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In this work we present the implementation of compressed sensing (CS) on a high field preclinical scan-
ner (17.2 T) using an undersampling trajectory based on the diffusion limited aggregation (DLA) random
growth model. When applied to a library of images this approach performs better than the traditional
undersampling based on the polynomial probability density function. In addition, we show that the
method is applicable to imaging live neuronal tissues, allowing significantly shorter acquisition times
while maintaining the image quality necessary for identifying the majority of neurons via an automatic
cell segmentation algorithm.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Despite the fact that the modern magnetic resonance imaging
(MRI) hardware available today often results in sufficiently high
signal-to-noise ratio (SNR) without signal averaging, the total
experimental time, dictated only by the requirement for sufficient
k-space coverage, can be extremely long, prohibiting the very high
resolution imaging of live biological systems. One way to reduce
the data acquisition time is by undersampling the k-space, a strat-
egy proposed by several methods including parallel imaging and
compressed sensing. When the k-space is undersampled Fourier
reconstructions produce aliasing artifacts. Non-uniform undersam-
pling strategies can reduce these artifacts but often with a loss in
image signal to noise ratio [1–5]. Parallel imaging exploits redun-
dancy in k-space reconstructing the image from data acquired
simultaneously with an array of radio frequency coils [6,7]. Using
the latest developments in wire bonding technology phase array
microcoils have been recently reported [8,9]. However, the small
sample size renders the construction of such micro-arrays difficult
and limits the applicability of parallel imaging to high resolution
MR microscopy. Compressed sensing (CS) is a novel signal process-
ing technique introduced by Donoho in 2006 [10]. The use of CS
methods in the acquisition and reconstruction of magnetic
resonance images has been reported for cardiac imaging [11–14],
hyper-polarized spectroscopic imaging [15] and more recently, dif-
fusion tensor imaging [16] and MRI velocimetry [17].

CS produces images from significantly fewer data points than
what is required by the Nyquist criterion using a non-linear recon-
struction which enforces both sparsity of the image representation
and consistency with the acquired data. The main requirement for
undesampled k-space CS data is incoherence. Starting from this
and considering the MR hardware constrains several ways of gen-
erating undersampling patterns have been proposed. The most
commonly used undersampling schemes, either Cartesian or non-
Cartesian, consist of variable-density random trajectories [11]
based on a probability density function. Here we introduce a new
method to generate undersampling patterns based on the diffusion
limited aggregation (DLA) random growth model [18]. The imple-
mentation of the method requires minimum pulse sequence mod-
ifications as it undersamples the phase encoding dimensions of a
standard 3D fast spin echo acquisition (rapid acquisition with
relaxation enhancement (RARE)). The new acquisition scheme
(CS-RARE) reduces the experimental time by a factor of two
(50%) while preserving the signal to noise ratio, spatial resolution
and image contrast. The undersampled data is reconstructed using
a 3D extension of the Sparse MRI toolbox [11] with a total-
variation (TV) penalty. CS-RARE image quality is assessed by com-
paring fully encoded and undersampled images of water phantoms
and biological tissues. An automatic cell segmentation algorithm
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applied to 3D images of buccal and abdominal ganglia of Aplysia
californica (25 lm isotropic resolution) allows us to further evalu-
ate the performance of the CS-RARE acquisition. We find that DLA
based compressed sensing is applicable to imaging live neuronal
tissues, allowing significantly shorter acquisition times while pro-
viding the image quality necessary for identifying the majority of
neurons.
2. Methods

2.1. Undersampling pattern

CS undersampling patterns are subsets of frequency domain
points which are incoherent with respect to the sparsifying trans-
form and satisfy hardware constraints. The most commonly used
CS designs are obtained by generating quasi-random patterns fol-
lowing a Monte Carlo procedure based on a variable probability
density function [11,19,20]. Here, we propose a new way of pro-
ducing undersampling patterns employing the DLA random
growth model.

DLA was proposed, for the first time, by Witten and Sander in
1981 [18]. The basic DLA process consists in the following steps:

1. An initial particle, the seed, is placed at the origin of a 2-
dimensional lattice containing M � N points.

2. A kill circle, whose radius is much larger than the linear size of
the lattice and centered on the seed, is defined.

3. A walker is launched at a random position on a birth circle with
radius Ri defined by:
Ri ¼ 1
100

�maxðM;NÞ � 1þ 49� i� 1
P

� �
; ð1Þ

with i ¼ 1 to P, where P is the desired final number of particles in
the cluster, dictated by the undersampling ratio. If the radius of
the birth circle is smaller than a predefined Rmin (here we chose
Rmin ¼ 2) then Ri ¼ Rmin.

4. The walker undergoes Brownian motion until one of three out-
comes is reached:
(a) The walker escapes the kill circle. A new walker is placed on

the same birth circle and the Brownian motion is restarted.
(b) The walker hits a lattice point which is a nearest neighbor to

one member of the cluster. The walker then becomes part of
the cluster and the index i is incremented to iþ 1.

(c) The walker diffuses a long time without neither joining the
cluster nor leaving the kill circle. The index i is incremented
to iþ 1, and there will be no contribution to the cluster from
this walker. NOTE: If i reaches P while the number of parti-
cles in the cluster is smaller than P, the counter is reset to
i ¼ 1 (i.e. restart from the smallest birth circle).

5. Steps 3 and 4 are repeated until the desired cluster size is
reached.

In our case the 2D lattices sampled belong to a 3D Cartesian
k-space grid, predefined for a given field-of-view (10� 2:2�
2:2 mm3) and spatial resolution (25 lm isotropic), with the under-
sampling being done along the two phase encoding directions.
Fig. 1a shows the proposed undersampling for one phase encoding
plane. Such undersampling can be applied to a RARE acquisition
with an acceleration factor AF ¼ 4 by generating independent sub-
sampling patterns for k-space subsets corresponding to different
echo times, resulting therefore in repeating the pattern in Fig. 1a
four times (Fig. 1b). The 2D patterns obtained are repeated for each
point in the read direction to generate the 3D undersampling pat-
tern (Fig. 1c). Eleven undersampling ratios were chosen between
20% and 70%. For each undersampling ratio 300 sets consisting of
100 undersampling masks were generated and from each set the
mask with the lowest Point Spread Function (PSF) was selected
[11]. The 3300 masks produced were then applied to a library of
a priori acquired fully sampled data sets consisting of six images
of abdominal and buccal ganglia of Aplysia californica (three of
each). Undersampling patterns based on the polynomial probabil-
ity density function, extended to a 3D RARE acquisition with AF ¼ 4
(Fig. 1d), were also generated as in [11] and were applied to the
same library of images. In order to compare the two undersam-
pling strategies we computed the relative errors (RE) between
the CS and fully encoded images:

RE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 yi � ŷið Þ2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1y

2
i

q ; ð2Þ

where yi and ŷi are the signal intensities corresponding to voxel i in
the fully encoded image and the undersampled image, respectively.
In addition, the performances of DLA and polynomial schemes when
applied to RARE acquistions with AF ¼ 1 were similarly evaluated
this time applying the generated masks to a fully encoded image
of the buccal ganglia acquired without accelaration.

The DLA sampling pattern with the minimum relative error was
implemented in Paravision 5.0 (Bruker BioSpin, Ettlingen, Ger-
many) by modifying the existent RARE pulse sequence.
2.2. Sample preparation and data acquisition

All experiments were performed at 19 �C on a 17.2 T system
(Bruker BioSpin, Ettlingen, Germany) equipped with 1 T/m gradi-
ents. RF transceivers were home-built microcoils with inner diam-
eters of 2.4 mm, the design of which has been described elsewhere
[21,22]. Typically, two acquisitions were acquired for each sample.
A standard, fully encoded RARE acquisition with a matrix size of
400� 88� 88 and a CS undersampling RARE acquisition (CS-
RARE) with a matrix size reduced to 50%. All the other parameters
were identical for the two acquisitions: TR = 3500 ms, TE = 20 ms,
RARE AF ¼ 4, FOV = 10� 2:2� 2:2 mm3. One fully encoded image
of the buccal ganglia was acquired without accelaration.

Phantom samples: SNR measurements were performed on
images obtained using CS and fully encoded RARE acquisitions on
phantom samples. The latter were 2 mm ID glass capillaries (Vitro-
Com, Mountain Lakes, NJ, USA) filled with artificial sea water
(ASW) (NaCl, 450 mM; KCl, 10 mM; MgCl2, 30 mM; MgSO4,
20 mM). All chemicals were purchased from Sigma–Aldrich (Saint
Luis, MO, USA).

Neuronal tissue: Five Aplysia californica (National Resource for
Aplysia, Miami, FL, USA) were used in this study. Four animals
were used for generating the libraries necessary to optimize the
undersampling trajectories, and one was used to acquire both fully
encoded and CS DLA undersampled images. The animals were
anaesthetized by injection of an isotonic magnesium chloride solu-
tion (MgCl2, 360 mM; HEPES, 10 mM; pH 7.5). The buccal and
abdominal ganglia were resected and inserted into a 2.0 mm ID
glass capillary filled with ASW and then slid inside the transceiver
for imaging.
2.3. Image reconstruction

The fully encoded images were processed directly in Paravision.
For the reconstruction of CS undersampled data we followed the
algorithm provided by Lustig et al. in the SparseMRI toolbox [11],
which we extended to a 3D version. Briefly, if we denote the under-
sampled Fourier transform corresponding to the k-space under-
sampled pattern F , and W the Wavelet transform, the



Fig. 1. Undersampling patterns (50%) for a RARE aquisition. (a) DLA undersampled phase encoding plane for AF ¼ 1. (b) DLA undersampled phase encoding plane for AF ¼ 4.
The DLA undersampling was applied for each group of k-space points corresponding to the same echo time, therefore 4 times. (c) 3D DLA undersampling. (d) 3D polynomial
undersampling.
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Fig. 3. Flow diagram illustrating the proposed algorithm for separating cells within
clusters.
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reconstructed image m is obtained by solving the following con-
strained optimization problem with total variation (TV) term:

minimize kWmk1 þ aTV mð Þ;
s:t: kFm� yk2 < �;

ð3Þ

where a trades W sparsity with finite differences sparsity, and y is
the measured undersampled k-space data. The thresholding param-
eter � is the expected noise level. The norms, L1 and L2, are defined

as kxk1 ¼ P
ijxij and kxk2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ijxij2

q
, respectively. Eq. (3) can be

rewritten in the unconstrained problem form as following:

argmin
m

kFm� yk22 þ k1kWmk1 þ k2TV mð Þ; ð4Þ

where k1; k2 are two regularization constants. A large k2 tends to
suppress image gradients and make the reconstructed image
smooth, losing point-like features [23]. The main steps of this
reconstruction algorithm are schematically represented in Fig. 2.

2.4. Cell segmentation

In this section we introduce a simple algorithm for automatic
cell segmentation on MR T2 weighted images. The main steps are
as follows:

1. Different signal intensity levels ðC1;C2;C3; etc:Þ contour maps
are created from a given image data, C0.

2. The area for each contour map is computed and maps with
areas larger than a predefined maximum are removed. This step
removes the water region around the ganglia and the inner part
of the ganglia not containing cells.

3. The contour maps are then thresholded several times in order
to separate isolated cells or cell clusters. The thresholding stops
when repeating the algorithm will lead to unwanted cell
elimination.

4. The cells within the clusters are further separated (Fig. 3):
(a) 1s are assigned to pixels corresponding to cell regions and

0s to all the others. The 1s located on the cluster boundary
are removed. (One pixel is considered as part of the bound-
ary if connected with at least two 0 pixels.)

(b) 1s and 0s are inverted.
k-space data image sparse image

optimizationsparse imagefinal image

Fig. 2. Image reconstruction diagram: F�1 is the inverse Fourier transform, W and
W�1 are Wavelet and inverse Wavelet transforms, respectively.
(c) The boundary pixels are removed again.
(d) The 1s and 0s are inverted.
(e) Steps 4a–4d are repeated two or three times.

5. The cells detected in all the contour maps are combined. To
avoid false detection one cell is considered ‘‘true” if it is
detected in at least two maps.

The DLA undersampling pattern generation, the image recon-
struction, and the cell segmentation algorithm were implemented
in Matlab (MathWorks, Natick, MA, United States).
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Fig. 4. The relative errors between the fully encoded and CS images obtained by applying DLA and polynomial undersampling schemes to abdominal (a) and buccal ganglia
(b) image libraries as a function of the undersampling ratio. The fully encoded images were acquired using a standard RARE acquisition with AF ¼ 4. The error bars represent
standard deviations (n = 300).
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3. Results

3.1. Undersampling pattern

As seen in Fig. 4, in the case of RARE acquistions with AF ¼ 4, for
undersampling ratios superior to 0.25, the mean relative errors
between the CS and the fully encoded images are smaller for DLA
than for polynomial patterns for both the buccal and the abdomi-
nal ganglia. Moreover, the DLA method is more stable as the stan-
dard deviation of the relative error is smaller than for the
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Fig. 5. The relative errors between the fully encoded and CS images obtained by
applying DLA and polynomial undersampling schemes to a fully encoded (RARE
acquistion with AF ¼ 1) image of buccal ganglia. The error bars represent standard
deviations (n = 300).
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Fig. 6. CS (top) and fully encoded (bottom) images of a water phantom. The SNR
was calculated as the mean of signal intensity (black ROI) divided by the standard
deviation of the noise (white ROI).
polynomial scheme. In this study we used an undersampling ratio
of 50% which corresponds to relative errors of 27% and 26% for the
buccal and abdominal ganglia, respectively. For RARE acquistions
with AF ¼ 1 the difference in performance between the two under-
sampling schemes is even larger, as shown in Fig. 5.

3.2. Signal to noise ratio and spatial resolution

The reconstructed MR image of an ASW phantom acquired with
the newly modified CS-RARE sequence was compared to the fully
sampled MR image acquired with the conventional RARE sequence
(Fig. 6). The signal to noise ratios obtained, calculated by dividing
the mean signal value from a water region to the standard devia-
tion of the noise in an ROI outside the sample, were found 19.9
and 14.6 for the CS and fully encoded data sets, respectively. The
CS data set presents higher SNR than the fully encoded acquisition
due to the reduction of noise in the CS reconstructed image. Specif-
ically, the standard deviation of the noise (measured in the white
ROI in Fig. 6) was found to be 165 and 120, respectively, for the
two data sets, while the mean signal levels were similar (�2400).

To test the effect of CS undersampling on the spatial resolution
we compared fully encoded and undersampled images of buccal
and abdominal ganglia. For this particular comparison the under-
sampling was performed starting from the same fully sampled data
set in order to avoid possible confounding factors such as coil
instability or sample deterioration. Signal intensity profiles drawn
across the sample (Fig. 7) demonstrate that no spatial or intensity
information is lost. This was further confirmed by the Pearson cor-
relation coefficients [24] between the fully and CS encoded images,
calculated within a region containing the ganglia and consisting of
approximately 180 000 voxels, which were found to be 0.90 and
0.91 for the buccal and abdominal samples, respectively.

To complete the CS performance assessment the automatic cell
segmentation algorithm described in the Methods section was
applied in each slice of the 3D fully encoded and CS images. The
segmentation produced similar results for CS and fully encoded
images, with an identical number of cells detected for abdominal
ganglia and one false positive for the CS image (out of 31 cells)
of the buccal ganglia (Fig. 8).
4. Conclusion and discussion

In this work we introduce a new way of generating CS under-
sampling trajectories based on the DLA algorithm and apply it to
the undersampling of a RARE encoding acquisition scheme. Our
results demonstrate that the DLA approach performs better than



Fig. 7. Buccal (a, b) and abdominal (d, e) ganglia images acquired with a CS-RARE (a, d) and a standard RARE sequence (b, e), along with the signal intensity profiles (c, f) at
locations indicated by the white lines across the images. The hypointense regions seen in the images correspond to cell bodies.

(a)
false cell detection

(b)

Fig. 8. Comparison between the cells detected on the fully encoded (red wire-
frame) and CS (solid blue) images of abdominal (a) and buccal ganglia (b). An
identical number of cells was detected on the abdominal ganglion with both
acquisitions, while on the buccal ganglia one false positive was detected on the CS
data set.
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the standard polynomial strategy for undersamplings superior to
25% for acquistions already accelarated (AF ¼ 4). In addition, we
show that when used to image live neuronal tissue the proposed
CS-RARE strategy maintains the spatial resolution and contrast to
noise ratio necessary to the identification of the majority of neu-
rons within Aplysia ganglia while reducing the acquisition time
to 50%. While in the current implementation the DLA undersam-
pling was applied to a RARE acquisition with an acceleration factor
4, the implementation to acquisitions with different acceleration
factors is straightforward. As demostrated here, the DLA approach
performs significantly better for RARE acquisitions without accel-
eration, being therefore favorable for imaging species with short
T2 relaxation times. Moreover, the DLA undersampling is not lim-
ited to RARE acquisitions and can be easily extended to other types
of sequences.

In conclusion, the results presented here suggest that DLA is a
promising alternative to the standard polynomial CS undersam-
pling strategy and may be beneficial to magnetic resonance micro-
scopy studies by reducing the notoriously long acquisitions to
more reasonable times, thus enabling the expansion of the tech-
nique to the study of living specimens and eventually to dynamic
investigations.
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