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Abstract

In this note, we study a Monte Carlo estimator of the residence time
in the intra-cellular compartment.

1 Interface problems

The diffusion of water is modeled using a Laplace operator with diffusivity D.
The space is divided by the intra-cellular compartment and the extra-cellular
compartment, which are separated by membranes. The difficulties lies in the
modeling and simulating the behavior of water particles at the interface. We
present a first one-dimensional model for the water displacement and we
study an approximation of this model.

The residence time characterizes the time spend by the water in the cell. We
will show that it is related to the first eigenvalues of some operator.

1.1  The residence time
Let us consider a model where the concentration is periodic over some interval
[0, L] and is given by

0C(t, x) = V(D(x)VC(t, x)),

C(t, L) = C(t,0) (periodic boundary condition), ()
C(t, z) satisfies some interface condition at some given point z,
C(0, x) is given

Let L = V(D(x)V -) be the corresponding operator with a domain Dom(L)
such that the solution to (1) belongs to the domain. In our cases, there are
two interface conditions that we consider. For a function f in the domain
Dom(L) of L and a point z at which there is an interface,

D(z+) = D(z—), Vf(z+) = Vf(z—) and k(f(z+) — f(z—)) = D(2)V{(z) (%)
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and
f(z+) = f(z—) and D(z+)V{(z+) = D(z—)V{(z—). (k)

It is easily checked that with these interfaces conditions, there exists a choice
of Dom(L) such that (L, Dom(L)) is a self-adjoint operator. Besides, it has
a compact resolvent. Hence, there exists a family Ay > 0 of eigenvalues
for which there exist some functions ¢, not identically vanishing such that
Loy = —Akgk. Using for ¢ a normalization such that fOL lpi(x)[?dx = 1, the
set {¢x }xen form an orthonormal basis of the space L7, ([0, L)).

The concentration C(t, x) solution to (1) may be expressed as

Clt,x) = /[0 Pl 9IC0.9)dy.

where for each y, p(t,x,y) is solution to (1) with p(t,x,y) = 0,(x). This
function is the fundemantal solution. It is well known that it may be expressed
as

p(t,x,y) = Ze o (x)pi(y).- (2)

By convention, we assume that 0 < Ag < Ay < Ay <
Remark that Ay = 0 and the corresponding eigenvalues are the constant
functions. Using the orthogonality of the eigenvalues, we then obtain that

1
—/ p(t,x,y)dy =1, vVt > 0.
L Jou

Besides, it may be shown that if C(0,x) > 0, then C(t,x) > 0. This means
that a conservation principle for the mass apply. One could see p(t, x, y) as
the density at time t > 0 of a large number of particles with total mass equal
to 1 initially released at position x.

Now, let us consider that the “periodic cell” [0, L] is decomposed as the intra-
cellular part Q; and the extra-cellular part Q.. At time 1, we inject some
particles with a total mass equal to 1 at the point x. At time ¢, the mass of
the particles in Q); and Q. are given by

ui(t, x) = /Q p(t, x,y)dy and u.(t, x) :/Q p(t, x,y)dy.

We rewrite (2) as

1t
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where ¢, is the eigenfunction associated to A, with f[O.L] ©1(x)?dx = 1.
If vi = |Q|/L (resp. ve = |Q.|/L) the fraction of the volume of the interior
(resp. exterior) part,

ui(t, x) = vi + e My (x) /Q ®1(y) dy + o(e™"),
Ue(t, X) = Ve + e M1 (x) /Q @1(y) dy + o(e™).
Note that we have

ui(t,x) +ue(t,x) =Tand v, + v, = 1.

This way,

ui(t, x) — ﬁue(t,x) =1- (1 + ﬁ) ue(t, x)
v v

—1- (1 v ﬁ) (Ve + e~ c(x) +0(e 1)) = — (1 + Vi) c(x)e™M" +o(e ™M)
(3)

with ¢(x) = @1(x) [, @1(y) dy > 0.
The intra-cellular residence time is given by (See [1])

Odu,(t, x)
1
~ = lim ot . (4)
T 2%t x) — v—lue(t, X)

Hence, for t large enough,

Odu,(t, x)
ot

It follows from (3) and (4) that

~ —Ae Me(x).

M

1
; ~ — V. = VeA1. (5)

T+ —

VE‘
1.2 Semi-permeable membrane

The media is assumed to be one-dimensional and periodic. Hence, we con-
sider an interval [0, L] which is decomposed into an intra-cellular domain [0, L]
and an extra-cellular domain [Ly, L] with Ly + L, = L.
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Our model implies a diffusivity coefficient Dy which is equal in the intra- and
the extra-cellular compartments, and a parameter k relating the jump of the
concentration to the flux at the interfaces.

The density of water is then model by the following equation with two inter-
faces at O (this point is identified to L due to the periodicity) and at L;:

ac((;;, Y V(DyC(t ), x €0,1],
K(C(t,0+) — C(t, L)) = DyV C(t,0),
1 DoV C(t,0) = DoV C(t, L), (continuity of the flux) (6)
k(C(t, Li+) = C(t, Li—)) = DoV C(t, Ly),
| DoV C(t, Li+) = DoV C(t, Li—), (continuity of the flux)

Here, we have chosen to write the interface at 0 in order to simplify the
computations.

We are interested in the eigenvalues of the related operator. For this, we
have to find values of A > 0 such that the following system has a solution
which is not identically equal to zero:

~

V(DoVC(t, X)) = —Ag(x), x €10, L]
k(¢(0+) — @(L=)) = DoV ¢(0),

DoV ¢(0) = DoV (L),

K(p(L1+) — o(L1—)) = DoV (L4),
| DoV o(Li+) = DoV o(Li1—).

A

Let us already note that A = 0 is an eigenvalue. The corresponding eigen-
functions are constants on [0, L]. Introducing

we seek ¢ with the form

(x) = acos(ux) + Bsin(ux), x €0, L4],
o= y cos(ux) + dsin(ux),  x € [Ly, L].

The interface condition at L yields:

kK —Dop|la| _ [«cos(ul) «sin(ul)||y
lO 1 ][B]_[—sln(uL) cos(pL)][é]'
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Figure 1: The domain using thin layers to model membranes.

which we may rewrite as

cos(ul) —k~"Dopcos(ul) —sin(ul)] [a] _ [v 7
[s'm(uL) —k"Dop sin(ul) + cos(uL)] [B] - [5] ' )

The interface condition at L; yields

[K cos(ulq) + Doprsin(uly) «sin(uly) — Doy cos(uL1)] [y]
—sin(pLy) cos(uLy) 0

B [Kcos(pL1) Ksin(uL1)] [a] )
| =sin(ulq) cos(ulq) | [B]"

Unless p = 0, the involved matrices are all invertible. Combining (7) and (8)
when A # 0, we then obtain that there exists a matrix A(A) such that

(A() — 1d) Lg] ~ 0. (9)

The function ¢ will be an eigenfunction if there exists a non-zero solution
to (9) and then if det(A(A) — Id) = 0. The problem is easily studied through a
numerical procedure.

1.3 Using thin layers to model membranes

In order to set up a numerical Monte Carlo method to compute the residence
time in the cells, we study now another model with interfaces conditions.
Between the intra- and extra-cellular compartments, we consider a layer with
a small width 0 and a diffusivity Dy such that D,/0 = k. The concentration
is assumed to be continuous over the domain as well as the flux.

Here, we consider that a intra-cellular compartment lies in the middle of [0, L]
and we then use the decomposition of Figure 1.



Here, we assume that 0 < [y and 0 < L, and we set

L

2 !

D(x) = {01 if x €[Ls, L3+ 0]U[Ls + Ly + 0, Ls + Ly + 20],

L=1ly+1+26, 5=

Dy otherwise.

The concentration C(t, x) of the water is then equal to
6C((9tt, ) _ wDpvei ), x e o)
DoV C(t,z) =Dy VC(t,z) for z= L5, L5+ 0 + Ly,

1DV C(t,z) = DoV C(t, 2) for z= L5+ 0, L5+ 20 + Ly, (10)
C(t,z) =C(t,2)forz= L3, L3+ 0,5+ L1+ 9,5+ Ly + 29,

| C(t, L) = C(t,0) (periodic boundary condition).

Let us seek an eigenvalue A in the form

@(x) = a(x) cos(~/A/D(x)x) x) cos(/A/D(x)

where a(x) and B(x) are constant on each interval on which D(x) is constant.
The conditions at an interface at point z yield

we 5] = o [

Blx) — cos(+/A/D(x)x) sin(+/A/D(x))x
(X)_[ \/WSLn\/)\/D ) \/AD(x) cos(r/A/D(x)x)

with

Let us note that
det(B(x)) = \/AD(x),

so that B(x) is invertible unless A = 0.
With the domain described in Figure 1, let us set

1 0, L],
2 ifxe[ls L5+0),
[“(X)] - [g] withi=1<3 ifxe[ls+0,L5+06+ L],
4 idxel[ls+0+ L, L5+20+ L4
5 ixel[ls+20+L,L]
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Hence,
o6]

_ 1 129)
31:| - B(L3 ) B(L3+) |:sz|

and then

I:gjjl = B(L3_)_1 B(L3+)B((L3 + 5)_)—18((L3 n 5)+)

x B((Ls+ 0 + L41)=)""B((Ls + 0 + L1)+)

B((Ls + 20 + L1)=) "' B((Ls + 20 + L1)+) [gﬂ :

On the other hand, the periodic boundary condition yields

o vamy) || =50 2]

or equivalently

a] _ [ cos(VATDoL)  sin(vADoL)] [ as
[31] [—stnwmu coswmu] [35]

which could be written

[0(5] _ [cos(\/)\/DoL) —sln(\/A/DoL)] [011]
Bs| | sin(VA/Dol)  cos(vAIDoL) | |Bi]

Combining this systems, we may write as previously that for a matrix A’'(A),
an eigenvalue exists when

(A(A) — Id) [;] =0 (11)

has a non-zero solution. Hence, we are interested in solving det(A’(A) —Id) =
0.

2 Statistical estimation of the smallest non-negative eigen-
value

While there is no known probabilistic representation of the solution to (6), the
stochastic process whose density p(t, x, y) is solution to (10) may be simulated
exactly. Several algorithms have been proposed to do so. Here, we used the
one presented in [2] with a constant time step dt. For this, we use the thin
layer approximation of our model. In Section 3, we discuss the viability of



this approach and show that for a layer width d small enough, the smallest
eigenvalues are for the two types of interfaces (semi-permeable or thin layer).
Hence, when the starting point of the particle xp is known, we let the particle
evolving in the media until a large time T. For N realizations X, ..., XN
of the process X, we then define

N
1
vn(t) = N Z 1 (xXDeq}
i=1
From the law of large numbers, it holds that

V/\/(t) N N—oo Ui(t, X()).

Hence, vn(t) converges to v;, at some exponential rate A as t converges to
infinity.

In order to estimate A and then 7 by (5), we then estimate through a linear re-
gression the slope of (t;, log(|vn(t;) — vi|)) for a large family of times {t;}i=1. um
in a window [Ty, T4].

The choice of [Ty, T1] is done “by hand”. In particular, Ty should be large
enough so that the term in exp(—At) dominates the effect of all the other
eigenvalues.

On the other hand, T; should not be too large in order to keep a good accuracy
because of the statistical fluctuations of vy around v; when the steady state
is reached. Let us fix the ideas that t is large enough so that the distribution
of X; is uniform over the media. Then 1x,cq, is a Bernoulli random variable,
with variance v;(1—v;). From the Central Limit Theorem, for a fixed ¢, vn/(t) may
be approximated by v;+Z;, where Z; is a normal random variable with variance
vi(1 —v;)/N. This means that the fluctuations of vy(t) around v; have an order
of magnitude of log(~/vi(1 — v;)/N), which is roughly equal to — log(/N)/2 for
N large enough. Such fluctuations could be seen in Figure 2. On the other
hand, we estimate the coefficient A in a function of type v; + ce™!. It is then
clear that an accurate estimation of A from the vx/(t) could be performed only
if e > 7, and then if t <« log(N)/2A.

The difficulty with this procedure is that it can only by done a posteriori, since
the eigenvalues of the opeartors are not known. On the other hand, it is easy
to graphically assess a time interval [Ty, T1] by plotting u; := log(|vn(t:) — vi|)
against t; fori =1,..., M.

The drawback of this procedure is that it cannot be fully automated. However,
a simple estimation of the time interval [Ty, T1] can be performed by plotting
€; against t;, where ¢g; is defined as

2
g = (ui — 7t ticwyi=1), Ui—wyi-1))
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Figure 2: Evolution of the concentration in the intra-cellular domain and
estimation of the smallest non-negative eigenvalue.

where 7t(t; xj.x, k) = a + Bt where a (resp. B) is the intercept value (resp.
slope) given by linear least-squares performed on the vector y; against the
vector x;.., and w is an integer, say w = 5. Here, we have used a Matlab like
notation to consider only the components ranging from j to k of the vectors
x and y. The value of g; simply compare the value of u; with the predicted
value of u; given by a “moving” regression estimator (over a small window of
size w) on {t(_w)(i—1), W(i—w):(i—1)}- We then keep the times {t;} for which &;
is small.

3 Numerical comparisons of the smallest eigenvalues

We now compare the eigenvalues of the two models. For this, we use a
realistic range of parameters given in Table 1.

Value From To

K = % 107% um/ps 10~ um/us

Dy 2 x 1073 um?/us 3 x 1073 um?/us
L4 5 um 20 um

L2 ~ L1 /10

T 20,000 11 50,000 115

Table 1: A realistic range of parameters.



K Dy o L L Amc Adet To T
103 2x1032 1072 10 2 4.45x10~* 3.89x10~* 2000 10,000
10°% 2x103 1072 10 2 152x10* 1.08x10°* 5,000 20,000
10 2x103 1072 10 2 465x10° 1.18x 107> 5,000 27,000
0% 2x102 1072 10 2 420x10"> 1.20x10°® 10,000 40,000
103 2x103 1072 10 1 6.22x10* 418 x10~* 2,000 7,000
107% 2x103 102 10 1 266x107* 1.97 x10°* 2,000 13,000
10°° 2x103 102 10 1 8.65x10° 216 x 107> 2,000 13,000
10°% 2x103 102 10 1 7.93x10° 218x10°° 2,000 15,000

Table 2: Monte Carlo estimation of the first non-zero eigenvalue. The units
are the same as the one of Table 1.

The matrices A(A) and A’(A) appearing in (9) and (11) are easily computed from
the numerical point of view. In Figures 3 and 4, we plot log,, | det(A(A) — Id)|
and log,, | det(A’(A) — Id)|. The peaks of the curves give the values of A at
which A(A) — Id and A’(A) — Id are not invertible.

We see that for & = 1072 or 0 = 1073, the curves are close and gives then
similar eigenvalues. For 8 = 1073, some difference may exist.

Hence, for estimating the first eigenvalue, which is related to the residence
time, using the model with thin layers given by (10) instead of the model (6)
seems to be an acceptable choice when the parameters are in the range given
by Table 1.

In Figure 5, we also plot the value of the first non-zero eigenvalue against
in a log-log plot.

We also note (See Figures 3 and 4) that the distance between the two smallest
non-zero eigenvalues seems to increase when k decrease.

4 Monte Carlo simulations

We now perform some tests on Monte Carlo simulations in order to estimate
the first non-zero eigenvalues, which is related to the residence time.

For this, we use 100,000 particles. We estimate the first eigenvalue Ayic with
the procedure described in Section 2, which we compare with Ag; which is
obtained by a root-finding procedure as shown in Section 3.

The width of the layer is 6 = 1072, The time step of the scheme for moving
the particles is dt = 1072,

The estimator tends to overestimate the value of the smallest non-zero eigen-
value when k decreases, and then to underestimate the value of the residence
time.
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Figure 3: Simulation of log,, | det(A(A) —Id)| (blue) and log,, | det(A’(A) — Id)|

(red) as a function of A.
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Figure 5: Log-log plot of the smallest non-zero eigenvalue A against « for
Dy =2 x 1073 um?/us, L, = 1 and L; = 10. For k < 1 x 107* um/us, the
relation seems to be A = Ck for a constant C ~ 1.8, and then 7; = v.C/k.
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