Evaluation of fiber radius mapping using diffusion MRI under clinical system constraints

C-H. Yeh^{1,2}, I. Kezele¹, D. Alexander³, B. Schmitt¹, J-R. Li¹, D. Le Bihan¹, C-P. Lin², and C. Poupon¹

¹NeuroSpin, I2BM, CEA, Gif-sur-Yvette, France, ²National Yang-Ming University, Taipei, Taiwan, ³University College London, London, United Kingdom

Introduction

The advanced diffusion-weighted (DW) MR microscopy imaging is a useful tool to probe microstructural features of tissues, such as cell size, fiber density, and membrane permeability [1-3]. These direct measures of tissue properties can be utilized as biomarkers to monitor tissue status. Although a number of elaborate imaging protocols have been proposed for microstructures imaging [4-5], the conventional pulsed-gradient spin-echo (PGSE) sequence remains the most commonly used especially on clinical MR scanners due to the constraints on the gradient system. The method described in [1] is able to effectively optimize the DW MR imaging protocol for measuring the fiber/cellular sizes found in the human brains, whereas the difficulties for clinical studies remain in two aspects. Firstly, the optimized imaging strategy is generated for a specific fiber radius, whereas the white matter (WM) of human brain covers a range of fiber diameter approximately from 1 to 10 µm; secondly, a high gradient intensity (at least 70 mT/m) is required for accurate estimation of small fiber radius, which is less feasible to clinical MR scanners where the maximum gradient amplitude is limited to 40 mT/m. Accordingly, in this study, we used a Monte Carlo simulator to simulate water diffusion in various fiber radii, and then evaluate a list of PGSE imaging protocols under the constraint on the gradient system capability of clinical MR scanners.

Methods

Simulations were performed using a random walk Monte Carlo simulator to simulate 3D water molecular diffusion in a bundle of parallel impermeable fibers formed by mesh-based cylinders [6]. We created four simulation scenes with the same the intracellular fraction (f_{IC} =0.74), where each contains specific fiber radius R(=1/2/4/6 μ m). In each simulation scene, 10⁵ diffusing particles were randomly distributed, and a constant diffusivity of 2×10⁻³ mm²/s was assumed to be identical in the intra- and extra-cellular space. We used a total iteration count of 10⁴ and a simulation time step of 10 μ s, yielding a step size of 0.32 μ m.

Synthetic MR dataset was obtained by simulating a PGSE sequence with trapezoidal DW gradient pulses [6]. Table 1 summarized the list of imaging protocols created to conform to the capability of clinical MR system. Each protocol contains 120 DW acquisitions with different M and N combinations, where M is the number of q-space sampling shells and N is the number of DW gradient orientations per shell. In each protocol, the gradient amplitude and slew rate were fixed at 40 mT/m and 200 T/m/s respectively, while the DW gradient pulse duration (δ) and separation (Δ) were varied simultaneously to keep a constant effective diffusion time ($\Delta_{eff} = \Delta - \delta/3 = 50$ ms) so as to reach sufficient diffusion sensitizing factors (i.e. b-values) for short δ s. Note that all of the b-values used in this study were all clinically achievable. The echo time (TE) determined by the maximum δ and Δ was fixed in each protocol, and a T2 of 70 ms typically found in WM at 3T was used.

Parameter estimation was performed using the Markov Chain Monte Carlo (MCMC) method implemented with a Rician noise model to sample the posterior distribution of model parameters [1-2]. Initial estimates for f_{IC} , axial and transverse diffusivities were obtained from the diffusion tensor analysis on the synthetic dataset. Fiber direction (along z-axis) and radius (R) were initialized to the ground-truth values given in the Monte Carlo simulations. Synthetic Rician noise was added to the DW signal considering the effect of varying TE between the protocols. The signal-to-noise ratio was 50 on the null DW signal at TE=86.5 ms. In the procedure of MCMC, the burn-in period, sampling interval, and sampling count were 10^5 , 10^3 , and 10^2 respectively. The MCMC was repeated for 10 times to collect 10^3 samples.

Results & Discussion

Conclusion

We assessed the feasibility in mapping fiber radii under the constraints of clinical MR systems. Within clinical acceptable acquisition time (~30 minutes), we observed that using three shells with moderate to high *b*-values (*Protocol 3*) is potentially feasible to estimate fiber/cellular sizes with minimum overlapping between distributions. Further work will consider more realistic biological conditions, such as the effect of size distribution, permeability, angular dispersion of the fibers.

References

[1] Alexander DC. MRM 2008; 60:439-448. [2] Alexander DC *et al.* NeuroImage 2010; 52:1374-1389. [3] Assaf Y *et al.* MRM 2008; 59:1347-1354. [4] Shemesh N *et al.* JMR 2009; 198:15-23. [5] Xu J *et al.* JMR 2009; 200:189-197. [6] Yeh CH *et al.* Proc ISMRM 2010; 2241.

Table 1. Clinical PGSE DW MR imaging protocols

Table 2. Mean ± Standard	deviations (af the distributions
Table 2. Mean ± Standard	uevianons to	i of the distributions

Protocol	M	N	δ (ms)	TE (ms)	<i>b</i> -value (s/mm²)	Protocol	<i>R</i> =1 μm	R=2 μm	<i>R</i> =4 μm	<i>R</i> =6 μm
1		3 40	4, 8, 12	70.5	80, 350, 800	1	1.54 ± 0.68	2.11 ± 0.61	4.11 ± 0.68	5.70 ± 0.65
2	3		8, 16, 20	81.2	350, 1430, 2250	2	1.22 ± 0.44	1.78 ± 0.33	3.91 ± 0.29	6.07 ± 0.58
3			16, 20, 24	86.5	1430, 2250, 3250	**3**	1.02 ± 0.31	1.86 ± 0.26	3.88 ± 0.33	5.91 ± 0.34
4			4, 8, 12, 16	75.8	80, 350, 800, 1430	4	1.07 ± 0.50	1.93 ± 0.65	3.81 ± 0.50	6.11 ± 0.41
5	4	30	8, 12, 16, 20	81.2	350, 800, 1430, 2250	5	1.17 ± 0.31	1.84 ± 0.53	3.93 ± 0.48	6.11 ± 0.54
6	1		12, 16, 20, 24	86.5	800, 1430, 2250, 3250	*6*	1.04 ± 0.27	1.78 ± 0.30	3.90 ± 0.38	6.12 ± 0.44
7	5 24	24	4, 8, 12,16, 20	81.2	80, 350, 800, 1430, 2250	7	1.29 ± 0.35	1.95 ± 0.63	3.92 ± 0.44	6.22 ± 0.43
8		3 24	8, 12,16, 20, 24	86.5	350, 800, 1430, 2250, 3250	*8*	0.96 ± 0.32	1.79 ± 0.26	3.92 ± 0.27	5.94 ± 0.41
9	6	20	4, 8, 12,16, 20, 24	86.5	80, 350, 800, 1430, 2250, 3250	9	1.14 ± 0.37	1.69 ± 0.47	3.91 ± 0.35	6.00 ± 0.37

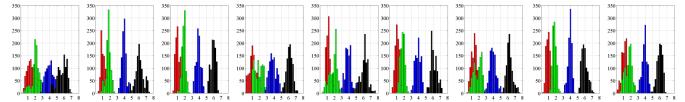


Fig. 1: Histograms of samples obtained from the MCMC posterior distributions on R (red/green/blue/black: R=1/2/4/6 μm). Left to right: Protocol 1 to Protocol 9.