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Effective diffusion tensor computed by homogenization 
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Introduction 
Diffusion MRI can give useful information on cellular structure and structural change (for a review see [1]).We show the effective diffusion tensor 
obtained by mathematical homogenization theory (see e.g. [2,3]) is a good approximation to the long time apparent diffusion tensor under realistic DMR 
scanning conditions for both isotropic and anisotropic diffusion and general geometries. The homogenized diffusion tensor is obtained by solving three 
steady-state Laplace equations, which is a more computationally efficient approach than long time simulation in the time domain, either via Monte-Carlo 
simulation or numerical solution of the time-dependent Bloch-Torrey PDE. 
Theory 
In the two-compartment model, we consider the two compartments, iΩ and eΩ , to be the ensemble of cells and the extra-cellular compartment, 
respectively. The two compartments have the same intrinsic diffusion coefficient D. The cell membrane is modeled by an infinitely thin permeable 
interface characterized by permeability κ. Given the diffusion gradient with profile f(t) and gradient strength γ/: qg

rr
= , where γ  is the gyro-magnetic 

ratio, the DMRI signal attenuation is ),( tq
r

Ψ , from which we define the apparent diffusion tensor DA from the Taylor expansion in q
r
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AT rrrr . The long time limit of DA can be well approximated by the effective diffusion tensor of homogenization, 

 
 
 
 
 
 
 
 
 
Results and discussion 

Simulated DMRI signals were obtained for the PGSE sequence with δ=10ms and  Δ=10ms, 30ms and 50ms in two gradient directions 2/ qq
rr

 =[1,0], and 

[0,1] (2D case) and δ=10ms and Δ=10ms and 90ms in three gradient directions 2/ qq
rr

=[1,0,0], [0,1,0] and [0,0,1] (3D case) by numerically solving the 

two-compartment Bloch-Torrey partial differential equation on a sample [ ]d40;40−=Ω )3,2( =d  containing numerous convex cells in two dimensions with 
volume fraction vi =0,88, average surface to volume ratio S/V=0,51μm-1 (Fig 1) and convex-shaped cells in three dimensions (Fig 2) with vi =0,66, 
S/V=0,34μm-1. The average radius of cells is 3.9μm for 2D and 8,8μm for 3D.  We simulated the DMRI signal for D=2,8.10-3 μm2/μs and κ=10-5μm/μs 
and κ=10-4μm/μs, giving computed ADCs of between 0,5.10-3 and 2,2.10-3 μm2/μs (3D case). In Table 1 and 2 we see the simulated apparent diffusion 
tensor DA approaches the steady-state tensor Deff computed by the homogenization method described above. The convergence of DA to Deff is faster at 
higher permeability. The calculation of  Deff for 3D took between 10 minutes to two hours for spatial discretizations of between 80x80x80 and 
160x160x160 on a Dell Latitiude E6410 laptop computer (Intel(R) Core(TM) i7 CPU M640 @ 2,8GHz). 

 
Fig 1. Convex cells with average radius 
3.9μm, volume fraction vi =0,88 

      κ=10-4 μm/μs κ=10-5 μm/μs 

 qDq AT rr
 qDq effT rr

qDq AT rr
 qDq effT rr

qr  δ=10,Δ=10 δ=10,Δ=30 δ=10,Δ=50  δ=10,Δ=10 δ=10,Δ=30 δ=10,Δ=50  

(1,0) 1,1.10-3 9,0.10-4 8,3.10-4 7,1.10-4 8,3.10-4 5,5.10-4 4,5.10-4 2,6.10-4 

(0,1) 1,1.10-3 9,4.10-4 8,8.10-4 7,6.10-4 8,9. 10-4 5,9. 10-4 4,8. 10-4 2,7.10-4

Table 1. The simulated apparent diffusion tensor DA approaches the steady-state tensor Deff computed by 
homogenization (2D case). 

 
 
 
 
 
 
 
 
 
 
Fig 2. Convex cells with average radius 
8,8μm and volume fraction vi =0,66.  

       κ=10-4 μm/μs κ=10-5 μm/μs 

 qDq AT rr
 qDq effT rr

 qDq AT rr
 qDq effT rr

 

qr   δ=10,Δ=10 δ=10,Δ=90   δ=10,Δ=10 δ=10, Δ=90  

(1,0,0) 1,7.10-3 1,6.10-3 1,5.10-3 1,4.10-3 1,0.10-3 0,8.10-3 

(0,1,0) 2,2.10-3 2,1.10-3 2,0.10-3 2,0.10-3 1,5.10-3 1,2.10-3 

(0,0,1) 1,2.10-3 1,0.10-3 1,0.10-3 0,84.10-4 0,5.10-3 0,4.10-3 
Table 2. The simulated apparent diffusion tensor DA approaches the steady-state tensor Deff computed by 
homogenization (3D case). 
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 where ∫ •∇=
Ω

kj
eff
jk x devDD

rr , ke
r  is the unit vector in the kth coordinate 

direction and  the unknown function vj can be found by solving the Laplace equation on the right 
over the box [ ] [ ] [ ]321 ,0,0,0 lll ××=Ω  which contains a representation sample of the cellular structure . 
In an nearly isotropic medium, Deff is nearly diagonal and all the diagonal entries are close to each 
other. But in the general anisotropic case, the eigenvalues of Deff are not equal to each other.  
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