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Introduction 
Water diffusion in biological tissues is not free (Gaussian), as the signal attenuation is not monoexponential with diffusion-weighting (b value) [1]. Some groups have 
successfully characterized this attenuation with a biexponential model, which suggests the presence of 2 water pools in slow or intermediate exchange [1]. However, 
this model is still controversial [2] and the nature of the 2 pools (e.g., membrane-bound and intra/extracellular bulk water) remains elusive [3]. We propose a numerical 
method for solving the Bloch-Torrey partial differential equation in multiple diffusion compartments to compute the bulk magnetization of a sample under the influence 
of a diffusion gradient.  We couple a mass-conserving finite element discretization in space with a stable time discretization using an explicit Runge-Kutta-Chebyshev 
method [4] .  We are able to solve the Bloch-Torrey PDE in multiple compartments rapidly and accurately, making it a reasonable candidate as the forward solver in the 
inner iterative loop of an inverse problem solver going from signals to biological parameters. 
Method 
We consider the Bloch Torrey equation for the bulk magnetization in a sample under a diffusion gradient.  In the sample Ω, we assume multiple compartments each with 
a diffusion coefficient Dj, hence we formulate the Bloch Torrey equation in each compartment Ωj , where the Ωj’s are the intra-cellular, extra-cellular, and membrane 
compartments.  
 
 
 
The initial condition )(0 xM j r is the equilibrium density.  We impose two interface conditions on the interfaces between the compartments:  
 
 

The first enforces the conservation of mass and the second includes the permeability coefficient jkα  on the interface jkΓ  across the compartments j and k.  The 

signal is given by the integral of ),( txM
r

 over the entire sample: ∫ Ω∈
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),,( .  In the spatial discretization, we conserved numerical fluxes across the 

interfaces, hence there is no numerical mass loss associated with this method.  In the time discretization, we used the Runge-Kutta Chebyshev method, which is an 
explicit time stepping method, meaning no large matrices need to be inverted at each time step, and the allowed time step dt is much larger than most commonly used 
methods (Euler or Crank-Nicolson time stepping, Monte-Carlo methods).  In addition, the time step dt is adaptive: the code uses more time steps when problem needs it, 
namely, during the time when the gradient is turned on, i.e., when f(t) is not 0.  This is all done automatically, based on the absolute and relative error tolerances on the 
computed residual, as requested by the user.   
Results and discussion  
We show the results of simulation for an infinite array (pseudo-periodic boundary conditions imposed on the computational domain) of spherical cells placed L=6 μm 
apart in x, y and z directions.  There are two compartments: the intra-cellular compartment consists of spheres of radius 2.5 μm and DIC =1.2x10-3 μm2/μs, the extra-
cellular compartment has DEC=1.5x10-3 μm2/μs.  Assuming it is very thin the membrane-bound water compartment was modelled as an infinitely thin interface layer 
between between ΩIC and ΩEC with a finite permeability coefficient. The permeability between ΩIC and ΩEC was set to α= 5x10-5 μm2/μs.  We simulated up to TE=Δ =30 
ms and the orientation of q

r
is in the direction [1,0,0].  In Fig 1a and 1b the sequence f(t) is a flat top lasting δ=10 ms (see Fig 1b for profile of f(t)).  We simulated up to 

b=6000 μs /μm2.  In Fig 1a we plot the simulated signal at 4 different b values.  We checked numerically that the mass at Δ =30 ms is indeed the same as at the start.  
The spatial discretization is 50 by 50 by 50.  The requested time step given to the RKC algorithm is 500 μs and the requested absolute and relative errors is 10-4.  At the 
beginning of the simulation many substeps were taken by RKC due to the sharp shape of the gradient, but during most of the simulation, there are only 2 to 4 substeps 
taken within each 500 μs requested step.  In Fig 1b, we show the timing of the method during the 60 time steps (60x 500 μs = 30ms) by plotting the number of 
Laplacian evaluations against time step.  At the beginning, 100 evaluations were needed to achieve relative and absolute error of 10-4, soon, only 40 evaluations were 
needed per time step.  The computational time needed to compute each data point for a single b-value is about 85 seconds on a DELL laptop (Intel Core 2 Duo T7100 
(1.80GHz)).  For b=0 (pure diffusion case), computational time is the shortest, 58 seconds, but as b value increases, there is no significant increase in computational 
time (all around 80 seconds).  In Figure 1c and 1d we show the simulated signal from three different oscillating gradients, with increasing frequency (sequence profiles 
are in Fig 1d).  We see the signals are linear with 2qr , where Gq

rr γ= , at high frequencies, hence probing short diffusion times (the top two curves), and it becomes 
nonlinear when the frequency is low (the lowest curve), hence indicating long diffusion times.  The three curves are generated on a [20,20,20] spatial grid in 30 seconds 
of computational time each, on the same Dell laptop described above.  In Fig 1e. we show the computational time required for freq = 2.  Each bump of the sequence 
profile causes more Laplacian evaluations to be needed and this adaptivity is done automatically by the code.  For G = 0, low number of Laplacian evaluations occurred 
at the tops of the bumps of f(t), where f(t) is the most smooth.  Because our code is able to solve the Bloch Torrey equation in 3 dimensions in geometries with multiple 
compartments in very reasonable time, it would be very useful as the forward solver in the inner iterative loop of any inverse solver taking DMRI signals back to 
biological parameters. 

 
Fig 1a. Signal of flat top 
sequence profiled in Fig 1b. 

Fig 1b. Gradient profile and 
timing of flat top sequence. 

 
Fig 1c. Signal of oscillating 
sequence profiled in Fig 1d. 

Fig 1d.  Profile and timings 
of oscillating sequence. 

 
Fig 1e.  Computational time for 
oscillating gradient freq = 2. 
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