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Abstract. The diffusion magnetic resonance imaging signal arising from biological tissues can
be numerically simulated by solving the Bloch-Torrey partial differential equation. Numerical sim-
ulations can facilitate the investigation of the relationship between the diffusion MRI signals and
cellular structures. With the rapid advance of available computing power, the diffusion MRI com-
munity has begun to employ numerical simulations for model formulation and validation, as well as
for imaging sequence optimization. Existing simulation frameworks use the finite difference method,
the finite element method, or the Matrix Formalism method to solve the Bloch-Torrey partial dif-
ferential equation. We propose a new method based on the efficient evaluation of layer potentials.
In this paper, the mathematical framework and the numerical implementation of the new method
are described. We demonstrate the convergence of our method via numerical experiments and an-
alyze the errors linked to various model and simulation parameters. Since our method provides a
Fourier-type representation of the diffusion MRI signal, it can potentially facilitate new physical and
biological signal interpretations in the future.
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1. Introduction. Diffusion magnetic resonance imaging (diffusion MRI) is a
promising non-invasive imaging modality that can probe the tissue microstructure by
encoding the motion of water molecules with magnetic gradient pulses [32, 13]. The
goal of various imaging protocols is often the recovery of some biological parameters
of interest, such as axon diameter and density [38, 30], dendrite structure [11, 29],
effective diffusion coefficient [3]. However, in the past, researchers sometimes could
not fully validate some of these proposed protocols due to the lack of ground truth.
Therefore, recent works have started to include numerical simulations as a part of the
validation process [28, 34]. Numerical simulations can facilitate the investigation of the
effects of different pulse sequences and tissue features on the measured signal, and can
be used for the development, testing, and optimization of novel MRI pulse sequences
[20, 31]. For example, the simulation-based inference, which leverages the power of
numerical simulations and statistical inference, is a novel direction for cytoarchitecture
measurements [10].

Concerning the current numerical simulation methods for diffusion MRI applica-
tions, two popular groups of approaches are Monte-Carlo methods and Bloch-Torrey
PDE-based methods. Monte-Carlo methods use random walkers to mimic the diffu-
sion process in a geometrical configuration. Software packages include Camino [4],
DIFSIM [1], and a GPU-based Monte-Carlo simulator [22]. The Bloch Torrey PDE-
based methods solve the Bloch-Torrey partial differential equation, which describes
the evolution of the complex transverse water proton magnetization under the influ-
ence of diffusion-encoding magnetic field gradient pulses. The predominant numerical
methods to solve this PDE include the finite difference method [14], the finite element
method [17, 21, 2], and the Matrix Formalism method [6, 7, 18]. Although some recent
works in the diffusion MRI community [28, 34] still utilize Monte-Carlo simulations,
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the Bloch-Torrey PDE-based methods have recently demonstrated their potential,
including in high-performance computing settings [23, 24, 26, 17, 18] and in mani-
folds settings for thin-layer and thin-tube geometries [25]. In addition to numerical
efficiency, some Bloch-Torrey PDE-based methods allow for a better understanding
of the diffusion mechanism. Our previous works in Bloch-Torrey PDE-based neuron
simulations demonstrate that diffusion MRI signals reflect the cellular organization
of cortical gray matter, and these signals are sensitive to cell size and the presence of
large neurons such as the spindle (von Economo) neurons [33, 36, 19, 5].

The Matrix Formalism method [6, 7], which decomposes the solution of the Bloch-
Torrey PDE onto a Laplacian eigenbasis, provides another interesting perspective to
the diffusion MRI signal. One can address many fundamental theoretical questions
about the diffusion MRI signal thanks to the eigendecomposition. In some ways, the
Matrix Formalism method inspired us to decompose the diffusion MRI signal into a
Fourier type basis. Contrary to the Laplacian eigenbasis, the Fourier basis functions
themselves do not depend on the geometrical confinement. This independence should
allow for the comparison between various geometries and provides a new spectral
perspective.

Based on potential theory from classical mathematics, we propose a new method
that provides a Fourier type representation of the diffusion MRI signal. The main
challenge to overcome involves the fundamental solution of the diffusion equation, also
known as the heat kernel, which has a singularity in time. In theory, infinite Fourier
modes are required to represent the heat kernel due to the singularity, while only finite
Fourier modes are accessible for practical computation. This practical limitation may
lead to the Gibbs phenomenon that could degrade the approximation accuracy [35].
In order to overcome this challenge, we follow the path of several previous works
[8, 15, 16, 9] focusing on the evaluation of heat potentials. In particular, in [8], the
authors proposed several fundamental ideas, such as 1) splitting the heat potential
into a local in time part and a history part in order to overcome the singularity of
the heat kernel; 2) approximating the local in time part by asymptotics; 3) leveraging
the exponential decay of the history part to represent it using a few Fourier modes.
These ideas are crucial to the Fourier type representation of the diffusion MRI signal
that we derive in this paper.

Despite the intrinsic similarity between thermal conduction and diffusion process,
in the literature, there have not been previous works about the representation of the
diffusion MRI signal via potential theory, and certainly not by using a Fourier basis
for layer potentials. As the first paper addressing this subject, we restrict ourselves to
the 2D diffusion MRI setting with impermeable interfaces. We also restrict ourselves
to simplified conditions on the diffusion-encoding gradient, specifically, we derive our
method under the narrow pulse assumption, where the diffusion-encoding pulse dura-
tion is very short compared to the delay between the pulses. These two assumptions
allow us to apply the theory developed for the diffusion kernel to the diffusion MRI
application.

The main steps of our method are 1) transforming the Bloch-Torrey PDE to
the diffusion equation using the narrow pulse assumption on the diffusion-encoding
sequence; 2) formulating the solution of the diffusion equation using the single layer
potential; 3) approximating the singular part of the single layer potential using an
asymptotic expansion and solving the integral equation; 4) storing the non-singular
part of the single layer potential using the Fourier coefficients, leveraging the fast decay
in the spectrum; 5) computing the diffusion MRI signal using the above representation.
We call our method the Fourier Potential Method (FPM).
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The paper is organized as follows. Section 2 introduces the mathematical frame-
work and the Bloch-Torrey PDE of diffusion MRI. Section 3 presents the Fourier
Potential Method and error analysis. Section 4 contains numerical results, including
convergence in the various simulation parameters. Section 5 contains conclusions and
future work.

2. Mathematical frame of diffusion MRI. Suppose one would like to simu-
late the diffusion MRI signal due to spins inside a biological cell and assume that the
spin exchange across the cell membrane is negligible under the simulation conditions.
Let Ω be the domain that describes the geometry of the biological cell and let Γ = ∂Ω
be the cell membrane.

2.1. Bloch-Torrey PDE. In diffusion MRI, a time-varying magnetic field gra-
dient is applied to the tissue to encode water diffusion. Denoting the effective time
profile of the diffusion-encoding magnetic field gradient by f(t), and let the vector g
contain the amplitude and direction information of the magnetic field gradient, the
complex transverse water proton magnetization in the rotating frame satisfies the
Bloch-Torrey PDE:

(2.1)
∂

∂t
M(x, t) = −γf(t)g · xM(x, t) +∇ · (D0∇M(x, t)), x ∈ Ω,

where γ = 267.513 radµs−1T−1 is the gyromagnetic ratio of the water proton,  is
the imaginary unit, D0 is the intrinsic diffusion coefficient in the neuron compartment
Ω. The magnetization is a function of position x and time t, and depends on the
diffusion gradient vector g and the time profile f(t).

A commonly used time profile (diffusion-encoding sequence) is the pulsed-gradient
spin echo (PGSE) [32] sequence, with two rectangular pulses of duration δ, separated
by a time interval ∆− δ, for which the profile f(t) is

(2.2) f(t) =


1, 0 ≤ t ≤ δ,
−1, ∆ < t ≤ ∆ + δ,

0, otherwise.

In the case that the rectangular pulses are narrow, i.e., δ � ∆, this allows the Bloch-
Torrey PDE to be transformed to the diffusion equation. This assumption is called
the narrow pulse approximation [32] and it is taken up in subsection 2.2.

The PDE in (2.1) needs boundary conditions. We assume negligible membrane
permeability, meaning the zero Neumann boundary condition:

D0∇M(x, t) · n = 0, x ∈ ∂Ω,

where n is the unit outward pointing normal vector at x. In addition, the PDE has
the constant initial condition:

M(x, 0) = ρ, x ∈ Ω,

where ρ is the initial spin density.
The diffusion MRI signal is measured at echo time t = TE ≥ ∆ + δ for PGSE.

This signal is the integral of M(x, TE):

s ≡
∫
x∈
⋃
{Ω}

M(x, TE) dx,
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where
⋃{Ω} represents a set of biological compartments with impermeable mem-

branes.
The signal s is usually plotted against a quantity called the b-value [32, 27]. The

b-value depends on g and f(t) and is defined as

b(g) = γ2‖g‖2
∫ TE

0

du

(∫ u

0

f(s)ds

)2

.

For PGSE, the b-value is [32]:

(2.3) b(g, δ,∆) = γ2‖g‖2δ2 (∆− δ/3) .

The reason for these definitions is that in a homogeneous medium, the signal attenu-
ation is e−D0b, where D0 is the intrinsic diffusion coefficient.

2.2. Narrow pulse approximation. In this paper, we restrict ourselves to
simplified conditions on the diffusion-encoding gradient, specifically, we derive our
method under the narrow pulse assumption, where the pulse duration is very short
compared to the delay between the pulses [32], i.e., δ � ∆. This will lead to the
solution of a diffusion equation instead of the more complicated Bloch-Torrey PDE,
as explained below.

Let us consider spins initially located at x. After the first pulse, the complex
phase of these spins is e−δγg·x. This means the complex magnetization at t = δ due
to a uniform distribution of initial spins with density ρ can be written as:

M(x, δ) ≈ ρ e−δγg·x, x ∈ Ω.

Because the gradient magnetic field is turned off after the first pulse, the spins
move but the phase of the spins does not change. Therefore, the magnetization
between pulses satisfies the diffusion equation:

(2.4)
∂

∂t
M(x, t) = ∇ · (D0∇M(x, t)), x ∈ Ω, t ∈ [δ,∆],

subject to the zero Neumann boundary condition:

(2.5) D0∇M(x0, t) · n = 0, x0 ∈ ∂Ω, t ∈ [δ,∆],

where n is the unit outward pointing normal vector at x0, and initial condition at
t = δ is:

(2.6) M(x, δ) = ρ e−δγg·x, x ∈ Ω.

During the second pulse, at the point x, the additional accumulated complex
phase is eδγg·x, so the magnetization at the position x and time TE is:

(2.7) M(x, TE) ≈M(x,∆)eδγg·x, x ∈ Ω.

We emphasize again that we used the assumption δ � ∆. The echo-time TE is
usually some time after the end of the second pulse (i.e. TE ≥ ∆ + δ).

The diffusion MRI signal s is the total magnetization measured at the echo time:

(2.8) s =

∫
x∈Ω

M(x,∆)eδγg·x dx.
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3. Method. We derive our new method below.

3.1. Solution of the diffusion equation and the diffusion MRI signal.
Before we solve the diffusion equation using potential theory, we transform the initial
and boundary conditions. We transform the diffusion equation in (2.4)–(2.6) such
that it is subject to zero initial conditions and complex-valued non-zero Neumann
boundary conditions. Define

(3.1) ω(x, t) ≡M(x, t+ δ)− ρe−4π2D0‖q‖2te−2πq·x, x ∈ Ω, t ∈ [0,∆− δ],
where q = δγg/2π. We will work on the quantity ω(x, t) in (3.1), which satisfies the
diffusion equation:

(3.2)
∂

∂t
ω(x, t) = ∇ · (D0∇ω(x, t)), x ∈ Ω, t ∈ [0,∆− δ],

subject to non-homogeneous Neumann boundary conditions:

(3.3) D0∇ω(x0, t) · n = D0N (x0, t, q) x0 ∈ ∂Ω, t ∈ [0,∆− δ],
and zero initial conditions:

(3.4) ω(x, 0) = 0, x ∈ Ω.

The Neumann forcing term is complex-valued, periodic in space in the direction q,
and decays exponentially in time:

(3.5) N (x, t, q) ≡ 2πρ q · n
(
e−2πq·x) e−4π2D0‖q‖2t.

The diffusion MRI signal s can be reformulated in terms of ω:

(3.6) s = |Ω|ρe−4π2D0‖q‖2(∆−δ) +

∫
x∈Ω

ω(x,∆− δ)e2πq·xdx.

In the above, the first term is explicit, the second term needs to be computed. We
define a time dependent integral whose value at t = ∆− δ gives second term:

(3.7) ω(q, t) ≡
∫
x∈Ω

ω(x, t)e2πq·xdx, t ∈ [0,∆− δ].

The function ω can be expanded by the Green’s second identity:

ω(q, t) =
−1

4π2D0‖q‖2
(∫

Ω

∇ · (D0∇ω(x, t))e2πq·xdx+B

)
,

B =

∫
∂Ω

2πD0q · nω(x, t)e2πq·xdsx −
∫
∂Ω

D0∇ω(x, t) · ne2πq·xdsx.

Using the diffusion equation and the nonhomogeneous Neumann boundary conditions,
we get an ordinary differential equation for ω:

d

dt
ω(q, t) = −4π2D0‖q‖2ω(q, t)− 2πD0

∫
∂Ω

q · nω(x, t)e2πq·xdsx,(3.8)

which has an analytical solution:

ω(q, t) = −D0

∫
∂Ω

∫ t

0

2πq · ne−4π2D0‖q‖2(t−τ)ω(x, τ)e2πq·xdτdsx,

= D0ρ
−1

∫
∂Ω

∫ t

0

N ∗(x, t− τ, q)ω(x, τ)dτdsx.

(3.9)
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The asterisk symbol ∗ denotes the complex conjugation. It can be proved that (3.9)
satisfies a recursive relationship in time:

ω(q, t) = e−4π2D0‖q‖2∆tω(q, t−∆t) +D0ρ
−1

∫
∂Ω

∫ t

t−∆t

N ∗(x, t− τ, q)ω(x, τ)dτdsx.

(3.10)

Equation (3.7) and (3.9) are mathematically equivalent for evaluating the diffusion
MRI signal (at t = ∆ − δ). It can be seen that, while (3.7) requires the value of ω
on the entire domain Ω, (3.9) only needs the value of ω on the boundary, which is
more computationally efficient. The recursion in time above also increases the com-
putational efficiency. We will use the method of layer potentials to get the boundary
values in the next section.

3.2. The single layer potential representation. The PDE in (3.2)–(3.4) has
Neumann boundary conditions, zero initial conditions and zero forcing term, allowing
us to represent the solution ω(x, t) as a single layer potential, with a density function
µ defined on ∂Ω [9]. In other words, ω(x, t) = S[µ](x, t). The definition for the single
layer potential is

(3.11) ω(x, t) = S[µ](x, t) ≡
∫ t

0

∫
∂Ω

D0G(x− y, t− τ)µ(y, τ)dsydτ,

where G(x, t) is the fundamental solution of the 2D diffusion equation in a box
[−L1/2, L1/2]× [−L2/2, L2/2], with periodic boundary conditions. The fundamental
solution G(x, t) has two equivalent representations [8]:

(3.12) GGauss(x, t) = (4πD0t)
−1
∑
z∈Z2

e−
‖x−z�L‖2

4D0t ,

(3.13) GFourier(x, t) =
1

L1L2

∑
ν=z�L
z∈Z2

e−4π2D0‖ν‖2te2πν·x,

where � and � are hadamard product and hadamard division, respectively, and L =
[L1, L2]T . For the convenience of notation, in the following, we set L1 = L2 = L and
note by ∆ν = 1

L . In this way, we rewrite (3.13) as

(3.14) GFourier(x, t) =
∑

ν=z�L
z∈Z2

e−4π2D0‖ν‖2te2πν·x∆ν2

in order to recall its relationship with the Fourier transform. The imposition of
periodic boundary conditions on the faces of the box allows us to use the discrete
Fourier series.

The density function µ is chosen to be a causal function and is determined by
imposing the Neumann boundary conditions on the geometry boundary ∂Ω [16]:

lim
x→x0∈∂Ω

∇S[µ](x, t) · n = N (x0, t, q), x0 ∈ ∂Ω, t ∈ [0,∆− δ].
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Using the jump property of the trace of the double layer potential, the integral equa-
tion to be solved for µ is then the following:

(3.15)
1

2
µ(x0, t) +K[µ](x0, t) = N (x0, t, q), x0 ∈ ∂Ω, t ∈ [0,∆− δ],

with

(3.16) K[µ](x0, t) ≡
∫ t

0

∫
∂Ω

D0
∂G

∂nx0

(x0 − y, t− τ)µ(y, τ)dsydτ

being the principal value integral on the boundary. Solving the integral equation
(3.15) for µ plays the pivotal role in our method. We present the detailed steps in the
next sections.

3.3. Splitting the single layer potential into local and history parts.
The single layer potential S[µ] is split into a history part, Slong[µ], and a local in time
part, Sshort[µ]. Since the local in time part Sshort[µ] contains the singularity of the
fundamental solution G, we approximate it by asymptotic formulas. The asymptotic
trace formulas are only accurate in an interval near the singularity, so we limit their
use to the interval [t− η, t], with η being a small quantity to be determined later. In
other words,

(3.17) S[µ](x, t) = Sshort[µ](x, t) + Slong[µ](x, t),

with

Sshort[µ](x, t) :=

∫ t

t−η

∫
∂Ω

D0GGauss(x− y, t− τ)µ(y, τ)dsydτ,

Slong[µ](x, t) :=

∫ t−η

0

∫
∂Ω

D0GFourier(x− y, t− τ)µ(y, τ)dsydτ.

(3.18)

Similarly, we decompose K[µ] into 2 parts:

(3.19) K[µ](x0, t) = Kshort[µ](x0, t) +Klong[µ](x0, t),

with

Kshort[µ](x0, t) :=

∫ t

t−η

∫
∂Ω

D0
∂GGauss
∂nx0

(x0 − y, t− τ)µ(y, τ)dsydτ,

Klong[µ](x0, t) :=

∫ t−η

0

∫
∂Ω

D0
∂GFourier
∂nx0

(x0 − y, t− τ)µ(y, τ)dsydτ.

(3.20)

Next, we compute or approximate the above history and local parts.

3.3.1. Asymptotic trace formulas for the local part. Based on the expres-
sions derived in [8], the asymptotic trace formulas in two dimensions for the local
parts, when t > η, are:

(3.21) Sshort[µ](x0, t) =

√
D0η

π
µ(x0, t) +O(η3/2), t > η

and

(3.22) Kshort[µ](x0, t) = −
√D0η

2
√
π
κ(x0)µ(x0, t) +O(η3/2), t > η,
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where κ(x0) is the curvature at the point x0 ∈ ∂Ω. The boundary ∂Ω, which models
the cell membrane, is a closed 2D plane curve. We assume it is twice differentiable.
Let ψ(α) = (x(α), y(α)) be a parametric representation of ∂Ω. We choose a general
parameter α such that ψ(α) is oriented counterclockwise. The curvature at the point
x0 = ψ(α0) is defined as

(3.23) κ(x0) =
x′y′′ − y′x′′

(x′2 + y′2)
3/2

∣∣∣∣∣
α=α0

,

where primes refer to derivatives with respect to α.
We also need to initialize values for t ≤ η. It has been derived in [9] that the

expressions are:

(3.24) Sshort[µ](x0, t) =

√
D0t

π
µ(x0, t) +O(t3/2), t ≤ η,

and

(3.25) Kshort[µ](x0, t) = −
√D0t

2
√
π
κ(x0)µ(x0, t) +O(t3/2), t ≤ η.

3.3.2. Fourier representation of history part. For the smooth part of the
single layer potential, a Fourier representation for the Dirichlet trace is proposed in
[8]:

(3.26) Slong[µ](x0, t) = D0

∑
ν=z�L
z∈Z2

f̂(ν, t)e2πν·x0∆ν2,

and the Neumann trace is

(3.27) Klong[µ](x0, t) = D0

∑
ν=z�L
z∈Z2

2πν · nf̂(ν, t)e2πν·x0∆ν2,

where the Fourier coefficients are

(3.28) f̂(ν, t) =

∫ t−η

0

∫
∂Ω

e−4π2D0‖ν‖2(t−τ)µ(y, τ)e−2πν·ydsydτ.

To avoid history dependent time integration, we use the following recurrence
formula for the Fourier coefficients

(3.29) f̂(ν, t) = e−4π2D0‖ν‖2∆tf̂(ν, t−∆t)+∫ t−η

t−η−∆t

∫
∂Ω

e−4π2D0‖ν‖2(t−τ)µ(y, τ)e−2πν·ydsydτ,

so only local-in-time integrals are needed at each time step.
The above formulas hold when t > η. For t ≤ η, we initialize Slong[µ], Klong[µ],

and f̂ to be 0.
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3.4. Computation of the single layer density. Based on the decomposition
of the single layer potential and the approximation of the history and the local parts
detailed previously, we can compute the density function µ.

For t ≤ η, substituting (3.25) into (3.15) and solving the integral equation, we
can get the approximation to the density

(3.30) µ(x0, t) =
2N (x0, t, q)

1−
√
D0t
π κ(x0)

+O(t3/2), x0 ∈ ∂Ω, t ≤ η.

For t ∈ (η,∆− δ], the integral equation (3.15) can be rewritten as

1

2
µ(x0, t) +Kshort[µ](x0, t) = β(x0, t),

where the right hand side is

(3.31) β(x0, t) ≡ −Klong[µ](x0, t) +N (x0, t, q).

We write the solution of the above integral equation as

(3.32) µ(x0, t) = 2 (I + 2Kshort)
−1

[β] (x0, t), x0 ∈ ∂Ω, t ∈ (η,∆− δ],

and expand the operator (I + 2Kshort)
−1

(corresponding to Kshort being a contrac-
tion) as

(3.33) µ(x0, t) = 2
(
I − 2Kshort + 4K2

short + · · ·+ (−2)nKn
short + . . .

)
[β] (x0, t).

We approximate Kn
short[β] using (3.22) and we get

(3.34) Kn
short[β](x0, t) =

1

(−2)n

(D0η

π

)n/2
κn(x0)β(x0, t) +O(η3/2).

Then, we keep all terms of the operator expansion to obtain

µ(x0, t) = 2
(
β(x0, t)− 2Kshort[β](x0, t) + 4K2

short[β](x0, t) + . . .
)

= 2β(x0, t)

(
1 + (

D0η

π
)

1
2κ(x0) +

D0η

π
κ2(x0) + . . .

)
+O(η3/2)

= 2β(x0, t)/

(
1−

√
D0η

π
κ(x0)

)
+O(η3/2).

(3.35)

3.5. Computation of the single layer potential. Once the density µ is ob-
tained, we compute the single layer potential S[µ] in the following way.

When t ≤ η, the expression for the single layer potential is

S[µ](x0, t) = Sshort[µ](x0, t)

=

√
D0t

π

4πρq · ne−4π2D0‖q‖2te−2πq·x0

1−
√
D0t
π κ(x0)

+O(t3/2), x0 ∈ ∂Ω, t ∈ [0, η].

For t ∈ (η, ∆− δ], the single layer potential has both a local part and a history
part. The local part is

Sshort[µ](x0, t) =

√
D0η

π
µ(x0, t) +O(η3/2), x0 ∈ ∂Ω, t ∈ (η, ∆− δ].
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As for the history part Slong[µ], it can be approximated by the truncated Fourier
series:
(3.36)

Slong[µ](x0, t) = D0

νmax∑
ν=−νmax

f̂(ν, t)e2πν·x0∆ν2 +E(νmax), x0 ∈ ∂Ω, t ∈ (η, ∆−δ].

In the above, we denote the error term due to truncating the infinite Fourier series
up to νmax by E(νmax). We do not have an analytical expression for E(νmax), but
we will show later in the numerical results that it decays exponentially in νmax.

The addition of Sshort[µ] and Slong[µ] gives the single layer potential S[µ] which
is the solution of (3.2) on the boundary:

S[µ](x0, t) = Sshort[µ](x0, t) + Slong[µ](x0, t), x0 ∈ ∂Ω, t ∈ [0, ∆− δ].

At the current iteration step, the Fourier coefficients f̂ that are still unknown, will be
computed using the density function µ from the previous iterations, as explained in
the following.

3.5.1. Computation of the Fourier coefficients of the history part. For
t ≤ η, f̂ is set to zero, as well as Klong[µ]. For t ∈ (η, 2η], f̂ are computed using the
density µ from the previous iterations:

f̂(ν, t) =e−4π2D0‖ν‖2∆tf̂(ν, t−∆t)+∫
∂Ω

∫ t−η

t−η−∆t

e−4π2D0‖ν‖2(t−τ)e−2πν·yµ(y, τ)dτdsy︸ ︷︷ ︸
f̂temp1(ν,t)

, ν ∈ [−νmax, νmax]2,

(3.37)

with

f̂temp1(ν, t) =

∫
∂Ω

4πq · ne−2π(q+ν)·y
∫ t−η

t−η−∆t

e−4π2D0[‖ν‖2(t−τ)+‖q‖2τ]

1−
√
D0τ
π κ(y)

dτ

︸ ︷︷ ︸
p

dsy.

We apply the trapezoidal rule to the time integration p to obtain

p =



− 2πe−4π2D0‖q‖
2t

D0κ2(y)

[
κ(y)

√
D0

π

(√
t− η −√t− η −∆t

)
+

ln

(
1−κ(y)

√
D0
π (t−η)

1−κ(y)
√
D0
π (t−η−∆t)

)]
, ‖ν‖ = ‖q‖;

e−4π2D0[‖q‖2(t−η)+‖ν‖2η]

[
1+e4π

2D0(‖q‖2−‖ν‖2)∆t(4π2D0(‖q‖2−‖ν‖2)∆t−1)

∆t(4π2D0(‖q‖2−‖ν‖2))2

(
1−κ(y)

√
D0
π (t−η−∆t)

)+

e4π
2D0(‖q‖2−‖ν‖2)∆t−4π2D0(‖q‖2−‖ν‖2)∆t−1

∆t(4π2D0(‖q‖2−‖ν‖2))2

(
1−κ(y)

√
D0
π (t−η)

)
]
, ‖ν‖ 6= ‖q‖.

Once we compute the time integration p, the integration over the boundary ∂Ω
can be approximated by uniform discretization in arc length.
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Remaining on t ∈ (η, 2η], next we compute the long time part Klong[µ] via the
Fourier series

Klong[µ](x0, t) = D0

νmax∑
ν=−νmax

2πν · nf̂(ν, t)e2πν·x0∆ν2 + E(νmax).

With a slight abuse of notation, we use the same notation E(νmax) as in (3.36) for
the error due to truncating the Fourier series at νmax.

Finally, the density function µ for (the current time) t ∈ (η, 2η] is computed as:

µ(x0, t) =
2 [N (x0, t)−Klong[µ](x0, t)]

1−
√
D0η
π κ(x0)

+O(η3/2).

On the rest of the time interval, t ∈ (2η, ∆ − δ], f̂ still uses the density µ from
previous iterations, but the formulas are different:

f̂(ν, t) = e−4π2D0‖ν‖2∆tf̂(ν, t−∆t)+∫
∂Ω

∫ t−η

t−η−∆t

e−4π2D0‖ν‖2(t−τ)e−2πν·yµ(y, τ)dτdsy︸ ︷︷ ︸
f̂temp2(ν,t)

, ν ∈ [−νmax, νmax]2.

(3.38)

In the above, the Fourier coefficients f̂(ν, t−∆t) at the previous time step are known,
and the expression of µ(x0, τ) for τ ∈ (η,∆− δ − η] is

µ(x0, τ) = 2

(
1−

√
D0η

π
κ(x0)

)−1

[N (x0, τ)−Klong[µ](x0, τ)] , x0 ∈ ∂Ω.

The integration on the right hand side of (3.38) is noted as f̂temp2(ν, t) in which we

substitute the expression of µ above. We split f̂temp2 into two parts and gather the
terms that are independent of time

f̂temp2(ν, t) =

∫
∂Ω

2

(
1−

√
D0η

π
κ(y)

)−1

e−2πν·y×

(
2πq · ne−2πq·y

∫ t−η

t−η−∆t

e−4π2D0(‖q‖2τ+‖ν‖2(t−τ))dτ︸ ︷︷ ︸
h1

−

∫ t−η

t−η−∆t

Klong[µ](y, τ)e−4π2D0‖ν‖2(t−τ)dτ︸ ︷︷ ︸
h2

)
dsy.

The time integration h1 in the first part has an analytical expression

(3.39) h1 =


∆t · e−4π2D0‖ν‖2t ‖q‖ = ‖ν‖

e−4π2D0[‖q‖2(t−η)+‖ν‖2η] e
4π2D0(‖q‖2−‖ν‖2)∆t − 1

4π2D0(‖q‖2 − ‖ν‖2)
‖q‖ 6= ‖ν‖
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The time integration h2 in the second part has to be calculated numerically. We
apply the trapezoidal rule to Klong[µ](y, τ) and we get
(3.40)

h2 =



∆t
2 [Klong[µ](y, t− η) +Klong[µ](y, t− η −∆t)] ‖ν‖ = 0

[
1−e−4π2D0‖ν‖

2∆t(4π2D0‖ν‖2∆t+1)
(4π2D0‖ν‖2)2∆t Klong[µ](y, t− η −∆t) +

e−4π2D0‖ν‖
2∆t+4π2D0‖ν‖2∆t−1

(4π2D0‖ν‖2)2∆t Klong[µ](y, t− η)
]
e−4π2D0‖ν‖2η ‖ν‖ 6= 0

The values of Klong[µ] at time t−η−∆t and t−η have been computed in previous
steps, thus the expressions for h1 and h2 can be computed in the current time step.
Then we discretize uniformly in the arc length over the boundary to obtain f̂temp2 as

well as f̂ .
Staying on t ∈ (2η, ∆ − δ], it is straightforward to recover the long time part

Klong[µ] at time t by applying the inverse discrete Fourier transform

Klong[µ](x0, t) = D0

νmax∑
ν=−νmax

2πν · nf̂(ν, t)e2πν·x0∆ν2 + E(νmax).

Again, with a slight abuse of notation, we use the same notation E(νmax) as in (3.36)
for the error due to truncating the Fourier series at νmax. Finally, the density function
µ at the current time t is

µ(x0, t) =
2 [N (x0, t)−Klong[µ](x0, t)]

1−
√
D0η
π κ(x0)

+O(η3/2),

which will be used for future iterations.

3.6. Computation of the diffusion MRI signal. After obtaining the single
layer potential, the following procedure produces the diffusion MRI signal.

The diffusion MRI signal s has the representation

s = |Ω|ρe−4π2D0‖q‖2(∆−δ) + ω(q,∆− δ).

The quantity ω will be computed using the recursive relationship below (rewritten
from (3.10)):

ω(q, t) = e−4π2D0‖q‖2∆tω(q, t−∆t)

−D0

∫
∂Ω

2πq · ne2πq·y

u︷ ︸︸ ︷∫ t

t−∆t

e−4π2D0‖q‖2(t−τ)ω(y, τ)dτ dsy.

By applying the trapezoidal rule to the time integration u, we then get the ex-
pression

(3.41) u =



∆t
2 [ω(y, t−∆t) + ω(y, t)] ‖q‖ = 0

1−e−4π2D0‖q‖
2∆t(4π2D0‖q‖2∆t+1)

(4π2D0‖q‖2)2∆t ω(y, t−∆t)

+ e−4π2D0‖q‖
2∆t+4π2D0‖q‖2∆t−1

(4π2D0‖q‖2)2∆t ω(y, t) ‖q‖ 6= 0
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The variable ω is the single layer potential S[µ]

ω(x0, t) = S[µ](x0, t) = Sshort[µ](x0, t) + Slong[µ](x0, t).

The short time part has an asymptotic expression

Sshort[µ](x0, t) = 2

√
D0η

π

N (x0, t)−Klong[µ](x0, t)

1−
√
D0η
π κ(x0)

+O(η3/2)

with

N (x0, t) = 2πρq · ne−4π2D0‖q‖2te−2πq·x0 ,

and

Klong[µ](x0, t) = D0

νmax∑
ν=−νmax

2πν · nf̂(ν, t)e2πν·x0∆ν2 + E(νmax).

The long time part is approximated by a Fourier series

Slong[µ](x0, t) = D0

νmax∑
ν=−νmax

f̂(ν, t)e2πν·x0∆ν2 + E(νmax).

Finally, a uniform arc length discretization of the boundary allows the numerical
computation of ω.

4. Numerical results. In this section, we study the convergence of the Fourier
Potential method. The Matrix Formalism method [7] is capable of computing an-
alytical signals for simple geometries, such as circles and spheres, using analytical
expressions for the Laplace eigen-decomposition, so we use the Matrix Formalism
signals as the reference signals. We note the diffusion MRI signal simulated by our
method as s and the analytical signal given by the Matrix Formalism method as sref .

The geometry on which we will conduct the convergence study is a circle of radius
r (φ = 2r, κ = 1/r), where φ is the size of the geometry and κ is the curvature. The
default values for the physical parameters are below:

• r = {1, 2, 4}µm, κ = {1, 0.5, 0.25}µm−1

• D0 = 2× 10−3µm2/µs
• δ = 10−3µs, ∆ = 5, 000µs
• ug = [1, 0]T

• b = {1, 4} ms/µm2

We will study the dependence of the relative error, defined by

(4.1) ε =
|s− sref |
sref

,

on the discretization parameters: spatial step ∆x, the time step ∆t, the maximum
frequency νmax, the spectral step ∆ν, and the single layer local time interval η. As
the convergence studies for various algorithm parameters are conducted, the default
values for the fixed parameters are listed below:

• η = 1µs
• νmax = 10µm−1, ∆ν = 0.05µm−1

• ∆x = 0.005µm, ∆t = 0.5µs
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4.1. The narrow pulse assumption error. One important point to discuss
here, before showing the convergence studies, is the choice of the duration of the
diffusion-encoding gradient pulse, δ. To satisfy the narrow pulse assumption, we need
that δ � ∆. In Figure 1, we show the error due to the narrow pulse assumption,
for a range of δ values. At b = 1ms/µm2, the narrow pulse approximation error is
around 10−2 at δ = 102µs for all three circle radii.

The validity of the narrow pulse assumption also depends on the separation be-
tween the two pulses ∆. The narrow pulse assumption requires a small ratio of δ and
∆. In Figure 2,we show the influence of this ratio on the relative error. For large ∆
such as 20ms, the relative error is less than 5% with δ being 2ms.

Despite the fact that a relative error of a few percent is perfectly acceptable
for diffusion MRI applications, for the sake of the numerical convergence study that
follows, we have chosen much lower thresholds for the narrow pulse approximation
error and picked an exceedingly small value of δ = 10−3µs, which is not achievable
with current MRI scanners. The reason for this choice is we wanted the error from
the narrow pulse assumption to be significantly smaller than the discretization errors
of the numerical method as we refined the method parameters. In this way, the
plateauing of the errors towards the narrow pulse approximation error occurs later in
the refinement process. We note that at our choice of δ = 10−3µs, the narrow pulse
approximation errors shown in Figure 1 range from 10−6 (b = 1ms/µm2, r = 4µm) to
10−4 (higher b-values). These values will form the “floor” values for our convergence
curves, to be shown next.

10−4 10−3 10−2 10−1 100 101 102

δ [µs]

10−5

10−4

10−3

10−2

ε

b = 1 ms/µm2, r = 4 µm

b = 1 ms/µm2, r = 2 µm

b = 1 ms/µm2, r = 1 µm

b = 4 ms/µm2, r = 1 µm

Fig. 1. Influence of δ on the relative error. All discretization parameters are set to be the
default. The sampled δ’s are {0.0001, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 100} µs (from
left to right).
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2 4 6 8 10

δ/∆× 100%

10−2

10−1
ε

∆ = 100 ms

∆ = 50 ms

∆ = 20 ms

∆ = 5 ms

Fig. 2. Influence of δ/∆ on the relative error. All discretization parameters are set to be the
default. The geometry is a circle of radius 1µm and the b-value is 4ms/µm2. The sampled ratios
δ/∆ are {0.1%, 0.5%, 1%, 2.5%, 5%, 7.5%, 10%}(from left to right).

4.2. Duration of the local in time part of the single layer potential, η.
First, we study the duration η of the local in time part of the single layer potential.
The error term O(η3/2) originates from the asymptotic trace formulas (3.21) and
(3.22). In Figure 3 the curves show a clear convergence order of 3

2 in η. In addition,
the circle radius (curvature) and the b-value affect the errors: the errors are bigger
for larger b-value and higher curvature.

We observe that minimum errors occur at η = 1µs. The values of the minimum
errors coincide with the size of the narrow pulse approximation errors shown in Fig-
ure 1. At the smaller value of η = 0.5µs, the errors increased. The reason is that there
is a tradeoff between two sources of error, one linked to O(η3/2) and one to E(νmax).
With a smaller η, the long time part Slong[µ] suffers more from the singularity of
the heat kernel, thereby increasing the error E(νmax). After we decrease η beyond a
certain point, E(νmax) becomes the bottleneck for the accuracy, which will be studied
next.

4.3. Maximum frequency. A main feature of our method is that the history
part of the single layer potential Slong[µ] has a spectral representation. The spectrum
of the fundamental solution G decreases exponentially with respect to the frequency
ν. As a result, the Fourier coefficients f̂ are also subject to the exponential decay:

(4.2) f̂(ν, t) = O(e−4π2D0η‖ν‖2).

In order to numerically compute the spectrum of Slong[µ], we truncated it at νmax and
omitted all higher frequency components. The truncation gives rise to an error caused
by the omitted Fourier modes, which we have denoted as E(νmax). Even though we



16 C. FANG, D. WASSERMANN, AND J.-R. LI

100 101 102 103

η [µs]

10−5

10−4

10−3

10−2

10−1

100
ε

b = 1 ms/µm2, r = 4 µm

b = 1 ms/µm2, r = 2 µm

b = 1 ms/µm2, r = 1 µm

b = 4 ms/µm2, r = 1 µm

ε = 10−4.701 × η1.502

Fig. 3. Convergence curves regarding η. All discretization parameters except for η are set to
be the default. The sampled η’s are {0.5, 1, 2.5, 5, 12.5, 25, 50, 75, 100, 125, 250, 375, 500, 625,
750, 875, 1000} µs (from left to right). The slopes of the curves are around 3/2.

do not have an analytical expression for E(νmax), considering the exponential decay
of the Fourier coefficients, we could expect a rapid decrease of the truncation error.

We present the convergence curves in Figure 4. We note that the x-axis is linear,
and the y-axis is logarithmic. Empirically, we observe that the error can be fitted
by c1e

−c2νmax , where c1 is a constant, and c2 = 1.17. As expected, for the largest
νmax, (νmax > 9µm−1), the curves approach the errors due to the narrow pulse
approximation.

4.4. Spatial discretization. Our method contains several boundary integra-
tions. The geometries we used are circles, and we chose to have a piecewise linear
approximation of ∂Ω. This means the discretized geometries are regular polygons. Let
us call the discretized segment length of the boundary ∆x. On the other hand, the ref-
erence solution, the Matrix Formalism method, computes the Laplace eigenfunctions
of exact circles.

Figure 5 illustrates the convergence curves in ∆x. At the larger range of ∆x,
we observe exponential convergence in 1

∆x , due to the exponential convergence of the
trapezoidal rule for periodic functions (the integrand over a closed boundary being a
periodic function). At the smaller range of ∆x, we observe the plateauing towards
the narrow pulse approximation errors.

In the middle range of ∆x, we observe a convergence of O(∆x2), due to the ap-
proximation of the exact circle geometry by regular polygons. For better visualization
of the convergence pattern, we plot the approximation error for the area of an exact
circle by regular polygons. The area error e is defined as the normalized difference
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2 4 6 8 10 12

νmax [µm−1]

10−6

10−5

10−4

10−3

10−2

10−1

ε
b = 1 ms/µm2, r = 4 µm

b = 1 ms/µm2, r = 2 µm

b = 1 ms/µm2, r = 1 µm

b = 4 ms/µm2, r = 1 µm

ε = e−1.17νmax−0.80

Fig. 4. Convergence curves regarding νmax. All discretization parameters except for νmax are
set to be the default. The sampled νmax’s are {0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} µm−1

(from left to right).

between the circle area and the area of a regular n-sided inscribed polygon An

(4.3) e =
πr2 −An
πr2

∼ ∆x2

6r2
=

(κ∆x)2

6
.

This explains the convergence order of ∆x2. Moreover, (4.3) also indicates the in-
fluence of curvature. High curvature geometries endure greater area errors and thus
larger simulation errors.

4.5. Temporal discretization. Let the time step be ∆t. We apply the trape-
zoidal rule to every time integration in our implementation, for instance, (3.37), (3.40),
and (3.41). Theoretically, the trapezoidal integration error is O(∆t2) [12]. However,
the local-in-time region size, η, which is an integer multiple of ∆t, contributes an error
from the asymptotic formula, as shown in Figure 3. This asymptotic formula error
numerically dominates the O(∆t2) error from the trapezoidal integration. Thus, we
do not show a plot of the trapezoidal rule convergence.

4.6. Spectral discretization. The spectral resolution ∆ν is closely related to
the size of the periodic box enclosing the geometry. Let the side length of the box be
L. According to the Nyquist–Shannon sampling theorem, we should have

1

∆ν
= L.

The inverse realationship manifests itself in (3.12) and (3.13) as well. A necessary
restriction on the box is that it must contain the entire domain Ω, in our case, the
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10−2 10−1

∆x [µm]

10−6

10−5

10−4

10−3

10−2

10−1

ε
b = 1 ms/µm2, r = 4 µm

b = 1 ms/µm2, r = 2 µm

b = 1 ms/µm2, r = 1 µm

b = 4 ms/µm2, r = 1 µm

area error e = ∆x2/6

area error e = ∆x2/24

ε = 0.41e−0.56/∆x

ε = 0.09e−0.58/∆x

Fig. 5. Convergence curves regarding ∆x. All discretization parameters except for ∆x are set
to be the default. The sampled ∆x’s are {0.005, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45,
0.5} µm (from left to right).

domain being a circle, we get

(4.4)
1

∆ν
= L ≥ φ,

where we defined φ as twice the radius. In Figure 6, it is shown that the relative
errors are greater than 100% when the box is smaller than the domain ( 1

∆ν < φ).
As soon as the box contains the geometry, the errors reduce to the plateau values of
the narrow approximation errors. Clearly, all simulations must satisfy the spectral
discretization condition (4.4).

4.7. Influence of q-vector. Now we study the influence of the b-value/q-vector
on the relative errors. We fix the diffusion time δ and ∆, so the b-value is equivalent
to the square of the magnitude of the q-vector. We chose to plot the relative error
versus the magnitude of the q-vector because we explicitly formulate our method using
q-vectors rather than b-values. The results are given in Figure 7. We note that the
x-axis is logarithmic, and the y-axis is linear. The experiment results show that once
the magnitude of the q-vector is large enough, the error increases logarithmically with
the norm of q-vectors. For small q-vectors, the errors are within the range of the
error floor (10−4 − 10−6) imposed by the narrow pulse approximation. For larger q,
the logarithic dependence the error on ‖q‖ requires further study to explain. We do
not at this time have an explication for it.

4.8. Extension to complex geometries. In the previous sections, we used
circles to study the convergence of our method. The Matrix Formalism method can
compute the analytical solution on circles, which allowed us to show the convergence
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L [µm]
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∆ν [µm−1]

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

ε

b = 1 ms/µm2, r = 4 µm

b = 1 ms/µm2, r = 2 µm

b = 1 ms/µm2, r = 1 µm

b = 4 ms/µm2, r = 1 µm

Fig. 6. Convergence curves regarding ∆ν. Relative errors which are greater than 100 (2dB)
are omitted for a better visualization. All discretization parameters except for ∆ν are set to be the
default. The sampled ∆ν’s are {0.025, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.75, 1,
2, 3, 4, 5} µm−1 (from left to right).

behavior of the Fourier Potential Method.
In fact, our method can simulate diffusion MRI signals on more complex 2D

geometries. Here we present FPM simulation results on two realistic axons. The mi-
croscopy image (Figure 8) and the axon sections are obtained using the AxonDeepSeg
segmentation framework [37]. With these irregular shapes, analytical solutions are
not accessible, so we computed the reference signals by finite element simulations
using the SpinDoctor toolbox [17]. We show, in Figure 9, the dMRI signals in 40
directions as well as the relative errors. Our method agrees with the finite element
reference signals. For the middle b-value (4ms/µm2), the relative error is less than
5%. One should note that the magnetization of the two adjacent axons is computed
simultaneously by sharing the same Fourier basis. This feature is different from the
Matrix Formalism method, which requires geometry-dependent bases.

The method that we derived in this paper is applicable to 2D geometries. To ex-
tend to 3 dimensions, the main changes to be made are the asymptotic trace formulas
for the local part, i.e., (3.21) - (3.25), in particular, the curvature for 1D curves will
need to be generalized to analogous quantities on 2D surfaces. As a consequence, the
solution of the integral equation (3.35) will have a new formulation in 3D. Another
change involves spatial integration on 2D surfaces instead of on 1D curves, the former
being more numerically complicated than the latter.

5. Conclusions. In this paper, we derived a new representation of the diffusion
MRI signal by solving the Bloch-Torrey PDE using potential theory. The decomposi-
tion of the single layer potential into singular and smooth parts allows the numerically
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10−13× 10−24× 10−2 6× 10−2 2× 10−1

q [µm−1]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ε
×10−4

r = 4 µm

ε = 10−5 · (0.95 ln q + 2.44)

r = 2 µm

ε = 10−5 · (2.24 ln q + 5.85)

r = 1 µm

ε = 10−5 · (10.37 ln q + 29.94)

Fig. 7. Influence of q on the relative error. All discretization parameters are set to be the
default. The sampled q’s are {0.0225, 0.0318, 0.0450, 0.0551, 0.0637, 0.0712, 0.1007, 0.1424,
0.1743, 0.2013, 0.2251} µm−1 and the corresponding b-values are {0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 4,
6, 8, 10} ms/µm2 (from left to right).

Fig. 8. The microscopy image of axons from AxonDeepSeg. Two adjacent axons are selected.

efficient storage of the smooth part in the Fourier basis. Time integrals that are in
the form of certain exponentials allow us to use time recursion to avoid history-
dependence. We numerically validated the convergence of our method and showed
the error behavior in several simulation parameters.

One of the main features of our method is the availability of the spectrum of the
smooth part of the magnetization field. The projection to the Fourier basis functions
provides a unified spectrum space for different geometries. Since our method provides
a Fourier like representation of the diffusion MRI signal, this can potentially facilitate
new physical and biological signal interpretation in the future.
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Fig. 9. Comparison of FPM with FEM. (a) the normalized signals simulated by FPM and
FEM. The gray areas illustrate the shapes of the two adjacent axons. The physical parameters are:
D0 = 2 × 10−3µm2/µs, δ = 2ms, ∆ = 100ms. The discretization parameters of the FPM are:
η = 50µs, νmax = 2µm−1, ∆ν = 0.05µm−1, ∆x = 0.01µm, and ∆t = 50µs. The signals are
simulated in 40 directions evenly distributed on a unit circle. (b) the relative errors in percent.

As the first paper addressing this subject, we restricted ourselves to the 2D diffu-
sion MRI setting with impermeable interfaces. We also restrict ourselves to simplified
conditions on the diffusion-encoding gradient, specifically, we derive our method un-
der the narrow pulse assumption. Future work is planned to generalize beyond these
two assumptions.
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