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A B S T R A C T

In silico tissue models (viz. numerical phantoms) provide a mechanism for evaluating quantitative models
of magnetic resonance imaging. This includes the validation and sensitivity analysis of imaging biomarkers
and tissue microstructure parameters. This study proposes a novel method to generate a realistic numerical
phantom of myocardial microstructure. The proposed method extends previous studies by accounting for
the variability of the cardiomyocyte shape, water exchange between the cardiomyocytes (intercalated discs),
disorder class of myocardial microstructure, and four sheetlet orientations. In the first stage of the method,
cardiomyocytes and sheetlets are generated by considering the shape variability and intercalated discs in
cardiomyocyte—cardiomyocyte connections. Sheetlets are then aggregated and oriented in the directions of
interest. The morphometric study demonstrates no significant difference (𝑝 > 0.01) between the distribution
of volume, length, and primary and secondary axes of the numerical and real (literature) cardiomyocyte data.
Moreover, structural correlation analysis validates that the in-silico tissue is in the same class of disorderliness
as the real tissue. Additionally, the absolute angle differences between the simulated helical angle (HA) and
input HA (reference value) of the cardiomyocytes (4.3◦ ± 3.1◦) demonstrate a good agreement with the
absolute angle difference between the measured HA using experimental cardiac diffusion tensor imaging (cDTI)
and histology (reference value) reported by (Holmes et al., 2000) (3.7◦ ± 6.4◦) and (Scollan et al. 1998)
(4.9◦ ± 14.6◦). Furthermore, the angular distance between eigenvectors and sheetlet angles of the input and
simulated cDTI is much smaller than those between measured angles using structural tensor imaging (as a
gold standard) and experimental cDTI. Combined with the qualitative results, these results confirm that the
proposed method can generate richer numerical phantoms for the myocardium than previous studies.
1. Introduction

Cardiovascular diseases (CVDs) are a significant global health con-
cern, accounting for more than one-quarter of all global deaths each
year (∼17.5 million) (Ezzati et al., 2015). Physical changes in the mi-
crostructure of the myocardium accompany many CVDs, like cardiomy-
opathies. Diffusion magnetic resonance imaging (dMRI) is a physical
measurement of the stochastic motion of water molecules. During a
typical magnetic resonance diffusion measurement, i.e., with diffusion
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times of 10–100ms, water molecules diffuse around 6–18 μm within the
soft tissues with a diffusivity of 𝐷 = 1.5 μm2∕ms (Yu et al., 2017).
However, the motion of water molecules is hindered and restricted in
the cellular environment. This creates the opportunity to investigate tis-
sues at the microscale, enabling a more in-depth study of pathological
processes.

To understand the microstructural changes that accompany the
onset and progression of different types of cardiac pathology, there
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has been an increasing interest in applying dMRI models to cardiol-
ogy (Nielles-Vallespin et al., 2019; Mekkaoui et al., 2017). Methods
such as diffusion tensor imaging (DTI) and diffusion kurtosis imaging
fit different signal models to the diffusion signal. However, they do not
provide biophysical interpretations of the dMRI signal, which would
be of more direct clinical relevance. A bottleneck for developing bio-
physical models is the lack of suitable phantoms for their validation.
Biophysical models are formulated based on approximations and as-
sumptions derived from the biological information of the underlying
tissue structure. Both physical and numerical cardiac phantoms would
be desirable to validate these assumptions and approximations.

The advantages of numerical phantoms over their physical counter-
parts are a reduction in the time and costs associated with complete
an imaging study, reproducibility of the results (Sauer et al., 2022),
relative ease to control the model detail and complexity of the tissue
microstructure, and prevention of the pronounced artefacts in the
result of physical phantom due to dismissing properties of unknown
material in the physical phantom (Fieremans and Lee, 2018). Numerical
phantoms — using Monte Carlo (MC) or finite element method (FEM)
based simulators — could be used to aid in biophysical modelling
and interpretation of cardiac dMRI signals, design and conduct a fea-
sibility study of the corresponding inverse problem to be solved, and
analyse the sensitivity of dMRI measurements to changes in tissue
microstructure and the use of different pulse sequences (Bates et al.,
2017; Rose et al., 2019). Moreover, integrating an accurate cardiac
numerical phantom with a validated imaging simulator facilitates vir-
tual imaging trials in cardiac dMRI. The virtual imaging trial is a
unique alternative to assess and optimise medical imaging technologies
by imitating the virtual imaging trials and studying the states that
are not physically realisable nor ethically responsible in vivo (Abadi
et al., 2021; Sauer et al., 2022; Abadi et al., 2020). In addition, virtual
imaging trials promise to lead to faster, safer and cost-effective regula-
tory studies compared to conventional clinical trials, due to replacing
actual patients and imaging devices with virtual surrogates (Abadi
et al., 2020). Nevertheless, few studies have explored the benefits and
challenges associated with designing numerical phantoms of the my-
ocardium. The first cardiac numerical phantom was proposed by Wang
et al. (2011). They generated a multi-scale numerical phantom across
numerous spatial resolutions, and used these phantoms to produce
dMRI signal via MC simulations. Their numerical phantom included a
packed arrangement of cardiomyocytes (CMs), simplified as cylindrical
geometries with hexagonal cross sections. In a subsequent study, the
same authors presented a different phantom design, modelling CMs as
cylinders with different sizes, arrangements, and length/diameter ratios
with varying numbers of CMs (1, 8, 64, and 8000). Next, they modelled
sheetlet structures by arranging CMs based on their orientation (Wang
et al., 2012). We previously introduced a numerical phantom in which
the length, cross-sectional area, and aspect ratio (thickness/width) of
CMs were based on data from the literature (Bates et al., 2017). In
our approach, the CMs were modelled as rectangular cuboids and
arranged in two stages. The CMs were first arranged parallelly to form a
sheetlet (sub-voxel stage). Next, adjacent sheetlets within a voxel were
progressively rotated to simulate the transmural variation in the helix
angle (HA) (sheetlet or voxel stage) (Bates et al., 2017). In a recent
study, Rose et al. (2019) generated a numerical phantom based on
histological images of the heart. CMs were first manually segmented
from a sub-voxel area of the image, and the segmentation boundaries
were then approximated with polygons with an average of 99 vertices.
Next, by extruding individual CMs along the normal perpendicular to
their boundary in the 2D plane, a 3D block of CMs was created with
random uniformly distributed lengths. Finally, they modelled HA by
placing several blocks next to each other using different angles for the
longitudinal axis of the cardiac local coordinate system (Rose et al.,
2019).

The goal of this study is to address the limitations of the previous
2

numerical phantoms of the heart muscle tissue, namely the lack of a
detailed numerical phantom and the failure to incorporate the cellular
shape variability. Concerning the first limitation, numerical phantom
mimics the most relevant biophysical characteristics of extracellular
space (ECS) and intracellular space (ICS) within the myocardium.
There is evidence to suggest that regional curvature of ventricles (Su
et al., 2012; Weisman et al., 1985; Espe et al., 2017), collagen in
ECS matrix (Haddad and Samani, 2017), intercalated discs (ICDs) in
ICS (Pinali et al., 2015; Perriard et al., 2003; Noorman et al., 2009), and
changes in their respective biophysical characteristics are closely linked
to some CVDs. Although these changes may affect diffusion-weighted
(DW) signals, no study to date has modelled these characteristics and
focused solely on modelling the CMs and ECS. Concerning the second
limitation, most studies typically consider identical sets of simple ge-
ometries for cellular shape, limiting the complexity of the myocardium
captured by numerical phantoms. These phantoms perform poorly
compared with simulations based on phantoms generated from histo-
logical images of tissues (Naughton and Georgiadis, 2019). Moreover,
it has been demonstrated that the disorder class of microstructure
(determined based on the cellular shape variability and packing dis-
orderliness) affects the coefficients of the time dependence diffusion at
the macroscale (Novikov et al., 2014). Consequently, it is imperative
to consider the native probability distribution functions (PDFs) of the
biophysical parameters associated with CMs shape (introduced in the
next Section) when devising a realistic numerical phantom. Finally,
we investigate the use of FE analysis to simulate the dMRI signal of
the myocardium, which is more accurate than the conventional MC
approach (Grebenkov, 2016). To the best of our knowledge, this has
not been explored previously in the heart.

2. Relevant myocardial tissue properties

This section reviews the biophysical characteristics of the my-
ocardium compartments included in the proposed numerical phan-
tom. Additionally, in Table 1, we compare previous numerical phan-
toms in terms of the biophysical characteristics of the myocardial
compartments they incorporated.

2.1. Cardiomyocytes

CMs are the cells contributing the most toward the measured
dMRI signal in the myocardium. They occupy 65–75% (Chen et al.,
2007; Greiner et al., 2018; Schaper et al., 1985; Skepper and Navarat-
nam, 1995) of the myocardial volume and account for 25–35% of all
cells (Pinto et al., 2016). CMs support the mechanical contraction of
the heart, which is necessary to pump blood to all organs within the
body (Fraticelli et al., 1989).

2.1.1. CM shape
The CM’s membrane restricts the movement of water molecules

and affects the dMRI signal. Therefore, we consider a realistic shape
of the CMs in our phantom, as they constrain the mobility of water
molecules. As illustrated in Fig. 1, native CMs do not have a regular
and consistent shape. However, they are typically approximated as
elliptical cylinders (Bolli et al., 2014). A standard method to measure
the dimensions of CMs is through the combined use of a Coulter
channelyser and an optical microscope. The average length for the
minor-axis (𝐵), major-axis (𝐴), longitudinal axis (𝐿) of CMs along with
their volume (𝑉 ) have been reported as 12±1 μm. 30±1 μm, 141±9 μm,
and 39933 ± 4640 μm3 respectively (Chen et al., 2007).

2.1.2. CM membrane permeability
The permeability of CMs, defined as the CM-ECS water molecules

exchange rate through sarcolemma, or CM–CM water molecules ex-
change rate through ICDs, is another biophysical feature of CMs that

affects the dMRI signal.
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Table 1
Comparison between the proposed and previous numerical phantoms including biophysical properties of the myocardium.

Features Radial shape
variability of CMs

Axial shape
variability of CMs

Sarcolemma
permeability

ICDs
permeability

HA◦ SE◦ SA◦ TA◦ Regional
curvature

Collagen

Wang et al. (2011) % % ! % % % % % % %

Wang et al. (2012) % % ! % ! % % % % %

Bates et al. (2017) % % ! % ! % % % % %

Rose et al. (2019) ! % % % ! ! % % % %

Proposed phantom ! ! ! ! ! ! ! ! ! !
Fig. 1. Two examples of the shape of an isolated CM with one and two nuclei (Brighter objects) in the left and right, respectively.
Source: Images with permission from Gerdes and Pingitore (2014).
Sarcolemma. The sarcolemma is a plasma membrane that acts as a
boundary between the ICS cytoplasm and ECS. It was shown that, dur-
ing ischemic injury, the sarcolemma is ruptured, and CM permeability
increases (Celes et al., 2010). This feature is reflected in the phantom
by assigning an interface permeability for the side surface of the CMs.

ICDs. In adult hearts, ICDs are membranous regions where myofibrils
of individual CMs are connected end-to-end with each other. Gap
junctions are ICS channels through the ICDs that allow the passage
of small molecules and ions between CMs through ICS diffusion. This
arrangement facilitates the transmission of electrical impulses in the
heart. Several studies have shown that gap junctions reduce in heart
failure and can lead to fatal arrhythmia, leading to a decrease in the
permeability of ICDs (Pinali et al., 2015; Perriard et al., 2003; Noorman
et al., 2009). ICDs are modelled by attributing an interface permeability
to the top and bottom sides of the CMs.

2.1.3. CM arrangement
The spatial organisation of CMs within the myocardium determines

biophysical characteristics that affect the dMRI signal. These include
the following:

Sheetlet angles. Individual CMs are tightly packed into parallel laminar
microstructures (as shown in Fig. 2a), approximately 2–4 CMs thick,
referred to as sheetlets (Hales et al., 2012). These sheetlets orient
locally in the tissue and are separated by cleavage with a width of
1–2 CMs from each other (LeGrice et al., 2005). It has been shown
and validated by histology that the primary (𝑉1), secondary (𝑉2), and
tertiary (𝑉3) eigenvectors of cardiac DTI (cDTI) correspond to the
CM’s long-axis, sheetlet, and sheetlet-normal directions, respectively,
as shown in Fig. 2a and b.

Using 𝑉1 and 𝑉3 (Teh et al., 2016), four angles are usually consid-
ered to describe these directions of the sheetlets. As shown in Fig. 2c,
a local coordinate system can be defined for each voxel in a cardiac
image volume, based on the surface curvature of the cardiac wall,
distinguished by longitudinal (l), radial (r) and circumferential (c) axes.
r is computed using the Laplace method (Jones et al., 2000), whereas c
is defined as vectors perpendicular to r and global longitudinal (𝐥𝑔𝑙𝑜𝑏𝑎𝑙, a
line fitted to the centre of left ventricle cavity in 2D short-axis planes).
Finally, l is defined as vectors perpendicular to 𝐫 × 𝐜. Therefore, as
shown in Fig. 2d, HA and transverse angle (TA) are defined as the angles
subtended by c and projection of 𝑉1 on l-c and r-c planes, respectively.
The angle subtended by r and projection of 𝑉3 on l-r and r-c planes is
called sheet elevation (SE) and sheet azimuth (SA) angles.
3

Myocardial transmural twist. Fig. 3 represents a simplified schematic
of CM’s long-axis direction, where it starts with a right-handed helical
orientation in the endocardium and smoothly changes toward a left-
handed helical orientation in the epicardium (Hales et al., 2012). The
measured 𝑉1 corresponds to an average of the CMs’ long axes directions
within an MRI voxel (Streeter et al., 1969). Therefore, the magnitude
of the primary eigenvalue of cDTI should be modulated by the standard
deviation of this helical orientation distribution.

Ventricle curvature. Ventricle curvature is another important geometri-
cal feature that affects sheetlets’ shape, and consequently, CMs’ shape
(of myocardial tissue that undergoes remodelling in some CVDs). For
instance, a normal left ventricle has an ellipsoidal geometry that alters
to a more spherical one following myocardial infarction (Su et al.,
2012). The curvature values for different regions of the healthy and
infarcted myocardium of rats are reported in Weisman et al. (1985)
and Espe et al. (2017).

2.2. Collagen fibres

Collagen fibre is the dominant component of ECM. It is responsible
for providing structural support by transmitting forces, preventing
overstretching and rupture, preserving the shape and thickness of the
myocardium, and providing both active and passive stability to the
myocardium (Benedicto et al., 2011). These fibres fall into three cat-
egories: endomysium, surrounding and interconnecting individual CMs
and capillaries; perimysium, surrounding and interconnecting groups
of myocytes; and epimysium, surrounding the entire muscle (Pope
et al., 2008). Of the collagen fibres, only endomysium (Fig. 4a) and
perimysium (Fig. 4b) are modelled in the proposed phantom as it is
unlikely for many dMRI voxels to include effects of the epimysium in
the dMRI signal. Furthermore, since the thickness of the collagen fibre
is at a nanoscale (Benedicto et al., 2011), given the typical diffusion
time scale of MRI and the consequent diffusion of water molecules, the
effect of collagen fibre on ECS diffusion is coarse-grained. Therefore,
the homogenising effect of the collagen fibre is seen as an effective
medium with specific diffusivity (Novikov et al., 2016).

3. Design of numerical phantom

As discussed earlier, the arrangement of CMs in the myocardium
can be considered at two scales, i.e., at the scale of a sheetlet and at
the scale of the myocardial wall (comprising several sheetlets). At the
sheetlet scale, CMs are densely packed with a near-parallel arrangement
into a sheet-like structure (Hales et al., 2012). Conversely, the sheetlets
are placed next to each other at the wall scale while orientated based
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Fig. 2. Definition of helix, transverse, sheet elevation, and sheet azimuth angles. (a) Tightly packing CMs into a laminar structure; (b) Superquadric glyph representation of the
diffusion tensor and eigenvectors of (a); (c) illustration of local cardiac coordinate; (d) Helix and transverse angles, (e) Sheet elevation and sheet azimuth angles.
Source: Image with permission from Teh et al. (2016).

Fig. 3. The arrangement of CMs in sheetlets in cardiac tissue. (a) a cubic slab of myocardium in local cardiac coordinate; (b) histological image from l-r plane view of myocardium,
with permission from Nielles-Vallespin et al. (2017); (c) Simplified schematic of direction changes in CM’s long axes transmurally from endocardium to epicardium where the
heat-map shows HA variation.

Fig. 4. SEM of the three-dimensional arrangement of the cardiac collagen fibres in healthy dogs. (a) Endomysia (b) Endomysia (e) and Perimysium (p).
Source: Image with permission Benedicto et al. (2011).
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Fig. 5. Schematic overview of the proposed approach for generating a numerical phantom of the myocardium, at the sheetlet scale.
on desired sheetlet angles. Therefore, packing CMs with diverse shapes
while preserving the input PDFs of the shape parameters is a challeng-
ing task. This section proposes a method to address this task in two
stages, corresponding to the sheetlet and wall scales.

3.1. Sheetlet scale

3.1.1. Generating a 2D cross-section of a sheetlet
We assume a fully parallel arrangement of the CMs in the sheetlets,

based on empirical evidence (Hales et al., 2012). Therefore, dense
packing of the CMs in a sheetlet can be effected in 2D and subsequently
in 3D:

i 2D Ellipse Packing: Limitation of the CMs’ simplified cross-
sections to ellipses or circles render a dense ellipse packing
algorithm well suited to our 2D problem. Here we use the
dense ellipse packing algorithm proposed in Ilin and Bernacki
(2016) to generate a primary 2D cross-section of the CMs packed
densely in a 2D plane (Fig. 5a). The packing domain of ellipses
is rectangular with a width of sheetlet thickness (Table 1) and
a length, larger than the final voxel’s length. In this study, we
set the length of the packing domain to 200 μm, two times
larger than the final voxel’s length (100 μm). The inputs to this
algorithm are 𝑉 , 𝐿, 𝐴, 𝐵, and dimensions of the packing domain
(sheetlet thickness and length), shown in Table 1.

ii Transformation of the 2D Pack of Ellipses to Polygons: According to
histological observations (Bensley et al., 2016), the native cross-
section of CMs are polygons. Therefore, as proposed in St-Pierre
et al. (2008), the pack of ellipses is transformed into polygons
using a watershed algorithm. Fig. 5.b depicts the cross-section
of a myocardial sheetlet obtained from transforming packed
ellipses to polygons.

3.1.2. Generating the 3D shape of a sheetlet based on the 2D cross-section
The 3D shape of a sheetlet is formed by extruding the border of

polygons/CMs along the normal axis to the cross-section of the sheetlet,
according to the length PDF of CMs. Preserving the length PDF of CMs
5

changes the volume PDF of CMs due to an increase in the area of the
CMs’ cross-section, following the transformation of ellipses to polygons.
Hence, to preserve both input length and volume PDFs of CMs, a small
segment is removed from the top of the extruded CMs as depicted in
Fig. 5c (left). This small segment is made up of the half cross-section
of the CM, extruded long enough to make its volume equal to the extra
volume of the CM. Moreover, to better emulate real tissue and maintain
some irregularity in the arrangement of CMs within the phantom, CMs
are placed at random heights (Fig. 5c, right). For each CM, the random
height is a positive number, chosen from a uniform distribution in
which the upper end of the CM does exceed the height of the highest
CM in each group of CMs. The 3D shape of a short section of a sheetlet
is illustrated in Fig. 5d.

3.1.3. Generating a sheetlet
Given the average length of the CMs, 141 ± 9 μm, and the size of

the in-silico voxel, several layers of the CMs must be stacked on top
of one another to ensure a complete sheetlet is long enough. Fig. 5e
shows a short section of a sheetlet comprising two layers of CMs. The
main challenges for extending a sheetlet, layer by layer, is that the ends
of CMs at the lower layer (LL) are not aligned, as depicted in Fig. 5d
(magnified). To model ICDs and keep the ECS more realistic, each CM
of the upper layer (UL) at its bottom should have a complementary
shape concerning the top of the CMs in the LL, as shown in Fig. 5e
(magnified). This part of the algorithm includes the following steps:

i Designing a Complementary Shape for CMs of UL: First, to com-
plete the sheetlet, along with preserving the randomness of the
distribution of the CMs in the phantom, for each layer, a new
cross-section of CMs are generated as described in Fig. 5f and
g. Second, information about the intersections between the CMs
in UL with CMs in LL and the height of their intersections,
are acquired. Subsequently, using the acquired information, the
complementary shape of CMs in UL is constructed. Next, we
describe the required steps in detail:
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Fig. 6. Algorithm for generating myocardium numerical phantom at wall scale: (a) initial status of the sheetlets in-wall configuration, where 𝑉1, 𝑉2, 𝑉3 are parallel to c, l, r,
respectively; (b) modelling SE◦ by rotating phantom in (a) around 𝑉1; (c) modelling SA◦ by rotating phantom in (b) around 𝑉2; (d) modelling HA◦ by rotating phantom in (c)
around 𝑉3; (e) Twisting the phantom the axis crossing the centre of the phantom and parallel to r; (f) modelling wall curvature by bending the phantom in (e) around the axes l
and c; (g) Transforming the phantom in (f) to cardiac local coordinate to mimic the sheetlet orientations in ex-vivo data; (h) Extracting a cubic voxel to mimic an MRI voxel.
i.1 Finding the Intersection Between the CMs in the Successive
Layers: First, a topographic map of CMs in LL is generated
as depicted in Fig. 5h. Next, since the cross-section of CMs
in LL and UL are not the same (Fig. 5b vs. g), it is likely
that some parts of marginal CMs in the UL, Fig. 5g, inter-
sect the blue region (vacant region) in Fig. 5h. Therefore,
it is impossible to find the starting height for those parts
of marginal CMs in UL, which intersect the blue region
in Fig. 5h. Hence, the topographic map is modified so
that the blue region is filled by the extension of marginal
CMs in LL, as shown in Fig. 5i. Then, each CM in UL is
intersected with the modified topographic map. The result
of the intersection of CMs in UL with the topographic map
of CMs in LL is as shown in Fig. 5j, where blue polygons
indicate the border of CMs of UL, shown in Fig. 5g.

i.2 Forming 3D Shape of CMs in UL: For the intersection of
each CM in UL with CMs in LL (e.g., Fig. 5k, a blue poly-
gon with topographic map), the lowest segment (Fig. 5l,
the intersection of green region with blue polygon) is ex-
truded to the height of second-lowest segment (Fig. 5m).
Then, at the height of the second-lowest segment, the
first- and second-lowest segments (green and dark yel-
low inside the blue border, in Fig. 5k) are merged, as
illustrated in Fig. 5m, and extruded to the height of the
third-lowest segment (Fig. 5n). This procedure is repeated
until all segments of a CM are merged, and the original
cross-section of the CM is retrieved (Fig. 5n). Next, the
original cross-section of CM is extruded long enough to
preserve the input length of the CM. Finally, for CMs
6

with increased volumes, a small segment is removed,
illustrated in Fig. 5o, as explained in 3.1.2.

Fig. 5e shows adding the second layer of the CMs to the first layer
(Fig. 5d). A complete sheetlet is formed by repeating this algorithm,
blue box in Fig. 5, for a desired number of layers.

3.2. Wall scale

This Section describes the process of generating a voxel of the my-
ocardium at a microscale, using the generated sheetlets in the previous
Section. First, several sheetlets, depicted in pink in Fig. 6a, are placed
next to each other in the ECS, revealed by the blue colour in Fig. 6a.
Endomysial and perimysium collagen fibres domains are indicated by
grey colour in Fig. 6a. The boundary of the collagen fibres domain
is defined as an enlarged outline of the sheetlet. The ECS inside this
domain, except the ICS regions, is labelled as the collagen region, and
its effect is taken into account by assigning diffusivity (𝐷𝑐𝑜𝑙𝑙𝑎𝑔𝑒𝑛) and
relaxation (𝑇2𝑐𝑜𝑙𝑙𝑎𝑔𝑒𝑛 ) of collagen to it.

Next, the sheetlet angles are modelled by aligning the phantom in
the directions of the desired eigenvectors. Because the eigenvectors
are orthogonal, one only needs to align two of them in the desired
directions. Since the SE, SA, HA, and TA angles are defined for 𝑉1
and 𝑉3, we choose these eigenvectors for the alignment. Again, based
on the orthogonality of eigenvectors, by setting three sheetlet angles
out of four, 𝑉1 and 𝑉3 and consequently, 𝑉2 are aligned in the desired
directions. Here, we orient the phantom based on SE, SA, and HA
angles.

Initially, according to the relationship between sheetlet orientations
and eigenvectors of cDTI, as shown in Fig. 2b, 𝑉 , 𝑉 and 𝑉 are set
1 2 3
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as depicted in Fig. 6a. Then, to align 𝑉3 in the desired direction, first,
he phantom in its initial status, Fig. 6a, is rotated around 𝑉1 so that
he projection of 𝑉3 on l-r makes SE◦ angle with r, shown in Fig. 5b.
econd, the phantom is rotated around 𝑉2, Fig. 6b, so that SA◦ is
ubtended by r and the projection of 𝑉3 on r-c as shown in Fig. 6c. Then,
o align 𝑉1 in the desired direction, we only need to rotate the phantom
round 𝑉3, Fig. 6c. As a result, the subtended angle by the projection
f 𝑉1 on l-c and c, illustrated in Fig. 6d, is equal to the desired HA◦.

Next, the tissue is twisted by rotating the phantom of Fig. 6d around
he axis parallel to r, crossing through the centre of the phantom, shown
n Fig. 6e, in which the degree of rotation (𝛼) is increased by increasing
he distance from the centre of the phantom, as depicted in Fig. 6e.

Then, the curvature of the myocardium wall is included in the
hantom. For this purpose, the phantom should be bent around an axis
arallel to c and crossing the point of (𝐜, 𝑙

2 , 0), and an axis parallel to
l and crossing through ( 𝑙2 , 𝐥, 0), where (𝑙) is the length of the phantom
across the axis c. For example, for the latter, all points in every c-r
plane, depicted as blue in Fig. 6f on the right-hand side, should be
uniformly relocated to the red-dashed arrow. As depicted in Fig. 6f
(right-hand side), using the values of curvature 𝐾 = 1

𝑟 , where 𝑟 (the
reen arrow) is the radius of the curvature, the displacement along axis
, 𝑑𝑟 = 𝐴𝑟𝑐(𝑝𝑐 ), is computed where 𝐴𝑟𝑐 computes the displacement of

the location of phantom’s nodes, i.e., (𝑝𝑟, 𝑝𝑐 , 𝑝𝑙), along the axis r using
𝑝𝑐 or 𝑝𝑙. Then, the phantom is bent around an axis parallel to l and
crossing through ( 𝑙2 , 𝐥, 0) by updating the location of the phantom’s
odes along with r concerning c, i.e., 𝑝(𝑓 )𝑟 = 𝑝(𝑒)𝑟 + 𝐴𝑟𝑐(𝑝(𝑒)𝑐 ) where

superscripts (𝑒) and (𝑓 ) indicate nodes’ location in the related phantoms
in Fig. 6e and f (left-hand side), respectively. Fig. 6f (left-hand side)
illustrates the bent phantom around an axis parallel to l and crossing
from the point of ( 𝑙2 , 𝐥, 0) indicated by a light green arc with 𝑟 = 100.
Similarly, by updating 𝑝(𝑓 )𝑟 = 𝑝(𝑒)𝑟 + 𝐴𝑟𝑐(𝑝(𝑒)𝑙 ), the phantom is bended
around the axis parallel to c and crossing the point of (𝐜, 𝑙

2 , 0), shown
n Fig. 6f (left-hand side) as blue arc with 𝑟 = 1000.

In the next step, only required for mimicking an MRI voxel, the
hantom is transformed into a local coordinate system (Fig. 6g). Fi-
ally, as shown in Fig. 6h, a cubic slab which its sides are parallel to
he axes of the global coordinate system is extracted from Fig. 6g to
epresent an MRI voxel.

ECS can be increased by increasing inter-CMs and/or inter-sheetlet
paces. To increase inter-CMs space, the space between polygons gen-
rated in step Fig. 5.b, needs to increase. The result of increasing
nter-CMs space in the phantom is visible by comparing Figs. 7(a) and
(b). The result of increasing inter-sheetlet space by placing generated
heetlets further apart from each other is distinguishable by comparing
igs. 7(a) vs. 7(c). Finally, the result of increasing inter-CMs space along
ith inter-sheetlet space is shown in Fig. 7(d).

. Experimental data and software

.1. Experimental data

The phantom was verified using several voxels of the 3D data
cquired in ex-vivo rat hearts reported previously (Teh et al., 2016).
riefly, dMRI data was acquired on a 9.4 T preclinical MRI scanner
Agilent, CA, USA) using a 3D fast spin-echo DW sequence with the
ollowing parameters: TR/TE = 250∕9.3ms, echo train length = 8, echo

spacing = 4.9ms, field-of-view = 20 × 16 × 16mm, resolution = 100 ×
100×100 μm, diffusion duration (𝛿) = 2ms, diffusion time (𝛥) = 5.5ms,
number of non-DW images = 8, number of DW directions = 61, and
b-value (effective) = 1000 s∕mm2. The abovementioned values are the
same for all the simulations in this work.

4.2. Software implementation

All processes including the generation of the numerical phantom,
meshing, simulation of dMRI signal, calculation of cDTI parameters,
and statistical analysis were carried out in MATLAB (MathWorks, Mas-
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sachusetts, USA).
4.2.1. iso2mesh
iso2mesh is an open-source MATLAB mesh generation and editing

toolbox. It creates a 3D tetrahedral finite element mesh from 3D grey-
scale volumetric image, resulting from Section 3 (Fang and Boas, 2009;
Tran et al., 2020). The different compartments of the numerical phan-
tom i.e., CMs’ groups, ECS, and collagens are labelled differently in the
resultant mesh. These labels enable the FEM-based dMRI simulator to
resolve diffusivity and relaxation assigned to each compartment, along
with permeability between them for the simulation.

4.2.2. SpinDoctor
SpinDoctor is a free FEM-based MATLAB toolbox that solves the

BT-PDE to simulate the dMRI signal. BT-PDE describes the evolution
of the transverse magnetisation signal mathematically. It relates the
temporal evolution of the transverse magnetisation (𝑀(𝒓, 𝑡)) to the
spatial derivatives, the diffusion coefficient (𝐷(𝒓)), the 𝑇2𝑙 spin–spin
relaxation, and the time-varying magnetic field gradient (𝑓 (𝑡)𝒈 ⋅ 𝒓),
where 𝑓 (𝑡) is the effective time profile, and g defines the amplitude
and direction of the magnetic field gradient. Let 𝛺 be the observation
domain, comprising 𝐿 sub-domains, such that ∪𝐿

𝑙=1𝛺𝑙. Also, let 𝛤 𝑒
𝑙 be

the external boundary of 𝛺𝑙, and 𝛤𝑙𝑛 the boundary between 𝛺𝑙 and
𝛺𝑛. Then, the evolution of the complex transverse magnetisation in the
rotating frame is described by

𝜕
𝜕𝑡
𝑀𝑙(𝒓, 𝑡) = ∇ ⋅ (𝐷𝑙(𝒓)∇𝑀𝑙(𝒓, 𝑡)) −

1
𝑇2𝑙

𝑀𝑙(𝒓, 𝑡)

− 𝑖𝛾𝑓 (𝑡)𝒈 ⋅ 𝒓𝑀𝑙(𝒓, 𝑡)

(𝒓 ∈ 𝛺𝑙),

(1)

subject to the boundary conditions

(𝐷𝑙(𝒓)∇𝑀𝑙(𝒓, 𝑡)).𝒏𝑙(𝒓) = 𝑘𝑙𝑛(𝑀𝑛(𝒓, 𝑡) −𝑀𝑙(𝒓, 𝑡))

(𝒓 ∈ 𝛤𝑛𝑙 ,∀𝑛),
(2)

(𝐷𝑙(𝒓)∇𝑀𝑙(𝒓, 𝑡)).𝒏𝑙(𝒓) = −𝑘𝑒𝑙𝑀𝑙(𝒓, 𝑡)

(𝒓 ∈ 𝛤 𝑒
𝑙 ),

(3)

and the initial condition

𝑀𝑙(𝒓, 0) = 𝑝𝑙(𝒓), (4)

where 𝑡 ∈ [0, 𝑇𝐸 ], with 𝑇𝐸 the echo time, 𝛾 is the gyromagnetic ratio
of protons (2.675 × 108 rad T−1 s−1 for 1H), 𝒏𝑙(𝒓) is the unitary outward
pointing normal to 𝛺𝑙, 𝑘𝑙𝑛 (𝑘𝑒𝑙 ) is the permeability constant in 𝛤𝑙𝑛 (𝛤 𝑒

𝑙 ).
Also, the same permeability is assumed in both directions of the same
membrane, i.e 𝑘𝑙𝑛 = 𝑘𝑛𝑙. Here, to simulate the dMRI signal, we use the
SpinDoctor simulator (Li et al., 2019), which solves the Bloch–Torrey
PDEs using the FEM.

For all simulations, the ordinary differential equation (ODE) is
solved using theta time stepping method (generalised midpoint) (Stuart
and Peplow, 1991), with the following parameter setup of SpinDoctor
toolbox: implicitness = 0.5, invokes Crank-Nicolson method (Stuart and
Peplow, 1991); and timestep = 5 μs.

5. Experiments and results

The quality of the proposed numerical phantom was evaluated in
the following experiments: (a) qualitative/visual comparison of in-silico
CMs and myocardial tissue with their real counterparts; (b) comparison
of the shape of in-silico CMs with real CMs, using a virtual morphome-
tric study; (c) comparison of microstructure complexity of the in-silico
tissue against histology; and (d) verification of cDTI parameters of
the simulated cDTI with their experimental counterparts from ex-vivo

measurements.
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Fig. 7. Increase of ECS: (a) Initial status, (b) Increase of inter-CMs space, (c) Increase of inter-sheetlet space, (d) Increase of both inter-CMs and inter-sheetlet spaces.
5.1. Qualitative comparison of in-silico CM vs experimental CM data

This experiment aims to compare the in-silico version of: (i) sin-
gle CMs, Fig. 8(a); along with (ii) transverse cross-section, Fig. 8(b);
and (iii) longitudinal cross-section, Fig. 8(c), of the myocardial tissue
with their real counterparts using histological and confocal microscopy
images. Visual assessment of individual CMs and cross-sectional im-
ages from tissue histology and the in-silico phantom indicate good
agreement between the former and latter.

5.2. Quantitative morphometric assesment of in-silico CMs

This experiment evaluates how the PDFs from literature, used as
inputs, are preserved following phantom generation. The virtual mor-
phometric study is performed on 20 different numerical phantoms
generated according to the PDFs shown in Table 3, each comprising
642 virtual CMs. For each numerical phantom, all processes of phantom
generation are repeated from the beginning. The input PDFs are made
on assumptions that the value reported (mean±standard deviation)
in literature comes from a normal distribution. For each numerical
phantom, all processes of phantom generation are repeated from the
beginning. The volume 𝑉 , length 𝐿, and profile 𝐴𝑟𝑒𝑎 (𝐴𝑟𝑒𝑎 is defined
as the maximum area of the 2D projection of virtual CMs on the plane
parallel to the major-axis and perpendicular to the minor-axis of 2D
polygons) are directly measured. Then, CM’s major-axis 𝐴 is calculated
from 𝐴 = 𝐴𝑟𝑒𝑎

𝐿 , and consequently, CM’s minor-axis 𝐵 is measured
using microstructural restriction density, the volume formula for an
8

elliptical cylinder, 𝑉 = 𝜋𝐴𝐵𝐿, as explained in Chen et al. (2007). Fig. 9
illustrates an example of the input and output PDFs of the CMs’ shape
parameters.

In this experiment, two null hypotheses are tested: first, the output
PDFs follow a normal distribution; second, there is no significant differ-
ence between the input and output PDFs. The Shapiro–Wilk test tests
the first null hypothesis, commonly used to test whether PDFs come
from a normal distribution or not (Ahad et al., 2011; Nayak and Hazra,
2011). The Mann–Whitney U-test tests the second null hypothesis if
the first null hypothesis is rejected; otherwise, it is tested by the t-test.
Moreover, to compare the variance of the PDFs, the null hypothesis
that the input and output PDFs have equal variances is tested using
a two-sample F-test if both PDFs have a normal distribution, and a
Brown–Forsythe test if one of the PDFs does not follow a normal
distribution. Table 2 presents these statistical tests and a comparison
between the input and output data. Data are expressed as mean ± SD
and are compared using the Shapiro–Wilk test, Mann–Whitney U-test,
t-test, two-sample F-test, and Brown–Forsythe test.

The resultant p values for the Shapiro–Wilk test, 𝑝1-values in Ta-
ble 2, indicate that the proposed method preserves normality for the
length and volume PDFs but does not for major- and minor-axis PDFs.
These results are coupled with instance histograms are shown in Fig. 9,
where the length and volume of output PDFs (red bars in Figs. 9(a) and
9(b)) are symmetric around their means, whereas it does not hold for
PDFs of the major- and minor-axis (red bars in Figs. 9(c) and 9(d)).
Moreover, the null hypothesis of no statistically significant difference
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Fig. 8. Comparison between in-silico and real myocardial tissue. (a) Comparison between EM image of single CMs (Bensley et al., 2016) with in-silico CMs (the blues are
microvasculature), (b) Comparison between the transverse cross-section of myocardial tissue in a confocal microscopy image and an in-silico version of tissue, (c) Comparison
between the longitudinal cross-section (Chen et al., 2015) of myocardial tissue in a confocal microscopy image and an in-silico version of tissue.
between input and output PDFs is confirmed based on the 𝑝2- and 𝑝3-
values. Finally, according to 𝑝4- and 𝑝5-values, the null hypothesis of
the equal variances for input and output PDFs only fails to reject for
length PDF.

5.3. Microstructural complexity of the in-silico tissue slabs

This experiment investigates the similarity between the structural
universality classes of the in-silico myocardial tissue and the histo-
logical data from real tissue slabs. Novikov et al. (2014) classified
the microstructure into different structural universality classes based on
the unique types of long-scale spatial correlations of a medium at
the microscale. The criterion for this classification is the exponent
𝑝 in 𝛤 (𝑘)| ∼ 𝑘𝑝, which describes the long-range fluctuations of
9

𝑘→0
microstructural restriction density. 𝛤 (𝑘) is radially averaged of the
power spectrum density (𝑃𝑆𝐷(𝑢, 𝑣)) of the tissue microstructure around
𝑘 = 0, where 𝑘 =

√

𝑢2 + 𝑣2 (Lee, 2019). According to Wiener–Khinchin
theorem, 𝑃𝑆𝐷(𝑢, 𝑣) can be found using the Fourier transform of the
autocorrelation function (Lathi, 1998):

𝑃𝑆𝐷(𝑢, 𝑣) =
𝑀−1
∑

𝑥=0

𝑁−1
∑

𝑦=0
𝐶(𝑥, 𝑦)𝑒−𝑗2𝜋(

𝑢𝑥
𝑀 + 𝑣𝑦

𝑁 ) (5)

where 𝐶(𝑥, 𝑦) is the autocorrelation of a 2D image, 𝐼(𝑥, 𝑦), 0 < 𝑥 < 𝑀 ,
0 < 𝑦 < 𝑁 .

Here, we compare the value of 𝛤 (𝑘) for the in-silico and histological
images of the myocardial transverse cross-section (in the plane perpen-
dicular to the long axis of CMs), shown in Fig. 8(b). Fig. 10 depicts the
diagrams of 𝛤 (𝑘) for these images, at the different 𝑘. As illustrated in
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Fig. 9. Comparison between the input and output PDFs of the CMs’ shape parameters. (a) Length 𝐿, bin size of 2.5 μm (b) Volume 𝑉 , bin size of 806 μm3 (c) Major-axis 𝐴, bin
size of 0.5 μm (d) Minor-axis 𝐵, bin size of 0.5 μm.
Table 2
Statistical tests and comparison between the input and output means. ± SD of the CMs’
shape parameters: Length 𝐿, Volume 𝑉 , Major-axis 𝐴, and Minor-axis 𝐵.

𝐿 (μm) 𝑉 (μm3) 𝐴 (μm) 𝐵 (μm)

Input 141.1 ± 9.3 39, 933 ± 4, 640 30.1 ± 1.1 11.1 ± 1
Output 141.1 ± 9.4 39, 732 ± 6, 693 30.2 ± 2.9 11.9 ± 1.6
𝑝1 0.28 > 0.01 0.17 > 0.01 0 < 0.01 0 < 0.01
𝑝2 – – 0.09 > 0.01 0.19 > 0.01
𝑝3 0.99 > 0.01 0.76 > 0.01 – –
𝑝4 0.98 > 0.01 10−18 < 0.01 – –
𝑝5 – – 10−53 < 0.01 10−18 < 0.01

Values are mean ± SD for 642 CMs from 20 phantoms.
𝑝1, 𝑝2, 𝑝3, 𝑝4, and 𝑝5 are the results of the Shapiro–Wilk test, Mann–Whitney U-test,
t-test, two-sample F-test, and Brown–Forsythe test, respectively. A value of 𝑝 < 0.01 is
considered statistically significant.

Fig. 10, at 𝑘 < 1
𝐶𝑀 ′𝑠 𝑚𝑖𝑛𝑜𝑟−𝑎𝑥𝑖𝑠 i.e., 𝑘 < 1

12 , the diagrams of the in-silico
tissue follow the same power-law tail of the real tissue, i.e., 𝑘0.

5.4. cDTI MRI measurements vs. phantom-based simulations

This experiment investigates the performance of numerical phantom
in replicating cDTI eigenvectors and eigenvalues using a simplified
version of the numerical phantom. The reason for this simplification is
the lack of information about the chamber curvature and myocardial
tissue twisting of the ex-vivo data. Therefore, we discarded these
features during the generation of the numerical phantom. Moreover,
collagen fibres are not included in the numerical phantom, since the
ex-vivo cDTI is measured from a healthy heart, where the collagen VF
10
is ∼2% (Haddad and Samani, 2017). Due to lack of information about
inter-CMs space, this parameter was set 1 μm.

cDTI eigenvectors correspond to CMs and sheetlets directions (Tseng
et al., 2003; Magat et al., 2021). Therefore, we investigated how the
simulated eigenvectors preserve the input directions. First, we gener-
ated 100 in-silico voxels at the resolution of ex-vivo data, described in
Section 4.1, (the mesh resolution determined in Appendix A) and 𝑉 𝐹𝑖𝑐
of the generated voxels fell into the range of 64–74%, with 69% ± 2%
(mean±SD). Then, the directions of CMs and sheetlets of these voxels
are oriented according to the eigenvectors of the voxels of an equivalent
cDTI experiment, selected randomly from different myocardial regions
(Fig. 11(a)). Finally, the biophysical parameters of the in-silico voxels
are set up according to the information provided in Table 3.

As shown in Table 3, the eigenvectors of in-silico voxels are exactly
matched to the eigenvectors of the ex-vivo data. 𝑇2𝑒𝑥 is set 42.4ms,
water 𝑇2 measured in the field strength of 9.4 T (Lei et al., 2003).
Then, 𝑇2𝑖𝑐 is computed by assuming 𝑇2𝑖𝑐 × 𝑉 𝐹𝑖𝑐 + 𝑇2𝑒𝑥 × 𝑉 𝐹𝑒𝑥 = 𝑇2𝑒𝑥−𝑣𝑖𝑣𝑜
where 𝑇2𝑒𝑥−𝑣𝑖𝑣𝑜 = 25.72ms is the average value of 𝑇2 for 100 selected
ex-vivo voxels. Similarly, 𝐷𝑒𝑥 is set 1.91 μm2∕ms, free water diffusivity
reported in Periquito et al. (2019), due to similar temperature during
the acquisition in Periquito et al. (2019) and the ex-vivo data under
comparison (Teh et al., 2016). Then, 𝐷𝑖𝑐 is computed by assuming
𝐷𝑖𝑐 × 𝑉 𝐹𝑖𝑐 + 𝐷𝑒𝑥 × 𝑉 𝐹𝑒𝑥 = 𝐷𝑒𝑥−𝑣𝑖𝑣𝑜 where 𝐷𝑒𝑥−𝑣𝑖𝑣𝑜 = 1.06 μm2∕ms is
the average diffusivity for 100 selected ex-vivo voxels. Since 𝐷𝑒𝑥−𝑣𝑖𝑣𝑜 is
reduced by CMs’ geometry, the computed 𝐷𝑖𝑐 needs to increase to offset
the effect of CMs’ geometry. Due to a lack of quantitative information
about diffusivity reduction caused by CMs’ geometry, different values
of 𝐷𝑖𝑐 are assessed to achieve the best possible agreement between
eigenvalues of the in-silico and ex-vivo measurements for 16 voxels,
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Fig. 10. 𝛤 (𝑘) for 2D images of the cross-sections of the in-silico and real myocardial tissues shown in Fig. 8(b).
Table 3
Phantom parameters for healthy myocardium.

𝐿 (μm) 𝑉 (μm3) 𝐴 (μm) 𝐵 (μm) 𝐷𝑖𝑐 (μm2∕ms) 𝐷𝑒𝑥 (μm2∕ms) 𝑇2𝑖𝑐 (ms) 𝑇2𝑒𝑥 (ms)

Literature 𝑁(141.1 ± 9.3)
(Chen et al.,
2007)

𝑁(39933 ± 4640)
(Chen et al.,
2007)

𝑁(30.1 ± 1.1)
(Chen et al.,
2007)

𝑁(11.1 ± 1)
(Chen et al.,
2007)

0.83 1.91 18.4 42.4

ex-vivo NA NA NA NA NA NA NA NA

𝜅𝑆𝑎𝑟𝑐𝑜. (μm s−1) 𝜅𝐼𝐶𝐷𝑠 (μm s−1) 𝑝𝑟 (m−1) 𝑝𝑙 (m−1) 𝛼 (◦) 𝑉1(◦) 𝑉2 (◦) 𝑉3 (◦)

Literature 15 (Bates et al.,
2017)

0.5 (Bastide
et al., 1996)

NA NA NA – – –

ex-vivo NA NA NA NA NA AVL AVL AVL

Sheetlet
thickness (μm)

inter-CMs space
(μm)

inter-sheetlet
space (μm)

𝑉 𝐹𝑖𝑐 (%) 𝑉 𝐹𝑐𝑜𝑙𝑙𝑎𝑔𝑒𝑛 (%) 𝐷𝑐𝑜𝑙𝑙𝑎𝑔𝑒𝑛
(μm2∕ms)

𝑇2𝑐𝑜𝑙𝑙𝑎𝑔𝑒𝑛
(μm s−1)

Literature ∼2–4 CMs thick
(Hales et al.,
2012).

NA ∼1–2 CMs thick
(LeGrice et al.,
2005)

65–75% (Greiner
et al., 2018;
Skepper and
Navaratnam,
1995)

∼2% (Haddad
and Samani,
2017)

NA NA

ex-vivo NA NA NA NA NA NA NA

AVL: available, NA: not available.
chosen randomly. According to this assessment, the best possible 𝐷𝑖𝑐 is
achieved by 20% increase i.e., 0.83 μm2∕ms, and set in the simulation
for the remaining voxels.

Other input parameters used for cDTI simulations were taken from
published ex-vivo data in the literature. Afterward, dMRI signal is
simulated for 100 in-silico voxels by setting the imaging parameters
of simulation such as b-values, diffusion encoding directions, diffusion
time, diffusion encoding gradient type and etc. as same as ex-vivo
data, described in Section 4.1. Finally, for each in-silico voxel, the
eigenvectors, eigenvalues, and FA of cDTI are computed and compared
with their counterpart from ex-vivo data.

Figs. 12 and 13 show the distribution of the angular distance
between eigenvectors, along with the absolute angle difference between
HA, TA, SA, and SE of the input and simulated ones in rose diagrams.
The mean and standard deviation (SD), along with median and median
absolute deviation (MAD) for these distributions are reported under
each diagram. These angular distance and absolute angle differences
are much smaller than those reported between cDTI and structural
tensor imaging (STI) (Bernus et al., 2015) shown in Table 4, or reported
in Haliot et al. (2019). In addition, as illustrated in the Bland-Altman
plots in Figs. 14(a), 14(b), 14(c), and 14(d), there is an adequate
agreement between HA, TA, SE and SA of the ex-vivo data and the
numerical phantoms.

Additionally, the simulated eigenvalues, mean diffusivity (MD),
fractional anisotropy (FA), and radial diffusivity (RD) are shown along
with the eigenvalues of the ex-vivo data in Fig. 15. For these pa-
rameters two null hypotheses are tested: first, the distribution of the
cDTI parameters for the experimental and simulation follows a normal
11
distribution; second, there is no significant difference between the
distribution of cDTI parameters of the experimental and simulated data.
These hypotheses are tested as in Section 5.2 and their results are
presented in Fig. 15 above each box and whisker plot.

5.4.1. Computational cost
The computations for Section 5.4 simulations were performed on

ARC3, the High-Performance Computing facilities at the University of
Leeds. ARC3 consists of 252 nodes with 24 cores (Broadwell E5-2650v4
CPUs, 2.2 GHz) and 128 GB of memory each and an SSD within the
node with 100 GB of storage. The details of computational cost for
undertaken simulations in Section 5.4 is reported in Table 5.

5.5. Effect of collagen density, twisting, and bending on MD and FA

As mentioned earlier, due to insufficient information about the
twisting and curvature of the myocardial wall along with the lack of
information about the diffusivity and relaxation of collagenous ECS,
these structures are excluded in the simulation presented in Section 5.4.
The goal of the following experiment is to identify the effect of these
structures on cDTI derivatives individually. To this effect, we simulate
cDTI for each structure’s different range of values. Increasing collagen
density decreases diffusivity and relaxation (Mewton et al., 2011; Bun
et al., 2012; Loganathan et al., 2006). Figs. 16(a) and 17(a) show that
a decrease in diffusivity and relaxation values leads to a reduction in
MD and FA. Here, we illustrate the effect of these changes on simulated
signals for four pairs of values of diffusivities, 𝐷𝑐𝑜𝑙𝑙𝑎𝑔𝑒𝑛 ∈ [𝐷𝑒𝑥, 𝐷𝑖𝑛], and
relaxations, 𝑇 ∈ [𝑇 , 𝑇 ], respectively.
2𝑐𝑜𝑙𝑙𝑎𝑔𝑒𝑛 2𝑒𝑥 2𝑖𝑛
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Fig. 11. (a) Location of mimicking voxels in a slice of experimental cDTI, (b) An example of in-silico voxel oriented according to voxel 8 in (a).

Fig. 12. Angular distance between (a) 𝑉1, (b) 𝑉2, and (c) 𝑉3 of ex-vivo and in-silico voxels.
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Fig. 13. Absolute angle difference between (a) HA, (b) TA, (c) SA, and (d) SE of ex-vivo and in-silico voxels.

Fig. 14. (a) Comparison between sheetlet angles of the experimental data and numerical phantom. Agreement between (a) HA; (b) TA; (c) SE and (d) SA of the experimental
data and numerical phantom.
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Table 4
Angular distance and absolute angle difference (median±MAD) between eigenvectors and sheetlet angles of ex-vivo and in-silico voxels.

𝑉 ◦
1 𝑉 ◦

2 𝑉 ◦
3 𝐻𝐴◦ 𝑇𝐴◦ 𝑆𝐸◦ 𝑆𝐴◦

Septal ∠input vs. ∠in-silico DTI 7.1 ± 3.1 7.3 ± 2.9 1.3 ± 0.7 5.8 ± 3.1 3 ± 3.9 0.6 ± 0.6 1.1 ± 0.9
∠STI vs. ∠DTI 13.3 ± 6.7 32.9 ± 19.6 27.9 ± 17.4 8.5 ± 5.6 11.5 ± 7.8 22 ± 16.2 22.9 ± 16.5

Lateral ∠input vs. ∠in-silico DTI 4.7 ± 3.1 4.9 ± 3 2.2 ± 0.8 2.4 ± 3.1 4.4 ± 1.7 1.2 ± 0.9 1.7 ± 0.9
∠STI vs. ∠DTI 12.6 ± 5.9 15 ± 8.5 23.8 ± 11.9 9.1 ± 5.8 15.6 ± 11.1 16.1 ± 10.5 14.6 ± 10.3
Table 5
Computational cost of the simulation.

Average number of
tetrahedrons per voxel

Number of cores
per voxel

Memory per core
(GB)

Computational time per
core (hours)

Entire number of
cores

Computational time for entire
voxels (core hours)

856 570 ± 48 666 7 62 6 ± 2.5 700 4152
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The degree of wall twisting and curvature depends on the studied
ardiac phase. In the transition from systole to diastole, the degree of
he twisting increases (Streeter et al., 1969), whereas the curvature
ecreases. To show the effect of these geometrical changes on MD
nd FA, cDTI is simulated using an in-silico voxel, mimicking tran-
iting from systole to diastole at four points, where 𝛼◦ ∈ [0, 60] and
𝑝𝑙 , 𝑝𝑟 ∈ [0.31mm−1, 0.01mm−1] (Ferferieva et al., 2018), respectively.
Figs. 16(b) and 17(b); and Figs. 16(c) and 17(c) show the simulated
values of MD and FA, respectively, increase by decreasing the curvature
and increasing the twisting, which agrees with changes in the in-vivo
measurement of MD and FA (Khalique et al., 2020; McGill et al.,
2014). The observation in Fig. 17(b) is somewhat surprising as FA
values increase by increase of twisting, as it is expected that FA values
decrease with increase in the range of CMs orientation resulting from
increased twisting. One possible explanation for this observation is
that the increase in the tissue twisting leads to a decrease in CMs’
diameters (Axel et al., 2014; Nielles-Vallespin et al., 2017) which
increases FA values. The same reason may explain why increase in
tissue bending results in increasing FA values (Figrue 17(c)).

6. Discussion and conclusion

This work aims to develop a workflow to generate a novel numer-
ical phantom representing myocardial microstructure. Compared with
previous efforts, this study introduces two main novel contributions:
(a) it considers more realistic shapes for the CMs and consequently a
realistic complexity for the medium (relative to previous phantoms),
by incorporating the native PDFs of CM shape parameters into the
phantom; (b) it models the ICDs within the phantom and takes into
account their effects on the dMRI signal.

Interestingly, the comparison of the in-silico images with the histo-
logical images in Fig. 8 shows that the proposed method closely mimics
myocardial tissue. The most striking observation emerges from the
shape comparison of several single in-silico CMs with real CMs, shown
in Fig. 8(a), where the proposed algorithm is demonstrated to generate
a realistic in-silico version of CMs. Figs. 8(b) and 8(c) show an apparent
similarity between the shape of the transverse and longitudinal cross-
section of in-silico tissue and real ones, where combining both confirms
an elliptical shape for CMs. However, closer inspection in Fig. 8(b)
reveals different dispersion for crosswise orientation of the CMs (the
directions of the principal axes of polygons) in in-silico images and
histology. In the in-silico images, these directions are more correlated
than those of the histological images.

The virtual morphometric study (Table 2) confirms that the shape
of individual CMs is consistent with real CMs, where p-values for the
length and volume of the CMs, i.e., 𝑝3, and p-values for major and minor
axes of the CMs, i.e., 𝑝2, are >0.01. The reason for high p-values for the
length and volume lies in the step shown in Figs. 5c and l–o, where
the shape of each virtual CMs is modified to preserve the input PDF
of the length and volume, respectively. In contrast, the statistical tests
14

related to PDFs of the major-axis and minor-axis result in lower values b
of 𝑝2. As shown in Fig. 9, major-axis and minor-axis PDFs of the output
are broadened than the input. Broadening is a consequence of creating
inter-CM space, during the transformation of the ellipse packing to the
polygons. To create inter-CM space, the area of some polygons, shown
in Fig. 5.b, is shrunk, which leads to the reduction of the values of
the major- and minor- axes and correspondingly, a broadening of their
PDFs.

Considering microstructure complexity, the results of the structural
correlator 𝛤 (𝑘) corroborate the consistency between the in-silico gen-
erated tissue and real tissue (Fig. 10). Novikov et al. (2014) showed
that the transverse cross-sections of skeletal muscle are classified as an
extended disorder due to 𝛤 (𝑘) ∼ 𝑘−1. This 𝑘−1 behaviour comes from
(relatively) straight lines of the myocyte’s boundaries in the transverse
cross-section of skeletal muscle, which spatially correlates over length
scales of the cell’s diameter. As shown in Fig. 8(b), CMs’ boundaries
in the transverse cross-section of the myocardial tissue are curved,
and their directions are uncorrelated. Therefore, the 𝑘−1 gets cut-off
at 𝑘 ∼ 1

Cell’s diameter , and the disorder at larger cell diameter scales
tends to plateau, i.e., 𝑘0, the green dashed line in Fig. 10, termed a
short-ranged disorder.

This study shows that the median ± MAD of the angular distance
etween the input and simulated eigenvectors, along with the abso-
ute angle difference between the input and simulated sheetlet angles,
isplayed in Figs. 12 and 13, are lower than those between DTI and
TI, reported in Figure 10 and Figure DS3 of Bernus et al. (2015).
oreover, the angular distance between the input and simulated 𝑉3

Fig. 12(c)) is much smaller than the angular distance between the
irectly measured FLASH laminar normal and 𝑉3 of STI and DTI, as
eported in Bernus et al. (2015). Additionally, the resulting absolute
ngle difference for HA (Fig. 13) demonstrates that the deviation of the
imulated HA from the input directions (4.3◦ ± 3.1◦) is consistent with
he absolute angle difference for HA between the experimental cDTI
nd histology reported by Holmes et al. (2000) (3.7◦±6.4◦) and Scollan
t al. (1998) (4.9◦ ± 14.6◦). According to Fig. 15, 𝜆1 and 𝜆3 are in
easonable agreement with those from the ex-vivo data. However, 𝜆2
f in-silico is considerably higher than its ex-vivo counterpart. Since
he ICS and ECS diffusivities contribute fairly well to the values of 𝜆1
nd 𝜆3, the best way to reduce 𝜆2 with less effect on 𝜆1 and 𝜆3 is to
dd more obstacles to the passage of water molecules in the direction
f 𝑉2. The most important compartments that hinder the movement of
ater molecules in this direction are microvasculature, fibroblast, and

ollagens (non-CM compartment) (with the VF of 7.7%, 2.5% (Greiner
t al., 2018), and 2% (Haddad and Samani, 2017), respectively), as they
re perpendicular to 𝑉2, aligned along CMs (Greiner et al., 2018). More-
ver, inter-sheetlet space in real myocardial tissue is more tortuous
han its in-silico counterpart, which results in 𝜆2 reduction. Appendix B

illustrates the effect of adding the above-mentioned obstacles in ECS
on eigenvalues over simple phantoms. For these phantoms, adding
the obstacles in ECS reduces all eigenvalues 𝜆1 and 𝜆3 reduce by the
ame amount, whereas the reduction in 𝜆2 is two times more than
oth 𝜆 and 𝜆 . Thus, the results in Appendix B appear to support our
1 3
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Fig. 15. Comparison between cDTI parameters of the experimental (blue whisker plots) and in-silico data (green whisker plots). Agreement between (a) 𝜆1; (b) 𝜆2; (c) 𝜆3; (d) MD;
(e) FA; (f) RD of the experimental data and numerical phantom.

Fig. 16. Effect of (a) increase in collagen density, (b) increase in twisting, and (c) decrease in curvature on MD.

Fig. 17. Effect of (a) increase in collagen density, (b) increase in twisting, and (c) decrease in curvature on FA.
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argument that dismissing obstacles in ECS increases 𝜆2. In addition,
although there is no statistical difference between the in-silico and ex-
vivo values of 𝜆1 and 𝜆3, there are differences between the range of
heir quartiles and extremes as shown in the box plots of Fig. 15. The
ossible explanation for these differences is that the reported values
or CM shape parameters are an average from a large part of a heart,
hereas these values are used for every small in-silico voxel.

. Limitations and future works

The most important limitation is that non-CM compartments, along
ith tortuous inter-sheetlet space, are not included into the in-silico
hantom. Moreover, the lack of local information about the CM shape
arameters for every voxel makes these findings less generalisable.
hirdly, as shown in Table 3, among 23 adjustable parameters of the
umerical phantom, only eigenvectors of in-silico voxels are exactly
atched with their ex-vivo counterparts. For the remaining 20 parame-

ers, we either discarded these parameters (such as collagen’s diffusivity
nd relaxation (𝐷𝑐𝑜𝑙𝑙𝑎𝑔𝑒𝑛 and 𝑇2𝑐𝑜𝑙𝑙𝑎𝑔𝑒𝑛 ), tissue twisting (𝛼), wall curvature

(𝑝𝑟 and 𝑝𝑙), etc.) or used the values reported in the literature (such
as CMs’ dimension (𝐿, 𝑉 , 𝐴 and 𝐵), CMs’ permeability (𝑘𝑆𝑎𝑟𝑐𝑜. and
𝐼𝐶𝐷𝑠), etc.) which are likely to differ from the parameters of the ex-
ivo data under comparison. Therefore, there is a definite need for an
maging method for intact hearts that enables us to reveal this infor-
ation. Imaging to this aim could be based on synchrotron radiation
-ray phase-contrast imaging, which has facilitated the investigation
f myocardial tissue in detail, as recently shown by Pierpaoli (2010),
hinohara et al. (2016) and Kaneko et al. (2017).

Sensitivity analysis of cDTI parameters or simulated diffusion signal
o microstructure parameters listed in Table 3, along with incorporating
on-CM compartments into the present phantom, will be the subject of
uture works. Moreover, the proposed micro-scale numerical phantom
an be integrated into the XCAT phantom (Segars et al., 2010) to
enerate a micro-structurally informed numerical phantom of a whole
ardiac organ. This opens up an opportunity for virtual imaging trials
n cardiac dMRI through simulating 3D cardiac dMRI images — which
re micro-structurally informed — together with including the effect of
ardiac contraction and respiratory motion on dMRI images.
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Appendix A. Mesh convergence analysis

This experiment aims to find the coarsest tetrahedral mesh used to
generate the phantom, at which the simulated signal becomes indepen-
dent of the mesh resolution. The mesh independence is evaluated by
generating successively finer resolution of tetrahedral meshes for the
domain of interest until the changes in the simulated signal become
negligible. The number of tetrahedral elements at which this mesh
independency is observed is employed for all subsequent simulations.
Due to considerable memory requirements for higher b-values, we
limited our analysis to the lower b-value of 𝑏 = 0 (s∕mm2) and 𝑏 =
100 (s∕mm2). All imaging parameters of the simulation are set as
described in Section 4.1, except diffusion encoding direction, which
is set in the direction of 𝑧-axis. Fig. 18 shows mesh analysis for a
100 × 100 × 100 (μm3) phantom where changes in magnetisation and
elapsed time for solving Bloch–Torrey equation are evaluated versus
the phantoms generated by more refined tetrahedral elements (or more
tetrahedral elements) at 𝑏 = 0 (s∕mm2) and 𝑏 = 100 (s∕mm2).

According to Fig. 18, the maximum number of tetrahedral elements
t which the simulation result is approximately independent of mesh
esolution is 1 486 993, which is achieved by setting the following
arameters in iso2mesh:

• opt.radbound = 6: The maximum surface element size.
• opt.angbound = 30: The minimum angle of a surface triangle.
• opt.distbound = 0.45: The maximum distance between the centre

of the surface bounding circle and centre of the element bounding
sphere.

• opt.reratio = 3: The maximum radius-edge ratio.
• maxvol = 5: The target maximum tetrahedral element volume.

ppendix B. Effect of obstacles into ECS

To support the argument about the role of non-CM compartments
nd tortuous structure of inter-sheetlet space in reduction of 𝜆2, several
imulations were run over multiple 3D simplified versions of myocar-
ial in-silico phantoms with different density of the obstacles in ECS.
ig. 19 shows simplified phantoms where light blue is ECS, and pink
nd dark blue represent the CMs and obstacles, respectively. In these
hantoms, both CMs and obstacles have cuboid shapes. The phantom
riented in space, where the CMs and obstacles were parallel to the
-axis, and sheetlets were perpendicular to the y-axis. In Figs. 19(b)
nd 19(d) obstacles are only placed in inter-sheetlet space, whereas in
igs. 19(c) and 19(e) obstacles are also added into inter-CM space.

In these experiments, parameters of the phantoms and simulations
ere similar to the experiment in Section 4, but spins were encoded

n 12 directions. Moreover, CMs and obstacles share the same values
or diffusivity, 𝑇2 relaxation, and permeability. As illustrated in Fig. 19,
he resulting eigenvectors for each phantom are oriented correctly, and
dding the obstacles does not change their orientation, at least in the
ase of these simplified phantoms. Table 6 shows eigenvalues for the
hantoms in Fig. 19 along with their percentage change with respect
o the initial phantom in Fig. 19(a), where there are no obstacles in
CS. In all phantoms, the eigenvalues reduce, and the reduction in 𝜆2
s two times larger than the reduction in 𝜆1 and 𝜆3. Interestingly, in

Table 6 we observed that the reduction in both 𝜆1 and 𝜆3 is the same
for all phantoms, e.g., 𝛥𝜆1 = 𝛥𝜆3. Therefore, it is possible to hypothesise
that these conditions are more likely to occur for the proposed in-silico
phantom by adding the obstacles.

However, as mentioned earlier, including the above-mentioned ob-
stacles reduces all eigenvalues, whereas we are only interested in 𝜆2
reduction. Therefore, to preserve matching between 𝜆1 and 𝜆3, ICS
diffusivity should increase to offset the reduction in 𝜆1 and 𝜆3, while
more reduction in 𝜆2 is likely to lead to matching between 𝜆2 of in-silico
and ex-vivo data. This can be demonstrated by comparing 𝜆1 and 𝜆3 of
phantoms (c) and (d) computed by ICS diffusivity of 1 μm2∕ms, shown
in Table 7, with their counterpart for phantom (a) computed using ICS
diffusivity of 0.83 μm2∕ms, shown in Table 6.

http://www.multix.org
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Fig. 18. Mesh analysis: dependency of magnetisation to mesh resolution at: (a) 𝑏 = 0 (s∕mm2) (b) 𝑏 = 100 (s∕mm2).

Fig. 19. Simple phantom mimicking myocardial microstructure (light blue: ECS, pink: CMs) to investigate the effect of adding obstacles (dark blue) into the ECS on eigenvalues.
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Table 6
Effect of adding obstacles into ECS (Fig. 16) on reduction of 𝜆2 with ICS diffusivity of 0.83 μm2∕ms.
Eigenvalues (μm2∕ms) Fig. 19(a) Fig. 19(b) Fig. 19(c) Fig. 19(d) Fig. 19(e)

𝜆1 1.63 1.56 (↓4%) 1.47 (↓10%) 1.51 (↓7%) 1.35 (↓17%)
𝜆2 1.34 1.20 (↓11%) 1.06 (↓21%) 1.10 (↓18%) 0.86 (↓35%)
𝜆3 1.01 0.97 (↓4%) 0.90 (↓10%) 0.94 (↓7%) 0.83 (↓18%)
Table 7
Effect of adding obstacles into ECS (Fig. 19) on eigenvalues with ICS diffusivity of 1 μm2∕ms.
Eigenvalues (μm2∕ms) Fig. 19(a) Fig. 19(b) Fig. 19(c) Fig. 19(d) Fig. 19(e)

𝜆1 1.81 1.73 1.63 1.69 1.52
𝜆2 1.48 1.30 1.16 1.20 0.94
𝜆3 1.08 1.04 0.97 1.01 0.91
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