Effective diffusion tensor computed by homogenization

Dang Van Nguyen¹, Denis Grebenkov², Cyril Poupon³, Denis Le Bihan³, and Jing-Rebecca Li⁴

¹CMAP, Ecole Polytechnique, Palaiseau Cedex, France, ²PMC, Ecole Polytechnique, Palaiseau Cedex, France, ³Neurospin, CEA Saclay, Gif-sur-Yvette cedex, France, ⁴Equipe DEFI, INRIA Saclay, Palaiseau Cedex, France

Introduction

Diffusion MRI can give useful information on cellular structure and structural change (for a review see [1]). We show the effective diffusion tensor obtained by mathematical homogenization theory (see e.g. [2,3]) is a good approximation to the long time apparent diffusion tensor under realistic DMR scanning conditions for both isotropic and anisotropic diffusion and general geometries. The homogenized diffusion tensor is obtained by solving three steady-state Laplace equations, which is a more computationally efficient approach than long time simulation in the time domain, either via Monte-Carlo simulation or numerical solution of the time-dependent Bloch-Torrey PDE.

Theory

In the two-compartment model, we consider the two compartments, Ω^i and Ω^e , to be the ensemble of cells and the extra-cellular compartment, respectively. The two compartments have the same intrinsic diffusion coefficient D. The cell membrane is modeled by an infinitely thin permeable interface characterized by permeability κ . Given the diffusion gradient with profile f(t) and gradient strength $\vec{g} := \vec{q} / \gamma$, where γ is the gyro-magnetic ratio, the DMRI signal attenuation is $\Psi(\vec{q},t)$, from which we define the apparent diffusion tensor D^A from the Taylor expansion in \vec{q} :

$$\log \Psi(\vec{q},t) = -\vec{q}^T D^A \vec{q} \int_0^t du \left(\int_s^u f(s) ds \right)^2 + O\left(\|\vec{q}\|^4 \right).$$
 The long time limit of D^A can be well approximated by the effective diffusion tensor of homogenization,

$$D^{eff} = \begin{pmatrix} D_{11}^{-1} & D_{12}^{-2} & D_{13}^{-2} \\ D_{21}^{eff} & D_{22}^{eff} & D_{23}^{eff} \\ D_{31}^{eff} & D_{32}^{eff} & D_{33}^{eff} \end{pmatrix}$$
 where $D_{jk}^{eff} = D \int_{\Omega} \nabla v_j \bullet \vec{e}_k \, d\vec{x}$, \vec{e}_k is the unit vector in the *k*th coordinate

 $\nabla \cdot D \nabla \vec{v}_i^{\ell}(x) = 0, \ x \in \Omega^{\ell}, \ \ell = i, e,$ $\nabla v_i^i(y) \bullet \vec{n}^i(y) = -\nabla v_i^e(y) \bullet \vec{n}^e(y), \ y \in \Gamma^{ie},$ $\nabla v_i^i(y) \bullet \vec{n}^i(y) = \kappa(v_i^e(y) - v_i^i(y)), \ y \in \Gamma^{ie},$ $v_i(y+l_i\vec{e}_i) = v_i(y)+l_i, \{y, y+l_i\vec{e}_i\} \in \partial \Omega,$ $v_i(y+l_k\vec{e}_k) = v_k(y), \{y, y+l_k\vec{e}_k\} \in \partial\Omega, k \neq j$

 10^{-5} µm/µc

direction and the unknown function v_i can be found by solving the Laplace equation on the right over the box $\Omega = [0, l_1] \times [0, l_2] \times [0, l_3]$ which contains a representation sample of the cellular structure. In an nearly isotropic medium, Deff is nearly diagonal and all the diagonal entries are close to each other. But in the general anisotropic case, the eigenvalues of D^{eff} are not equal to each other. **Results and discussion**

Simulated DMRI signals were obtained for the PGSE sequence with δ =10ms and Δ =10ms, 30ms and 50ms in two gradient directions $\vec{q}/||\vec{q}||^2 = [1,0]$, and

[0,1] (2D case) and δ =10ms and Δ =10ms and 90ms in three gradient directions $\vec{q}/||\vec{q}||^2$ =[1,0,0], [0,1,0] and [0,0,1] (3D case) by numerically solving the

two-compartment Bloch-Torrey partial differential equation on a sample $\Omega = [-40;40]^{d}$ (d = 2,3) containing numerous convex cells in two dimensions with volume fraction $v^i = 0.88$, average surface to volume ratio S/V=0.51 μ m⁻¹ (Fig 1) and convex-shaped cells in three dimensions (Fig 2) with $v^i = 0.66$, S/V=0,34 μ m⁻¹. The average radius of cells is 3.9 μ m for 2D and 8,8 μ m for 3D. We simulated the DMRI signal for D=2,8.10⁻³ μ m²/ μ s and κ =10⁻⁵ μ m/ μ s and $\kappa = 10^{-4} \mu m/\mu s$, giving computed ADCs of between 0,5.10⁻³ and 2,2.10⁻³ $\mu m^2/\mu s$ (3D case). In Table 1 and 2 we see the simulated apparent diffusion tensor D^A approaches the steady-state tensor D^{eff} computed by the homogenization method described above. The convergence of D^A to D^{eff} is faster at higher permeability. The calculation of D^{eff} for 3D took between 10 minutes to two hours for spatial discretizations of between 80x80x80 and 160x160x160 on a Dell Latitiude E6410 laptop computer (Intel(R) Core(TM) i7 CPU M640 @ 2,8GHz).

 10^{-4} µm/µc

30 10 -10 -30 -30 -30 -20 -10 0 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 0 10 0 0 0 0 0 0 0		$\kappa = 10 \mu m/\mu s$				$\kappa = 10 \ \mu m/\mu s$			
		$\vec{q}^{\prime}D^{A}\vec{q}$			$\vec{q}^{\prime}D^{ey}\vec{q}$	$\vec{q}^{\prime}D^{A}\vec{q}$			$\vec{q}^{\prime} D^{e\!\prime\!\prime} \vec{q}$
	\vec{q}	δ=10,Δ=10	δ=10,Δ=30	δ=10,Δ=50		δ=10,Δ=10	δ=10,Δ=30	δ=10,Δ=50	
	(1,0)	1,1.10-3	9,0.10-4	8,3.10-4	7,1.10-4	8,3.10-4	5,5.10-4	4,5.10-4	2,6.10-4
	(0,1)	1,1.10 ⁻³	9,4.10 ⁻⁴	8,8.10-4	7,6.10 ⁻⁴	8,9. 10 ⁻⁴	5,9. 10 ⁻⁴	4,8. 10 ⁻⁴	2,7.10-4
Fig 1. Convex cells with average radius	Table 1. The simulated apparent diffusion tensor D ^A approaches the steady-state tensor D ^{eff} computed by								
μ m, volume fraction $v^i = 0.88$ homogenization (2D case).									
Domain has 100 cells 40 20 -20 -40 40 20 -20		$\kappa = 10^{-4} \mu m / \mu s$			$r - 10^{-5}$ µm/us				
	_	$\vec{q}^{\prime}D^{\prime}\vec{q}$		$\vec{q}^{\prime}D^{e\!\prime\!\prime}\vec{q}$		$\vec{q}^{\prime} D^{A} \vec{q}$		$D^{ey} \vec{q}$	
	_	→ (2 10 4 10	\$ 10 4 00		\$ 10.4	10 \$ 10		
		q (b=10,∆=10	0 =10,Δ=90		о =10,∆=	10 0=10, 4	2=90	
		(1,0,0)	1,7.10 ⁻³	1,6.10-3	1,5.10-3	1,4.10-3	1,0.1	0 ⁻³ 0,8	.10 ⁻³
		(0,1,0)	2,2.10-3	2,1.10-3	2,0.10-3	2,0.10-3	1,5.1	0 ⁻³ 1,2	.10 ⁻³
		(0,0,1)	1,2.10-3	1,0.10-3	1,0.10-3	0,84.10	4 0,5.1	0 ⁻³ 0,4	.10 ⁻³
Fig 2. Convex cells with average radius	Table 2. The simulated apparent diffusion tensor D^A approaches the steady-state tensor D^{eff} computed by								
8,8 μ m and volume fraction $v^i = 0,66$.	homogenization (3D case).								

References

Domain,vⁱ=0.88

[1] LeBihan (2007) Phys Med Bio 52. [2] Bensoussan et al. (1978) Asymptotic analysis for periodic structures, North-Holland, Amsterdam. [3] Cheng et al (1997) Proc Math Phy Engin Sci 453:145-161.