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AbstractIn this note, we study a Monte Carlo estimator of the residence timein the intra-cellular compartment.
1 Interface problemsThe diffusion of water is modeled using a Laplace operator with diffusivity D0.The space is divided by the intra-cellular compartment and the extra-cellularcompartment, which are separated by membranes. The difficulties lies in themodeling and simulating the behavior of water particles at the interface. Wepresent a first one-dimensional model for the water displacement and westudy an approximation of this model.The residence time characterizes the time spend by the water in the cell. Wewill show that it is related to the first eigenvalues of some operator.
1.1 The residence timeLet us consider a model where the concentration is periodic over some interval[0, L] and is given by

∂C (t, x) =∇(D(x)∇C (t, x)),
C (t, L) = C (t, 0) (periodic boundary condition),
C (t, z) satisfies some interface condition at some given point z,
C (0, x) is given

(1)
Let L = ∇(D(x)∇· ) be the corresponding operator with a domain Dom(L)such that the solution to (1) belongs to the domain. In our cases, there aretwo interface conditions that we consider. For a function f in the domainDom(L) of L and a point z at which there is an interface,
D(z+) = D(z−), ∇f(z+) =∇f(z−) and κ(f(z+)− f(z−)) = D(z)∇f(z) (?)
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and
f(z+) = f(z−) and D(z+)∇f(z+) = D(z−)∇f(z−). (??)It is easily checked that with these interfaces conditions, there exists a choiceof Dom(L) such that (L,Dom(L)) is a self-adjoint operator. Besides, it hasa compact resolvent. Hence, there exists a family λk > 0 of eigenvaluesfor which there exist some functions φk not identically vanishing such that

Lφk = −λkφk . Using for φk a normalization such that ∫ L0 |φk(x)|2 dx = 1, theset {φk}k∈N form an orthonormal basis of the space L2per([0, L]).The concentration C (t, x) solution to (1) may be expressed as
C (t, x) = ∫[0,L] p(t, x, y)C (0, y) dy,

where for each y, p(t, x, y) is solution to (1) with p(t, x, y) = δy(x). Thisfunction is the fundemantal solution. It is well known that it may be expressedas
p(t, x, y) = +∞∑

k=0 e
−λk tφk(x)φk(y). (2)

By convention, we assume that 0 6 λ0 6 λ1 6 λ2 6 · · · .Remark that λ0 = 0 and the corresponding eigenvalues are the constantfunctions. Using the orthogonality of the eigenvalues, we then obtain that1
L

∫
[0,L] p(t, x, y) dy = 1, ∀t > 0.

Besides, it may be shown that if C (0, x) > 0, then C (t, x) > 0. This meansthat a conservation principle for the mass apply. One could see p(t, x, y) asthe density at time t > 0 of a large number of particles with total mass equalto 1 initially released at position x.Now, let us consider that the “periodic cell” [0, L] is decomposed as the intra-cellular part Ωi and the extra-cellular part Ωe. At time 1, we inject someparticles with a total mass equal to 1 at the point x. At time t, the mass ofthe particles in Ωi and Ωe are given by
ui(t, x) = ∫Ωi

p(t, x, y) dy and ue(t, x) = ∫Ωe

p(t, x, y) dy.
We rewrite (2) as

p(t, x, y) = 1
L + e−λ1tφ1(x)φ1(y) + o(e−λ1t),
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where φ1 is the eigenfunction associated to λ1, with ∫[0,L] φ1(x)2 dx = 1.If vi = |Ωi|/L (resp. ve = |Ωe|/L) the fraction of the volume of the interior(resp. exterior) part,
ui(t, x) = vi + e−λ1tφ1(x) ∫Ωi

φ1(y) dy+ o(e−λ1t),
ue(t, x) = ve + e−λ1tφ1(x) ∫Ωi

φ1(y) dy+ o(e−λ1t).
Note that we have

ui(t, x) + ue(t, x) = 1 and vi + ve = 1.
This way,
ui(t, x)− vi

ve
ue(t, x) = 1− (1 + vi

ve

)
ue(t, x)

= 1−(1 + vi
ve

) (ve+e−λ1tc(x)+o(e−λ1t)) = −(1 + vi
ve

)
c(x)e−λ1t+o(e−λ1t)(3)

with c(x) = φ1(x) ∫Ωe φ1(y) dy > 0.The intra-cellular residence time is given by (See [1])
1
τ = lim

t→∞

∂ue(t, x)
∂t

ui(t, x)− vi
ve
ue(t, x) . (4)

Hence, for t large enough,
∂ue(t, x)
∂t ≈ −λ1e−λ1tc(x).

It follows from (3) and (4) that1
τ ≈

λ11 + vi
ve

= veλ1. (5)
1.2 Semi-permeable membraneThe media is assumed to be one-dimensional and periodic. Hence, we con-sider an interval [0, L] which is decomposed into an intra-cellular domain [0, L1]and an extra-cellular domain [L1, L2] with L1 + L2 = L.
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Our model implies a diffusivity coefficient D0 which is equal in the intra- andthe extra-cellular compartments, and a parameter κ relating the jump of theconcentration to the flux at the interfaces.The density of water is then model by the following equation with two inter-faces at 0 (this point is identified to L due to the periodicity) and at L1:

∂C (t, x)
∂t =∇(D0∇C (t, x)), x ∈ [0, L],

κ(C (t, 0+)− C (t, L−)) = D0∇C (t, 0),
D0∇C (t, 0) = D0∇C (t, L), (continuity of the flux)
κ(C (t, L1+)− C (t, L1−)) = D0∇C (t, L1),
D0∇C (t, L1+) = D0∇C (t, L1−), (continuity of the flux)

(6)

Here, we have chosen to write the interface at 0 in order to simplify thecomputations.We are interested in the eigenvalues of the related operator. For this, wehave to find values of λ > 0 such that the following system has a solutionwhich is not identically equal to zero:

∇(D0∇C (t, x)) = −λφ(x), x ∈ [0, L],
κ(φ(0+)− φ(L−)) = D0∇φ(0),
D0∇φ(0) = D0∇φ(L),
κ(φ(L1+)− φ(L1−)) = D0∇φ(L1),
D0∇φ(L1+) = D0∇φ(L1−).

Let us already note that λ = 0 is an eigenvalue. The corresponding eigen-functions are constants on [0, L]. Introducing
µ =√ λ

D0 ,
we seek φ with the form

φ(x) = {α cos(µx) + β sin(µx), x ∈ [0, L1],
γ cos(µx) + δ sin(µx), x ∈ [L1, L].

The interface condition at L yields:[
κ −D0µ0 1 ] [

α
β

] = [κ cos(µL) κ sin(µL)
− sin(µL) cos(µL) ] [γδ] ,
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L3L3 δδ L1
D0D0 D1D1 D0 Periodic b.c

intra-cellular compartment
Figure 1: The domain using thin layers to model membranes.

which we may rewrite as[cos(µL) −κ−1D0µ cos(µL)− sin(µL)sin(µL) −κ−1D0µ sin(µL) + cos(µL)] [αβ] = [γδ] . (7)
The interface condition at L1 yields[

κ cos(µL1) +D0µ sin(µL1) κ sin(µL1)−D0µ cos(µL1)
− sin(µL1) cos(µL1)

] [
γ
δ

]
= [κ cos(µL1) κ sin(µL1)
− sin(µL1) cos(µL1)

] [
α
β

]
. (8)

Unless µ = 0, the involved matrices are all invertible. Combining (7) and (8)when λ 6= 0, we then obtain that there exists a matrix A(λ) such that
(A(λ)− Id) [αβ] = 0. (9)

The function φ will be an eigenfunction if there exists a non-zero solutionto (9) and then if det(A(λ)− Id) = 0. The problem is easily studied through anumerical procedure.
1.3 Using thin layers to model membranesIn order to set up a numerical Monte Carlo method to compute the residencetime in the cells, we study now another model with interfaces conditions.Between the intra- and extra-cellular compartments, we consider a layer witha small width δ and a diffusivity D1 such that D1/δ = κ. The concentrationis assumed to be continuous over the domain as well as the flux.Here, we consider that a intra-cellular compartment lies in the middle of [0, L]and we then use the decomposition of Figure 1.
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Here, we assume that δ � L1 and δ � L2 and we set
L = L2 + L1 + 2δ, L3 = L22 ,

D(x) = {D1 if x ∈ [L3, L3 + δ] ∪ [L3 + L1 + δ, L3 + L1 + 2δ],
D0 otherwise.

The concentration C (t, x) of the water is then equal to

∂C (t, x)
∂t =∇(D(x)∇C (t, x)), x ∈ [0, L],

D0∇C (t, z) = D1∇C (t, z) for z = L3, L3 + δ + L1,
D1∇C (t, z) = D0∇C (t, z) for z = L3 + δ, L3 + 2δ + L1,
C (t, z) = C (t, z) for z = L3, L3 + δ, L3 + L1 + δ, L3 + L1 + 2δ,
C (t, L) = C (t, 0) (periodic boundary condition).

(10)

Let us seek an eigenvalue λ in the form
φ(x) = α(x) cos(√λ/D(x)x) + β(x) cos(√λ/D(x)x),

where α(x) and β(x) are constant on each interval on which D(x) is constant.The conditions at an interface at point z yield
B(z−) [α(z−)

β(z−)] = B(z+) [α(z+)
β(z+)]

with
B(x) = [ cos(√λ/D(x)x) sin(√λ/D(x))x

−
√
λD(x) sin(√λ/D(x)x) √

λD(x) cos(√λ/D(x)x)
]
.

Let us note that det(B(x)) =√λD(x),so that B(x) is invertible unless λ = 0.With the domain described in Figure 1, let us set
[
α(x)
β(x)] = [αiβi

] with i =


1 if x ∈ [0, L3],2 if x ∈ [L3, L3 + δ],3 if x ∈ [L3 + δ, L3 + δ + L1],4 if x ∈ [L3 + δ + L1, L3 + 2δ + L1],5 if x ∈ [L3 + 2δ + L1, L],
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Hence, [
α1
β1
] = B(L3−)−1B(L3+) [α2

β2
]

and then[
α1
β1
] = B(L3−)−1B(L3+)B((L3 + δ)−)−1B((L3 + δ)+)

× B((L3 + δ + L1)−)−1B((L3 + δ + L1)+)
B((L3 + 2δ + L1)−)−1B((L3 + 2δ + L1)+) [α5

β5
]
.

On the other hand, the periodic boundary condition yields[1 00 √
λ/D0

] [
α1
β1
] = B(L) [α5

β5
]

or equivalently [
α1
β1
] = [ cos(√λ/D0L) sin(√λ/D0L)

− sin(√λ/D0L) cos(√λ/D0L)
] [
α5
β5
]

which could be written[
α5
β5
] = [cos(√λ/D0L) − sin(√λ/D0L)sin(√λ/D0L) cos(√λ/D0L)

] [
α1
β1
]
.

Combining this systems, we may write as previously that for a matrix A′(λ),an eigenvalue exists when
(A′(λ)− Id) [α1

β1
] = 0 (11)

has a non-zero solution. Hence, we are interested in solving det(A′(λ)− Id) =0.
2 Statistical estimation of the smallest non-negative eigen-

valueWhile there is no known probabilistic representation of the solution to (6), thestochastic process whose density p(t, x, y) is solution to (10) may be simulatedexactly. Several algorithms have been proposed to do so. Here, we used theone presented in [2] with a constant time step δt. For this, we use the thinlayer approximation of our model. In Section 3, we discuss the viability of
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this approach and show that for a layer width δ small enough, the smallesteigenvalues are for the two types of interfaces (semi-permeable or thin layer).Hence, when the starting point of the particle x0 is known, we let the particleevolving in the media until a large time T . For N realizations X (1), . . . , X (N)of the process X , we then define
vN(t) = 1

N

N∑
i=1 1{X (i)

t ∈Ωi}.

From the law of large numbers, it holds that
vN(t) ≈N→∞ ui(t, x0).Hence, vN(t) converges to vi, at some exponential rate λ as t converges toinfinity.In order to estimate λ and then τ by (5), we then estimate through a linear re-gression the slope of (ti, log(|vN(ti)−vi|)) for a large family of times {ti}i=1,...,Min a window [T0, T1].The choice of [T0, T1] is done “by hand”. In particular, T0 should be largeenough so that the term in exp(−λt) dominates the effect of all the othereigenvalues.On the other hand, T1 should not be too large in order to keep a good accuracybecause of the statistical fluctuations of vN around vi when the steady stateis reached. Let us fix the ideas that t is large enough so that the distributionof Xt is uniform over the media. Then 1{Xt∈Ωi} is a Bernoulli random variable,with variance vi(1−vi). From the Central Limit Theorem, for a fixed t, vN(t) maybe approximated by vi+Zt , where Zt is a normal random variable with variance

vi(1− vi)/N. This means that the fluctuations of vN(t) around vi have an orderof magnitude of log(√vi(1− vi)/N), which is roughly equal to − log(N)/2 for
N large enough. Such fluctuations could be seen in Figure 2. On the otherhand, we estimate the coefficient λ in a function of type vi + ce−λt . It is thenclear that an accurate estimation of λ from the vN(t) could be performed onlyif e−λt � Zt and then if t � log(N)/2λ.The difficulty with this procedure is that it can only by done a posteriori, sincethe eigenvalues of the opeartors are not known. On the other hand, it is easyto graphically assess a time interval [T0, T1] by plotting ui := log(|vN(ti)− vi|)against ti for i = 1, . . . ,M.The drawback of this procedure is that it cannot be fully automated. However,a simple estimation of the time interval [T0, T1] can be performed by plotting
εi against ti, where εi is defined as

εi := (ui − π(ti; t(i−w):(i−1), u(i−w):(i−1)))2,
8
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(b) log(vN(t)− vi)Figure 2: Evolution of the concentration in the intra-cellular domain andestimation of the smallest non-negative eigenvalue.
where π(t; xj:k , yj:k) = α + βt where α (resp. β) is the intercept value (resp.slope) given by linear least-squares performed on the vector yj:k against thevector xj:k , and w is an integer, say w = 5. Here, we have used a Matlab likenotation to consider only the components ranging from j to k of the vectors
x and y. The value of εi simply compare the value of ui with the predictedvalue of ui given by a “moving” regression estimator (over a small window ofsize w) on {t(i−w):(i−1), w(i−w):(i−1)}. We then keep the times {ti} for which εiis small.
3 Numerical comparisons of the smallest eigenvaluesWe now compare the eigenvalues of the two models. For this, we use arealistic range of parameters given in Table 1.

Value From To
κ = D1

δ 10−6 µm/µs 10−4 µm/µs
D0 2× 10−3 µm2/µs 3× 10−3 µm2/µs
L1 5 µm 20 µm
L2 ≈ L1/10
T 20,000 µs 50,000 µs

Table 1: A realistic range of parameters.
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κ D0 δ L1 L2 λMC λdet T0 T110−3 2× 10−3 10−2 10 2 4.45× 10−4 3.89× 10−4 2,000 10,00010−4 2× 10−3 10−2 10 2 1.52× 10−4 1.08× 10−4 5,000 20,00010−5 2× 10−3 10−2 10 2 4.65× 10−5 1.18× 10−5 5,000 27,00010−6 2× 10−3 10−2 10 2 4.20× 10−5 1.20× 10−6 10,000 40,00010−3 2× 10−3 10−2 10 1 6.22× 10−4 4.18× 10−4 2,000 7,00010−4 2× 10−3 10−2 10 1 2.66× 10−4 1.97× 10−4 2,000 13,00010−5 2× 10−3 10−2 10 1 8.65× 10−5 2.16× 10−5 2,000 13,00010−6 2× 10−3 10−2 10 1 7.93× 10−5 2.18× 10−6 2,000 15,000
Table 2: Monte Carlo estimation of the first non-zero eigenvalue. The unitsare the same as the one of Table 1.
The matrices A(λ) and A′(λ) appearing in (9) and (11) are easily computed fromthe numerical point of view. In Figures 3 and 4, we plot log10 | det(A(λ)− Id)|and log10 | det(A′(λ) − Id)|. The peaks of the curves give the values of λ atwhich A(λ)− Id and A′(λ)− Id are not invertible.We see that for δ = 10−2 or δ = 10−3, the curves are close and gives thensimilar eigenvalues. For δ = 10−3, some difference may exist.Hence, for estimating the first eigenvalue, which is related to the residencetime, using the model with thin layers given by (10) instead of the model (6)seems to be an acceptable choice when the parameters are in the range givenby Table 1.In Figure 5, we also plot the value of the first non-zero eigenvalue against κin a log-log plot.We also note (See Figures 3 and 4) that the distance between the two smallestnon-zero eigenvalues seems to increase when κ decrease.
4 Monte Carlo simulationsWe now perform some tests on Monte Carlo simulations in order to estimatethe first non-zero eigenvalues, which is related to the residence time.For this, we use 100,000 particles. We estimate the first eigenvalue λMC withthe procedure described in Section 2, which we compare with λdet which isobtained by a root-finding procedure as shown in Section 3.The width of the layer is δ = 10−2. The time step of the scheme for movingthe particles is δt = 10−2.The estimator tends to overestimate the value of the smallest non-zero eigen-value when κ decreases, and then to underestimate the value of the residencetime.
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Figure 3: Simulation of log10 | det(A(λ)− Id)| (blue) and log10 | det(A′(λ)− Id)|(red) as a function of λ.
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Figure 4: Simulation of log10 | det(A(λ)− Id)| (blue) and log10 | det(A′(λ)− Id)|(red) as a function of λ.
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Figure 5: Log-log plot of the smallest non-zero eigenvalue λ against κ for
D0 = 2× 10−3 µm2/µs, L2 = 1 and L1 = 10. For κ 6 1× 10−4 µm/µs, therelation seems to be λ = Cκ for a constant C ≈ 1.8, and then τi = veC/κ.
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