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a b s t r a c t 

The diffusion MRI signal arising from neurons can be numerically simulated by solving the Bloch-Torrey partial 
differential equation. In this paper we present the Neuron Module that we implemented within the Matlab- 
based diffusion MRI simulation toolbox SpinDoctor. SpinDoctor uses finite element discretization and adaptive 
time integration to solve the Bloch-Torrey partial differential equation for general diffusion-encoding sequences, 
at multiple b-values and in multiple diffusion directions. In order to facilitate the diffusion MRI simulation of 
realistic neurons by the research community, we constructed finite element meshes for a group of 36 pyramidal 
neurons and a group of 29 spindle neurons whose morphological descriptions were found in the publicly available 
neuron repository NeuroMorpho.Org . These finite elements meshes range from having 15,163 nodes to 622,553 
nodes. We also broke the neurons into the soma and dendrite branches and created finite elements meshes for 
these cell components. Through the Neuron Module, these neuron and cell components finite element meshes 
can be seamlessly coupled with the functionalities of SpinDoctor to provide the diffusion MRI signal attributable 
to spins inside neurons. We make these meshes and the source code of the Neuron Module available to the public 
as an open-source package. 

To illustrate some potential uses of the Neuron Module, we show numerical examples of the simulated dif- 
fusion MRI signals in multiple diffusion directions from whole neurons as well as from the soma and dendrite 
branches, and include a comparison of the high b-value behavior between dendrite branches and whole neu- 
rons. In addition, we demonstrate that the neuron meshes can be used to perform Monte-Carlo diffusion MRI 
simulations as well. We show that at equivalent accuracy, if only one gradient direction needs to be simulated, 
SpinDoctor is faster than a GPU implementation of Monte-Carlo, but if many gradient directions need to be simu- 
lated, there is a break-even point when the GPU implementation of Monte-Carlo becomes faster than SpinDoctor. 
Furthermore, we numerically compute the eigenfunctions and the eigenvalues of the Bloch-Torrey and the Laplace 
operators on the neuron geometries using a finite elements discretization, in order to give guidance in the choice 
of the space and time discretization parameters for both finite elements and Monte-Carlo approaches. Finally, we 
perform a statistical study on the set of 65 neurons to test some candidate biomakers that can potentially indicate 
the soma size. This preliminary study exemplifies the possible research that can be conducted using the Neuron 
Module. 
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. Introduction 

Diffusion magnetic resonance imaging is an imaging modality that
an be used to probe the tissue micro-structure by encoding the inco-
erent motion of water molecules with magnetic field gradient pulses
 Hahn, 1950; Stejskal and Tanner, 1965; Le Bihan et al., 1986 ). Using
iffusion MRI to get tissue structural information in the mammalian
rain has been the focus of much experimental and modeling work in
ecent years. 
∗ Corresponding author. 
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In terms of modeling, the predominant approach up to now
as been adding the diffusion MRI signal from simple geometri-
al components and extracting model parameters of interest. Nu-
erous biophysical models subdivide the tissue into compartments
escribed by spheres (or ellipsoids), cylinders (or sticks), and the
xtra-cellular space. Such modeling work for the brain white mat-
er can be found in Assaf et al. (2008) ; Alexander et al. (2010) ;
hang et al. (2011) ; Panagiotaki et al. (2012) and for the gray mat-
er in Jespersen et al. (2007) ; Zhang et al. (2012) ; Burcaw et al. (2015) ;
alombo et al. (2017, 2016) ; Lampinen et al. (2017) . Some model pa-
ameters of interest include axon diameter and orientation, neurite den-
ity, dendrite structure, the volume fraction and size distribution of
 2020 

ticle under the CC BY-NC-ND license. 

https://doi.org/10.1016/j.neuroimage.2020.117198
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neuroimage
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2020.117198&domain=pdf
mailto:jingrebecca.li@inria.fr
https://doi.org/10.1016/j.neuroimage.2020.117198
http://creativecommons.org/licenses/by-nc-nd/4.0/


C. Fang, V.-D. Nguyen and D. Wassermann et al. NeuroImage 222 (2020) 117198 

c  

o  

c  

s  

N
 

l  

a  

p  

r  

a  

e  

d  

f  

s  

t  

o  

o  

a  

e
 

s  

a  

e  

w  

m
 

t  

H  

F  

p  

S

 

 

 

 

 

 

f  

V  

a  

s
 

u  

t  

t  

b  

B  

t  

2  

H  

s  

t  

m  

i  

s  

p  

s  

l  

f  

p  

w  

t  

s  

m  

t  

l  

t  

E
 

c  

s  

s  

w
 

D  

1  

(  

n  

r  

u  

n  

a
 

N  

m  

d  

r  

t  

w  

a  

A  

t  

h  

i  

i  

N  

m  

n
 

e  

t  

i  

o  

M  

w  

n  

s  

r
 

i  

m  

t  

o  

s  

s  

p  

w  

t  

w  

T  

o  

a  

M  

t  

e  
ylinder and sphere components and the effective diffusion coefficient
r tensor of the extra-cellular space. More sophisticated mathemati-
al models based on homogenization and perturbations of the intrin-
ic diffusion coefficient can be found in Novikov and Kiselev (2010) ;
ing et al. (2017) and the references contained therein. 

Numerical simulations can help deepen the understanding of the re-
ationship between the cellular structure and the diffusion MRI signal
nd can play a significant role in the formulation and validation of ap-
ropriate models in order to answer relevant biological questions. Some
ecent works that use numerical simulations of the diffusion MRI signal
s a part of model validation include ( Jespersen et al., 2019; Veraart
t al., 2019 ). Simulations can be also used to investigate the effect of
ifferent pulse sequences and tissue features on the measured signal
or the purpose of developing, testing, and optimizing novel MRI pulse
equences ( Ianu ş et al., 2016; Drobnjak et al., 2011; Mercredi and Mar-
in, 2018; Rensonnet et al., 2018 ). In fact, given the recent availability
f vastly more advanced computational resources and computer mem-
ry, simulation frameworks have begun to be increasingly used directly
s the computational model for tissue parameter estimation ( Palombo
t al., 2016; Rensonnet et al., 2019 ). 

Two main groups of approaches to the numerical simulation of diffu-
ion MRI are 1) using random walkers to mimic the diffusion process in
 geometrical configuration; 2) solving the Bloch-Torrey partial differ-
ntial equation, which describes the evolution of the complex transverse
ater proton magnetization under the influence of diffusion-encoding
agnetic field gradients pulses. 

The first group is referred to as Monte-Carlo ( “MC ” for short) simula-
ions in the literature and previous works include ( Palombo et al., 2016;
ughes, 1995; Yeh et al., 2013; Hall and Alexander, 2009; Balls and
rank, 2009 ). GPU-based accelerations of Monte-Carlo simulations were
roposed in Nguyen et al. (2018) ; Waudby and Christodoulou (2011) .
ome software packages using this approach include 

1. Camino Diffusion MRI Toolkit, developed at UCL ( http://cmic.cs.
ucl.ac.uk/camino/ ); 

2. DIFSIM, developed at UC San Diego ( http://csci.ucsd.edu/projects/
simulation.html ); 

3. Diffusion Microscopist Simulator, Yeh et al. (2013) developed at
Neurospin, CEA; 

4. We mention also that the GPU-based Monte-Carlo simulation code
described in Nguyen et al. (2018) is available upon request from the
authors. 

The works on model formulation and validation for brain tissue dif-
usion MRI cited above ( Palombo et al., 2016; Jespersen et al., 2019;
eraart et al., 2019; Ianu ş et al., 2016; Drobnjak et al., 2011; Mercredi
nd Martin, 2018; Rensonnet et al., 2018; 2019 ) all used Monte-Carlo
imulations. 

The second group of simulations, which up to now has been less often
sed in diffusion MRI, relies on solving the Bloch-Torrey partial differen-
ial equation (PDE) in a geometrical configuration. Numerical methods
o solve the Bloch-Torrey equation with arbitrary temporal profiles have
een proposed in Xu et al. (2007) ; Li et al. (2014) ; Nguyen et al. (2014) ;
eltrachini et al. (2015) . The computational domain is discretized ei-
her by a Cartesian grid ( Xu et al., 2007; Li et al., 2014; Russell et al.,
012 ) or by finite elements ( Nguyen et al., 2014; Beltrachini et al., 2015;
agslatt et al., 2003; Loren et al., 2005; Moroney et al., 2013 ). The un-

tructured mesh of a finite element discretization appeared to be better
han a Cartesian grid in both geometry description and signal approxi-
ation ( Nguyen et al., 2014 ). For time discretization, both explicit and

mplicit ODE solvers have been used. The efficiency of diffusion MRI
imulations is also improved by either a high-performance FEM com-
uting framework ( Nguyen, 2016; Nguyen et al., 2018 ) for large-scale
imulations on supercomputers or a discretization on manifolds for thin-
ayer and thin-tube media ( Nguyen et al., 2019a ). Finite elements dif-
usion MRI simulations can be seamlessly integrated with cloud com-
uting resources such as Google Colaboratory notebooks working in a
 s
eb browser or with the Google Cloud Platform with MPI paralleliza-
ion ( Nguyen et al., 2019b ). Our previous works in PDE-based neuron
imulations include the simulation of neuronal dendrites using a tree
odel ( Nguyen et al., 2015 ) and (using the techniques we introduce in

his work) the demonstration that diffusion MRI signals reflect the cel-
ular organization of cortical gray matter, these signals being sensitive
o cell size and the presence of large neurons such as the spindle (von
conomo) neurons ( Wassermann et al., 2018; Menon et al., 2019 ). 

In a recent paper ( Li et al., 2019 ), we presented a MATLAB Toolbox
alled SpinDoctor that is a diffusion MRI simulation pipeline based on
olving the Bloch-Torrey PDE using finite elements and an adaptive time
tepping method. That first version of SpinDoctor focused on the brain
hite matter. 

It was shown in Li et al. (2019) that at equivalent accuracy, Spin-
octor simulations of the extra-cellular space in the white matter is
00 times faster than the Monte-Carlo based simulations of Camino
 http://cmic.cs.ucl.ac.uk/camino/ ), and SpinDoctor simulations of a
euronal dendrite tree is 400 times faster than Camino. We refer the
eader to Li et al. (2019) for the numerical validation of SpinDoctor sim-
lations with regard to membrane permeability as well as extensions to
on-standard pulse sequences and the incorporation of transverse relax-
tion. 

In this paper, we present a new module of SpinDoctor called the
euron Module that enables neuron simulations for a group of 36 pyra-
idal neurons and a group of 29 spindle neurons whose morphological
escriptions were found in the publicly available neuron repository Neu-

oMorpho.Org ( Ascoli et al., 2007 ). The key to making accurate simula-
ions possible is the use of high quality meshes for the neurons. For this,
e used licensed software from ANSA-BETA CEA Systems ans to correct
nd improve the quality of the geometrical descriptions of the neurons.
fter processing, we produced good quality finite elements meshes for

he collection of 65 neurons. These finite elements meshes range from
aving 15,163 nodes to 622,553 nodes. They are used as input meshes
n the Neuron Module, where they can be further refined if required us-
ng the built-in option in SpinDoctor. Currently, the simulations in the
euron Module enforce homogeneous Neumann boundary conditions,
eaning the spin exchange across the cell membrane is assumed to be
egligible. 

A recent direction for facilitating Monte-Carlo simulations is the gen-
ration of geometrical meshes that aim to produce ultra-realistic virtual
issues, see Palombo et al. (2019) ; Ginsburger et al. (2019) . Our work
s similar in spirit, with a first step being providing high quality meshes
f realistic neurons for finite elements simulations. Through the Neuron
odule, the neuron finite element meshes can be seamlessly coupled
ith the functionalities of SpinDoctor to provide the diffusion MRI sig-
al attributable to spins inside neurons for general diffusion-encoding
equences, at multiple diffusion-encoding gradient amplitudes and di-
ections. 

We make a note about the software. The first version of SpinDoctor
s a pipeline that constructs surface meshes relevant to the brain white
atter and performs diffusion MRI simulations using SpinDoctor’s in-

ernally constructed meshes. For technical reasons related to software
rganization, we decided to put the neuron meshes into a separate and
tand-alone pipeline and called it the Neuron Module. The diffusion MRI
imulation related routines were copied from the original SpinDoctor
ipeline into the Neuron Module pipeline. Within the Neuron Module,
e provide additional functionalities that are relevant to treating ex-

ernally generated meshes. The Neuron Module and other Modules that
e have developed are all grouped under the umbrella of the Matlab
oolbox whose name remains SpinDoctor. The user is referred to the
nline User Guide for the technical details of using the Toolbox. We
lso mention the existence of another SpinDoctor pipeline called the
atrix Formalism Module Li et al. (2019) that numerically computes

he eigenfunctions and eigenvalues of the Bloch-Torrey and Laplace op-
rators and we will use it to show later in this paper the time and space
cales of neuron diffusion MRI simulations. 

http://www.cmic.cs.ucl.ac.uk/camino/
http://www.csci.ucsd.edu/projects/simulation.html
http://cmic.cs.ucl.ac.uk/camino/
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. Theory 

Suppose the user would like to simulate the diffusion MRI signal
ue to spins inside a neuron, and assume that the spin exchange across
he cell membrane is negligible for the requested simulations. Let Ω be
he 3 dimensional domain that describes the geometry of the neuron of
nterest and let Γ = 𝜕Ω be the neuron cell membrane. 

.1. Bloch-Torrey PDE 

In diffusion MRI, a time-varying magnetic field gradient is applied
o the tissue to encode water diffusion. Denoting the effective time pro-
le of the diffusion-encoding magnetic field gradient by f ( t ), and let the
ector g contain the amplitude and direction information of the mag-
etic field gradient, the complex transverse water proton magnetization
n the rotating frame satisfies the Bloch-Torrey PDE: 

𝜕 

𝜕𝑡 
𝑀( 𝒙 , 𝑡 ) = − 𝐼 𝛾𝑓 ( 𝑡 ) 𝒈 ⋅ 𝒙 𝑀 ( 𝒙 , 𝑡 ) + ∇ ⋅ (  0 ∇ 𝑀( 𝒙 , 𝑡 )) , 𝒙 ∈ Ω, (1) 

here 𝛾 = 2 . 67513 × 10 8 rad s −1 T −1 is the gyromagnetic ratio of the water
roton, I is the imaginary unit,  0 is the intrinsic diffusion coefficient in
he neuron compartment Ω. The magnetization is a function of position
 and time t , and depends on the diffusion gradient vector g and the
ime profile f ( t ). 

Some commonly used time profiles (diffusion-encoding sequences)
re: 

1. The pulsed-gradient spin echo (PGSE) ( Stejskal and Tanner, 1965 )
sequence, with two rectangular pulses of duration 𝛿, separated by a
time interval Δ − 𝛿, for which the profile f ( t ) is 

𝑓 ( 𝑡 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
1 , 𝑡 1 ≤ 𝑡 ≤ 𝑡 1 + 𝛿, 

−1 , 𝑡 1 + Δ < 𝑡 ≤ 𝑡 1 + Δ + 𝛿, 

0 , otherwise, 
(2)

where t 1 is the starting time of the first gradient pulse with 𝑡 1 + Δ >

𝑇 𝐸 ∕2 , T E is the echo time at which the signal is measured. 
2. The oscillating gradient spin echo (OGSE) sequence ( Callaghan and

Stepianik, 1995; Does et al., 2003 ) was introduced to reach short
diffusion times. An OGSE sequence usually consists of two oscillating
pulses of duration 𝜎, each containing n periods, hence the frequency
is 𝜔 = 𝑛 

2 𝜋
𝜎

, separated by a time interval 𝜏 − 𝜎. For a cosine OGSE,
the profile f ( t ) is 

𝑓 ( 𝑡 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
cos ( 𝑛 2 𝜋

𝜎
𝑡 ) , 𝑡 1 < 𝑡 ≤ 𝑡 1 + 𝜎, 

− cos ( 𝑛 2 𝜋
𝜎
( 𝑡 − 𝜏)) , 𝜏 + 𝑡 1 < 𝑡 ≤ 𝑡 1 + 𝜏 + 𝜎, 

0 , otherwise , 

(3)

where 𝜏 = 𝑇 𝐸 ∕2 . 

The PDE needs to be supplemented by interface conditions. For the
euron simulations within the Neuron Module, we assume negligible
embrane permeability, meaning zero Neumann boundary conditions: 

 0 ∇ 𝑀( 𝒙 , 𝑡 ) ⋅ 𝒏 = 0 , 

here n is the unit outward pointing normal vector. The PDE also needs
nitial conditions: 

( 𝒙 , 0) = 𝜌, 

here 𝜌 is the initial spin density. 
The diffusion MRI signal is measured at echo time 𝑡 = 𝑇 𝐸 > Δ + 𝛿 for

GSE and T E > 2 𝜎 for OGSE. This signal is the integral of M ( x , T E ): 

 ∶= ∫
𝒙 ∈

⋃
{Ω} 

𝑀( 𝒙 , 𝑇 𝐸 ) 𝑑 𝒙 . (4)

n a diffusion MRI experiment, the pulse sequence (time profile f ( t ))
s usually fixed, while g is varied in amplitude (and possibly also in
irection). The signal S is plotted against a quantity called the b-value.
he b-value depends on g and f ( t ) and is defined as 

 ( 𝒈 ) = 𝛾2 ‖𝒈 ‖2 ∫
𝑇 𝐸 

0 
𝑑 𝑢 

( 

∫
𝑢 

0 
𝑓 ( 𝑠 ) 𝑑 𝑠 

) 

2 . 

or PGSE, the b-value is Stejskal and Tanner (1965) : 

 ( 𝒈 , 𝛿, Δ) = 𝛾2 ‖𝒈 ‖2 𝛿2 ( Δ − 𝛿∕3 ) . (5)

or the cosine OGSE with integer number of periods n in each of the two
urations 𝜎, the corresponding b-value is Xu et al. (2007) : 

 ( 𝒈 , 𝜎) = 𝛾2 ‖𝒈 ‖2 𝜎3 

4 𝑛 2 𝜋2 = 𝛾2 ‖𝒈 ‖2 𝜎
𝜔 

2 . (6)

he reason for these definitions is that in a homogeneous medium, the
ignal attenuation is 𝑒 −  0 𝑏 , where  0 is the intrinsic diffusion coefficient.

. Method 

.1. Constructing finite element meshes of neurons 

In the current version of the Neuron Module, we focus on a group
f 36 pyramidal neurons and a group of 29 spindle neurons found in
he anterior frontal insula (aFI) and the anterior cingulate cortex (ACC)
f the neocortex of the human brain. These neurons constitute, respec-
ively, the most common and the largest neuron types in the human
rain ( Nimchinsky et al., 1999; Evrard et al., 2012 ). They share some
orphological similarities such as having a single soma and dendrites

ranching on opposite sides. The collection of 65 neurons consists of 20
eurons for each type in the aFI, as well as 9 spindles and 16 pyramidals
n the ACC. 

We started with the morphological reconstructions (SWC files) pub-
ished in NeuroMorpho.Org ( Ascoli et al., 2007 ), the largest collection of
ublicly accessible 3D neuronal reconstructions. These surface descrip-
ions of the neurons cannot be used directly by SpinDoctor to generate
nite elements meshes since they contain many self-intersections and
roximities (see Fig. 1 , left). We used licensed software from ANSA-
ETA CEA Systems ans to manually correct and improve the quality
f the neuron surface descriptions and produced new surface triangula-
ions (see Fig. 1 , right) that are ready to be used for finite elements mesh
eneration. The new surface triangulations are passed into the software
MSH ( Geuzaine and Remacle, 2009 ) to obtain the volume tetrahedral
eshes. 

In Fig. 2 we summarize the pipeline that takes the SWC format files
rom NeuroMorpho.Org ( Ascoli et al., 2007 ) to the volume tetrahedral
eshes in the MSH format that the users of the Neuron Module will take

s the input geometrical description to the Neuron Module routines that
erform diffusion MRI simulations. This pipeline is provided here for
nformational purposes, it is not needed to run diffusion MRI simulations
n the Neuron Module. 

To further study the diffusion MRI signal of neurons, we broke the
eurons into disjoint geometrical components: namely, the soma and the
endrite branches. We manually rotated the volume tetrahedral mesh of
 whole neuron so that upon visual inspection it lies as much as possi-
le in the 𝑥 − 𝑦 plane. In this orientation, we cut the volume tetrahedral
esh into sub-meshes of the soma and the dendrite branches. As an

llustration, we show in Fig. 3 the spindle neuron 03a_spindle2aFI vol-
me tetrahedral mesh broken into sub-meshes of the soma and the two
endrite branches. 

.2. Diffusion MRI simulations using the neuron module 

SpinDoctor ( Li et al., 2019 ) is a MATLAB-based diffusion MRI sim-
lation toolbox. The first version of SpinDoctor focused on the brain
hite matter. It provides the following built-in functionalities: 

1. the placement of non-overlapping spherical cells (with an optional
nucleus) of different radii close to each other; 
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Fig. 1. Left: a surface description of a pyra- 
midal neuron published in NeuroMorpho.Org 

( Ascoli et al., 2007 ) which contains many self- 
intersections and proximities; it cannot be used 
for finite elements mesh generation. Right: a 
new surface triangulation that fixes the self- 
intersections and proximities; it is ready to be 
used for finite elements mesh generation. 

.SWC
Medical segmentation
NeuroMorpho.Org

.STL
Triangulated
representation

.NAS
Surface wrapping
Watertight surface
Volume meshes

.MSH
Volume meshes
for SpinDoctor

ANSA GMSH

swc2vtk
package

vtk2stl
package

BETA CAE Systems

Fig. 2. The SWC files from NeuroMorpho.Org ( Ascoli et al., 2007 ) are converted to the STL mesh format by using swc2vtk Miyamoto and vtk2stl . Then ANSA was used 
to generate watertight surface and volume meshes of the STL meshes whose output is in the NAS format. Finally, the NAS files were converted to volume tetrahedral 
meshes in the MSH format by the software GMSH ( Geuzaine and Remacle, 2009 ). 

Fig. 3. The volume tetrahedral mesh of the spin- 
dle neuron 03a_spindle2aFI is broken into three 
disconnected geometrical components: the soma 
and two dendrite branches. 
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d  
2. the placement of non-overlapping cylindrical cells (with an optional
myelin layer) of different radii close to each other in a canonical
configuration where they are parallel to the z -axis; 

3. the inclusion of an extra-cellular space that is enclosed either 
(a) in a tight wrapping around the cells; or 
(b) in a rectangular box; 

4. the deformation of the canonical configuration by bending and twist-
ing; 

nd uses the following methodology: 

1. it generates a good quality surface triangulation of the user speci-
fied geometrical configuration by calling built-in MATLAB compu-
tational geometry functions; 
2. it creates a good quality tetrahedron finite elements mesh from the
above surface triangulation by calling Tetgen ( Si, 2015 ), an external
package (the executable files are included in the Toolbox package); 

3. it constructs finite element matrices for linear finite elements on
tetrahedra (P1 elements) using routines from Rahman and Vald-
man (2013) ; 

4. it adds additional degrees of freedom on the compartment interfaces
to allow permeability conditions for the Bloch-Torrey PDE using the
formalism in Nguyen et al. (2014) ; 

5. it solves the semi-discretized FEM equations by calling built-in MAT-
LAB routines for solving ordinary differential equations. 

The Neuron Module is a stand-alone pipeline that contains all the
iffusion MRI simulation routines from the original SpinDoctor pipeline
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Fig. 4. The finite elements mesh (19425 nodes and 60,431 elements) of the spindle neuron 03b_spindle4aACC . 
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nd adds the relevant routines to process externally generated neuron
eshes. By neuron meshes we mean watertight surface triangulations

nd volume tetrahedral meshes. We do not consider the neuron de-
criptions from NeuroMorpho.Org neuron “meshes ”. The Neuron Module
akes the neuron watertight surface triangulations or volume tetrahedral
eshes and calls the Neuron Module routines that perform diffusion
RI simulations. The finite elements mesh package Tetgen ( Si, 2015 )

ontained in the release of SpinDoctor and the Neuron Module is used
o refine the input volume tetrahedral meshes, if desired. 

The accuracy of the SpinDoctor simulations is tuned using the fol-
owing three simulation parameters: 

1. Htetgen controls the finite element mesh size; 
(a) 𝐻𝑡𝑒𝑡𝑔𝑒𝑛 = −1 means the FE mesh size is determined automati-

cally by the internal algorithm of Tetgen to ensure a good qual-
ity mesh (subject to the constraint that the radius to edge ratio
of the tetrahedra is no larger than 2.0). 

(b) 𝐻𝑡𝑒𝑡𝑔𝑒𝑛 = ℎ requests a desired tetrahedra height of h 𝜇m (in later
versions of Tetgen, this parameter has been changed to the de-
sired volume of the tetrahedra). 

2. rtol controls the accuracy of the ODE solve. It is the relative residual
tolerance at all points of the FE mesh at each time step of the ODE
solve; 

3. atol controls the accuracy of the ODE solve. It is the absolute residual
tolerance at all points of the FE mesh at each time step of the ODE
solve. 

ll validation, accuracy, and timing simulations were performed on the
pindle neuron 03b_spindle4aACC ( Fig. 4 ). The sizes of the finite ele-
ents meshes of this neuron, which are the space discretization pa-

ameters , are the following: 

Space-1: 𝐻𝑡𝑒𝑡𝑔𝑒𝑛 = 0 . 5 𝜇𝑚 : the finite elements mesh contains 19,425
nodes and 60,431 elements; 

Space-1: 𝐻𝑡𝑒𝑡𝑔𝑒𝑛 = 0 . 1 𝜇𝑚 : the finite elements mesh contains 43,790
nodes and 157,484 elements; 

Space-1: 𝐻𝑡𝑒𝑡𝑔𝑒𝑛 = 0 . 05 𝜇𝑚 : the finite elements mesh contains
68,536 nodes and 266,337 elements; 

We ran simulations with the following ODE solver tolerances, which
re the time discretization parameters : 

Time-1: 𝑟𝑡𝑜𝑙 = 10 −2 , 𝑎𝑡𝑜𝑙 = 10 −4 ; 
Time-1: 𝑟𝑡𝑜𝑙 = 10 −3 , 𝑎𝑡𝑜𝑙 = 10 −5 ; 
Time-1: 𝑟𝑡𝑜𝑙 = 10 −4 , 𝑎𝑡𝑜𝑙 = 10 −6 ; 
Time-1: 𝑟𝑡𝑜𝑙 = 10 −6 , 𝑎𝑡𝑜𝑙 = 10 −8 ; 

The diffusion MRI experimental parameters, unless otherwise noted,
re the following: 

• the intrinsic diffusion coefficient is  0 = 2 × 10 −3 mm 

2 ∕ s ; 
• the diffusion-encoding sequences are PGSE ( 𝛿 = 2 . 5 ms , Δ = 5 ms ),

PGSE ( 𝛿 = 10 ms , Δ = 43 ms ), PGSE ( 𝛿 = 10 ms , Δ = 433 ms ); 
• the b-values are 𝑏 = {1000 , 4000} s/mm 

2 ; 
• 10 or 90 gradient directions were simulated, uniformly distributed

on the unit semi-circle in the 𝑥 − 𝑦 plane. 

. Numerical results 

.1. Validation of simulations 

In this section, we validate our simulations by refining in space (mak-
ng the finite elements smaller) and refining in time (decreasing the er-
or tolerances of the ODE solver). We took the simulation with the finest
pace discretization ( Space-3 : 𝐻𝑡𝑒𝑡𝑔𝑒𝑛 = 0 . 05 𝜇𝑚 ) and the finest time dis-
retization ( Time-4 : 𝑟𝑡𝑜𝑙 = 10 −6 , 𝑎𝑡𝑜𝑙 = 10 −8 ) as the reference solution. 

In Fig. 5 , we show the relative signal errors (in percent) between
everal simulations and the reference solution: 

 = 

||𝑆 

𝑅𝑒𝑓 − 𝑆 

𝑆𝑖𝑚𝑢𝑙 ||
𝑆 

𝑅𝑒𝑓 
× 100 , (7)

or PGSE ( 𝛿 = 10 ms , Δ = 43 ms ). By looking at the difference between
he reference solution and the coarser SpinDoctor simulations in Fig. 5 ,
e estimate that the accuracy of the reference solution is within 0.05%
f the true solution at 𝑏 = 1000 s/mm 

2 and it is within 0.2% of the true
olution at 𝑏 = 4000 s/mm 

2 . Fig. 5 (a) shows that for 𝑏 = 1000 s/mm 

2 , by
efining the time discretization from Time-1 to Time-3 , the maximum
 over 10 gradient directions went from around 1.06% down to 0.2%
or space discretization Space-1 and from 1.35% to 0.05% for space
iscretization Space-2 . We see in Fig. 5 (b) that by using Space-1 and
ime-2 : 

𝑡𝑒𝑡𝑔𝑒𝑛 = 0 . 5 𝜇m , 𝑟𝑡𝑜𝑙 = 10 −3 , 𝑎𝑡𝑜𝑙 = 10 −5 (8)

he maximum E over 10 gradient directions is less than 0.2% for 𝑏 =
000 s/mm 

2 and less than 0.35% for 𝑏 = 4000 s/mm 

2 . We will choose
he above set of simulation parameters in Eq. 8 for the later simulations,
nless otherwise noted. 
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Fig. 5. The relative errors between the reference signal and the simulated signals for the neuron 03b_spindle4aACC . 10 gradient directions uniformly placed on 
the unit semi-circle in the 𝑥 − 𝑦 plane were simulated. The gradient direction angle is given with respect to the x -axis. The simulations with large relative errors 
are discarded for the clarity of the plots. The diffusion coefficient is 2 × 10 −3 mm 

2 ∕ s . The gradient sequence is PGSE ( 𝛿 = 10 ms , Δ = 43 ms ). In the legend, h denotes 
Htetgen . (a) 𝑏 = 1000 s/mm 

2 . (b) 𝑏 = 1000 s/mm 

2 and 𝑏 = 4000 s/mm 

2 . 
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.2. Diffusion directions distributed in two dimensions 

We generated 90 diffusion directions uniformly distributed on the
nit semi-circle lying in the 𝑥 − 𝑦 plane (plotting 180 directions on the
nit circle due to the symmetry of g and − 𝒈 ) and computed the diffusion
RI signals in these 180 directions for three sequences: 

• PGSE ( 𝛿 = 2 . 5 ms , Δ = 5 ms ); 
• PGSE ( 𝛿 = 10 ms , Δ = 43 ms ); 
• PGSE ( 𝛿 = 10 ms , Δ = 433 ms ); 

The simulation parameters are specified in Eq. 8 . With this choice,
e verified that the signal is within 1% of the reference solution for all
eometries (the whole neuron, the soma, the two dendrites branches)
or the three gradient sequences simulated. 

The results for the spindle neuron 03b_spindle4aACC are shown in
ig. 6 . We plot the normalized signals: 

𝑆 

𝑆( 𝑏 = 0) 
||||

n the 180 diffusion directions in the 𝑥 − 𝑦 plane. The finite elements
eshes of the geometries simulated are superimposed on the plots for a

etter visualization. 
It can be seen that the dendrite branch diffusion signal shape is more

ike an ellipse at 𝑏 = 1000 s/mm 

2 , whereas at 𝑏 = 4000 s/mm 

2 the shape
s non-convex. The signal shape of the soma is like an ellipse except for
 = 4000 s/mm 

2 at the two shorter diffusion times. At the two shorter
iffusion times, the soma signal magnitude at 𝑏 = 4000 s/mm 

2 is much
educed with respect to the magnitude at 𝑏 = 1000 s/mm 

2 , in contrast
o the dendrite branches, where the difference in the signal magnitude
etween the two b-values is not nearly as significant. For the soma, at
he long diffusion time, there is not the large reduction in the signal
agnitude between 𝑏 = 1000 s/mm 

2 and 𝑏 = 4000 s/mm 

2 . 
By visual inspection, at the lower b-value, the signal in the whole

euron is close to the volume weighted sum of the signals from the three
ell components (the soma, the upper dendrite branch and the lower
endrite branch). A quantitative study is conducted in Section 4.3 . 
.3. Exchange effects between soma and dendrites 

Here we compare the volume weighted composite signal of the 3 cell
arts 

 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 = 

𝑉 𝑠𝑜𝑚𝑎 𝑆 𝑠𝑜𝑚𝑎 + 𝑉 𝑑 𝑒𝑛𝑑 𝑟𝑖𝑡𝑒 1 𝑆 𝑑 𝑒𝑛𝑑 𝑟𝑖𝑡𝑒 1 + 𝑉 𝑑 𝑒𝑛𝑑 𝑟𝑖𝑡𝑒 2 𝑆 𝑑 𝑒𝑛𝑑 𝑟𝑖𝑡𝑒 2 
𝑉 𝑛𝑒𝑢𝑟𝑜𝑛 

(9)

nd compare it to the signal of the whole neuron in the different gra-
ient directions. In Fig. 7 we see that the signal difference between the
wo is larger at longer diffusion times and at higher b-values. The error
lso presents a gradient-direction dependence. According to Fig. 6 and
ig. 7 , we can see that the error is larger in the direction parallel to the
ongitudinal axis of the neuron than in the direction perpendicular to
he longitudinal axis. 

.4. High b-value behavior 

In Veraart et al. (2019) it was shown experimentally that the diffu-
ion MRI signal of tubular structures such as axons exhibits a certain
igh b -value behavior, namely, the diffusion direction averaged signal,
 ave ( b ), is linear in 1 √

𝑏 
at high b -values: 

 𝑎𝑣𝑒 ( 𝑏 ) ≡ ∫‖𝒖 𝒈 ‖=1 𝑆 𝒖 𝒈 
( 𝑏 ) 𝑑 𝒖 𝒈 ∼ 𝑐 0 + 𝑐 1 

1 √
𝑏 
. (10)

ecause the dendrites of neurons also have a tubular structure, we test
hether the diffusion direction averaged signal, S ave ( b ), of dendrite
ranches also exhibits the above high b -value behavior. We computed
 ave ( b ) for the whole neuron as well as its two dendrite branches, av-
raged over 120 gradient directions uniformly distributed in the unit
phere. The results are shown in Fig. 8 . We see clearly the linear relation-
hip between S ave ( b ) and 1 √

𝑏 
in the dendrite branches for b -values in the

ange 2500 s/mm 

2 ≤ b ≤ 20000 s/mm 

2 . In contrast, in the whole neuron,
ue to the presence of the soma, such linear relationship is not exhibited.
y simulating for both  0 = 2 × 10 −3 mm 

2 ∕ s and  0 = 1 × 10 −3 mm 

2 ∕ s
e see that the fitted slope c 1 is indeed 1 √ 0 . 

.5. GPU Monte-Carlo simulation on neuron meshes 

We show that one can also use the neuron meshes we provide
ith Monte-Carlo diffusion MRI simulations. In particular, we ran
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Fig. 6. The diffusion MRI signals in 180 directions lying on the 𝑥 − 𝑦 plane, uniformly distributed on the unit circle. The distance from each data point to the origin 
represents the magnitude of the normalized signal which is dimensionless. The simulation parameters are 𝑟𝑡𝑜𝑙 = 10 −3 , 𝑎𝑡𝑜𝑙 = 10 −5 , 𝐻𝑡𝑒𝑡𝑔𝑒𝑛 = 0 . 5 𝜇m . The diffusion 
coefficient is 2 × 10 −3 mm 

2 ∕ s . (a) the whole neuron (finite elements mesh: 19425 nodes and 60,431 elements). (b) the dendrite1 (finite elements mesh: 10825 nodes 
and 30,617 elements). (c) the soma (finite elements mesh: 5842 nodes and 26,160 elements). (d) the dendrite2 (finite elements mesh: 6444 nodes and 24,051 
elements). 
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a  
he GPU implementation of Monte-Carlo simulations described in
guyen et al. (2018) , which provides two surface representation meth-
ds, namely the octree method and the binary maker method. Since we
nly have access to the GPU Monte-Carlo implementation with the oc-
ree method and the binary maker is an unconventional representation
ethod, the octree method is used for the simulations. 

The Monte-Carlo equivalent of the space discretization parameter

s the number of spins placed in the geometry and we simulated with
he following choices: 

MC Space-1: 5 × 10 5 spins; 
MC Space-2: 1 × 10 6 spins; 
MC Space-3: 2 × 10 6 spins; 

The Monte-Carlo equivalent of the time discretization parameter

s the time step size and we simulated with the following choices: 

MC Time-1: 𝑑𝑡 = 0 . 1 ms ; 
MC Time-2: 𝑑𝑡 = 0 . 01 ms ; 
MC Time-3: 𝑑𝑡 = 0 . 005 ms ; 
MC Time-4: 𝑑𝑡 = 0 . 001 ms ; 
To compare with an available analytical solution, we computed the
atrix Formalism( Callaghan, 1997; Barzykin, 1999 ) signal of a rectan-

le cuboid of size L x × L y × L z using the analytical eigenfunctions and
igenvalues of the rectangle cuboid( Grebenkov, 2007; Ozarslan et al.,
009; Drobnjak et al., 2011; Grebenkov, 2010 ). We chose 𝐿 𝑥 = 3 𝜇m ,

 𝑦 = 100 𝜇m , 𝐿 𝑧 = 1 𝜇m to be close to the size of the dendrite branches.
e computed the diffusion MRI signal in 10 gradient directions uni-

ormly placed on the unit semi-circle in the 𝑥 − 𝑦 plane. We define the
aximum relative error to be: 

 𝑚𝑎𝑥 = max 
10 directions in x-y plane 

||𝑆 

𝑅𝑒𝑓 − 𝑆 

𝑆𝑖𝑚𝑢𝑙 ||
𝑆 

𝑅𝑒𝑓 
× 100 , (11)

here the reference solution is the analytical signal from Matrix For-
alism. In Table 1 we see that there is a straightforward reduction

f the error in the SpinDoctor simulations as we decrease the ODE
olver tolerances and decrease Htetgen , the 𝐸 max going from 0.33% to
.02% for 𝑏 = 1000 s/mm 

2 and the 𝐸 max going from 0.59% to 0.03% for
 = 4000 s/mm 

2 . However, for GPU Monte-Carlo, the reduction of 𝐸 max 
s not consistent as the number of spins is increased and dt is reduced.
his means that we cannot use the finest GPU Monte-Carlo simulation
s a reference solution because it is not guaranteed that this simulation
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Fig. 7. (a) The absolute error between volume weighted composite signal and whole neuron signal. (b) The relative error between volume weighted composite 
signal and whole neuron signal. 90 gradient directions uniformly placed on the unit semi-circle in the 𝑥 − 𝑦 plane were simulated. The gradient direction angle is 
given with respect to the x -axis. The position of the neuron can be seen in Fig. 6 . 

Fig. 8. The direction-averaged signal for the neuron 03b_spindle4aACC . The S ave ( b ) is averaged over 120 diffusion directions, uniformly distributed in the unit 
sphere, and it is normalized so that 𝑆 𝑎𝑣𝑒 ( 𝑏 = 0) = 1 . The simulation parameters are 𝑟𝑡𝑜𝑙 = 10 −3 , 𝑎𝑡𝑜𝑙 = 10 −5 , 𝐻𝑡𝑒𝑡𝑔𝑒𝑛 = 0 . 5 𝜇𝑚 . The diffusion-encoding sequence is PGSE 
( 𝛿 = 10 ms , Δ = 43 ms ). The b-values are 𝑏 = {60000 , 40000 , 20000 , 12000 , 10000 , 8000 , 7000 , 6000 , 4000 , 2500} s/mm 

2 . (a)  0 = 1 × 10 −3 mm 

2 ∕ s . (b)  0 = 2 × 10 −3 mm 

2 ∕ s . 

Table 1 

The computational time (in seconds) and the maximum relative error (in percent) of SpinDoctor and GPU Monte-Carlo simulations for a rectangular 
cuboid ( 𝐿 𝑥 = 3 𝜇𝑚, 𝐿 𝑦 = 100 𝜇𝑚, 𝐿 𝑧 = 1 𝜇𝑚 ). The maximum relative error 𝐸 max is taken over 10 gradient directions uniformly placed on the unit 
semi-circle in the 𝑥 − 𝑦 plane. The reference signal is the analytical Matrix Formalism signal. 

SpinDoctor 𝛿 = 10 𝑚𝑠, Δ = 43 𝑚𝑠 𝐸 max GPU Monte-Carlo 𝛿 = 10 𝑚𝑠, Δ = 43 𝑚𝑠 𝐸 max 

𝑏 = 1000 𝑏 = 4000 𝑏 = 1000 𝑏 = 4000 

ℎ = 0 . 5 𝜇𝑚 𝑟𝑡𝑜𝑙 = 10 −3 , 𝑎𝑡𝑜𝑙 = 10 −5 0.33 0.59 5 × 10 5 spins 𝑑𝑡 = 0 . 01 𝑚𝑠 0.15 1.79 

ℎ = 0 . 5 𝜇𝑚 𝑟𝑡𝑜𝑙 = 10 −4 , 𝑎𝑡𝑜𝑙 = 10 −6 0.16 0.39 5 × 10 5 spins 𝑑𝑡 = 0 . 005 𝑚𝑠 0.18 6.11 

ℎ = 0 . 1 𝜇𝑚 𝑟𝑡𝑜𝑙 = 10 −4 , 𝑎𝑡𝑜𝑙 = 10 −6 0.09 0.37 1 × 10 6 spins 𝑑𝑡 = 0 . 01 𝑚𝑠 0.20 4.32 

ℎ = 0 . 1 𝜇𝑚 𝑟𝑡𝑜𝑙 = 10 −5 , 𝑎𝑡𝑜𝑙 = 10 −7 0.05 0.11 1 × 10 6 spins 𝑑𝑡 = 0 . 005 𝑚𝑠 0.47 4.17 

ℎ = 0 . 05 𝜇𝑚 𝑟𝑡𝑜𝑙 = 10 −6 , 𝑎𝑡𝑜𝑙 = 10 −8 0.04 0.06 2 × 10 6 spins 𝑑𝑡 = 0 . 005 𝑚𝑠 0.19 1.07 

ℎ = 0 . 01 𝜇𝑚 𝑟𝑡𝑜𝑙 = 10 −7 , 𝑎𝑡𝑜𝑙 = 10 −9 0.02 0.03 2 × 10 6 spins 𝑑𝑡 = 0 . 001 𝑚𝑠 0.67 0.95 
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Table 2 

The computational times of SpinDoctor and GPU Monte-Carlo simulations (in seconds). The simulation parameters for SpinDoctor are 𝑟𝑡𝑜𝑙 = 
10 −3 , 𝑎𝑡𝑜𝑙 = 10 −5 , 𝐻𝑡𝑒𝑡𝑔𝑒𝑛 = 0 . 5 𝜇𝑚 . The space discretization is: dendrite1 (finite elements mesh: 10825 nodes and 30,617 elements), dendrite2 (finite 
elements mesh: 6444 nodes and 24,051 elements), the soma (finite elements mesh: 5842 nodes and 26,160 elements), the whole neuron (finite 
elements mesh: 19425 nodes and 60,431 elements). The simulation parameters for GPU Monte-Carlo can be found in Tables 3 - 6 . The maximum 

relative error 𝐸 max (in percent) is taken over 10 gradient directions uniformly placed on the unit semi-circle in the 𝑥 − 𝑦 plane. ∗ : The GPU MC error 
2.34% is too large, this computational time ratio should not be used. 

Computational time (s) neuron dendrite1 dendrite2 soma 

𝛿 = 10 𝑚𝑠, Δ = 43 𝑚𝑠 b 𝐸 max t ( s ) 𝐸 max t ( s ) 𝐸 max t ( s ) 𝐸 max t ( s ) 

SpinDoctor 1000 0.16 17.1 0.52 7.8 0.11 3.4 0.17 5.7 

4000 0.34 26.0 0.91 11.8 0.13 4.9 0.23 6.8 

GPU Monte-Carlo 1000 0.14 537.8 0.65 337.3 0.51 116.1 0.29 311.2 

4000 0.60 1895.9 2.34 342.1 0.47 116.5 0.90 311.3 

GPU MC/ SpinDoctor ratio 1000 31 43 34 55 

4000 72 29 ∗ 24 46 

Table 3 

The computational time (in seconds) and the maximum relative error (in percent) of SpinDoctor and GPU Monte-Carlo simulations for the neuron 03b_spindle4aACC . 
The maximum relative error 𝐸 max is taken over 10 gradient directions uniformly placed on the unit semi-circle in the 𝑥 − 𝑦 plane. For the 𝐸 max of SpinDoctor, the 
reference signal is the one with the finest space discretization and the smallest time discretization, i.e. ℎ = 0 . 05 𝜇𝑚, 𝑟𝑡𝑜𝑙 = 10 −6 , 𝑎𝑡𝑜𝑙 = 10 −8 . For the 𝐸 max of GPU Monte- 
Carlo, two reference signals are used, one is the signal given by SpinDoctor with ℎ = 0 . 05 𝜇𝑚, 𝑟𝑡𝑜𝑙 = 10 −6 , 𝑎𝑡𝑜𝑙 = 10 −8 , the other is the signal given by GPU Monte-Carlo 
with 10 6 spins and 𝑑𝑡 = 0 . 005 𝑚𝑠 ( 𝐸 max for this case is written in the parenthesis). The data in bold are used in Table 2 . 

SpinDoctor 𝛿 = 10 𝑚𝑠 

Δ = 43 𝑚𝑠 

𝑏 = 1000 𝑏 = 4000 GPU MC 𝛿 = 10 𝑚𝑠 

Δ = 43 𝑚𝑠 

𝑏 = 1000 𝑏 = 4000 

𝐸 max t ( s ) 𝐸 max t ( s ) 𝐸 max t ( s ) 𝐸 max t ( s ) 

𝐡 = 𝟎 . 𝟓𝛍𝐦 

𝐫 𝐭 𝐨𝐥 = 𝟏𝟎 − 𝟑 
𝐚𝐭𝐨𝐥 = 𝟏𝟎 − 𝟓 

0.16 17.1 0.34 26.0 5 × 10 5 spins 

𝑑𝑡 = 0 . 1 𝑚𝑠 

0.73 

(0.87) 

89.1 2.28 

(2.40) 

89.7 

ℎ = 0 . 5 𝜇𝑚 

𝑟𝑡𝑜𝑙 = 10 −4 

𝑎𝑡𝑜𝑙 = 10 −6 

0.18 26.6 0.59 39.6 5 × 10 5 spins 

𝐝𝐭 = 𝟎 . 𝟎𝟏𝐦𝐬 
0.14 

(0.08) 

537.8 1.55 

(2.01) 

538.4 

ℎ = 0 . 1 𝜇𝑚 

𝑟𝑡𝑜𝑙 = 10 −3 

𝑎𝑡𝑜𝑙 = 10 −5 

0.06 93.5 0.10 137.8 5 × 10 5 spins 

𝑑𝑡 = 0 . 005 𝑚𝑠 

0.27 

(0.11) 

961.9 1.22 

(0.84) 

966.9 

ℎ = 0 . 1 𝜇𝑚 

𝑟𝑡𝑜𝑙 = 10 −4 

𝑎𝑡𝑜𝑙 = 10 −6 

0.05 190.4 0.20 274.9 1 × 10 6 spins 

𝑑𝑡 = 0 . 1 𝑚𝑠 

0.93 

(1.03) 

172.5 2.72 

(2.13) 

172.8 

ℎ = 0 . 1 𝜇𝑚 

𝑟𝑡𝑜𝑙 = 10 −5 

𝑎𝑡𝑜𝑙 = 10 −7 

0.05 158.8 0.15 228.0 1 × 10 6 spins 

𝑑𝑡 = 0 . 01 𝑚𝑠 

0.11 

(0.09) 

1052.6 1.79 

(2.26) 

1056.9 

ℎ = 0 . 05 𝜇𝑚 

𝑟𝑡𝑜𝑙 = 10 −6 

𝑎𝑡𝑜𝑙 = 10 −8 

ref. 523.0 ref. 806.6 1 × 10 6 spins 

𝐝𝐭 = 𝟎 . 𝟎𝟎𝟓𝐦𝐬 
0.16 

(ref.) 

1896.6 0.60 

(ref.) 

1895.9 
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s the most accurate one. Nevertheless, we see GPU Monte-Carlo has an
 max ranging from 0.15% to 0.67% for 𝑏 = 1000 s/mm 

2 and 𝐸 max ranges
rom 0.95% to 6.11% for 𝑏 = 4000 s/mm 

2 , compared to the reference
nalytical Matrix Formalism signal. 

From the rectangle cuboid example, we see that refining the Spin-
octor simulation parameters clearly results in a reduction in the simu-

ation error, therefore we took the SpinDoctor simulation with the finest
pace discretization ( Space-3 : 𝐻𝑡𝑒𝑡𝑔𝑒𝑛 = 0 . 05 𝜇𝑚 ) and the finest time
iscretization ( Time-4 : 𝑟𝑡𝑜𝑙 = 10 −6 , 𝑎𝑡𝑜𝑙 = 10 −8 ) as the reference solu-
ion for the following neuron simulations we performed. We remind
he reader that by looking at the difference between the reference solu-
ion and the coarser SpinDoctor simulations in Fig. 5 , we estimate that
he accuracy of the reference solution is within 0.05% of the true so-
ution at 𝑏 = 1000 s/mm 

2 and it is within 0.2% of the true solution at
 = 4000 s/mm 

2 , for PGSE ( 𝛿 = 10 ms , Δ = 43 ms ). 
In Fig. 9 we show the relative signal errors E (in percent) between

everal GPU MC simulations and the SpinDoctor reference solution.
ig. 9 (a) shows that for 𝑏 = 1000 s/mm 

2 , by refining the time discretiza-
ion from MC Time-1 to MC Time-3 , the 𝐸 max went from around 0.7%
own to 0.28% for space discretization MC Space-1 and from 0.92% to
.17% for space discretization MC Space-2 . We see in Fig. 9 (b) that
y using MC Space-2 and MC Time-3 , the 𝐸 max is around 0.6% for
 = 4000 s/mm 

2 . 

t  
.6. Timing 

Here we compare the computational times used by SpinDoctor and
he GPU Monte-Carlo program ( Nguyen et al., 2018 ) for neuron and cell
omponents simulations. The following are the computational platforms
sed for each type of simulation: 

• All SpinDoctor simulations were performed on a Dell workstation
(Intel(R) Xeon(R) CPU E5-2667 0 @ 2.90GHz, 189GB DDR4 RAM),
running CentOS 7.4.1708; 

• All GPU Monte-Carlo simulations were performed on a Dell worksta-
tion (Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz, 256GB DDR4
RAM and Tesla V100 DGXS 32GB), running Ubuntu 18.04.3 LTS. 

For a fair comparison, we will choose two set of simulation param-
ters with a comparable accuracy, in other words, a comparable 𝐸 max ,

his choice will be different for lower b-values versus higher b-values.
ecause the GPU Monte-Carlo simulation is inherently parallel (there

s no communication between spins), the running time is essentially the
ame whether one runs one gradient direction or multiple directions, up
o the limit of GPU memory. We found that the GPU memory limit in
he computer listed above to be about 1 × 10 6 spins and 1200 gradient
irections running in parallel. A rough estimation of the GPU limita-
ion for Tesla V100 with 32GB GPU memory is that the number of spins
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Fig. 9. The relative signal difference between the SpinDoctor reference signal and the signals given by GPU Monte-Carlo simulations for the neuron 03b_spindle4aACC . 
The diffusion coefficient is 2 × 10 −3 mm 

2 ∕ s . 10 gradient directions uniformly placed on the unit semi-circle in the 𝑥 − 𝑦 plane were simulated. The gradient direction 
angle is given with respect to the x -axis. The gradient sequence is PGSE ( 𝛿 = 10 𝑚𝑠, Δ = 43 𝑚𝑠 ) . (a) 𝑏 = 1000 s/mm 

2 . (b) 𝑏 = 4000 s/mm 

2 . 
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imes the number of gradient direction should be less than 1 × 10 9 . In
ontrast, SpinDoctor is mostly designed for serial computations, so sim-
lations for multiple gradient directions are run one after another. Due
o this difference between serial and parallel implementations, we show
n Table 2 the SpinDoctor and GPU Monte-Carlo computational times for
ne gradient direction. To estimate the SpinDoctor computational times
ne can multiply the computational time in Table 2 by the number of
radient directions to be simulated. 

From Table 2 , we see that the ratio between the GPU Monte-Carlo
omputational time and the SpinDoctor computational time for 1 gra-
ient direction ranges from 31 to 72 for the whole neuron simulations.
his means that 31 (for 𝑏 = 1000 s/mm 

2 ) and 72 (for 𝑏 = 4000 s/mm 

2 )
radient directions are the break-even point when considering whether
o run GPU Monte-Carlo or the SpinDoctor code in terms of computa-
ional time. The break-even point is between 24 to 43 gradient directions
or the dendrite branches, and between 46 to 55 gradient directions for
he soma. Details of the accuracy and the computational time of 6 Spin-
octor and 6 GPU Monte-Carlo simulations can be found in Tables 3, 4 ,
 , 6 . 

.7. Choice of space and time discretization parameters for diffusion MRI 

imulations 

This section concerns the choice of discretization parameters for dif-
usion MRI simulations. First we discuss time discretization. The Monte-
arlo implementations usually decide on a time step dt that is used
hroughout the entire simulation. SpinDoctor uses residual tolerances
or the Matlab ODE solver to control the time step size. The advantage
f using residual tolerances is that the time step is automatically made
maller when the magnetization is oscillatory, and it is automatically
ade larger when the magnetization is smooth. In Fig. 10 we show the

pinDoctor simulated magnetization solution during the time interval
 ∈ [0 , 𝛿 + Δ] for the PGSE sequence ( 𝛿 = 10 ms , Δ = 43 ms ) for the full
euron and the soma, where we integrated the magnetization over the
omputational domain, in this case, the whole neuron and the soma, re-
pectively. This integral was evaluated at SpinDoctor time discretization
oints. Because the magnetization is a complex-valued quantity and the
maginary part of the magnetization, which encodes the spin phase in-
ormation, is usually more oscillatory than the real part, we show only
he integral of the imaginary part of the magnetization. We note during
0, TE ), the magnetization is complex-valued and both the real and imag-
nary parts are significant and contribute to the time-evolution. After
eforcusing, the imaginary part should be zero theoretically. At 𝑡 = 𝑇 𝐸,

he non-zero imaginary part of the simulated magnetization is due to
numerical discretization error ”, whose size is related to the FE mesh
ize and the ODE solver tolerances. 

It is clear from Fig. 10 that at the higher b-value the total magne-
ization has more oscillations in time for both the whole neuron and
he soma. In addition, there are many more oscillations in time for the
hole neuron than for the soma. This justifies the SpinDoctor choice of
sing 54 (low gradient amplitude) and 506 (high gradient amplitude)
on-uniformly spaced time steps to simulate the whole neuron, whereas
t used 38 (low gradient amplitude) and 145 (high gradient amplitude)
on-uniformly spaced time steps to simulate its soma. 

To give an indication why more time discretization points are needed
t higher gradient amplitudes, we computed the eigenfunctions and
igenvalues of Bloch-Torrey operator, which governs the dynamics of
he magnetization during the gradient pulses ( t ∈ [0, 𝛿], 𝑡 ∈ [Δ, Δ + 𝛿] ,
 ≠ 0). The Bloch-Torrey eigenfunctions and eigenvalues on the neuron
nd the soma are numerically computed using the Matrix Formalism
odule ( Li et al., 2019 ) within the SpinDoctor Toolbox. 

We projected the initial spin density, which is a constant function,
nto the Bloch-Torrey eigenfunctions. We normalized the initial spin
ensity as well as the Bloch-Torrey eigenfunctions so that they have
nit L2 norm (integral of the square of the function over the geometry).
e call a Bloch-Torrey eigenfunction significant if the projection coeffi-

ient is greater than 0.01 and the real part of its eigenvalue is greater
han −1 ms −1 . The latter requirement means we are looking at Bloch-
orrey eigenfunctions that do not decay too fast. In Fig. 11 we show the
omplex eigenvalues of the significant Bloch-Torrey eigenfunctions for
he whole neuron and for the soma. Since we projected the initial spin
ensity, this corresponds to 𝑡 = 0 𝑚𝑠 . We see that at the higher gradi-
nt amplitude, the Bloch-Torrey eigenvalues have a wider range in both
heir real parts as well as their imaginary parts, than at the smaller gra-
ient amplitude. A larger range of real parts indicates faster transient
ynamics during the two gradient pulses, and a larger range of imagi-
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Table 4 

The computational time (in seconds) and the maximum relative error (in percent) of SpinDoctor and GPU Monte-Carlo simulations for the dendrite 
03b_spindle4aACC_dendrites_1 . The maximum relative error 𝐸 max is taken over 10 gradient directions uniformly placed on the unit semi-circle in the 𝑥 − 𝑦 plane. For 
the 𝐸 max of SpinDoctor, the reference signal is the one with the finest space discretization and the smallest time discretization, i.e. ℎ = 0 . 05 𝜇𝑚, 𝑟𝑡𝑜𝑙 = 10 −6 , 𝑎𝑡𝑜𝑙 = 10 −8 . 
For the 𝐸 max of GPU Monte-Carlo, two reference signals are used, one is the signal given by SpinDoctor with ℎ = 0 . 05 𝜇𝑚, 𝑟𝑡𝑜𝑙 = 10 −6 , 𝑎𝑡𝑜𝑙 = 10 −8 , the other is the signal 
given by GPU Monte-Carlo with 10 6 spins and 𝑑𝑡 = 0 . 005 𝑚𝑠 ( 𝐸 max for this case is written in the parenthesis). The data in bold are used in Table 2 . 

SpinDoctor 𝛿 = 10 𝑚𝑠 

Δ = 43 𝑚𝑠 

𝑏 = 1000 𝑏 = 4000 GPU MC 𝛿 = 10 𝑚𝑠 

Δ = 43 𝑚𝑠 

𝑏 = 1000 𝑏 = 4000 

𝐸 max t ( s ) 𝐸 max t ( s ) 𝐸 max t ( s ) 𝐸 max t ( s ) 

𝐡 = 𝟎 . 𝟓𝛍𝐦 

𝐫 𝐭 𝐨𝐥 = 𝟏𝟎 − 𝟑 
𝐚𝐭𝐨𝐥 = 𝟏𝟎 − 𝟓 

0.52 7.8 0.91 11.8 5 × 10 5 spins 

𝑑𝑡 = 0 . 1 𝑚𝑠 

1.36 

(0.26) 

173.9 1.35 

(1.47) 

174.7 

ℎ = 0 . 5 𝜇𝑚 

𝑟𝑡𝑜𝑙 = 10 −4 

𝑎𝑡𝑜𝑙 = 10 −6 

0.65 7.8 1.03 11.4 5 × 10 5 spins 

𝑑𝑡 = 0 . 01 𝑚𝑠 

1.48 

(0.18) 

715.3 3.23 

(1.03) 

715.2 

ℎ = 0 . 1 𝜇𝑚 

𝑟𝑡𝑜𝑙 = 10 −3 

𝑎𝑡𝑜𝑙 = 10 −5 

0.10 13.1 0.42 19.6 5 × 10 5 spins 

𝑑𝑡 = 0 . 005 𝑚𝑠 

1.44 

(0.19) 

1487.3 2.78 

(1.86) 

1488.9 

ℎ = 0 . 1 𝜇𝑚 

𝑟𝑡𝑜𝑙 = 10 −4 

𝑎𝑡𝑜𝑙 = 10 −6 

0.22 21.4 0.34 32.2 1 × 10 6 spins 

𝐝𝐭 = 𝟎 . 𝟏𝐦𝐬 
0.65 

(0.98) 

337.3 2.34 

(0.46) 

342.1 

ℎ = 0 . 1 𝜇𝑚 

𝑟𝑡𝑜𝑙 = 10 −5 

𝑎𝑡𝑜𝑙 = 10 −7 

0.17 22.6 0.24 31.7 1 × 10 6 spins 

𝑑𝑡 = 0 . 01 𝑚𝑠 

1.29 

(0.33) 

1401.3 1.24 

(1.55) 

1401.1 

ℎ = 0 . 05 𝜇𝑚 

𝑟𝑡𝑜𝑙 = 10 −6 

𝑎𝑡𝑜𝑙 = 10 −8 

ref. 65.1 ref. 103.3 1 × 10 6 spins 

𝑑𝑡 = 0 . 005 𝑚𝑠 

1.63 

(ref.) 

2952.9 2.23 

(ref.) 

2923.7 

Table 5 

The computational time (in seconds) and the maximum relative error (in percent) of SpinDoctor and GPU Monte-Carlo simulations for the dendrite 
03b_spindle4aACC_dendrites_2 . The maximum relative error 𝐸 max is taken over 10 gradient directions uniformly placed on the unit semi-circle in the 𝑥 − 𝑦 plane. For 
the 𝐸 max of SpinDoctor, the reference signal is the one with the finest space discretization and the smallest time discretization, i.e. ℎ = 0 . 05 𝜇𝑚, 𝑟𝑡𝑜𝑙 = 10 −6 , 𝑎𝑡𝑜𝑙 = 10 −8 . 
For the 𝐸 max of GPU Monte-Carlo, two reference signals are used, one is the signal given by SpinDoctor with ℎ = 0 . 05 𝜇𝑚, 𝑟𝑡𝑜𝑙 = 10 −6 , 𝑎𝑡𝑜𝑙 = 10 −8 , the other is the signal 
given by GPU Monte-Carlo with 10 6 spins and 𝑑𝑡 = 0 . 005 𝑚𝑠 ( 𝐸 max for this case is written in the parenthesis). The data in bold are used in Table 2 . 

SpinDoctor 𝛿 = 10 𝑚𝑠 

Δ = 43 𝑚𝑠 

𝑏 = 1000 𝑏 = 4000 GPU MC 𝛿 = 10 𝑚𝑠 

Δ = 43 𝑚𝑠 

𝑏 = 1000 𝑏 = 4000 

𝐸 max t ( s ) 𝐸 max t ( s ) 𝐸 max t ( s ) 𝐸 max t ( s ) 

𝐡 = 𝟎 . 𝟓𝛍𝐦 

𝐫 𝐭 𝐨𝐥 = 𝟏𝟎 − 𝟑 
𝐚𝐭𝐨𝐥 = 𝟏𝟎 − 𝟓 

0.11 3.4 0.13 4.9 5 × 10 5 spins 

𝐝𝐭 = 𝟎 . 𝟏𝐦𝐬 
0.51 

(0.21) 

116.1 0.47 

(3.19) 

116.5 

ℎ = 0 . 5 𝜇𝑚 

𝑟𝑡𝑜𝑙 = 10 −4 

𝑎𝑡𝑜𝑙 = 10 −6 

0.11 5.8 0.24 8.1 5 × 10 5 spins 

𝑑𝑡 = 0 . 01 𝑚𝑠 

0.83 

(0.13) 

638.5 1.01 

(4.36) 

638.8 

ℎ = 0 . 1 𝜇𝑚 

𝑟𝑡𝑜𝑙 = 10 −3 

𝑎𝑡𝑜𝑙 = 10 −5 

0.08 6.5 0.19 8.9 5 × 10 5 spins 

𝑑𝑡 = 0 . 005 𝑚𝑠 

0.69 

(0.04) 

1174.8 2.40 

(1.69) 

1174.7 

ℎ = 0 . 1 𝜇𝑚 

𝑟𝑡𝑜𝑙 = 10 −4 

𝑎𝑡𝑜𝑙 = 10 −6 

0.05 9.0 0.07 12.7 1 × 10 6 spins 

𝑑𝑡 = 0 . 1 𝑚𝑠 

0.85 

(0.14) 

226.1 1.30 

(2.48) 

226.6 

ℎ = 0 . 1 𝜇𝑚 

𝑟𝑡𝑜𝑙 = 10 −5 

𝑎𝑡𝑜𝑙 = 10 −7 

0.07 12.1 0.11 16.8 1 × 10 6 spins 

𝑑𝑡 = 0 . 01 𝑚𝑠 

0.74 

(0.04) 

1260.1 0.91 

(2.83) 

1265.7 

ℎ = 0 . 05 𝜇𝑚 

𝑟𝑡𝑜𝑙 = 10 −6 

𝑎𝑡𝑜𝑙 = 10 −8 

ref. 22.0 ref. 31.8 1 × 10 6 spins 

𝑑𝑡 = 0 . 005 𝑚𝑠 

0.72 

(ref.) 

2339.1 3.56 

(ref.) 

2320.7 
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ary parts indicates more time oscillations. Both explain why more time
iscretization points are needed at higher | g |. For the whole neuron, at
he higher gradient amplitude, there is a much larger range in the imag-
nary parts of the Bloch-Torrey eigenvalues than for the soma, which is
hy there are so many more oscillations in the whole neuron magneti-

ation than the soma magnetization in Fig. 10 . 
To give some indication of the needed space discretization for diffu-

ion MRI simulations, we computed the eigenfunctions and the eigenval-
es of the Laplace operator, which governs the dynamics of the magneti-
ation between the gradient pulses ( t ∈ [ 𝛿, Δ]). The Laplace eigenfunc-
ions and eigenvalues on the neuron are numerically computed using
he Matrix Formalism Module ( Li et al., 2019 ) within the SpinDoctor
oolbox. 

We projected the magnetization solution at 𝑡 = 𝛿 = 10 ms for PGSE
 𝛿 = 10 ms , Δ = 43 ms ) for the whole neuron onto the space of the Laplace
 a  
igenfunctions and we show the magnitude of the coefficients of the
rojections in Fig. 12 . We see that there are significant Laplace eigen-
unctions with eigenvalues ranging from 𝜆 = −0 . 52 ms −1 to 0. We plot
he significant Laplace eigenfunction with the most negative eigenvalue
nd we see that this eigenfunction is very oscillatory in space. To cor-
ectly capture the dynamics of this eigenfunction, it is necessary to have
 space discretization that is small compared to the “wavelength ” of this
igenfunction, which we estimate to be about 10 𝜇m by visual inspection
f the space variations shown in Fig. 12 . By choosing 𝐻𝑡𝑒𝑡𝑔𝑒𝑛 = 0 . 5 𝜇𝑚,

e are putting about 20 space discretization points per “wavelength ”. 

.8. Biomarkers of the soma size 

As we have shown in Fig. 8 , the linear relationship between S ave ( b )
nd 1 √

𝑏 
, in other words, the power law scaling of the direction-averaged
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Table 6 

The computational time (in seconds) and the maximum relative error (in percent) of SpinDoctor and GPU Monte-Carlo simulations for the soma 
03b_spindle4aACC_soma . The maximum relative error 𝐸 max is taken over 10 gradient directions uniformly placed on the unit semi-circle in the 𝑥 − 𝑦 plane. For 
the 𝐸 max of SpinDoctor, the reference signal is the one with the finest space discretization and the smallest time discretization, i.e. ℎ = 0 . 05 𝜇𝑚, 𝑟𝑡𝑜𝑙 = 10 −6 , 𝑎𝑡𝑜𝑙 = 10 −8 . 
For the 𝐸 max of GPU Monte-Carlo, two reference signals are used, one is the signal given by SpinDoctor with ℎ = 0 . 05 𝜇𝑚, 𝑟𝑡𝑜𝑙 = 10 −6 , 𝑎𝑡𝑜𝑙 = 10 −8 , the other is the signal 
given by GPU Monte-Carlo with 10 6 spins and 𝑑𝑡 = 0 . 005 𝑚𝑠 ( 𝐸 max for this case is written in the parenthesis). The data in bold are used in Table 2 . 

SpinDoctor 𝛿 = 10 𝑚𝑠 

Δ = 43 𝑚𝑠 

𝑏 = 1000 𝑏 = 4000 GPU MC 𝛿 = 10 𝑚𝑠 

Δ = 43 𝑚𝑠 

𝑏 = 1000 𝑏 = 4000 

𝐸 max t ( s ) 𝐸 max t ( s ) 𝐸 max t ( s ) 𝐸 max t ( s ) 

𝐡 = 𝟎 . 𝟓𝛍𝐦 

𝐫 𝐭 𝐨𝐥 = 𝟏𝟎 − 𝟑 
𝐚𝐭𝐨𝐥 = 𝟏𝟎 − 𝟓 

0.17 5.7 0.23 6.8 5 × 10 5 spins 

𝑑𝑡 = 0 . 1 𝑚𝑠 

1.46 

(1.31) 

52.8 4.16 

(4.75) 

52.6 

ℎ = 0 . 5 𝜇𝑚 

𝑟𝑡𝑜𝑙 = 10 −4 

𝑎𝑡𝑜𝑙 = 10 −6 

0.06 8.6 0.23 10.3 5 × 10 5 spins 

𝐝𝐭 = 𝟎 . 𝟎𝟏𝐦𝐬 
0.29 

(0.20) 

311.2 0.90 

(1.50) 

311.3 

ℎ = 0 . 1 𝜇𝑚 

𝑟𝑡𝑜𝑙 = 10 −3 

𝑎𝑡𝑜𝑙 = 10 −5 

0.24 29.7 0.55 34.2 5 × 10 5 spins 

𝑑𝑡 = 0 . 005 𝑚𝑠 

0.09 

(0.23) 

564.9 2.34 

(3.23) 

565.2 

ℎ = 0 . 1 𝜇𝑚 

𝑟𝑡𝑜𝑙 = 10 −4 

𝑎𝑡𝑜𝑙 = 10 −6 

0.04 36.7 0.11 43.7 1 × 10 6 spins 

𝑑𝑡 = 0 . 1 𝑚𝑠 

1.12 

(0.99) 

101.9 3.75 

(3.72) 

102.3 

ℎ = 0 . 1 𝜇𝑚 

𝑟𝑡𝑜𝑙 = 10 −5 

𝑎𝑡𝑜𝑙 = 10 −7 

0.02 55.8 0.12 64.5 1 × 10 6 spins 

𝑑𝑡 = 0 . 01 𝑚𝑠 

0.1 

(0.07) 

612.9 1.37 

(1.61) 

611.4 

ℎ = 0 . 05 𝜇𝑚 

𝑟𝑡𝑜𝑙 = 10 −6 

𝑎𝑡𝑜𝑙 = 10 −8 

ref. 222 ref. 247.9 1 × 10 6 spins 

𝑑𝑡 = 0 . 005 𝑚𝑠 

0.16 

(ref.) 

1112.5 1.06 

(ref.) 

1110.1 

Fig. 10. The integral of the imaginary part of the magnetization over the computational domain as a function of time. The time discretization points chosen by 
SpinDoctor are indicated by the (time) positions of the markers. The experimental parameters are: PGSE ( 𝛿 = 10 ms , Δ = 43 ms ), gradient direction 𝒖 

𝒈 
= [−0 . 3536 − 

0 . 6124 − 0 . 7071] . Two gradient amplitudes, |𝒈 | = 0 . 0075 T/m and |𝒈 | = 0 . 3745 T/m were simulated, equivalent to 𝑏 = 15 . 9 s/mm 

2 and 𝑏 = 39666 . 7 s/mm 

2 , respectively. 
For these two b-values, SpinDoctor used a total of 54 (shown in black, left) and 506 (shown in red, left) non-uniformly spaced time steps to simulate the whole 
neuron; it took 38 (shown in black, right) and 145 (shown in red, right) non-uniformly spaced time steps to simulate its soma. (a) the neuron 03b_spindle4aACC . (b) 
its soma. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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iffusion MR signal ( Veraart et al., 2019 ), doesn’t hold due to the
resence of the soma and the exchange effects between the soma and
he dendrites. The breakdown of the power law is also observed in
alombo et al. (2020) and Veraart et al. (2020) . By leveraging the col-
ection of the realistic neuron meshes, in this section, we statistically
how that the deviation from the power law has the potential to serve
s biomarkers for revealing the soma size. 

In order to do this, we conducted the following simulations
hat are slightly different than the constant ( 𝛿, Δ) experiments in
eraart et al. (2019) ; Palombo et al. (2020) ; Veraart et al. (2020) and
hown in Fig. 8 . The intra-neuronal signals are numerically computed
sing the Matrix Formalism Module within the SpinDoctor Toolbox. In
he following, we held the gradient amplitude constant, 𝛾|𝒈 | = 10 −5 𝑠 −1 ⋅
𝑚 

−1 , and varied 𝛿 to obtain a wide range of b-values, all the while
hoosing Δ = 𝛿 (PGSE sequence). The simulations were conducted in 64
radient directions and the intra-neuronal signals were averaged over
hese directions. This was performed for the full set of 65 neuron meshes.
In Fig. 13 we show an example of the simulated signal curve and
he power law approximation for the neuron 03a_spindle2aFI . From the
irection-averaged simulated signals, we find the inflection point (blue
ot) of the signal curve (black curve). We fit the power law (straight
lue dashed line) around the inflection point. The power law region is
he range where the relative error between the simulated signal curve
nd the power law fit is less than 2% (width of the yellow region) and the
pproximation error is estimated by the area between the signal curve
nd the power law fit to the left of the inflection point (the green area). 

In order to characterize the influence of soma on the power law ap-
roximation, we chose the following 6 candidate biomarkers: 

• x 0 : the x-coordinate of the inflection point; 
• y 0 : the y-coordinate of the inflection point; 
• c 0 : the y-intercept of the power law fit; 
• c 1 : the slope of the power law fit; 
•  : the power law approximation error; 
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Fig. 11. The eigenvalues of the significant Bloch-Torrey eigenfunctions after the projection of the initial spin density ( 𝑡 = 0 𝑚𝑠 ) onto the space of Bloch-Torrey 
eigenfunctions. Along the x-axis is plotted the real part of the Bloch-Torrey eigenvalues and along the y-axis is plotted the imaginary part of the Bloch-Torrey 
eigenvalues. The gradient direction is 𝒖 

𝒈 
= [−0 . 3536 − 0 . 6124 − 0 . 7071] and two gradient amplitudes, |𝒈 | = 0 . 0075 T/m and |𝒈 | = 0 . 3745 T/m , were computed. (a) the 

neuron 03b_spindle4aACC . (b) its soma. 

Fig. 12. (a) The magnitude of the coefficients of significant Laplace eigenfunctions, after the projection of the magnetization at 𝑡 = 𝛿 = 10 ms unto the space 
of the Laplace eigenfunctions, plotted against the Laplace eigenvalues, for the whole neuron 03b_spindle4aACC . The experimental parameters are: PGSE ( 𝛿 = 
10 ms , Δ = 43 ms ), gradient direction 𝒖 

𝒈 
= [−0 . 3536 − 0 . 6124 − 0 . 7071] . Two gradient amplitudes, |𝒈 | = 0 . 0075 T/m and |𝒈 | = 0 . 3745 T/m were simulated, equivalent 

to 𝑏 = 15 . 9 s/mm 

2 and 𝑏 = 39666 . 7 s/mm 

2 , respectively. The magnitude of the coefficients are shown in the log 10 scale. (b) The significant Laplace eigenfunction 
with the most negative eigenvalue. The color scale is intentionally limited to have a smaller range than the extreme values of the eigenfunction to make the spatial 
oscillations of the eigenfunction more visible. 

Fig. 13. The direction-averaged intra-neuronal signal curve for 
the neuron 03a_spindle2aFI . The signals are numerically computed 
using the Matrix Formalism Module within the SpinDoctor Tool- 
box. The S ave ( b ) was averaged over 64 diffusion directions, uni- 
formly distributed in the unit sphere, and it is normalized so that 
𝑆 𝑎𝑣𝑒 ( 𝑏 = 0) = 1 . The b-values are greater than 278 s / mm 

2 and the 
diffusivity is  0 = 2 × 10 −3 mm 

2 ∕ s . The gradient amplitude is con- 
stant, 𝛾|𝒈 | = 10 −5 𝑠 −1 ⋅ 𝑚𝑚 

−1 , and 𝛿 was varied to obtain a wide 
range of b-values, all the while choosing Δ = 𝛿 (PGSE sequence). 
The blue dot indicates the inflection point of the simulated signal 
curve. The power law is fitted around the inflection point. The 
power law region is the width of the range where the relative 
error between the simulated signal and the power law approxi- 
mation is less than 2%. The area between the simulated curve and 
the power law to the left of the inflection point represents the 
approximation error of the power law. (For interpretation of the 
references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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Fig. 14. (a) the logarithm of soma volume vs. the x-coordinate of the inflection point x 0 . (b) the logarithm of soma volume vs. the y-coordinate of the inflection point 
y 0 . (c) the logarithm of soma volume vs. the y-intercept of the power law c 0 . (d) the logarithm of soma volume vs. the slope of the power law c 1 . (e) the logarithm 

of soma volume vs. the power law approximation error  . (f) the logarithm of soma volume vs. the width of the power law region w . Each blue dot represents the 
data from one of the 49 neurons (28 spindle neurons and 21 pyramidal neurons) retained for this study. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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• w : the width of the power law region. 

A statistical study of the above 6 candidate biomarkers on the col-
ection of the 65 neurons in the Neuron Module was performed. Since
he undersampling when 1 √

𝑏 
approaches 0 could produce significant nu-

erical error, we only kept the neurons whose x 0 are greater than 0.016
𝑚 ⋅ 𝑠 −1∕2 . In total, 28 spindle neurons and 21 pyramidal neurons were

etained. 
We first plot the candidate biomarkers with respect to the soma vol-

me v soma in Fig. 14 . Each data point in the figure corresponds to a
euron (for a total of 49). It can be seen that x 0 , c 0 , c 1 ,  , and w exhibit
n exponential relationship with the soma volume. The fitted equations
llow us to infer the soma volume by measuring the biomarkers. We
lso see that y 0 is not a biomarker for the soma volume. Similarly, we
how the scatter plot of the candidate biomarkers with respect to the
oma volume fraction f soma in Fig. 15 . In this case, the x 0 , c 1 and w are
ot biomarkers of the soma volume fraction. The candidate biomarkers
 0 , c 0 and  seem capable of indicating the lower bound for the soma
olume fraction. 

We note that the objective of this section is to give an example of
he possible research that can be conducted using the Neuron Module.
 more systematic study is needed to get plausible biomarkers for the
oma size but this is out of the range of this paper. 

.9. Additional neuron simulations 

Now we show some simulation results on other neuron meshes in
ur collection. In Fig. 16 we compare the diffusion MRI signals due to
wo different dendrite branches, one from 04b_spindle3aFI and one from
3b_spindle7aACC . The first branch has a single main trunk whereas the
econd branch divides into two main trunks. We see at the higher b-
alue 𝑏 = 4000 s/mm 

2 , at the longest diffusion time, the signal shape is
ore elongated (perpendicular to the main trunk direction) for the first
endrite branch than the second. 

In Fig. 17 we show 3 dimensional HARDI (High Angular Res-
lution Diffusion Imaging) simulation results of the spindle neuron
3a_spindle2aFI (cf. Fig. 3 ). We plot in Fig. 17 the normalized sig-
al in 720 directions uniformly distributed in the unit sphere for 𝑏 =
000 s/mm 

2 and 𝑏 = 4000 s/mm 

2 . We see the normalized signal shape in
hese 720 directions is ellipsoid at the lower b-value and the shape be-
omes more complicated at the larger b-value. At 𝑏 = 4000 s/mm 

2 , there
s more signal attenuation at the shorter diffusion time than at the higher
iffusion time. 

. Discussion 

In a previous publication ( Li et al., 2019 ), SpinDoctor, a MATLAB-
ased diffusion MRI simulation toolbox, was presented. SpinDoctor al-
ows the easy construction of multiple compartment models of the
rain white matter, with the possibility of coupling water diffusion
etween the geometrical compartments by permeable membranes. In
i et al. (2019) , in addition to white matter simulations, SpinDoctor’s
bility to import and use externally generated meshes provided by the
ser was illustrated with a neuronal dendrite branch simulation. This
apability is expected to be very useful given the most recent devel-
pments in simulating ultra-realistic virtual tissues, typified by recent
ork such as Palombo et al. (2019) ; Ginsburger et al. (2019) , which
ere meant to facilitate Monte-Carlo type simulations. 

In order to enrich the publicly available geometrical meshes that can
e used for diffusion MRI simulations, we implemented the Neuron Mod-
le inside SpinDoctor. We have created high quality volume tetrahedral
eshes for a group of 36 pyramidal neurons and a group of 29 spin-
le neurons. Surface triangulations can be obtained from the volume
eshes in a natural way and can be used for Monte-Carlo simulations. 

We cite two very recent works in Palombo et al. (2019) ;
insburger et al. (2019) that describe new algorithms for generating

elevant tissue and cell geometries for diffusion MRI simulations. These
wo works are similar in spirit to ours, namely, the common idea is
o provide synthetic but realistic cell/tissue geometries. While they use
he generated geometries to conduct Monte-Carlo simulations, we prin-
ipally use finite elements. However, in theory, there is nothing prevent-
ng conducting either types of simulations on any high quality surface
riangulation. 
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Fig. 15. (a) the soma volume fraction vs. the x-coordinate of the inflection point x 0 . (b) the soma volume fraction vs. the y-coordinate of the inflection point y 0 . 
(c) the soma volume fraction vs. the y-intercept of the power law c 0 . (d) the soma volume fraction vs. the slope of the power law c 1 . (e) the soma volume fraction 
vs. the power law approximation error  . (f) the soma volume fraction vs. the width of the power law region w . Each blue dot represents the data from one of the 
49 neurons (28 spindle neurons and 21 pyramidal neurons) retained for this study. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 16. The normalized diffusion MRI signals in 180 directions lying on the 𝑥 − 𝑦 plane, uniformly distributed on a unit circle. The distance from each data point 
to the origin represents the magnitude of the normalized signal which is dimensionless. The simulation parameters are 𝑟𝑡𝑜𝑙 = 10 −3 , 𝑎𝑡𝑜𝑙 = 10 −5 , 𝐻𝑡𝑒𝑡𝑔𝑒𝑛 = 0 . 5 𝜇𝑚 . The 
diffusion coefficient is 2 × 10 −3 mm 

2 ∕ s . (a) one dendrite branch of 04b_spindle3aFI (finite elements mesh: 29854 nodes and 95,243 elements). (b) one dendrite branch 
of 03b_spindle7aACC (finite elements mesh: 10145 nodes and 28,731 elements). 
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In terms of the synthetic tissue/cell mesh generation problem, the
ork in Ginsburger et al. (2019) is more about the brain white mat-

er. The work that is closer to ours is Palombo et al. (2019) , which is
bout creating 3-dimensional synthetic neurons based on realistic neu-
on morphology statistics. That paper contained detailed information
bout generating synthetic neuron skeletons (tree structure and branch
iameter information), which is analogous to the neuron information
n the SWC format available from NeuroMorpho.Org . In addition, they
sed BLENDER and the BLENDER added-on ”SWC Mesh ” to generate
urface triangulations for some neurons using the neuron information
rom NeuroMorpho.Org . The salient points of our work described in this
aper, contrasted with Palombo et al. (2019) , are the following: 

1. we do not generate synthetic neuron skeletons, we only import ex-
isting neuron skeletons from NeuroMorpho.Org ; 

2. we tested the BLENDER added-on ”SWC Mesh ”, and we found that
we were not able to use it to generate surface triangulations from
the neuron skeletons provided by NeuroMorpho.Org in a simple or
automatic way, at least not for our collection of neurons; 

3. following the approach described in this paper, we generated 65 high
quality surface triangulation of realistic neurons; 
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Fig. 17. The normalized diffusion MRI signals for the neuron 03a_spindle2aFI in 720 directions uniformly distributed on a unit sphere. The color and the distance to the 
origin of each data point represent the magnitude of the normalized signal, which is dimensionless. The simulation parameters are 𝑟𝑡𝑜𝑙 = 10 −3 , 𝑎𝑡𝑜𝑙 = 10 −5 , 𝐻𝑡𝑒𝑡𝑔𝑒𝑛 = 
0 . 5 𝜇𝑚 . The diffusion coefficient is 2 × 10 −3 mm 

2 ∕ s . (a) PGSE ( 𝛿 = 10 ms , Δ = 13 ms ), 𝑏 = 1000 s/mm 

2 . (b) PGSE ( 𝛿 = 10 ms , Δ = 73 ms ), 𝑏 = 1000 s/mm 

2 . (c) PGSE ( 𝛿 = 
10 ms , Δ = 13 ms ), 𝑏 = 4000 s/mm 

2 . (d) PGSE ( 𝛿 = 10 ms , Δ = 73 ms ), 𝑏 = 4000 s/mm 

2 . The number of finite elements nodes and elements for the neuron are 49833 and 
169601, respectively. 
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4. we provide the high quality realistic neuron meshes as a publicly
available library; we provide a User Guide to explain how to use
these meshes in diffusion MRI simulations; this saves the user from
having to spend a lot of time to generate surface meshes from neuron
skeleton information; 

5. we showed that the neuron and cell component meshes can be used
by both finite elements and Monte-Carlo simulations. 

6. the neuron meshes we generated can be coupled with finite elements
discretization to compute the eigenfunctions and eigenvalues of the
Bloch-Torrey and the Laplace operators; 

In addition, in this paper, 

1. we performed an accuracy and computational timing study of the
serial SpinDoctor finite elements simulation and a GPU implemen-
tation of the Monte-Carlo simulation; We showed that at equiva-
lent accuracy, if only one gradient direction needs to be simulated,
SpinDoctor is faster than GPU Monte-Carlo. Because the GPU Monte-
Carlo method is inherently parallel, if many gradient directions need
to be simulated, there is a break-even point when GPU Monte-Carlo
becomes faster than SpinDoctor. In particular, at equivalent accu-
racy, we showed the ratio between the GPU Monte-Carlo computa-
tional time and the SpinDoctor computational time for 1 gradient
direction ranges from 31 to 72 for the whole neuron simulations. 
2. we explained the choice of space and time discretization parameters
in terms of the eigenvalues and the eigenfunctions of the Laplace
and Bloch-Torrey operators of the computational domain in ques-
tion and illustrated the differences between high gradient amplitude
simulations versus low gradient amplitude simulations. We believe
this will help to guide the choice of simulation parameters (number
of spins and the time step size) for Monte-Carlo simulations as well.

The HARDI simulations we performed on the neurons confirm some
stablished views of diffusion measurements ( Kiselev, 2017 ): 1) the dif-
usion tensor is the prevalent contribution at long diffusion times and
ow gradient amplitudes, exemplified by the elliptical shape of the sig-
al attenuation; 2) the time dependence of the diffusion tensor can be
een by the fact that the ellipses become larger (more signal, less at-
enuation, a smaller apparent diffusion coefficient) at longer diffusion
imes; 3) at higher gradient amplitudes and shorter diffusion times, the
ARDI signal attenuation has a more complicated shape, probably due

o the “stick ” contributions of the dendrites; this additional complexity
f the diffusion behavior could be explainable with higher order dif-
usion characteristics, in other words, higher order cumulants beyond
he diffusion tensor. A more detailed theoretical analysis of diffusion in
eurons would be made in the future using the numerically computed
igenvalues and the eigenfunctions of the Laplace and Bloch-Torrey op-
rators. 
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Taking advantage of the realistic neuron meshes, we were able to il-
ustrate the potential of our work. We achieved this through 3 examples:
rst, we showed the capability to accelerate diffusion MRI simulations;
econd, we tested the hypotheses of the compartment-based imaging
odels; third, we showed how our tool can help to design new imaging
ethods. 

Regarding the first point, we compared the computational times
sed by SpinDoctor and the GPU Monte-Carlo program thoroughly in
ection 4.6 (see Table 2 ). Our methodology has advantages in speed and
ccuracy, thereby making our work a promising alternative to Monte-
arlo methods which are widely used in many diffusion MRI studies,
.g., Rensonnet et al. (2019) ; Rafael-Patino et al. (2020) ; Jelescu and
udde (2017) . As for the testing of imaging models, most compartment-
ased imaging models, e.g., Jespersen et al. (2007) ; Zhang et al. (2012) ;
ovikov et al. (2018) ; Kaden et al. (2016) ; Reisert et al. (2017) assume

hat the brain micro-structure consists of two impermeable compart-
ents, namely intra-neurite space and extra-neurite space. These mod-

ls succeeded in extracting micro-structure information such as neurite
rientation dispersion, axon radii and neurite density in white matter,
.g., Christiaens et al. (2020) ; Alexander et al. (2019) . However, some
tudies ( Jespersen et al., 2019; Veraart et al., 2019; 2020; McKinnon
t al., 2017; Palombo et al., 2018; Henriques et al., 2019 ) have shown
hat their assumptions are invalid in gray matter at large b-values. Such
 conclusion is in accordance with our results shown in Fig. 8 and dis-
ussed in Section 4.4 , illustrating that we are capable of simulating re-
ent experimental findings, and according to Table 2 , much faster than
revious approaches. 

Regarding the use of SpinDoctor to assist the design of new
oxel-level models, we take the example recently published by
alombo et al. (2020) . In their work, they took the diffusive restriction
ffect caused by soma into account and proposed a new compartment-
ased model that can hold in gray matter. To assess the validity regime
f the non-exchanging compartment model for different diffusion times
nd b-values, they simulated simplified neuron models in Camino.
pecifically, Palombo et al. compared the simulated ADC by connecting
r disconnecting the cylinders and the sphere. In Section 4.3 , we com-
ared the diffusion MRI signal of a connected neuron and a disconnected
euron, which we show in Figure 7 . Since we have shown that Spin-
octor has advantages in speed and accuracy, studies such as Palombo
t al.’s could gain by simulating realistic neurons with less use of compu-
ational resources. Besides helping to design novel compartment-based
odels, our work also points to new research possibilities that have been
reviously limited by the moderate efficiency of Monte-Carlo methods,
or example, the statistical study performed in Section 4.8 . 

In summary, we believe our work can add substantially to the un-
erstanding of the imaging of neuronal micro-structure (neurite density,
eurite orientation dispersion, neuronal morphology) ( Jespersen et al.,
007; Zhang et al., 2012; Palombo et al., 2016; Lampinen et al., 2017;
ovikov et al., 2018; Lampinen et al., 2019; Jespersen et al., 2010 ). In

his paper, we have conducted a detailed numerical study of one neuron,
he 03b_spindle4aACC , to validate our approach. We have also shown
 preliminary statistical study of the entire collection of neurons. For
he interested reader, we have included numerical simulations of other
eurons and cell components in the Supplementary Material. Clearly,
urther detailed statistical studies of a large number of neurons is the
ogical next step to our work. 

Our work sets the stage for a systematic study of the connection be-
ween the diffusion MRI signal and neuron morphology by the diffusion
RI community (for preliminary results, see Wassermann et al. (2018) ;
enon et al. (2019) and Section 4.8 ). We hope this work contributes

o further understanding of that relationship and aids in better signal
odel formulation in the future. If there is sufficient interest from the
odeling community, we will add high quality meshes of other realistic
eurons in the future. 

As this time, we have not implemented the Neuron Module for cou-
led compartments linked by permeable membranes. Rather, the diffu-
ion MRI signal is computed with zero permeability on the compartment
oundaries. The current emphasis of the Neuron Module is to show how
he geometrical structure of the neurons affect the diffusion MRI signal.
hus, some of the input parameters related to multiple compartment
odels in SpinDoctor are not applicable in the current version of the
euron Module. However, we have kept the exactly same input file for-
ats in anticipation of the future development of the Neuron Module

or permeable membranes. 
In the Supplementary Material, we list the expected input files, as

ell as the important functions relevant to the Neuron Module. Sample
utput figures are also provided there. The toolbox SpinDoctor and the
euron Module as well as the User Guide are publicly available at: 

https://github.com/jingrebeccali/SpinDoctor 
The complete set of the volume tetrahedral meshes of the whole neu-

ons as well as the corresponding soma and dendrite branches for the
roup of 36 pyramidal neurons and the group of 29 spindle neurons are
ublicly available at: 

https://github.com/van-dang/RealNeuronMeshes 
The names and sizes of the finite elements meshes of the 65 neurons

nd the morphological characteristics of the neurons are listed in the
upplementary Material. 

. Conclusion 

We presented the Neuron Module that we implemented in the
atlab-based diffusion MRI simulation toolbox SpinDoctor. We con-

tructed high quality volume tetrahedral meshes for a group of 36 pyra-
idal neurons and a group of 29 spindle neurons. Using the Neuron
odule, the realistic neuron volume tetrahedral meshes can be seam-

essly coupled with the functionalities of SpinDoctor to provide the diffu-
ion MRI signal attributable to spins inside neurons for general diffusion-
ncoding sequences, at multiple diffusion-encoding gradient amplitudes
nd directions. In addition, we have demonstrated that these neuron
eshes can be used to perform Monte-Carlo diffusion MRI simulations

s well. We gave guidance in the choice of simulation parameters for
oth finite elements and Monte-Carlo approaches using the eigenfunc-
ions and eigenvalues of the Bloch-Torrey and Laplace operators that
e computed numerically on these neuron meshes with finite elements
iscretization. Finally, we performed a statistical study on the collection
f neurons in the Neuron Module and tested some candidate biomarkers
hat can potentially reveal the soma size. We hope this study can inspire
ew imaging methods in the future. 
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