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SUMMARY

We study large-scale, continuous-time linear time-invariant control systems with a sparse or structured
state matrix and a relatively small number of inputs and outputs. The main contributions of this paper
are numerical algorithms for the solution of large algebraic Lyapunov and Riccati equations and linear-
quadratic optimal control problems, which arise from such systems. First, we review an alternating
direction implicit iteration-based method to compute approximate low-rank Cholesky factors of the solution
matrix of large-scale Lyapunov equations, and we propose a refined version of this algorithm. Second, a
combination of this method with a variant of Newton’s method (in this context also called Kleinman
iteration) results in an algorithm for the solution of large-scale Riccati equations. Third, we describe an
implicit version of this algorithm for the solution of linear-quadratic optimal control problems, which
computes the feedback directly without solving the underlying algebraic Riccati equation explicitly. Our
algorithms are efficient with respect to both memory and computation. In particular, they can be applied
to problems of very large scale, where square, dense matrices of the system order cannot be stored in the
computer memory. We study the performance of our algorithms in numerical experiments. Copyright ©
2008 John Wiley & Sons, Ltd.
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PREAMBLE

This is an unabridged reprint of an unpublished manuscript written by the authors in 1999. The
latest version of this work was finalized on December 8, 1999. Thilo Penzl died in a tragic
avalanche accident on December 17, 1999, in Canada, and thus, work on the manuscript came to an
abrupt end. Nevertheless, this work was often cited and requested by people working on large-scale
matrix equations as it forms the basis for parts of the software package LyaPack [1]. This special
issue on Large-Scale Matrix Equations of Special Type offered the possibility to make this draft
available in the open literature. Due to this fact, we did not take into account any development
since 2000 except for updated references. Most changes regarding the original manuscript, in large
parts prepared by Thilo Penzl shortly before his sudden death, are to be found in some re-wording
and corrections of grammar and typos. Sometimes, we add a footnote if a statement in the original
draft is no longer (completely) true due to recent developments. We hope that this publication of
the manuscript serves the community and helps to bear in remembrance the influential scientific
work Thilo Penzl contributed in his by way too short career.

1. INTRODUCTION

Continuous-time, finite-dimensional, linear time-invariant (LTI), dynamical systems play an essen-
tial role in modern control theory. In this paper we deal with state—space realizations

(1) = Ax(1)+ Bu(r), x(0)=xo
y(1) = Cx(7)

of such systems. Here, A€ R"", Be R""™, C e R?", and 7€ R. (Throughout this paper, R, R™",
C, C™™ denote the sets of real numbers, real n x m matrices, complex numbers, and complex
n x m matrices, respectively.) The vector-valued functions u, x, and y are called input, state, and
output of the LTI system (1), respectively. The order of this LTI system is n. Typically, n>>m,q.

In the last 2-3 decades, much research has addressed the construction of numerically robust
algorithms for a variety of problems that arise in context with linear systems as in (1). Such
problems are, for example, optimal control, robust control, system identification, game theory,
model reduction, and filtering, see e.g. [2—6]. However, these methods generally have at least a
memory complexity (/(n?) and a computational complexity @/(n?), regardless whether or not the
system matrix A is sparse or otherwise structured. Therefore, the majority of numerical algorithms
in linear control theory is restricted to systems of moderate order. Of course, the upper limit for this
order depends on the problem to be solved as well as the particular computing environment and may
vary between a few hundreds and a few thousands. However, a significant number of applications
lead to dynamical systems of larger order. Large systems arise from the semidiscretization of
(possibly linearized) partial differential equations (PDEs) by means of finite differences or finite
elements, see e.g. [7-10], and many more. Another source for such systems is circuit design
and simulation (VLSI computer-aided design, RCL interconnect modeling, etc.) [11, 12]. Further
examples include, for instance, large mechanical space structures [13, 14].

Mostly, systems originating from the applications mentioned above possess two interesting prop-
erties. First, their order #n is large (say, n > 1000), but the dimensions of the input and output spaces
are relatively small (m, g < n, often m, g<10). For example, the order of a system arising from a

)]
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parabolic PDE is about the number of grid points or mesh nodes used for the semidiscretization,
which is relatively large. In contrast, m and g are often quite small and independent of the fineness
of the discretization. Second, the system matrix A is structured. Often, A is a sparse matrix or
it is implicitly represented as a product of sparse matrices and inverses of sparse matrices. In
general, this structure allows the numerically inexpensive realization of matrix-vector products and
the efficient solution of systems of linear equations with A. The smallness of m and g and the
structure of A are most important for the usefulness of the algorithms we will present.

Basically, this paper contains three contributions which are algorithms for large continuous-time
algebraic Lyapunov equations (CALEs), continuous-time algebraic Riccati equations (CAREs),
and linear-quadratic optimal control problems. Among the latter problem class, we will specifically
be concerned with the problem commonly known as linear-quadratic regulator problem in control
theory, see e.g. [3,9,15,16]. We therefore use the common abbreviation LOR problem when
addressing it. We will solve large CALEs by a method based on the well-known alternating
direction implicit (ADI) iteration. The basic version of this method has been proposed before,
but here we present an improved algorithm and discuss numerical aspects in more detail. There
exist plenty of applications for CALEs, one of which is the solution of CAREs. We will combine
Newton’s method with the ADI-based CALE solver to compute efficiently the stabilizing solution
of large CAREs. Among many other applications in control theory, LQR problems can be solved
by computing the solution of CAREs. An implicit version of our combined algorithm (similar to
an algorithm proposed in [17]) will be used to solve LQR problems in a more memory efficient
way without forming CARE solutions.

This paper is organized as follows. For the ease of exposition, we will introduce the problems
addressed in it in reverse order. We describe the basics of the LQR problem in Section 2 and the
classical Newton method for CAREs in Section 3. In Section 4 ,we discuss the efficient solution of
large CALEs by the ADI-based method. The combination of this method with the Newton iteration
for CARE:s is proposed in Section 5, whereas the implicit formulation of the resulting algorithm
is presented in Section 6. The results of numerical experiments with our algorithms are reported
in Section 7. Finally, concluding remarks are provided in Section 8.

2. THE LINEAR-QUADRATIC OPTIMAL CONTROL PROBLEM

Consider the linear-quadratic optimal control problem (referred to as LQR problem in the following
as explained above), where the cost functional

1 o0
S .y, x0)=3 fo @0y +u)TRu(r)de )
with
0=0">0 and R=R">0 (3)

is to be minimized and the LTI system (1) represents the constraints. The solution of this problem
is determined by the linear state feedback

u()=—R'BTX,x(1)=:—K x(1) 4)
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where X, is the symmetric, positive semidefinite, stabilizing solution of the CARE
AX)=CTQC+ATX+XA—-XBR'BTX=0 (5)

e.g. [4,6]. A solution X of this CARE is called stabilizing iff the closed-loop matrix A — BR1BTX
is stable. We call a matrix stable iff each of its eigenvalues has a negative real part. Under moderate
assumptions a unique stabilizing solution of (5) exists, see e.g. [2, 16]. The transpose of the matrix
K, defined by (4) is called optimal state feedback.

The CARE offers a possibility to solve the LQR problem analytically using (4). Of course, this
is only feasible for very small dimension n. Therefore, usually the computation of the optimal
control involves the numerical solution of the CARE (5). Many methods for this purpose have
been devised since the occurrence of the CARE in the solution of the LQR problem in the early
60s [18]. We will give a brief survey on the usual approaches in the next section. But of course,
there are other possibilities to solve the LQR problem:

1. Solve it as constrained optimization problem. This requires to discretize the integral expres-
sion as well as the differential equation and to form a quadratic program, which can then be
solved by any method feasible for quadratic programming.

2. Using either Pontryagin’s maximum principle or a direct proof based on the calculus of
variations (see e.g. [4, 19] and references therein), it can be shown that the optimal control
and the associated trajectory can be obtained from the two-point boundary value problem

|:)'c(t):| [ A BR_IBT:| |:x(t)] x(0)=x" o
. = T T b . —

(1) c'oc -A u(t) Jim_ u(1)=0

where u(t) is called the co-state of the system and the optimal control is obtained from u

as u(t)=R~'BTu(r). This offers the possibility to solve the LQR problem using numerical
methods for linear boundary value problems.

Both these approaches involve a discretization error. Moreover, the infinite time interval needs to
be truncated and it is difficult to define a suitable interval [0, T] so that an accurate solution is
obtained in a reasonable time. Another difficulty with the Approach 1 is the enormous size of the
resulting quadratic program due to the discretization of the cost functional (2) and the differential
equation (1), see also [20] for more details on this approach. Another advantage of the solution
via the CARE is the feedback form (4) of the optimal control. In contrast to the solutions obtained
by the other two approaches, this allows the direct implementation as a controller in a closed-loop
control system.

3. NEWTON’S METHOD FOR ALGEBRAIC RICCATI EQUATIONS

The numerical solution of CAREs of the form (5) is the central task in solving optimal control
or optimization problems for linear continuous-time systems, such as stabilization, LQR prob-
lems, Kalman filtering, linear-quadratic Gaussian control, > optimal control, etc.; see e.g.
[4,6,15,16,21] and the references given therein. We will assume here that Q is positive semidef-
inite and R is positive definite and that a unique stabilizing solution of (5) exists. Note that the
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methods to be considered here rely on these assumptions as we make use of the fact that the
right-hand side in the equivalent formulation of (5),

(A—BR'BTX)TX+X(A—BR'B"X)=—CT0C-XBR'BTX (7

is positive semidefinite. CAREs as they occur in model reduction [22,23] or #  (sub-) optimal
control [24-26] differ from (5) in that the right-hand side in (7) is in general indefinite. Therefore,
these CAREs cannot be treated directly by the methods presented in this paper.

We are interested in solving (5) for large and structured coefficient matrices A and low-rank
matrices S and G. The usual solution methods for CAREs such as the Schur vector method [27],
the sign function method [28-30], or symplectic methods [31-33] do not make (full) use of these
structures and require o n3) flops and workspace of size O (n®) even for sparse problems, and
are therefore not suitable for our purpose. (For surveys of the most popular approaches with cubic
complexity, see [3—6, 34].)

All the methods mentioned above use the corresponding Hamiltonian eigenvalue problem to
solve (5). Methods that exploit the sparsity in the Hamiltonian matrix are proposed in [35, 36]. There
the Hamiltonian matrix is projected onto a reduced-order Hamiltonian for which the corresponding
CARE of reduced size is solved. This solution is then prolongated to a full-size Riccati solution
matrix. Similarly, low-rank methods that are based on the projection of the underlying LTI system
onto a reduced-order model can be found in [37,38]. Usually, these projections are computed
using a Krylov subspace method. No convergence theory for these methods is known and often,
small residuals can only be obtained with these approaches for relatively large ‘reduced-order’
systems.

Another approach to solve CAREs is to treat them as systems of nonlinear equations. It is then
straightforward to use Newton’s method or its relatives [39—42] for its solution. As the Newton
iteration (see Algorithms 1 and 2 below) consists of solving a sequence of Lyapunov equations, it
can be used to solve large-scale problems if efficient methods for solving large Lyapunov equations
are available. This idea has been used in [17, 43, 44]. The methods there rely on the implementation
of an accelerated Smith iteration or a block SOR method for the Lyapunov equation. Although
the methods in [43, 44] explicitly rely on the specific structure of the underlying control problem,
the method in [17] can be considered as a general-purpose solver for computing the optimal state
feedback in large and sparse LQR problems. This latter method has some close relations to the
method that will be developed in this paper. We discuss these relations and the differences in
Section 6.

Our methods make use of a factorization TTT=CTQC+XBR!BTX, where T € R"* with
t < n and the fact that in this case, the solution of the CARE can be approximated by a product
ZZT of low rank.|

Similar approaches have been used to compute a factored solution of the CARE in [23, 45].
Both approaches use Hammarling’s method [46] for solving the Lyapunov equations during the
iteration steps of Newton’s method. The method for solving Lyapunov equations suggested in
[46] works with the nxn Cholesky factors of the solution and never forms the full solution
matrix. Nevertheless, the use of the QR algorithm, as initial step in this approach, requires dense

It turns out that in some situations, we will have to use complex arithmetic so that the approximate CARE solution
will have the form ZZ, where Z¥ denotes the conjugate complex transpose of Z.
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Algorithm 1. (Newton’s method for the CARE (5))

INPUT: A, B, C, Q, R as in (5) and a starting guess x©,
OUTPUT: An approximate solution X &) of (5).

FOR k=1,2,...,
KD =x*=Dpg=1.
Solve
AT -k k=D BT)N® | N® (4 _pr*=DT)_ _gpx k=1 ®)
for N®.
x® — x k=1 4y
END

Algorithm 2. (Newton’s method for the CARE (5)—Kleinman iteration)

INPUT: A, B, C, Q, R as in (5) and a starting guess K © for the feedback matrix.
OUTPUT: An approximate solution X &) of (5) and an approximation K ®) of the optimal state feedback.
FOR k=1,2,...,

Solve

AT -k k=D Ty x® { x® (4 _pg*k-DTy__cToc_gk-Dpgk-DT o)
for X ).
K®=x®pr-1

END

matrix algebra at a cost of o) flops and 03 memory and is therefore not suitable for our
purpose.

In the remainder of this section we review Newton’s method for the special form of the CARE
given in (5). Throughout this paper we use superscripts in parentheses to label variables within
the Newton iteration.

There are two possible formulations of Newton’s method for CAREs. The first one (Algorithm 1)
can be considered as the standard formulation of Newton’s method applied to a system of nonlinear
equations. The formulation of Newton’s method proposed by Kleinman [41] (see Algorithm 2)
is one of the standard methods for computing the stabilizing solution of the CARE (5). It is
based on (7).

Both formulations are mathematically equivalent. If K© is identical in both implementations,
i.e. if in Algorithm 2, K@ = X© BR~! then they deliver the same sequences of X©)’s and K ®)s.
The following theorem summarizes the convergence theory for Algorithms 1 and 2.

Copyright © 2008 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2008; 15:755-777
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Theorem 1

If (A, B) is stabilizable, i.e. rank[A —11,, B]=n for all 1€ C with non-negative real part, then
choosing X =X O g gnxn jp Algorithm 1 or K© € R"*™ in Algorithm 2, such that A — BK oT
is stable, the iterates X®) and K® satisfy the following assertions:

(a) For all k>0, the matrix A— BK w7 is stable and the Lyapunov equations (8) and (9) admit
unique solutions, which are positive semidefinite.

(b) {X (k)}g‘;l is a non-increasing sequence, satisfying X® >X%+1 >0 for all k>1. Moreover,
X, =lim_ oo X® exists and is the unique stabilizing solution of the CARE (5).

(c) There exists a constant 7> 0, such that

IXEHD X, 1<yl X P = X2, k=1

i.e. the X® converge globally quadratic to X, from any stabilizing initial guess.

A complete proof of the above result can be found, e.g. in [16].

Though Algorithms 1 and 2 look very similar, there are some subtle differences, which play a
fundamental role in their implementation for large-scale structured systems.

The main disadvantage of Algorithm 1 is that the right-hand side of the CALE (8) is the
residual of the CARE, which is in general an indefinite, full-rank matrix. As the performance of
the CALE solver that will be used in this paper strongly depends on the low-rank structure of the
right-hand side, the formulation of Algorithm 2 is preferable as the right-hand side of the CALE
(9) has rank at most m +¢q. Moreover, if the solution of (9) is computed by a low-rank method like
the method presented in Section 4, yielding a low-rank solution of the CALE, the approximate
solutions of the CARE computed by Algorithm 2 themselves will be of low rank. This cannot be
guaranteed for Algorithm 1 as there, the low-rank solution of the CALE is added to the last iterate
such that in general, the rank of the iterates computed this way will be increasing. Moreover, for
initialization, a stabilizing symmetric matrix X® e R™" is needed in Algorithm 1, whereas only
a stabilizing feedback K@ € R™™ is needed in Algorithm 2. Starting from K © is in particular
favorable for problems, where m <n and the implicit version of Newton’s method, computing an
approximation to K, as presented in Section 6, is to be used. For these reasons, in this paper we
exclusively use implementations of Newton’s method for CAREs based on the formulation given in
Algorithm 2.

Remark 2

The computation of a stabilizing initial guess X© or feedback K (9, respectively, is a computational
challenge by itself if A is not stable—otherwise, i.e. if all eigenvalues of A have negative real
part, one can simply use X© =0 or K® =0. Stability of A can often be assumed in applications
arising from parabolic PDEs, so that for a large class of practical applications, we do not need to
compute stabilizing initial guesses or feedbacks. In case we have to find a stabilizing X @ or K@,
one can follow the approach taken in [17] based on Chandrasekhar’s method. For small, dense
systems (partial) stabilization techniques based on solving a Lyapunov equation or pole placement
have been suggested, see e.g. [3, 6] and references therein. It is an open problem to extend these
methods to large and sparse systems. We will not discuss this any further in this paper.

In the following section, we discuss methods for solving the Lyapunov equations arising in each
Newton step of Algorithms 1 and 2.

Copyright © 2008 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2008; 15:755-777
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4. SOLUTION OF LARGE LYAPUNOV EQUATIONS

Besides Newton’s method for CAREs, several topics in control theory, such as stability analysis,
stabilization, balancing, and model reduction involve CALE:s; see e.g. [47—50]. These linear matrix
equations usually have the structure

FX+XFT'=-GGT (10

where G € R™' is a rectangular matrix with 1<n and the matrix F € R™" is stable. The stability
of F is sufficient for the existence of a solution matrix X € R™", which is unique, symmetric, and
positive semidefinite. If the pair (F, G) is controllable, then X is even positive definite. These
and other theoretical results on CALEs can be found in [51, 52], for example. Note that (10) is
mathematically equivalent to a system of linear equations with (/(n?) unknowns. For this reason,
CALE:s of order n > 1000 are said to be of large scale.

The Bartels—Stewart method [53] and Hammarling’s method [45] are the numerical standard
methods for CALEs. While the first is applicable to the more general Sylvester equation, the
second tends to deliver more accurate results in the presence of round-off errors. Both methods
require the computation of the Schur form of F. As a consequence, they generally cannot profit
from sparsity or other structures in the equation. The squared Smith method [54] and the sign
function method [30] are iterative methods, which cannot exploit sparsity or structures as well.**
However, they are of particular interest when dense CALEs are to be solved on parallel computers
[57,58].

ADI [59, 60] is an iterative method, which often delivers good results for sparse or structured
CALEs. The solution methods mentioned so far have the computational complexity ¢/(n3), except
for the ADI method. Its complexity strongly depends on the structure of F' and can be much
lower. All methods have the memory complexity O(n”) because they generate the dense solution
matrix X explicitly. It should be stressed that often the memory complexity, rather than the
amount of computation, is the limiting factor for the applicability of solution methods for large
CALEs.

In many cases, large CALEs have right-hand sides of very low rank ¢ <n. If this is true, the
non-negative eigenvalues of the solution X tend to decay very fast, which is discussed in [61-63].
Thus, the solution matrix can be approximated very accurately by a positive semidefinite matrix
of relatively low rank. This property is important for what we call low-rank methods for CALEs.
Low-rank methods are the only existing methods, which can solve very large CALEs. (Here,
in particular, problems of order n are considered to be ‘very large’, if it is impossible to store
dense n-by-n matrices in the computer memory.) Low-rank methods avoid forming the solution
X explicitly. Instead, they generate low-rank Cholesky factors (LRCFs) Z, such that the LRCF
product ZZ" approximates X. Note that throughout this paper the attribute ‘low-rank’ is used,
when the rank of the corresponding matrix is much smaller than the system order n. For instance,
the matrix ZeC"™" with r «n is called a LRCF, although its (column) rank is generally full.
Moreover, the term Cholesky factor will not imply triangular structure—usually, the LRCFs Z are
dense, rectangular matrices. Most low-rank methods [38, 64—66] are Krylov subspace methods,
which are based either on the Lanczos process or the Arnoldi process (see e.g. [67, Section 9]).

**Recent results show that data-sparse structures like the hierarchical matrix format can be exploited, see [55, 56],
so that these methods have become alternatives for certain classes of large-scale problems.
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Furthermore, there are low-rank methods [66, 68] based on the explicit representation of the CALE
solution in integral form [51].
In this paper, we use low-rank methods based on the ADI iteration [60]

(F+pil)Xi—1p= -GG = X; _((FT —p; I)
(11)
(F4+pil)XiT = —GGT = X; 1 " (FT = pi 1)

where Xo=0, X;_1/2€C"" are auxiliary matrices, and p; € C_ (where C_ denotes the open left
complex half-plane) are certain shift parameters. If optimal parameters are used, the sequence
{X,-}?io converges superlinearly toward the solution X of (10). See, for example, [69-71] and
references given therein for a more detailed discussion on the convergence of the ADI iteration.

Different low-rank methods based on the ADI iteration were independently derived in [72] and
[73] and later published in a more complete form in [74]. In this paper we make use of a slight
modification of the iteration proposed in [72]. This method, which we refer to as LRCF-ADI, is
derived as follows. We first replace the ADI iterates X; by the product Z; ZI.H and rewrite the
iteration in terms of the LRCFs Z;. LRCF-ADI, as described in Algorithm 3 below, is obtained
by a rearrangement of the resulting iteration. This rearrangement lowers the computational cost
significantly. Note that, unlike in the original ADI iteration, the parameters p; _; and p; are involved
in the ith iteration step. See [72] for details.

Algorithm 3. (Low-rank Cholesky factor ADI iteration (LRCF-ADI))

INPUT: F, G as in (10), {p1, P2, Pipay -

OUTPUT: Z=2; . e C™!imax | guch that ZZ ~ X, where X solves (10).

1. Vi=v—=2Rep;(F+p11,)~'G.

2. Z1=Vjy.

FOR l=2,3 ..... imax
3. Vi=yRep;/Repi_1(Vi—1 — (pi+ pi—)(F+ piln) "1V, _).
4.Zi=1Z;—1 Vil

END

Let #; be either a negative real number or a pair of complex conjugate numbers with nega-
tive real part and non-zero imaginary part. We call a parameter set of type {pi, p2,..., pi}=
(21,2, ...,2} a proper parameter set. Throughout this paper, we assume that proper parameter
sets {P1, P2, -, Pim ) are used in the LRCF-ADI iterations.

If X;=7; ZZ.H is generated by a proper parameter set {py, ..., p;}, then X; is real, which follows
from (11). However, if there are non-real parameters in this subsequence, Z; is not real. As we
consider real CALEs, one is often interested in real LRCFs. Moreover, it is often desired to
implement numerical algorithms using exclusively real arithmetics. Both objectives are attained
by the following reformulation of LRCF-ADI.

Copyright © 2008 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2008; 15:755-777
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Let {p1, ..., Pi,.) be a proper parameter (sub)set. Then, the subsequences of LRCFs Z;, which
are formed in Steps 5 and 8 of Algorithm 4 on page 765 are real and their products Z; Zl.T are
equal to the corresponding products Z; Zl.H in Algorithm 3 as well as to the matrix X; in (11)
when exact arithmetic is used.

In the remaining part of this section we shall discuss implementational details of Algorithm 3,
most of which can easily be extended to Algorithm 4.

4.1. Basic matrix operations
An efficient implementation of LRCF-ADI relies on the following two basic matrix operations:

Y« FW (12)

Y «— (F+pl)"'W (Rep<0) (13)

Here, W € C™! with t < n. For structured matrices F, a large variety of numerical techniques exist
to compute (12) and (13) very efficiently. For example, if F is a circulant matrix, both operations
can be realized inexpensively by means of fast Fourier transformations; e.g. [67,75]. If F is a
sparse matrix, then the computation (12) is trivial and highly efficient, whereas the solution of
the system of linear equations (13) can be realized by direct or iterative methods. In the first
case, sparse direct solvers (e.g. [76]) can be applied in combination with bandwidth reduction
algorithms; e.g. [77]. In the second case, a large number of iterative methods are available, such
as preconditioned Krylov subspace methods for systems of linear equations (for instance, GMRES
or QMR combined with ILU; e.g. [78]), geometric multigrid methods (e.g. [79]), or algebraic
multilevel methods; e.g. [80]. Note that in contrast to LRCF-ADI, where systems with right-hand
sides containing only few vectors must be solved, the applicability of iterative methods for the
solution of the systems of linear equations in the conventional ADI formulation (11) is severely
restricted, because those systems have right-hand sides containing as many as n vectors.

4.2. Stopping criteria

Only in rare cases (e.g. when F is symmetric and its spectral bounds are known), the number of
ADI (or LRCF-ADI) steps needed to attain a certain accuracy can be determined a priori. Instead,
the decision when to terminate the iteration must generally be made ad hoc. For example, this
issue is quite straightforward in context with iterative methods for systems of linear equations,
such as GMRES or QMR. There, the (normalized) residual norms, which are often generated as
a by-product in these algorithms, are generally used for this purpose. In contrast, the construction
of inexpensive stopping criteria for the LRCF-ADI iteration is a non-trivial issue because the
generation of the n-by-n residual matrix and the computation of its (Frobenius) norm would require
a prohibitive amount of memory and computation. A much less expensive way to compute this
norm without forming the residual matrix explicitly is described in [73, Equation (20)]. However,
its computational cost is still relatively high and often larger than that of the actual iteration
itself.

We propose an alternative stopping criterion that avoids computing the residual norm. Here,
the key observation is the following. Unlike, for example, Krylov subspace methods for systems
of linear equations, where the convergence curves (in terms of residual norms) can be quite
erratic (e.g. spikes in CGS, plateaus in GMRES or QMR), (LRCF-)ADI with a suitably ordered
sequence of (sub-)optimal shift parameters tends to converge smoothly and (super)linearly.
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Algorithm 4. (LRCF-ADI iteration - real version (LRCF-ADI-R))

INPUT: F, G as in (10), {p1, p2,..., Pip)-
OUTPUT: Z=2; , € R !imax | guch that ZZT~ X, where X solves (10).
IF pyp is real

1. Vi=F+p DG, Vi=v—2p1 V1,

Z1=Vi, i=2.
ELSE
2. Vi=(F*42Rep F+Ipi 1) 7'G. V,=FVy,
Vi=2y/=Repi|pi|Vi. Vy=2,/=Rep V>,
Zr=[V] V»l, i=3.
END

WHILE i <imax
IF p; is real
IF p;_1 is real

3. Vi=Viei—(pic1+p)(F+piln) "Wy,

ELSE
4. Vi=V,.y —2Re(pi—1+p)Vi-2
+(|Pi—1|2+2PiRePi—1+P,~2)(F+Piln)_l‘7i—2-
END
5. Vi=J=2piVi,  Zi=[Zi_1 V;l, i<i+l.
ELSE

IF p;_1 is real
6. V;=(F*+2Rep; F+|pi|* 1) (FVi_1—pi_1Vi1),
ELSE
7. Vi=Vi_y +(F242Rep; F+|pi|*I,) "' x
((pi—11*=1PilHVi_a —2Re(pi—1+ pi) Vi-1).

END
8. V;=2y/—Rep;|pilV;, Viy1=FV;,
Vit1=2y/—Rep; Vit1, Ziv1=IZi—1 Vi Viq1l, P<i+2.

END
END

Moreover, the norms || V;||F tend to decay quite evenly. Thus, it seems natural to terminate the
iteration when
1Villr _

<e (14)
1 Z:ll
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where ¢ is a tiny, positive constant (for example, € =némnach, Where emach 1S the machine precision).
To do this we need not compute || Z; || r in each iteration step. Instead, || Z; II% can be accumulated in
the course of the iteration as || Z; ||% =|Zi-1 ||% +|V;||%, which is inexpensive because V; contains
only very few columns.

4.3. Shift selection

The choice of the shift parameters p; is related to a rational approximation problem. Several
algorithms for the computation of suboptimal parameter sets or asymptotically optimal param-
eter sequences have been proposed; see e.g. [69-71, 81] and references therein. These algorithms
generally rely on the availability of certain bounds for the spectrum of F. A quite simple, numer-
ically inexpensive, heuristic algorithm that circumvents this problem can be found in [73]. This
algorithm delivers suboptimal, proper parameter sets.

4.4. Comparison of LRCF-ADI and Krylov subspace methods

In the remainder of this section we would like to explain why we prefer ADI-based low-rank
methods to the aforementioned Krylov subspace methods ([38, 65, 66] etc.) to compute low-rank
solutions to CALEs. As a first aspect, we compare the convergence and the robustness of both types
of low-rank methods. ADI-based low-rank methods converge linearly or superlinearly. In contrast,
Krylov subspace methods for CALEs generally exhibit a sublinear convergence; e.g. [38, Figures 1
and 2]. Often a stagnation of the convergence curves can be observed; e.g. [73, Table 5]. Note that
this even happens for many symmetric problems, for which the performance of ADI is very fast
and reliable. The slower convergence of Krylov subspace methods is not surprising because they
are related to polynomials in F', whereas ADI is based upon a rational approximation problem. As
a consequence, LRCFs delivered by Krylov subspace methods generally have a higher rank and,
hence, demand more memory for storage than LRCFs of the same accuracy computed by LRCF-
ADL. This is indicated by the results of comparing numerical tests reported in [73]. Furthermore,
the smallness of this rank is often crucial for the complexity of ‘outer’ algorithms, such as the
model reduction algorithms in [72, 82]. Undoubtedly, when combined with preconditioners (e.g.
ILU), Krylov subspace methods, such as GMRES or QMR, are powerful tools for the solution of
very large systems of linear equations. Nevertheless, in our opinion, the applicability of Krylov
subspace methods for CALEs is much more limited because no way has been found to involve
preconditioning in these algorithms. (A Krylov subspace method for CALEs with preconditioning
has been proposed in [83]. However, this algorithm does not deliver LRCFs.) In view of robustness,
it should also be noted that Krylov subspace methods for CALEs can fail, if F+ FT is not negative
definite. In contrast, only the stability of F' is needed for the convergence of ADI-based methods.
The second important aspect is the complexity w.r.t. memory and computation. Here, the basic
difference is that Krylov subspace methods for CALEs are based on matrix products (12), whereas
shifted systems of linear equations (13) need to be solved in LRCF-ADI, which is sometimes—but
not always—a serious drawback. First, in a number of cases (e.g. if F has a thin band structure
or if the underlying system arises from a finite element semidiscretization [82, Example 1]), the
operations (12) and (13) require about the same amount of computation. In many other situations,
Krylov subspace methods for systems of linear equations with preconditioning can be applied to
solve (13) efficiently. Finally, we would like to stress that the computational cost per iteration
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step is raising in Krylov subspace methods for CALEs based on the Arnoldi process, whereas it
is constant for Algorithms 3 and 4. Taking all these considerations into account, we believe that
LRCF-ADI is in many situations the method of choice for solving large CALEs of type (10), in
particular, when the smallness of the rank of the computed LRCF products plays a crucial role
and a high accuracy of this approximate solution is desired. T

In the following section, we discuss how to incorporate LRCF-ADI into Newton’s method for
CARE:s.

5. THE LOW-RANK CHOLESKY FACTOR NEWTON METHOD

Due to (3) the matrices Q and R can be factored, e.g. by a Cholesky factorization, as
0=00" and R=RRT

where the matrices Q € R9"" (h<q) and R € R™™ have full rank. Thus, the CALEs to be solved
in (9) have the structure

FOx® L x®O p®dT __ G0 GH0T

where FO=AT_K*&-D BT and G® =[cTQ K ®=D R]. Note that G® contains only t=m+h<&n
columns. Hence, these CALEs can be solved efficiently by LRCF-ADI. The CALE solutions
form a sequence of approximate solutions to the CARE (5). Therefore, employing Algorithm 3

in Algorithm 2 for solving (9) yields a method to determine LRCF products Z® Z (k)H, which
approximate the solutions of CAREs. The resulting algorithm, which we refer to as LRCF-NM,
allows the efficient solution of a class of large-scale CAREs. Unlike conventional methods as
discussed in Section 3, it can be applied to CAREs, which are so large that the dense n-by-n
solution matrix cannot be stored in the computer memory.

The remaining part of this section addresses implementational issues and numerical aspects with
respect to this algorithm.

5.1. Convergence toward the stabilizing solution

In general, the CARE (5) has further solutions besides the stabilizing one, which is computed by
Algorithms 1 and 2 according to Theorem 1. In theory, the standard Newton method can be proved
to converge to the stabilizing solution provided that the initial feedback or the initial iterate is
stabilizing. Since the CALEs in Step 3 of Algorithm 5 are solved only approximately, convergence
toward the stabilizing solution cannot be taken for granted. No theoretical results are known on
how accurate these CALEs must be solved to ensure convergence toward the stabilizing solution.
At least, convergence toward a non-stabilizing CARE solution can be detected in Algorithm 5,
because LRCF-ADI in the kth iteration step diverges (i.e. lim sup;_, .|| Vl.(k) || =00), if the feedback

iterate K %1 is not stabilizing. That means, taking an additional iteration step in Algorithm 5 can
be used to verify that the computed LRCF product is an approximation to the stabilizing solution

t1In [84], a generalized Krylov subspace method is suggested that overcomes some of the drawbacks of Krylov
subspace methods discussed here. This approach yields a viable alternative to LRCF-ADI.
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of (5). It should also be noted that in practice, convergence to a non-stabilizing solution has not
been observed so far.

Algorithm 5. (Low-rank Cholesky factor Newton method (LRCF-NM))

INPUT: 4, B, C, 0, R, K© for which A—BK©7 is stable (e.e. K© =0 if A is stable).
OUTPUT: Z=Z%max) guch that ZZH approximates the solution X of the CARE (5).
FOR k=1,2,..., kmax

1. Determine (sub)optimal ADI shift parameters pgk), pg(),... with respect to the matrix F®) =AT_—

K*®=DBT (e.g. [73, Algorithm 1).

2. GO =[cTQ K*=DR].

3. Compute matrix z® by Algorithm 3 or 4, such that the LRCF product Z(k)Z(k)H approximates the
solution of F® x® 4 x0 pl0T = _GRGhT,

4. K©=z® z0OH gp-1y

END

5.2. Basic matrix operations

In this paragraph a few comments on the realization of the basic matrix operations (12) and (13)
will be made. The coefficient matrix of the CALE to be solved in Step 3 is F®) = AT — g *=DpT,
Obviously, the products (12) can be computed efficiently as ¥ «— ATW — K ®=D(BTw), if ATW
can be formed inexpensively. Solving the shifted systems of linear equations (13), whose coef-
ficient matrix is AT+ pI, — K%Y BT is a bit more complicated. Provided that (AT+ pI,)~'W
can be computed efficiently, we can use the Sherman—Morrison—Woodbury formula (e.g. [67,
Section 2.1.3]) to solve (13) as

Mg «— (A"+pn~'k*D
My «— AT+pD~'w
Y «— My +Mg((I,—B M) ' BT My)

Finally, we propose two stopping criteria that are related to the residual norm and the ‘smallness
of changes’ in K®). While the first is a reliable but numerically very expensive criterion, the
second is computationally much cheaper, but also less reliable.

5.3. Stopping criterion based on the residual norm

In the course of iterative methods, one is usually interested in monitoring the residual norm, which
can serve as a stopping criterion for the iteration. Unfortunately, the straightforward computation of
(EAvANA (k)H)H r in the Newton iteration by forming the residual matrix Z(Z 4 (k)H) (cf. (5)
requires an extensive amount of memory. If Z(®) contains much less columns than rows, the
residual norm can be determined efficiently by computing the right-hand term in (15), which is
the Frobenius norm of a small matrix. This technique is similar to that in [73, Equation (20)]
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and yields
I, 0 0 o'c
12z® 20" =[cTd aTz® z® 0 0 L, Z0H 4
0 1, —z®W"BrRIBTZO]| L0 ||
I, 0 0
=[R®[O0 O I, RrOT (15)

0 1, —z®W'pR-1pTz®

Here, Ip, I, denote identity matrices of proper dimensions, where z; is the number of columns of
Z® . The triangular matrix R® is computed by an ‘economy size’ QR factorization U® R%) =
[C TQ ATZ® 7z®]. Note that U® is not accumulated as it is not needed in the evaluation of
(15). This way of evaluating the residual norm is much cheaper than computing the explicit residual
matrix, but it can still be much more expensive than computing Z® itself.

5.4. Stopping criterion based on K®

If the LQR problem is to be solved, one is interested in the state-feedback matrix K rather than
the LRCF Z. Therefore, it seems to be reasonable to stop the iteration as soon as the changes in
the matrices K ® become small or more precisely,

IK® —K&=D)p

(16)
IK® |

Here, ¢ is a tiny, positive constant (e.g. é=néemach). Apparently, this criterion is very inexpensive,
because K € R™™ and m <« n.

6. THE IMPLICIT LOW-RANK CHOLESKY FACTOR NEWTON METHOD

The solution of the LQR problem (1) and (2) is described by the optimal state-feedback matrix K,
whereas the solution of the CARE or its low-rank approximations only play the role of auxiliary
quantities. This provides the motivation for the LRCF-NM-I, which is a mathematically equivalent,
implicit version of LRCF-NM. It computes an approximation to K without forming LRCF-NM
iterates Z®) and LRCF-ADI iterates Zl.(k) at all.

The basic idea behind LRCF-NM-I is to generate the matrix K *) itself in Step 3 of Algorithm 5
instead of solving the CALE for Z® and computing the product K *®—z® 70T pR=1 i
Step 4. Note that the matrix K® can be accumulated in the course of the ‘inner’ LRCF-ADI
iteration as

K® = 1im k¥

i—00
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where
H i H
kO:=zPz0" R = vO (v BRTY (17)
j=1

Eventually, the desired matrix K is the limit of the matrices K i(k) for k, i — oo. This consideration
motivates Algorithm 6, which is best understood as a version of LRNM with an inner loop (Steps 4
and 5), consisting of interlaced sequences based on Step 3 in Algorithm 3 and the partial sums given
by the right-hand term in (17). An analogous algorithm based on the real version of LRCF-ADI
(Algorithm 4) can be derived in the same way.

Algorithm 6. (Implicit low-rank Cholesky factor Newton method (LRCF-NM-I))

INPUT: A, B, C, O, R, K© for which A— BK©7 is stable (e.¢. K© =0, if A is stable).
OUTPUT: K *max) | which approximates K given by (4).
FOR k=1,2, ..., kmax

1. Determine (sub-)optimal ADI shift parameters pik) , pgk), ... with respect to the matrix

F® = AT _g&=D BT (¢ g. [73, Algorithm 1).
2. GO =[cTg K*=DR].

k k k _
3. v =\/2Re p® (F®O 1 p 0 1)~ 1GH).

FOR i=2,3,...,i%)
4. v® = /Rep® /Re p® (v, — (p® 4+ 50 ) (F® 4 p O 1y =1y By,

k) _ (k) k) 0 g
5. K,V =k +vO W BRT).
END
0 _
6. KW=k .

max

END

Most remarks on numerical aspects of LRCF-NM made in Section 5 also apply to LRCF-NM-I.
Here, we only point out the differences between both methods.

It is easy to see that the computational costs of Algorithms 5 and 6 are identical. However,
the memory demand of the latter is smaller. In fact, it is as low as ()(n) in many situations. For
example, this is the case when A is a band matrix with bandwidth @(1), where the shifted systems
of linear equations (13) are solved directly. Another such scenario is sparse matrices with ()(n)
non-zero entries, where these systems of linear equations are solved by a Lanczos- or Arnoldi-
based Krylov subspace method combined with a preconditioner, whose memory demand is ((n).
In such cases, an improvement by one order of magnitude compared with standard methods is
achieved. Note further that, unlike LRCF-NM, the application of LRCF-NM-I can still make sense
when no accurate low-rank approximations to the CALE solutions exist at all.
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The essential drawback of LRCF-NM-I is that the safe stopping criterion (15) cannot be applied,
because Z® is not stored. That means one has to rely on criterion (16). Likewise, (14) must be
used as stopping criterion in the inner loop, since computing the CALE residual would require
forming the iterates Zi(k).

Basically, the same concept of a Newton—Kleinman-based ‘feedback iteration’ is used for the
numerical solution of the LQR problem in [17], although the method suggested there differs from
LRCF-NM-I in the way it is implemented. The formulation of Newton’s method in [17] is based
on the difference of two consecutive Newton steps from Algorithm 2. With the notation employed
here, this leads to

(AT K k=D BTy Nk=D L N*k=D (g _ gg*=DTy_ N2 pp=I gTNG®=2T  p o (1g)

where X% = x*=1 4 N*=1) The advantage of this formulation is that the constant term CTQC
disappears starting with the 2nd Newton step—in the first step, X(!) has to be computed as in
Algorithm 2 or needs to be known—so that the right-hand side of the Lyapunov equation has a
lower rank than the Lyapunov equation in (9). Unfortunately, numerical experience shows that this
iteration is less robust with respect to the accuracy of the computed solutions of the Lyapunov
equations. Often, the limiting accuracy of this version of the Newton iteration is inferior to the
accuracy obtained by Algorithm 2. Also note that in [17], (18) is only used for deriving an iteration
directly defined for the feedback matrices similar to (17), while the computation of approximate
low-rank solutions to CALEs or CAREs, which are of interest in many other applications besides
the LQR problem, is not discussed there at all.

7. NUMERICAL EXPERIMENTS

In this section we report the results of numerical experiments with LRCF-NM and LRCF-NM-I
applied to two large-scale test examples. These experiments were conducted at the Department of
Mathematics and Statistics of the University of Calgary. The computations were performed using
MATLAB 5.3 on a SUN Ultra 450 workstation with IEEE double precision arithmetics (machine
epsilon emach =22~2.2-1071). In our tests, ADI shift parameters are computed by the heuristic
algorithm proposed in [73, Algorithm 1].

The following test example is used to show the performance of LRCF-NM. That means, our
goal is to compute a LRCF Z = Z®%ma)  such that ZZ approximates the solution of (5).

Example 1

Here, the dynamical system (1) arises from the model of a cooling process, which is part of the
production of steel rails; see [82, 85]. The cooling process is described by an instationary two-
dimensional heat equation, which is semidiscretized by the finite element method. The problem
dimensions are n =3113, m =6, and g = 6. The matrix A has the structure A= —UA}] N UATIT, where
N is the stiffness matrix and Uy is the Cholesky factor of the mass matrix M. The factorization
of M and the solution of shifted systems of linear equations are realized by sparse direct methods.
We consider the following three choices of R and Q:

Example la: R=1¢, Q=1Is,

Example 1b: R=10"21¢, Q =1Is,
Example Ic: R=10"*Is, Q=1s.

Copyright © 2008 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2008; 15:755-777
DOI: 10.1002/nla



772 P. BENNER, J.-R. LI AND T. PENZL

Table 1. Test results for LRCF-NM applied to Example 1.

Example la 1b 1lc
CARE Iterations steps 5 8 12
No. of columns of Z 540 492 522

r(Z) 7.3x 10714 42x10714 1.0x 10714
CALEs Iterations steps Minimum 45 40 42
Average 45.2 41.4 44.6
Maximum 46 45 46

In the three test runs, we use the inexpensive stopping criteria (16) for the Newton iteration and
(14) for the LRCF-ADI iterations. We require that the latter is fulfilled in 10 consecutive iteration
steps, so that the risk of a premature termination of these inner iterations is tiny. To verify the
results of LRCF-ADI, we subsequently compute the normalized residual norm

ICToC+ATzzH + 770 A—7ZHBR'BTZZH ||

Z) =
r2) ICTOC| F

(19)

using (15). Table I shows the test results. Besides r(Z), we also display the number of Newton
steps (i.e. kmax) and the number of columns of the LRCF Z. We also provide information about
the number of iteration steps in the inner LRCF-ADI iterations.

Obviously, the number of Newton steps strongly depends on the choice of R. However, the
number of columns in the delivered LRCFs Z is about the same in each test run. Note that
this quantity is much smaller than the system order n, although the LRCF products ZZ# are
very accurate approximations to the CARE solution X in terms of r(Z). It should be noted that
solving the CARE in this example with standard solvers like the CARE solvers in MATLAB and
its toolboxes are impossible using current desktop computers.ﬂ

We now investigate LRCF-NM-I using a second, more theoretical test example of scalable size.

Example 2
In this example, the system (1) is related to a three-dimensional convection—diffusion problem

0 0 0 0
—r=Asr—1000&; —r —100E, —r —10E3—r +b(Eu(7)
o e 'ag, Poe, g

wn=/a®mg
Q

where Q= (0, 1)3, ¢=[&, & &]T, r=r(&,1), and r =0 for £€0Q, i.e. R satisfies homogeneous
Dirichlet boundary conditions. b and ¢ are the characteristic functions of the two smaller cubes
(.7,.9)3 and (.1,.3)3, respectively, contained in the unit cube Q. The finite-dimensional model
(1) of order n=n(3) is gained from a finite difference semidiscretization of the problem. Here, ng
is the number of inner grid points in each space dimension. We consider three discretizations

HWith nowadays 64-Bit MATLAB, this has become feasible, but it still requires a much higher execution time due
to the cubic order of complexity of these solvers.
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Table II. Test results for LRCF-NM-I applied to Example 2.

Example 2a 2b 2c
(n,m,q) (1000,1,1) (5832,1,1) (27000,1,1)

CARE Iterations 4 4 3

ex 13x1078  8.8x1078 —

CALEs Iiterations steps ~ Minimum 103 143 96

Average 109.5 143 96

Maximum 129 143 96

of different mesh size:

Example 2a: no=10, n=1000,
Example 2b: no=18, n=5832,
Example 2c: ng=30, n=27000.

The resulting matrices A are sparse and have a relatively large bandwidth. We use QMR with ILU
preconditioning to solve the shifted systems of linear equations (13). In this example, we choose
R=10"8 and 0 =108}

We solve the LQR problem (2) subject to (1) for Example 2 by computing an approximation
K™ to K in (4) via LRCF-NM-I. Again, we use the stopping criteria (16) and (14). To verify
the results, we also apply the (explicit) LRCF-NM with stopping criteria based on residual norms,
determine the corresponding feedback K ©), and compare the results by evaluating the normalized
deviation

KD KD
K=
max (| KDl 1K |}

This is only done for Example 2a and b, because Example 2c is too large for an application of
LRCF-NM. The results of the three test runs with LRCF-NM-I are shown in Table II.

Note that the underlying PDE has a quite strong convection term, which results in the dominance
of the skew-symmetric part of the stiffness matrix A, if a rather coarse grid is used in the
discretization. Such a dominance has usually a negative effect on the convergence of iterative
methods. In this sense, the algebraic properties of A are better for larger values of ng, which
explains why in the third test run smaller numbers of Newton and LRCF-ADI steps are needed.

8. CONCLUSIONS

In this paper we have presented algorithms for the solution of large-scale Lyapunov equations,
Riccati equations, and related linear-quadratic optimal control problems. Basically, the paper
contains three contributions. First, the LRCF-ADI iteration for the computation of approximate
solutions to Lyapunov equations is described. This method had been proposed before, but in
this paper we discuss numerical aspects, which arise in context with this method, in detail. In

$$Extreme values for Q. R had to be chosen as otherwise, the convergence of Newton’s method (1-2 steps) is too
fast to show any effects.
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particular, we have presented a novel modification of LRCF-ADI that delivers real LRCFs and
avoids complex computation. Second, we have proposed an efficient variant of Newton’s method
for Riccati equations, which we call LRCF-NM. The third contribution is an implicit variant of
LRCF-NM, which we refer to as LRCF-NM-I. LRCF-ADI has been used as a basis for these
two variants of Newton’s method. LRCF-NM delivers low-rank approximations to the solution
of the Riccati equations. It can be applied to problems that are so large that the dense solution
matrix cannot be stored in the computer memory. LRCF-NM-I can be applied to problems of
even higher dimension, because this method directly forms approximations to the optimal state
feedback, which describes the solution of the linear-quadratic optimal control problem, rather than
computing approximations to the solution of the corresponding Riccati equation. Note that LRCF-
NM can be combined with any other solver yielding low-rank approximate solutions of Lyapunov
equations, but LRCF-NM-I makes explicit use of LRCF-ADI so that the latter cannot be replaced
easily in LRCF-NM-I by other Lyapunov solvers, like, e.g. Krylov subspace methods. The results
of numerical experiments show the efficiency of LRCF-NM and LRCF-NM-I.
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