini + q0ug

d∑
l=1

∫ τ

0

F0

∫
Yj

σjq0Mini ∇yω
j
l (ug · el)

= −Minib0

(∫
Yj

σj − ug

d∑
l=1

q2
0

b0

∫ τ

0

F0

∫
Yj

σj∇yω
j
l (ug · el)

)
= −Mini |Yj | b0 D

eff

j (τ)ug · ug .

Now we simplify the signal after the normalization

Mini :=
1

(|Yc|+ |Ye|)
,

Snew(q,ug) = 1−
ε2b0

(
|Yc| D

eff

c (∆0 + δ0) + |Ye| D
eff

e (∆0 + δ0)
)
ug · ug

(|Yc|+ |Ye|)
,

and put back the original variables,

(3.20) Snew(q,ug) = 1− b

(
|Yc| D

eff

c (∆ + δ) + |Ye| D
eff

e (∆ + δ)
)
ug · ug

(|Yc|+ |Ye|)
,

where the effective diffusion tensors in compartment j ∈ {c, e} are
(3.21)(
D
eff

j

)
il

(t) :=
1

|Yj |

∫
Yj

σj ei ·el−
1∫∆+δ

0
F 2

∫ t

0

(
F

1

|Yj |

∫
Yj

σj
∂

∂yl
ωji

)
, i, l = 1, . . . , d,

and the periodicity box problems to be solved are

(3.22)



∂

∂t
ωjl − divy

(
σj∇yω

j
l − Fσjel

)
= 0 in Yj×]0, T [ ,

σj∇yω
j
l · ν − Fσjel · ν = 0 on Γm×]0, T [ ,

ωjl (·, 0) = 0 in Yj ,

ωjl is Y -periodic.

From this simplified expression we can identify the ADCnew for this new model as

(3.23) ADCnew := θeD
eff

e (∆+δ)ug·ug+θcD
eff

c (∆+δ)ug·ug, θc :=
|Yc|
|Y |

θe := 1−θc,
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where θe and θc are the extracellular and intracellular volume fractions, respectively.
From (3.21) we immediately see that the definition of the effective diffusion tensor

D
eff

j , j ∈ { e, c }, is dependent on ∆ and δ. In particular, D
eff

j is defined as the sum of
two terms: the first is the intrinsic diffusion coefficient, and the second depends on the
magnetic field gradient time profile f(t) (in addition to depending on the geometry)
and is bounded between 0 and σj .

Our new asymptotic model matched terms up to and including O(ε2), and since
by the choice of the scaling our b-value is also O(ε2), this means that our model
explains first order effects of the b-value; it does not account for higher order effects
of b.

4. Numerical results. In this section, we first validate the fourth order con-
vergence of our model (see (3.20), (3.21), (3.22)) in the signal and the second order
convergence in the ADC (see (3.23)) to the reference Bloch–Torrey model of (2.6).
Then we compare the ADC of our new model with the reference ADC as well as with
two existing asymptotic models of the effective diffusion coefficient: the short time
and long time models of (1.6) and (1.8).

In summary, the following quantities will be compared:
1. Sref and ADCref from the reference Bloch–Torrey model.
2. Snew and ADCnew from our new asymptotic model.
3. Dshort: the short time model of the effective diffusivity (see (1.6)).
4. Dlongug · ug: the long time model of the effective diffusivity (see (1.8)).

The reference signal is the integral of the solution of (2.6) in a periodic geometry,
where the domain is made up of copies of the periodicity box Y = [0, L]2. As was
already observed in [29], equivalently, one can obtain the reference signal by solving
(3.1) subject to periodic boundary conditions on ∂Y . This was also our approach
here. The initial condition Mini is set to Mini = 1/L2 to normalize the signal to S = 1
at b = 0. The ADC of the reference signal was then obtained using a polynomial fit
of the logarithm of the simulated signal at several b-values according to (2.5).

To obtain the signal due to our new asymptotic model (see (3.20)), we solved the
periodicity box problems (3.22) on Y . Then the ADC of our new model is computed
according to (3.23).

To compute the long time model for the effective diffusivity according to (1.8),
we solved the periodicity box problems (1.9).

The simulation of the reference model and the solution of the periodicity box
problems were performed using FreeFem++ [34].

4.1. Convergence. We validate the convergence of the new model in a simple
two-dimensional geometry. The periodicity box is Y = [0, L]2, and we place in the
center of Y a single disk of radius R (see Figure 1). We fix L0, κ0, ∆0, δ0, and b0 and
vary ε while respecting the scalings:

L = εL0, κ = εκ0, ∆ = ε2∆0, δ = ε2δ0, q = ε−2q0.

We recall that the above choice implies the scaling of b = O(ε2) and ∆ = O(L2). We
have chosen the gradient direction to be ug = ex. Furthermore, our choices of L0, κ0,
∆0, δ0, and b0 are made in order to obtain physically reasonable parameters L, κ, ∆,
δ, and b at ε = 0.25.

We obtained Sref and Snew using a very fine finite element mesh for two disk
radii: R = 0.49L and R = 0.4L. The values of the intrinsic diffusivities, σe =
3 × 10−3mm2/s, σc = 1.6 × 10−3mm2/s, were chosen close to the values often used
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Fig. 1. Illustration of a periodic domain where there is a disk of radius R in the center of each
periodicity box Y .
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Fig. 2. Signal convergence for a single disk in a periodicity box with σe = 3 × 10−3mm2/s,
σc = 1.6 × 10−3mm2/s for two disk radii: R = 0.49L and R = 0.4L. L0 = 20µm, δ0 = 8ms,
∆0 = 8ms, b0 = 800s/mm2, and κ0 = 4 × 10−5m/s.

in the literature for dMRI numerical simulations [12, 45].
In Figure 2 we show the convergence of the signals |Sref (b) − Snew(b)| with the

nondimensional parameter ε for two different choices of R. We see that the conver-
gence rate is about 4 (fitted to 3.6).

In Figure 3 we show the convergence of the ADC with the nondimensional pa-
rameter ε, where to compute the reference ADC we use the linear fit:

ADCref ≈
1− Sref (b)

b
.

We see that the convergence rate is fitted to 1.6.

4.2. Time-dependent ADC. In this section we show some preliminary results
on the ADC approximation of our new model (see (3.23)) and compare with some
other existing models.

To compare the ADCs, we fixed L = 5µm, σe = 3 × 10−3mm2/s, σc = 1.6 ×
10−3mm2/s, and κ = 1 × 10−5m/s, and we varied δ and ∆ over a wide range.
The simulated (δ,∆), expressed in ms, are (1e−3, 5e−3), (1e−3, 10e−3), (1e−3, 15e−3),
(0.3, 0.3), (0.5, 0.5), (1.0, 1.0), (1.5, 1.5), (2.5, 2.5), (2.5, 5.0), (2.5, 7.5), (2.5, 10.0),
(2.5, 15.0), (2.5, 20.0), (2.5, 40.0), and (2.5, 80.0). The geometry is again a single
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log10(ε)
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Fig. 3. ADC convergence for a single disk in a periodicity box with σe = 3 × 10−3mm2/s,
σc = 1.6 × 10−3mm2/s for two disk radii: R = 0.49L and R = 0.4L. L0 = 20µm, δ0 = 8ms,
∆0 = 8ms, κ0 = 4 × 10−5m/s, and fitted until b0 = 800s/mm2.

disk of different radii placed at the center of the periodicity box Y = [0, L]2, and the
gradient direction is ex. Two radii, R = 0.49L and R = 0.4L, were simulated, in
order to vary the volume fraction of the intracellular and extracellular compartments.
The ADCref of the signal was obtained by a cubic fit using the logarithm of the signal

at b = 0, 10, 20, 40, 50s/mm
2
.

Figure 4 displays a comparison of the ADCs of the four different models as a
function of the normalized diffusion displacement defined as

(4.1) NDD :=

√
2(∆ + δ)ADCref

L/2
.

We immediately observe that the ADCnew of the new asymptotic model follows very
well the reference model (2.6) in the whole range of NDD. On the other hand, as we
expected, the long time model works well only when NDD � 1 and the short time
model only when NDD � 1.

To validate our new asymptotic model in a more realistic geometry, we simulated
a large periodic box, with L = 50µm, that contains many cells of different shapes and
sizes. There are 32 spheres of various radii in the range of [2.5, 5]µm and 5 cylinders
of various radii in the range of [0.7, 2]µm (Figure 5a). The resulting external volume
fraction is then θe = 0.4. We fixed σe = 3 × 10−3mm2/s, σc = 2 × 10−3mm2/s,
and κ = 1 × 10−5 m/s, and we varied δ and ∆ over a wide range of times. The sim-
ulated (δ,∆), expressed in ms, are (0.1, 0.1), (0.2, 0.2), (0.3, 0.3), (0.5, 0.5), (1.0, 1.0),
(1.5, 1.5), (2.5, 2.5), (2.5, 5.0), (2.5, 7.5), (2.5, 10.0), (2.5, 15.0), (2.5, 20.0), (2.5, 40.0),
(2.5, 80.0), (2.5, 120.0), and (2.5, 160.0). The gradient direction is ug = [1/

√
2, 1/
√

2].
Figure 5b displays a comparison of the ADCs of the four different models as

a function of the diffusion displacement. In this example, we did not normalize
the diffusion displacement by L/2 because the characteristic length of this domain
is not obvious, given the presence of several cell shapes and sizes. The ADCref
of the signal was obtained by a cubic fit using the logarithm of the signal at b =
0, 20, 40, 60, 80, 100s/mm

2
. We observe that theADCnew of our new asymptotic model

follows very well the reference model (2.6) in the whole range of diffusion displace-
ment. On the contrary, as we expected, the short time model works well only for small
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Normalized Diffusion Displacement
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(a) R = 0.49L
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(b) R = 0.4L

Fig. 4. ADC approximation for a single disk in a periodicity box with κ = 1 × 10−5 m/s,
σe = 3 × 10−3mm2/s, σc = 1.6 × 10−3mm2/s, for two disk radii: R = 0.49L and R = 0.4L.

diffusion displacement and the long time model only for large diffusion displacement.
We see also that ADCref attains the long time limit at the diffusion displacement of
around 10µm, much smaller than L/2. This means the characteristic length of this
medium is smaller than L/2, which is another reason we claim that the generality of
our model is not limited by the original periodicity assumption on the domain when
we performed the homogenization.

5. Conclusions. We have formulated a new asymptotic model of the dMRI sig-
nal from the Bloch–Torrey PDE using homogenization with a particular choice of
scaling for the time, the biological cell membrane permeability, the diffusion-encoding
magnetic field gradient strength, and a periodicity length of the cellular geometry.
The apparent diffusion coefficient (ADC) of the resulting model is diffusion time–
dependent, a property observed in in vivo imaging experiments of the brain. We
numerically validated the new asymptotic model in two-dimensional geometrical con-
figurations and showed that its ADC is close to the ADC of the reference Bloch–
Torrey PDE model over a wide range of diffusion times. The derived model is valid
for all dimensions. Numerical implementation in three dimensions, though most likely
time-consuming, should be straightforward. Deeper analysis of this new model and
adapting it to estimate model parameters from the dMRI signal data will be the
subject of future work.
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(a) Periodicity box Y = [0, 50µm]2

Diffusion Displacement (µm)
100 101

A
D
C

(m
m

2
/s
)

×10−3

0.5

1

1.5

2
ADCref

ADCnew

Dshort

Dlong

(b) Simulated ADC

Fig. 5. ADC approximation for a periodic domain where the periodicity box Y = [0, 50µm]2

is shown above. The extracellular volume fraction is θe = 0.4, with the membrane permeability κ =
1× 10−5 m/s, and intrinsic diffusion coefficients: σe = 3× 10−3mm2/s, and σc = 2× 10−3mm2/s.
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