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The modeling of the diffusion MRI signal from moving and deforming organs such as the heart is chal-
lenging due to significant motion and deformation of the imaged medium during the signal acquisition.
Recently, a mathematical formulation of the Bloch-Torrey equation, describing the complex transverse
magnetization due to diffusion-encoding magnetic field gradients, was developed to account for the
motion and deformation. In that work, the motivation was to cancel the effect of the motion and defor-
mation in the MRI image and the space scale of interest spans multiple voxels. In the present work, we
adapt the mathematical equation to study the diffusion MRI signal at the much smaller scale of biological
cells.
We start with the Bloch-Torrey equation defined on a cell that is moving and deforming and linearize

the equation around the magnitude of the diffusion-encoding gradient. The result is a second order signal
model in which the linear term gives the imaginary part of the diffusion MRI signal and the quadratic
term gives the apparent diffusion coefficient (ADC) attributable to the biological cell. We numerically val-
idate this model for a variety of motions and deformations.

� 2020 Elsevier Inc. All rights reserved.
1. Introduction

Diffusion MRI is an imaging modality that is capable of generat-
ing images with a contrast that is sensitive to the diffusional
motion of water molecules [1]. It plays a very important role in
the study of the microscopic structure of biological tissues by mea-
suring the diffusion characteristics of water molecules averaged at
the scale of the imaging voxel. While this technique has been very
successfully applied to static organs such as the brain [2–4], the
interpretation of the diffusion MRI signal from moving organs like
the beating heart is made difficult by the tissue motion and defor-
mation during acquisition. In healthy hearts, the long axes of car-
diac myocytes are orientated in a helical arrangement through
the ventricular wall and the cardiac cells are organized in laterally
reinforced layers (sheetlets) of a few cells in thickness [5,6]. Car-
diac diffusion MRI can be used to show angular differences in
hypertrophic cardiac myopathy which could be fundamental in
assessing heart disease [7–9]. The sensitivity of diffusion MRI to
cardiac motion makes it difficult to assess to what extent the
diffusion measurements reflect the real properties of the cardiac
tissues. This is illustrated in some experimental studies introduced,
for example, in [10–15].

The signal measured in diffusion MRI is the total transverse
magnetization in a voxel. This magnetization can be modeled by
the complex-valued Bloch-Torrey partial differential equation
(PDE) [16]. Originally, this equation was proposed to explain the
signal attenuation due to diffusion at the scale of the image, with
an (apparent) diffusion coefficient assigned to each voxel. More
recently, it has been used to model the transverse magnetization
at the microscopic scale, on the scale of the individual cells. In this
way, one can study the contribution to the signal that is attributa-
ble to various types of cells or to the extra-cellular space inside the
imaging voxel. In static organs, such as the brain, modeling and
simulation efforts that link the measured diffusion MRI signal with
the geometric structure of the cells and the extra-cellular space
include analytical works (see, for example, [17,18]) and numerical
works (see, for example [19–25]). For the heart, we cite the works
[26–30] in which ex-vivo diffusion MRI is presented by performing
numerical simulations on a model of fiber phantom and virtual car-
diac microstructure. This model includes a simplified representa-
tion of individual cells, with physiologically correct cell size and
orientation, and the diffusion MRI is simulated using a Monte Carlo
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method and realistic MRI sequences. The results are then com-
pared with experimental measurements to validate the proposed
model.

In contrast to the vast amount of past works for static organs,
very few previous modeling and simulation works exist that
include the influence of significant physiological motion of the
imaged organ during the diffusion MRI acquisition. In [31] the
Bloch-Torrey equation is expressed in generalized curvilinear coor-
dinates to describe the behavior of the magnetization in the heart
during its deformation over the cardiac cycle and a change of basis
formula was used in order to take into account the effect of motion
on diffusion. In another recent work [32], a mathematical formula-
tion of the Bloch-Torrey PDE was developed to account for the
motion and deformation. That formulation was obtained by writ-
ing the Bloch-Torrey PDE in a domain that deforms over time
according to the laws of continuum mechanics and the interest
was on cancelling the effect of the motion in the MRI images. In
the present work, we adapt the mathematical equations developed
in [32] to study the diffusion MRI signal arising from cells, i.e., the
scale of interest will be much smaller than that of the imaging
voxel.

In Section 2 we introduce the Bloch-Torrey equation in a mov-
ing and deforming biological cell at the microscopic scale. Section 3
is dedicated to the derivation of a new second order model using
linearization technique on the solution of the Bloch-Torrey equa-
tion. In the new model, the linear term gives the imaginary part
of the diffusion MRI signal and the quadratic term gives the ADC
attributable to the biological cell. In Section 4, we present some
numerical simulations to validate our model in the presence of
an analytical deformation for different geometries of the biological
cell. We conclude with some remarks in Section 5.

2. Theory

Let X � Rdimbe the interior of a biological cell (dim being the
space dimension), and let C ¼ @X be its boundary. In what follows,
we will make the simplifying assumption that the cell membrane
is impermeable. We first describe the Bloch-Torrey PDE in a static
cell and then in a moving and deforming cell.

2.1. Bloch-Torrey PDE in a biological cell

The complex-valued transverse water proton magnetization M
in X can be described by the following Bloch-Torrey PDE[16]:

@tM x; tð Þ � divx rrxM x; tð Þð Þ þ icg � xf tð ÞM x; tð Þ ¼ 0 in X� 0; Tð Þ
rrM � nx ¼ 0 on C� 0; Tð Þ
M x;0ð Þ ¼ q on X� 0f g

8>><
>>:

ð1Þ

where nx is the outward pointing normal to X;q is the initial mag-
netization. The coefficient r is the intrinsic diffusion coefficient and
is assumed constant in X, c ¼ 2:67513� 108 rad s�1 T�1 is the gyro-
magnetic ratio of the water proton, and the vector g ¼ gugis the
applied diffusion-encoding magnetic field gradient (g containing
its magnitude, ug is a unit direction vector in Rdim). The function f
is a normalized time profile of the diffusion-encoding magnetic field
gradient sequence. The time profile of the standard Pulsed Gradient
Spin Echo (PGSE) [17] sequence, simplified to include only the
parameters relevant to diffusion, is:

f tð Þ ¼
1 if 0 < t 6 d;

�1 if D < t 6 Dþ d;

0 elsewhere:

8><
>: ð2Þ
The time at which the signal is measured is called the echo time
TE P Dþ d. The logarithm of the diffusion MRI signal is usually
plotted against the b-value:

b :¼ c2kgk2
Z TE

0
F tð Þ2dt ¼ c2kgk2d2 D� d

3

� �
;

where

F tð Þ ¼
Z t

0
f sð Þds:

The b-value is an important quantity in diffusion MRI. Typically, for
different choices of D and d, the value of kgk is adjusted so that the
same set of b-values is used.

While physically, the measurable diffusion MRI signal is due to
the spins in all the biological cells and the extra-cellular space in a
voxel, it makes mathematically sense to define the part of the dif-
fusion MRI signal due to a particular biological cell in order to iso-
late and study its diffusion characteristics. We define the diffusion
MRI signal from the cellX as the integral of the magnetization at TE
over X:

S ¼
Z
X
M x; TEð Þdx:

It then follows that the effective diffusion coefficient of the biolog-
ical cell X can be defined as:

Deff
ug

� � 1

c2
R TE
0 F tð Þ2dt

@

@g2 ln
S
S0

� ������
g¼0

; ð3Þ

where S0 is the integral of the magnetization over X, measured for

g ¼ 0. The Deff
ug

defined in the formula in Eq. (3) depends on the gra-

dient direction ug and the temporal profile f tð Þ, but not on the gra-
dient amplitude g.

In the MRI community, the effective diffusion coefficient is fit-
ted using the measured diffusion MRI signal at several b-values
and the value is referred to as the ”apparent diffusion coefficient”
(ADC). The ADC is widely used in medical applications, for instance,
ADC maps of brain have been used to identify tumors (see [33]).

2.2. Moving and deforming biological cell

We consider a moving and deforming biological cell X tð Þ � Rdim

on the time interval t 2 0; T½ � with T > 0. Let us introduce the geo-
metric transformation u which is a differentiable, time-space
dependent function:

u : 0; Tð Þ �X 0ð Þ ! X tð Þ;
t; xð Þ # u t; xð Þ ¼ X;

and assume that at each point x, the curve t # u t;xð Þ satisfies:
@tu t; xð Þ ¼ v u t; xð Þ; tð Þ;
u 0; xð Þ ¼ x;

where v is the velocity field v : Rdim ! Rdim. In short, the moving
and deforming domain X tð Þf gt2 0;T½ � evolves from the initial domain

X 0ð Þ � Rdim according to the transformation u.
The time variation of the magnetization M in X tð Þ can be writ-

ten as a function of the diffusion flux through the boundary C tð Þ:
d
dt

Z
X tð Þ

M X; tð ÞdX ¼
Z
C tð Þ

rrXM X; tð Þ � nXdSX :

By using the Reynolds transport theorem [34] and taking into
account the frequency term (icg � xf tð ÞM x; tð Þ) in the Bloch-Torrey
PDE in a static domain, we recover the Bloch-Torrey PDE in the
moving domain as:
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@tM X; tð Þ � divX rrXM X; tð Þð Þ þ divX M X; tð Þv X; tð Þð Þ
þicg � Xf tð ÞM X; tð Þ ¼ 0

in X tð Þ � 0; Tð Þ
rrM � nX ¼ 0 on C tð Þ � 0; Tð Þ
M X;0ð Þ ¼ q Xð Þ on X tð Þ � 0f g:

8>>>>>>><
>>>>>>>:

ð4Þ

To transform the magnetization M, defined on the deforming
domain to a related quantity M on the initial domain, we use the
definition:

M : X 0ð Þ � 0; Tð Þ ! R

M x; tð Þ# M u t; xð Þ; tð Þ:
From [32], under the assumption of the incompressibility of the
medium:

divX vð Þ ¼ 0; det Ju
� �

¼ 1;

the Bloch-Torrey PDE for M on X 0ð Þ can be written as:

@tM x; tð Þ � div Ju
�1rJ�T

u rM x; tð Þ
� �

þicg �u t;xð Þf tð ÞM x; tð Þ ¼ 0 in X 0ð Þ � 0; Tð Þ;
J�1
u rJ�T

u rM � nx ¼ 0 on C 0ð Þ � 0; Tð Þ;
M x;0ð Þ ¼ q xð Þ on X 0ð Þ � 0f g;

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð5Þ

where Ju ¼ rxu is the Jacobian matrix of the deformation field u.
We use the notation:

J�T
u � Ju

�1
� �T

:

The vector nx is the outward pointing normal to X 0ð Þ.
In this paper we consider Eq. (5) as the reference model and we

refer to it as BTPDE-D (for Bloch-Torrey PDE in a deforming
domain), from which we will derive, in the next section, the ADC
of a moving and deforming cell. The diffusion MRI signal, obtained
by solving Eq. (5), will be called the reference signal:

Sref ¼
Z
X
M x; TEð Þdx: ð6Þ

For the details on the derivation of BTPDE-D, the reader is referred
to [32].

3. ADC of BTPDE-D using linearization

In this section we derive the ADC of BTPDE-D using lineariza-
tion around g, the magnitude of the diffusion-encoding gradient
in (5).

Let us decompose the deformation field as:

u t;xð Þ :¼ xþ d t;xð Þ;

where d is a displacement field, and we define the Jacobian matrix
of u by:

Ju :¼ Iþ Jd;

with Jd ¼ rxd being the Jacobian matrix of d.
We transform the magnetization M (5) by defining a new

unknown M
�
:

M x; tð Þ ¼ M
�

x; tð Þ exp �icg � x
Z t

0
f sð Þds

� �
:

It is easy to show that M
�

satisfies the following problem:
@t M
�

x; tð Þ � div K rM
�

x; tð Þ � icgF tð ÞM
�

x; tð Þ
� �

þ iF tð ÞKcg � rM
�

x; tð Þ;
�

þ Kcg � cgF2 tð Þ þ icg � d t; xð Þf tð Þ
h i

M
�

x; tð Þ ¼ 0 in X� 0; Tð Þ;

K rM
�
�icgF tð ÞM

�h i
� nx ¼ 0 on C� 0; Tð Þ;

M
�

x; 0ð Þ ¼ q on X� 0f g:

8>>>>>>>><
>>>>>>>>:

ð7Þ
where

K ¼ J�1
u rJ�T

u :

Under the assumption that the initial magnetization q is constant,
we introduce a non-dimensional parameter e > 0 in g, so that

g ¼ e g
�
. Then (7) becomes:

@tM
�
e x; tð Þ � div K rM

�
e x; tð Þ � iecg

�
F tð ÞM

�
e x; tð Þ

� �
þ ieF tð ÞKcg� �rM

�
e x; tð Þ;

�
þ e2Kcg

� �cg� F2 tð Þ þ iec g
� �d t;xð Þf tð Þ

h i
M
�
e x; tð Þ ¼ 0 in X� 0; Tð Þ;

K rM
�
e � iecg

�
F tð ÞM

�
e

h i
� nx ¼ 0 on C� 0; Tð Þ;

M
�
e x; 0ð Þ ¼ q on X� 0f g;

8>>>>>>>><
>>>>>>>>:

ð8Þ

Assuming e is small, we write M
�
e x; tð Þ as an expansion in powers of

e:

M
�
e x; tð Þ ¼

X1
j¼0

ejM
�

j x; tð Þ:

Inserting the above expansion in (8), we recover the following equa-
tions for the first three terms.

– For M
�

0 :

@tM
�

0 x; tð Þ � div KrM
�

0 x; tð Þ
� �

¼ 0 in X� 0; Tð Þ

KrM
�

0 � nx ¼ 0 on C� 0; Tð Þ
M
�

0 x;0ð Þ ¼ q on X� 0f g:

8>>><
>>>:

ð9Þ

– For M
�

1 :

@tM
�

1 x; tð Þ � div KrM
�

1 x; tð Þ
� �

þ idiv Kcg
�
F tð ÞM

�
0 x; tð Þ

� �
þiF tð ÞKcg� �rM

�
0 x; tð Þ þ icg

� �d t;xð Þf tð ÞM
�

0 ¼ 0 in X� 0; Tð Þ
K rM

�
1 � icg

�
F tð ÞM

�
0

h i
� nx ¼ 0 on C� 0; Tð Þ

M
�

1 x;0ð Þ ¼ 0 on X� 0f g:

8>>>>>>><
>>>>>>>:

ð10Þ
– For M

�
2 :

@tM
�

2 x;tð Þ�div K rM
�

2 x;tð Þ� icg
�
F tð ÞM

�
1 x;tð Þ

� �
þ iF tð ÞKcg��rM

�
1 x;tð ÞþKcg

��cg�F2 tð Þq
�

þicg
��d t;xð Þf tð ÞM

�
1 ¼0 inX� 0;Tð Þ

K rM
�

2� icg
�
F tð ÞM

�
1

h i
�nx ¼0 onC� 0;Tð Þ

M
�

2 x;0ð Þ¼0 onX� 0f g:

8>>>>>>><
>>>>>>>:

ð11Þ
From (9) we deduce that

M
�

0 � q: ð12Þ
Consequently (10) is:

@tM
�

1 x; tð Þ � div KrM
�

1 x; tð Þ
� �

þ idiv Kcg
�
F tð Þq

� �
þicg

� �d t; xð Þf tð Þq ¼ 0 in X� 0; Tð Þ
K rM

�
1 � icg

�
F tð Þq

h i
� nx ¼ 0 on C� 0; Tð Þ

M
�

1 x;0ð Þ ¼ 0 on X� 0f g:

8>>>>>>><
>>>>>>>:

ð13Þ
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From (13) we observe that M
�

1 is purely imaginary, and it can be
written as:

M
�

1 ¼ iqckg� kx x; tð Þ; ð14Þ
where x x; tð Þ is the solution of:

@tx x;tð Þ�div Krx x;tð Þ�F tð ÞKug
� �þug �d t;xð Þf tð Þ¼0 inX� 0;Tð Þ

K rx�F tð Þug
	 
 �nx ¼0 onC� 0;Tð Þ

x x;0ð Þ¼0 onX� 0f g:

8><
>: ð15Þ

Equivalently, by defining x
�

x; tð Þ ¼ x x; tð Þ � F tð Þug � x, we get for x
�
:

@t x
�

x; tð Þ � div Krx
�

x; tð Þ
� �

þ ug � xþ d t;xð Þð Þf tð Þ ¼ 0 in X� 0; Tð Þ

K rx
�h i

� nx ¼ 0 onC� 0; Tð Þ
x
�

x;0ð Þ ¼ 0 on X� 0f g:

8>>><
>>>:

ð16Þ
and

M
�

1 ¼ iqckg� k x
�

x; tð Þ þ F tð Þug � x
� �

: ð17Þ

After integration in time and space of (11) we recover:Z
X
M
�

2 þ i
Z t

0
F sð Þ

Z
X
Kcg

� �rM
�

1 x; sð Þ þ q
Z t

0
F2 sð Þ

Z
X
Kcg

� �cg�

þ i
Z t

0
f sð Þ

Z
X
cg

� �d s;xð ÞM
�

1 ¼ 0: ð18Þ

By using the expression of the imaginary part of M1 (17), (18)
becomes:R
XM

�
2 ¼q

R t
0 F sð ÞRXKcg� �rx x;sð Þkcg�k�q

R t
0 F

2 sð ÞRXKcg� �cg�
þqR t

0 f sð ÞRX cg� �d s;xð Þx x;sð Þkcg�k:
ð19Þ

The transverse magnetization of the biological cell X to a second
order approximation in e is:

M
�
e 	 M

�
0 þ eM

�
1 þ e2M

�
2; ð20Þ

and the diffusion MRI signal is:

Snew ¼
Z
X
qþ eM

�
1 x; TEð Þ þ e2M

�
2 x; TEð Þ

� �
dx:

Inserting the expression into the original variable g gives the
approximation to the signal:

Snew
qjXj ¼ 1þ ikcgkSimag

new � ADCnewkcgk2
Z TE

0
F tð Þ2dt; ð21Þ

where the imaginary part of the signal accounts for the linear term
in cg:

Simag
new ¼ 1

jXj
Z
X
x x; TEð Þdx ¼ � 1

jXj
Z TE

0

Z
X
ug � d t;xð Þdxf tð Þdt; ð22Þ
Fig. 1. The finite element-meshes of three cylinders that model a myocyte. The finite-ele
element mesh of the twisted cylinder has 13515 nodes and 54883 elements, the bend c
and the apparent diffusion coefficient (ADC) accounts for the quad-
ratic term in cg:

ADCnew ¼ 1

jXj R TE
0 F tð Þ2dt

A1 þ A2 þ A3ð Þ; ð23Þ

where the three terms that contribute to the ADC are:

A1 ¼
Z TE

0
F tð Þ2

Z
X
K t;xð Þug � ug

� �
dt; ð24Þ

A2 ¼�
Z TE

0
F tð Þ

Z
X

K t; xð Þug � rx x; tð Þ� �� �
dt; ð25Þ

A3 ¼�
Z TE

0
f tð Þ

Z
X
ug � d t; xð Þx x; tð Þ

� �
dt: ð26Þ

Using the divergence theorem for A2 and the definition ofx
�
, we get:

A1 þ A2 ¼ � R TE
0 F tð Þ R

@X x
�

x; tð ÞK t; xð Þug � nxdsx
� �

dt

þ R TE
0 F tð Þ RX x

�
x; tð Þdiv K t;xð Þug

� �
dx

� �
dt:

Thus, we can split ADCnew into four terms as follows:

ADCnew ¼ 1

jXj R TE
0 F tð Þ2dt

Aa þ Ab þ Ac þ Adð Þ; ð27Þ

where

Aa ¼�
Z TE

0
F tð Þ

Z
@X

x
�

x; tð ÞK t; xð Þug � nxdsx

� �
dt ð28Þ

Ab ¼�
Z TE

0
f tð Þ

Z
X
ug � d t; xð Þx� x; tð Þdx

� �
dt ð29Þ

Ac ¼�
Z TE

0
f tð ÞF tð Þ

Z
X
ug � d t;xð Þ� �

ug � x
� �

dx
� �

dt ð30Þ

Ad ¼
Z TE

0
F tð Þ

Z
X
x
�

x; tð Þdiv K t; xð Þug
� �

dx
� �

dt: ð31Þ
4. Numerical results

In this section we validate the second order model (21) by com-
paring it against the reference signal in (6) from the BTPDE-D
model.

4.1. Deformation field

We design a homogeneous deformation field u for heart cells
(myocytes) given by:

u x; tð Þ ¼ P tð Þx; P tð Þ ¼
P11 tð Þ 0 0
0 P22 tð Þ 0
0 0 P33 tð Þ

0
B@

1
CA ð32Þ

with

P11 tð Þ ¼ P22 tð Þ ¼ 1� V tð Þ; ð33Þ
P33 tð Þ ¼ 1þWk tð Þ; ð34Þ
ment mesh of the straight cylinder has 13518 nodes and 54921 elements. The finite-
ylinder has 13530 nodes and 55004 elements.
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and

k tð Þ ¼ 0:5 1� cos pt=TsÞð Þif t 6 Ts0:5 1� cos p t � Tð Þ=TdÞð Þelse:ððf

The parameter W P 0 controls the amplitude of the deformation,
T ¼ 1000 ms is the duration of one cardiac cycle, where Ts ¼ T=3
is the duration of the contraction of the heart (systolic phase) and
Td ¼ 2T=3 is the duration of dilation (diastolic phase). The function
V tð Þ is taken in the form:

V tð Þ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=P33 tð Þ

p
: ð35Þ

to ensure that

det P tð Þð Þ ¼ 1;8t > 0:

The displacement field is thus:

d t;xð Þ ¼ Q tð Þx; Q tð Þ ¼
P11 tð Þ � 1 0 0

0 P22 tð Þ � 1 0
0 0 P33 tð Þ � 1

0
B@

1
CA;

and the Jacobian matrices, which are independent of x, are:

Ju tð Þ ¼ P tð Þ; Jd tð Þ ¼ Q tð Þ:
For this example, the diffusion tensor in the Bloch-Torrey PDE is
given by:

K tð Þ ¼ r P�1 tð Þ
� �2

:

The imaginary part of the signal is

Simag
new ¼ �uT

g

Z TE

0
Q tð Þf tð Þdt

� �
1
jXj

Z
X
xdx

� �
; ð36Þ
Fig. 2. Cylinders at different moments in cardiac deformation. From left to right: t = 0
Deformation amplitude W = 1. Geometry: (a) Straight cylinder. (b) Bent cylinder. (c) Tw
where 1
jXj
R
X xdx is the center of mass of the domain. The first term

in the ADC is

Aa ¼ �uT
g

Z TE

0
F tð Þr Idþ Q tð Þð Þ�2

Z
@X

x
�

x; tð Þnxdsx

� �
dt; ð37Þ

where
R
@X x

�
x; tð Þnxdsx describes the flux of x

�
x; tð Þ around the

boundary. The second term of the ADC is

Ab ¼ �uT
g

Z TE

0
f tð ÞQ tð Þ

Z
X
xx

�
x; tð Þdx

� �
dt; ð38Þ

where
R
X xx

�
x; tð Þdx are the moments of x

�
x; tð Þ around the princi-

ple axes. Finally,

Ac ¼ �uT
g

Z TE

0
f tð ÞF tð ÞQ tð Þdt

� � Z
X
xxTdx

� �
ug; ð39Þ

where
R
X xxTdx are the second order moments of the domain. The

last term is independent of the space variable, i.e.:

Ad ¼ 0:

To study the effects of the geometry we consider a straight cylinder
as the canonical geometry of the heart cell as well as two other
geometries where the cylinder is twisted and bent, see Fig. 1.

The values of W in the numerical simulations range between 0
and 2. The rate of the deformation is the same in the x and y direc-
tions. It is a contraction in the first third of 0; T½ � (systolic phase)
and an extension in the remaining two-thirds (diastolic phase).
In the z-direction, the first third of 0; T½ � is an extension and the
remaining two-thirds is a contraction. There is no net motion
between the starting and ending points of the diffusion MRI exper-
ms, t = 140 ms (mid-systole). t = 300 ms (end-systole), t = 640 ms (mid-diastole).
isted cylinder.



Fig. 3. Real part of the reference signal and the new second order approximation signal as a function of b-value for different values of W, the deformation parameter (W ¼ 0
means the cell is static during the diffusion MRI sequence). Sequence parameters: d ¼ 5 ms and D ¼ 40 ms. Top left: t = 140 ms (mid-systole), ug ¼ 1;0;0ð Þ. Top right:
t = 140 ms (mid-systole), ug ¼ 0;0;1ð Þ. Bottom left: t = 640 ms (mid-diastole), ug ¼ 1;0;0ð Þ. Bottom right: t = 640 ms (mid-diastole), ug ¼ 0;0;1ð Þ. Geometry: straight
cylinder. Deformation field: Homogeneous (Eqs. (32)–(35)).

Fig. 4. Imaginary part of the reference signal and the new second order approx-
imation signal as a function of b-value for different values of the deformation
parameter W (W ¼ 0 means the cell is static during the diffusion MRI sequence), t
t ¼ 140 ms (mid-systole) of the cardiac cycle. Sequence parameters: d ¼ 5 ms and
D ¼ 40 ms. Geometry: straight cylinder. Deformation field: Homogeneous (Eqs.
(32)–(35)).
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iment over the interval 0; T½ �. The effect of the deformation is pre-
sented in Fig. 2 for the straight, bent and twisted cylinders at dif-
ferent times in the cardiac cycle.

We will also simulate a space-dependent deformation field,
given by the following equations:
P33 t; zð Þ ¼ 1þWz2k tð Þ; ð40Þ

V tð Þ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=P33 t; zð Þ

p
	 1

2
Wz2k tð Þ; ð41Þ

P11 t; zð Þ ¼ P22 t; zð Þ ¼ 1� V t; zð Þ;
	 1� 1

2Wz2k tð Þ: ð42Þ

The deformation u defined as:

u t; xð Þ ¼ P t; zð Þx
with

P t; zð Þ ¼
P11 t; zð Þ 0 0

0 P22 t; zð Þ 0
0 0 P33 t; zð Þ

0
B@

1
CA

will be written as:

u x; tð Þ ¼

1� 1
2Wz2k tð Þ

� �
x

1� 1
2Wz2k tð Þ

� �
y

1þWz2k tð Þ
� �

z

0
BBBB@

1
CCCCA: ð43Þ
4.2. Simulations for one cylindrical cell

In this section we numerically compare the reference signal Sref
in Eq. (6) and the newly derived signal Snew in Eq. (21). We solve (5)



Fig. 5. The normalized ADC of the reference signal and the ADC of the new second order approximation signal as function of the deformation parameter W (W ¼ 0 means the
cell is static during the diffusion MRI sequence), at different time points in the cardiac cycle: t = 140, 300, 640 ms. Top left, PGSE (d ¼ 5 ms;D ¼ 10 ms), ug ¼ 1;0;0ð Þ. Top right,
PGSE (d ¼ 5 ms;D ¼ 10 ms), ug ¼ 0;0;1ð Þ. Bottom left, PGSE (d ¼ 5 ms;D ¼ 40 ms), ug ¼ 1;0;0ð Þ. Bottom right, PGSE (d ¼ 5 ms;D ¼ 40 ms), ug ¼ 0;0;1ð Þ. Geometry: straight
cylinder. Deformation field: Homogeneous (Eqs. (32)–(35)).
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to obtain the reference signal and we solve (16) to obtain the new
signal. The numerical implementation was done in Matlab using P1
finite elements for the space discretization coupled to the ODE sol-
ver ”ode23t” for the time integration. The equations were solved
on a cylinder of radius 10 lm and height 100 lm.

We chose the PGSE sequence [17] with pulse duration d ¼ 5 ms
and two values of the diffusion time: D ¼ 10 ms and D ¼ 40 ms.
The intrinsic diffusion coefficient is chosen as
r ¼ 2� 10�3 mm2=s, and the initial condition q � 1 T.

For the simulations presented in Figs. 3–7, we used the homo-
geneous deformation field (Eqs. (32)–(35)).

In Fig. 3 we show the real part of the diffusion MRI signal for Sref
(6) and Snew (21) for two diffusion-encoding directions:
ug ¼ 1;0;0ð Þ and ug ¼ 0;0;1ð Þ, with d ¼ 5 ms and D ¼ 40 ms. We
compute the signal during a diffusion sequence at two different
points of the cardiac cycle: t; t þ TE½ �; t ¼ 140 ms (mid-systole)
and t ¼ 640 ms (mid-diastole). For diffusion in the x-direction,
we observe that the new second order approximation signal is
close to the reference signal for all deformation parameter W, for
b-values up to 500 s=mm2, at both time points of the cardiac cycle.
However, in the diffusion direction z;ug ¼ 0;0;1ð Þ, the new second
order approximation signal is less close to the reference signal for
large values of W, and the inaccuracy is more significant at higher
b-values (higher g). This is a consequence of our design of the
deformation to be more significant in the z-direction than in the
x and y directions.

In Fig. 4 we show the imaginary part of the new second order

approximation signal, Simag
new , for diffusion encoding in the x-

direction, ug ¼ 1;0;0ð Þ, at t = 140 ms (mid-systole) in the cardiac
cycle. Due to the presence of cardiac deformation (W – 0), the
imaginary part of the signal is non-zero, unlike the case without
deformation (W ¼ 0).

Next, we compare the reference ADCref (3) and the newly
derived ADCnew (27), both normalized by dividing by the intrinsic
diffusion coefficient r. In Fig. 5, we show the normalized ADCs in
two diffusion-encoding directions: ug ¼ 1;0;0ð Þ and ug ¼ 0;0;1ð Þ,
at several different time points in the cardiac cycle:
t ¼ 140;300;640f gms, for two diffusion-encoding sequences:
PGSE (d ¼ 5 ms;D ¼ 10 ms) and PGSE (d ¼ 5 ms;D ¼ 40 ms). It
can be seen that the ADC of the new second order approximation
signal model is very accurate for describing the ADC of the refer-
ence model.

In Fig. 6, we show the normalized ADC of the new second order
approximation signal model (27), computed in 800 directions, uni-
formly distributed in the unit sphere, for the sequence PGSE
(d ¼ 5 ms;D ¼ 40 ms). The results are presented for the deforma-
tion amplitude W = 0 (without deformation effect) and
W ¼ 1;W ¼ 2. The ADC is computed for different time points in
the cardiac cycle: t ¼ 140;300;640f gms. As in Fig. 5 we see that
the ADC without cardiac deformation (W ¼ 0) coincides with the
one at the end of the systolic phase (t ¼ 300 ms) because in that
moment the time variation of the heart deformation is negligible.
This confirms the simulation results obtained in [35] and the
experimental results in [10]. To show the effect of the deformation
amplitude W, we compare the ADC at t = 140 ms and t = 640 ms of
the cardiac cycle for W ¼ 1 and W ¼ 2. We see clearly that the lar-
gerW induces a larger ADC in the z direction. This effect is minimal
in the x and y diffusion-encoding directions.



Fig. 6. Normalized ADC of the new second order approximation signal model (27), computed in 800 directions, uniformly distributed in the unit sphere, for the sequence
PGSE (d ¼ 5 ms;D ¼ 40 ms), W is the deformation parameter, t indicates the point in the cardiac cycle. Top left: W = 0 (no deformation). Top right: W = 1, t = 300 ms. Middle
left: W = 1, t = 140 ms. Middle right: W = 2, t = 140 ms. Bottom left: W = 1, t = 640 ms. Bottom right: W = 2, t = 640 ms. The black points are the magnitude of the normalized
ADC multiplied by the diffusion-encoding direction. The color indicates the value of the normalized ADC. Geometry: straight cylinder. Deformation field: Homogeneous (Eqs.
(32)–(35)).
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In Fig. 7 we show the effect of the shape of the cylindrical cell on
the ADC. We compute the normalized ADC of the new second order
approximation signal model (27), in 800 directions, uniformly dis-
tributed on the unit sphere, for the sequence PGSE
(d ¼ 5 ms;D ¼ 40 ms) for the bent cylinder (Fig. 2)) and the twisted
cylinder (Fig. 2(c)). Again, we observe that the ADC without cardiac
deformation (W ¼ 0) coincides with the one at the end systolic
phase (t ¼ 300 ms) when the variation of the heart deformation
during the application of the diffusion encoding sequence is
negligible.

We see that the ADC for the twisted cylinder and the straight
cylinder are similar, whereas the ADC of the bent cylinder is
significantly different. To explain this phenomenon, we show
the differences in the directional surface to volume ratios of
these 3 geometries. The directional surface to volume ratio comes
up in the well-known formula for the ADC in the short diffu-
sion time regime. The short time approximation (STA) [36,37]
formula is the following (with correction for non-narrow pulses
[38]):

STA ¼ r 1� 4
ffiffiffiffi
r

p

3
ffiffiffiffi
p

p Cd;D
Aug

V

� 
; ð44Þ

with r being the intrinsic diffusivity coefficient, and



Fig. 7. Normalized ADC of the new second order approximation signal model (27), computed in 800 directions, uniformly distributed in the unit sphere, for the sequence
PGSE (d ¼ 5 ms;D ¼ 40 ms). The black points are the magnitude of the normalized ADC multiplied by the diffusion-encoding direction. The color indicates the value of the
normalized ADC.W is the deformation parameter, t indicates the point in the cardiac cycle. Top left: twisted cylinder,W ¼ 0 (no deformation effect). Top right: bend cylinder,
W ¼ 0 (no deformation effect). Middle left: twisted cylinder,W ¼ 1 and t ¼ 140 ms . Middle right: bend cylinder,W ¼ 1 and t ¼ 140 ms. Bottom left: twisted cylinder,W ¼ 1
and t ¼ 300 ms . Bottom right: bend cylinder, W ¼ 1 and t ¼ 300 ms. Deformation field: Homogeneous (Eqs. (32)–(35)).
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Aug ¼
Z
@X

ug � n
� �2 ds

is the gradient direction dependent surface area, the pulse separa-
tion and pulse duration are accounted for by:

Cd;D ¼ 4
35

Dþ dð Þ7=2 þ D� dð Þ7=2 � 2 d7=2 þ D7=2
� �

d2 D� d=3ð Þ

¼
ffiffiffiffi
D

p
1þ 1

3
d
D
� 8
35

d
D

� �3=2

þ � � �
 !

:

When d 
 D, the value Cd;D is approximately
ffiffiffiffi
D

p
.

In Fig. 8, we show the ADC obtained by evaluating the above
STA formula. It is clear that the STA formula closely tracks the
shapes of the ADC shown in Figs. 6 and 7. There is a minor differ-
ence in the case of the bend cylinder when W ¼ 0 (the sphere
being flat along the z-axis rather than the y-axis), but clearly, the
directional surface area of the bend cylinder is significantly differ-
ent than those of the straight and twist cylinders.

Now we show simulation results of the non-homogeneous
deformation field (Eqs. (40)–(43)). In Fig. 9, we can see that, similar
to the homogeneous deformation field we showed previously, the
higher signal curves in the x-direction are due to a more deformed
field (higher W), and in the z-direction, they are due to a less



Fig. 8. Normalized ADC in the short time approximation regime (STA), computed in 100 directions, uniformly distributed in the unit sphere, for the sequence PGSE
(d ¼ 5 ms;D ¼ 40 ms). The black points are the magnitude of the normalized ADC multiplied by the diffusion-encoding direction. The color indicates the value of the
normalized ADC. W is the deformation parameter, t indicates the point in the cardiac cycle. Top left: straight cylinder, W ¼ 0 (no deformation effect). Top right: straight
cylinder, W ¼ 1, t = 140 ms. Middle left: bend cylinder, W ¼ 0. Middle right: bend cylinder, W ¼ 1; t ¼ 140 ms. Bottom left: twisted cylinder, W ¼ 0. Bottom right: twisted
cylinder, W ¼ 1; t ¼ 140 ms. Deformation field: Homogeneous (Eqs. (32)–(35)).
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deformed field (lower W). Also similar to the homogeneous defor-
mation field, the ADC in Fig. 10 at time t = 300 ms for non-zero val-
ues of W is approximately the same as for W ¼ 0. However, some
differences can be seen between the two deformation fields. For
example, in the z-direction, the differences at larger W between
the ADC at t = 140 ms and the ADC at t = 640 ms are smaller for
the non-homogeneous deformation field than for the homoge-
neous one. This difference can be seen also in Fig. 11, where we
show the magnetization solution at TE for the straight cylinder
undergoing the two deformations. For the homogeneous deforma-
tion field, the difference in the magnetization solution between
t = 140 ms and t = 640 ms are more significant than for the case
of the non-homogeneous deformation field.
4.3. Computational time

In Table 1 we show the computational times for the simulation
of the reference model (BTPDE-D) and the new second order
approximation model for the straight cylinder. All the simulations
were performed on a server computer with 12 processors (Intel (R)
Xeon (R) E5-2667 @2.90 GHz), 192 GB of RAM, running CentOS 7,
using MATLAB R2019a. It can be seen that the new second order
model takes about 70% of the computational time of the reference
model. In Table 2 we show the computational times to simulate the
new second order model for the twisted and bend cylinders. The
computational times do not depend on the value of the deforma-
tion parameter W and on the point of the cardiac cycle simulated.



Fig. 9. Real part of the reference signal and the new second order approximation signal as a function of b-value for different values of W, the deformation parameter (W ¼ 0
means the cell is static during the diffusion MRI sequence). Sequence parameters: d ¼ 5 ms and D ¼ 40 ms. Top left: t = 140 ms (mid-systole), ug ¼ 1;0;0ð Þ. Top right:
t = 140 ms (mid-systole), ug ¼ 0;0;1ð Þ. Bottom left: t = 640 ms (mid-diastole), ug ¼ 1;0;0ð Þ. Bottom right: t = 640 ms (mid-diastole), ug ¼ 0;0;1ð Þ. Geometry: straight
cylinder. Deformation field: Non-homogeneous (Eqs. (40)–(43)).

Fig. 10. The normalized ADC of the reference signal and the ADC of the new second order approximation signal as function of the deformation parameterW (W ¼ 0means the
cell is static during the diffusion MRI sequence), at different time points in the cardiac cycle: t = 140, 300, 640 ms. Left, PGSE (d ¼ 5 ms;D ¼ 40 ms), ug ¼ 1;0;0ð Þ. Right, PGSE
(d ¼ 5 ms;D ¼ 40 ms), ug ¼ 0;0;1ð Þ. Geometry: straight cylinder. Deformation field: Non-homogeneous (Eqs. (40)–(43)).
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These computational times are provided to illustrate typical simu-
lation times. Though the advantages of the new second order
model include shorter simulation times, more significant advan-
tages lie in the fact that it is more amenable to mathematical
analysis.

5. Concluding remarks

We derived a second order (in the diffusion-encoding gradient
magnitude g) signal perturbation model whose linear term gives
the imaginary part of the diffusion MRI signal and whose quadratic
term gives the ADC attributable to the biological cell. We numeri-
cally validated this model for a constructed example of cardiac
motion and deformation using a finite element discretization of
the equations in a cylindrical cell.

This work is a first step to understand the origins of the imagi-
nary part of the diffusion MRI signal in the case of moving and
deforming domains and the deviation of the ADC from that which
is measured in the case of a static domain. By formulating the sec-
ond order model, we are able to write the different contributing



Fig. 11. Magnetization solution of Eq. (5) at echo time (TE) for d ¼ 5 ms, D ¼ 40 ms, ug ¼ 0;0;1ð Þ and b-value = 50 s=mm2. Moments of the cardiac cycle: From left to right:
t = 0 ms, t = 140 ms (mid-systole). t = 300 ms (end-systole), t = 640 ms (mid-diastole). Geometry: straight cylinder. (a) Non-homogeneous deformation field (Eqs. (40)–(43)).
Deformation amplitude W = 2� 10�3. (b) Homogeneous deformation field (Eqs. (32)–(35)). Deformation amplitude W = 2.

Table 2
The computational times to obtain the new 2nd order model, per diffusion-encoding
direction. The sequence is PGSE (d ¼ 5 ms;D ¼ 40 ms).

Finite-element mesh size New 2nd order model

Twisted cylinder
Nodes: 13515, Elements: 54883 57.5 s

Bend cylinder
Nodes: 13530, Elements: 55004 55.1 s

Table 1
The average computational times to obtain the ADC, per diffusion-encoding direction.
Geometry: straight cylinder (13518 nodes and 54921 elements).

Reference model (BTPDE-D) New 2nd order model

d ¼ 5 ms;D ¼ 10 ms 71.62 s 47.99 s
d ¼ 5 ms;D ¼ 40 ms 72.53 s 51.04 s
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factors to the linear and the quadratic terms in (21). In particular,
we related the imaginary part of the signal to the center of mass of
the domain (22) and the ADC to four contributing terms (27). We
gave a physical interpretation to these contributing factors in

terms of the flux and the moments of the functionx
�

x; tð Þ. The next

step is to understand x
�

x; tð Þ, which is a solution of a diffusive PDE
subject to zero initial conditions and homogeneous Neumann
boundary conditions.

In addition to providing an analytic understanding of the diffu-
sion MRI of moving and deforming domains, our work also
included the implementation of a numerical method to simulate
the BTPDE-D model and the new second order approximation sig-
nal model.
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