
Solving PDEs using the finite element method with the

Matlab PDE Toolbox

September 30 - October 11, 2019

Jing-Rebecca Lia

aINRIA Saclay, Equipe DEFI, CMAP, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau
Cedex, France

1. Classification of second order partial differential equations

Consider the following partial differential equation (PDE)

n∑
i=1

n∑
j=1

kij
∂2u

∂xi∂xj
+

n∑
i

hi
∂u

∂xi
+ lu+ r = 0, (1)

where the coefficients kij, hi, l, r are functions of x = {x1, x2, · · · , xn}, u = u(x1, x2, · · · , xn)
and n is the number of independent variables.

Put the coefficients {kij} into a matrix:

K ≡

k11 · · · k1n
...
. . . ,

...
kn1 · · · knn

 .
Assume the matrix K is symmetric. If K is not symmetric, then the PDE in Eq. 1
has to be transformed first to get a symmetric coefficient matrix before classifying
the PDE.

The classification of second-order equations in n variables is the following:

Email address: jingrebecca.li@inria.fr (Jing-Rebecca Li )

1



• the PDE is elliptic if all eigenvalues λ1, · · · , λn of K are non-zero and have the
same sign.

• the PDE is hyperbolic if all eigenvalues of K are non-zero and have the same
sign except for one of the eigenvalues.

• the PDE is parabolic if any of the eigenvalues of K is zero.

1.1. Important examples

• the Laplace PDE :

uxx(x, y, z) + uyy(x, y, z) + uzz(x, y, z)− f(x, y, z) = 0.

• the heat PDE :

ut(x, y, z, t)− c (uxx(x, y, z) + uyy(x, y, z) + uzz(x, y, z))− f(x, y, z) = 0.

• heat wave PDE :

utt(x, y, z, t)− c (uxx(x, y, z) + uyy(x, y, z) + uzz(x, y, z))− f(x, y, z) = 0.

2. Notations for partial differential equations

The Matlab PDE Toolbox can solve a partial differential equation of the form

m
∂2u

∂t2
+ d

∂u

∂t
−∇ · (c∇u) + au = f. (2)

The coefficients m, d, c, a, and f can be functions of location (x,y, and in 3 dimen-
sions, z) and they can be functions of the solution u or its gradient.

Name Coefficient Of Typical Physical Effect

--------------------------------------------------------------

’m’ Second-order derivative Mass

’d’ First-order derivative Damping or mass

’c’ Grad term Diffusion

’a’ Dependent variable u Absorption

’f’ Right-hand side Source term

2



2.1. Gradient and Laplacian operators

Definition 1. The gradient operator acting on a function f(x, y, z) produces a vector
of functions

∇f ≡
[
∂f

∂x
,
∂f

∂y
,
∂f

∂z

]
∈ R3.

The above quantity is called the gradient of f , pronounced ”grad f”.

Definition 2. The Laplacian operator acting on f(x, y, z) produces the function

∇ · ∇f ≡
[
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2

]
∈ R.

More generally:

∇ · c∇f ≡

∂ (c∂f∂x)
∂x

+
∂
(
c∂f
∂y

)
∂y

+
∂
(
c∂f
∂z

)
∂z

+

 ∈ R.

The above quantities are both called the Laplacian of f and c is called the diffusion
coefficient.

2.2. Domain where the PDE is defined

Typically, the solution u(x, y, z, t) is not sought everywhere in space, rather, we look
for the values of u only on a subset of Rdim, in other words, only for (x, y, z) ∈ Ω,
where Ω is a domain in Rdim. For Ω with boundary Γ = ∂Ω, the PDE in Eq. 2 needs
to be supplemented by boundary conditions on Γ.

2.3. Boundary conditions of the PDE

A very useful set of boundary conditions that the Matlab PDE Toolbox can treat
are Neumann boundary conditions of the form:

(c∇u) · n + qu = g, (x, y, z) ∈ Γ, (3)

where n is the unit outward-pointing normal to Ω. This means n is a vector in Rdim

and it has norm 1.

Remark 1. The term Neumann boundary condition means the condition in-
volves the value of the gradient of the solution on the boundary. The term Dirichlet
boundary condition means that the condition involves the value of the solution
itself on the boundary.

Remark 2. A boundary condition is given on the boundary for all time that the
PDE is defined.

3



2.4. Initial conditions of the PDE

If m 6= 0, then Eq. 2 is the wave equation (you should check first that the coeffi-
cients of the PDE give a hyperbolic equation). In this case, there need to be initial
conditions of the form:

u(x, y, z, 0) = w(x, y, z),

ut(x, y, z, 0) = v(x, y, z).
(4)

If m = 0 and d 6= 0 then Eq. 2 is the heat equation, also called the diffusion equation
(after you check the coefficients of the PDE gave a parabolic equation). In this case,
there need to be initial conditions of the form:

u(x, y, z, 0) = w(x, y, z), (5)

to supplement to PDE and the boundary conditions.

Remark 3. An initial condition is given on the domain for one point in time (at
the initial time).

In summary, when the PDE is defined on a domain Ω with the boundary Γ, boundary
conditions on Γ need to be imposed, in addition to the PDE. When the PDE has
time derivatives, then initial conditions need to be imposed. When there are only
first order time derivatives, initial conditions on the value of the solution need to
be imposed. When there are second order time derivatives, initial conditions on the
value of the solution and the value of the time derivative of the solution need to be
imposed.

3. Solving PDEs numerically

• The Matlab PDE Toolbox uses the finite element method (FEM) to discretize
in space.

• For time-dependent problems, the PDE is first discretized in space to get a
semi-discretized system of equations that has one or more time derivatives.

• The semi-discretized system of equations is solved using one of the ODE solvers
available in Matlab.

4



To explain the FEM, it is easier to look at the PDE without the time derivative
terms. So we take Eq. 2 and remove the terms that have time derivatives to obtain:

−∇ · (c∇u) + au = f. (6)

Without time derivatives, the solution of the above equation does not have time
dependence, so we call the above PDE a steady-state problem.

We recall the definitions of the gradient of a function u

∇u ≡
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
u ≡

(
∂u

∂x
,
∂u

∂y
,
∂u

∂z

)
and the Laplacian operator

−∇ · (c∇u) ≡ −
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
· c
(
∂u

∂x
,
∂u

∂y
,
∂u

∂z

)
≡ −

(
∂

∂x

(
c
∂u

∂x

)
+

∂

∂y

(
c
∂u

∂y

)
+

∂

∂z

(
c
∂u

∂z

))
.

The PDE in Eq. 6 has second order derivatives in space and it is called the strong
formulation.

3.1. Weak formulation of PDE

The FEM does not solve the strong formulation in Eq. 6, rather, it solves a weak
formulation of the PDE, where the solution u only needs to have one spatial derivative
( ∂
∂x

, ∂
∂y

, ∂
∂z

) instead of two ( ∂2

∂x2
, ∂2

∂y2
, ∂2

∂z2
). This is done by moving one of the spatial

derivatives of u onto test functions v using Green’s identity.

The weak formulation is obtained in the following way. We take the strong formula-
tion and multiple it by a test function v and integrate over Ω.∫

Ω

−∇ · (c∇u) v dx +

∫
Ω

a u v dx =

∫
Ω

f v dx. (7)

The notation dx indicates volume integration in the domain Ω. In three dimensions,
we would have dx = dx dy dz.

Theorem 1. Green’s identity relates the following quantities:∫
Ω

−∇ · (c∇u) v dx =

∫
Ω

(c∇u) · ∇v dx−
∫
∂Ω

(c∇u) · n v ds, (8)

where ds indicates surface integration, over the boundary of the domain: Γ = ∂Ω.
This is in contrast to the volume integration indicated by dx, over the domain Ω.

5



We replace the first term of Eq. 7 by the right hand side of Eq. 8 to obtain :∫
Ω

(c∇u) · ∇v dx−
∫
∂Ω

(c∇u) · n v ds,+

∫
Ω

a u v dx =

∫
Ω

f v dx. (9)

Since the solution u must satisfy the boundary conditions in Eq. 3 we obtain∫
Ω

(c∇u) · ∇v dx−
∫
∂Ω

(g − qu) v ds +

∫
Ω

a u v dx =

∫
Ω

f v dx. (10)

Putting all terms containing u on the left hand side and the other terms on the right
hand side :∫

Ω

(c∇u) · ∇v dx +

∫
∂Ω

q u v ds +

∫
Ω

a u v dx =

∫
Ω

f v dx +

∫
∂Ω

g v ds. (11)

3.2. Finite elements

Now it remains to choose functional spaces for u and v. The functional spaces are
closely related to the discretization of Ω into the union of little geometrical pieces
called finite elements. The most common finite elements used in practice are triangles
in R2 and tetrahedra in R3.

The domain Ω will be approximated by the union of NT elements:

Ω ≈ T h ≡
NT⋃
i=1

Ti,

where Ti is the ith element (each Ti is triangle in 2 dimensions or tetrahedron in
3 dimensions). The union of the elements is called T h, and it is the finite element
mesh for the domain Ω. The number h indicates the size of the elements. So it’s
possible to have several meshes of different sizes, where h and NT are different, for
Ω. The smaller the size of the elements, the more accurate the approximate solution
u.

The nodes or points in the finite element mesh T h is the union of all the vertices in
the elements. In 2 dimensions, there are 3 vertices in each element, in 3 dimensions,
there are 4 vertices in each element. However, it should be clear that the number
of nodes is a lot fewer than 3NT or 4NT because the elements touch each other, so
the same node can belong to several elements. Let v1

i , v
2
i , v

3
i (in 2 dimensions) or

v1
i , v

2
i , v

3
i , v

4
i (in 3 dimensions) be the vertices of the element Ti, then the set of nodes

is
{P1, P2, · · · , PNp} =

⋃
{v1

i , · · · , vki }, i = 1 · · ·NT , k = 3 or 4.

The number Np is the total number of nodes in T h.

6



3.3. More about P1 elements

The simplest function space for u and v that we will use is the space P1, which is
the space of globally continuous piecewise polynomials of degree 1. This space has a
set of basis functions

φj(x, y, z), j = 1 · · ·NP ,

where Np is the number of nodes, as explained above.

The basis function φj(x, y, z) is the linear function in x,y,z and has the following
properties:

φj(x, y, z) =

{
0 on Ti if Pj 6∈ {v1

i , · · · , vki },
aijx+ bijy + cijz + dij on Ti if Pj ∈ {v1

i , · · · , vki }.
(12)

To obtain the coefficients of the polynomial, aij, b
i
j, c

i
j, d

i
j on Ti, the following 4

constraints are imposes on the vertices of Ti:

φj(x, y, z) =

{
1 if (x, y, z) = Pj

0 if (x, y, z) 6= Pj and (x, y, z) ∈ {v1
i , · · · , vki }.

(13)

In short, to obtain the basis function φj(x, y, z) we have to find all the triangles Ti
for which Pj is a vertex and find the coefficients aij, b

i
j, c

i
j, d

i
j that define φj on the

element Ti by imposing the constraints in Eq. 13. The support of φj is small, as can
be seen in Eq. 12, φj is only non-zero on elements for which Pj is a vertex. On the
vast majority of elements, φj is identically zero.

The function space with which we will work is the space spanned by the basis func-
tions φj:

U =

{
f(x, y, z) =

Np∑
j=1

fj φj(x, y, z), fj ∈ R

}
.

It is an easy exercise to show that for the choice of φj described above, the coefficient
fj is just the value of f on the node Pj:

f(Pj) = fj.

This is a very useful and convenient property of the choice of the finite element
function space we have chosen.

7



4. Discretization in space

Having described the function space U , then we suppose that we seek an approximate
solution to the PDE that belongs to this function space. So the approximate solution
will have the form

uh(x, y, z) =

Np∑
j=1

Uj φj(x, y, z), Uj ∈ R. (14)

The superscript h reminds us of the underlying finite element mesh T h on which the
basis functions on defined. To find the approximate solution uh we just need to find
the coefficients Uj. And since Uj coincides with the value of the function at the node
Pj we obtain at the same time the values of the approximate solution at the finite
element mesh nodes.

Now we take Eq. 11 and plug in the approximate solution uh:

∫
Ω

(
c∇uh

)
· ∇v dx +

∫
∂Ω

q uh v ds +

∫
Ω

a uh v dx =

∫
Ω

f v dx +

∫
∂Ω

g v ds (15)

to get

Np∑
j=1

Uj

∫
Ω

(c∇ φj) · ∇v dx +

Np∑
j=1

Uj

∫
∂Ω

q φj v ds

+

Np∑
j=1

Uj

∫
Ω

a φj v dx =

∫
Ω

f v dx +

∫
∂Ω

g v ds.

(16)

The above is a constraint the approximate solution must satisfy. Since there are Np

unknown coefficients, we need Np constraint equations. These equations come from
choosing v to be each of the basis functions φi, i = 1 · · · , Np. The Np constraint
equations are:

Np∑
j=1

Uj

∫
Ω

(c∇ φj) · ∇φi dx +

Np∑
j=1

Uj

∫
∂Ω

q φj φi ds

+

Np∑
j=1

Uj

∫
Ω

a φj φi dx =

∫
Ω

f φi dx +

∫
∂Ω

g φi ds.

, i = 1, · · · , Np. (17)

8



Hence, we have Np unknowns and Np equations above, which will give a unique
solution U1, · · · , UNp .
We now proceed to write Eq. 17 in matrix form by defining the following finite
element matrices and vectors:

Kij ≡
∫

Ω

(c∇ φj) · ∇φi dx, i = 1, · · · , Np, j = 1, · · · , Np, (18)

Qij ≡
∫
∂Ω

q φj φi ds, i = 1, · · · , Np, j = 1, · · · , Np, (19)

Aij ≡
∫

Ω

a φj φi dx, i = 1, · · · , Np, j = 1, · · · , Np, (20)

Fi ≡
∫

Ω

f φi dx, i = 1, · · · , Np, (21)

Gi ≡
∫
∂Ω

g φi ds, i = 1, · · · , Np. (22)

The matrix K is called the stiffness matrix, A and Q are matrices, F and G are
colume vectors of length Np. The matrix form of Eq. 17 is then :

KU + AU +QU = F +G, U =

 U1
...

UNp

 . (23)

The function uh is an approximate solution to the steady-state PDE that we started
with in this section, Eq. 6.

5. Time stepping of FEM matrix equations using ODE solvers

Now we go back to the PDE in Eq. 2 that has has time derivative terms. We
make a slight change to the form of the approximate solution uh, instead of Uj being
constants (numbers), we make Uj functions of time:

uh(x, y, z, t) =

Np∑
j=1

Uj(t) φj(x, y, z). (24)

We will assume that Uj(t) has two continuous time derivatives if m 6= 0 and d = 0
(the wave equation) and it has one continuous derivative in time if m = 0 and d 6= 0.
This just means that the time derivatives make sense in the formulation in Eq. 2.
Since φj(x, y, z) does not have any dependence on time, then much of the derivation
of Eq. 23 can be reused.

9



5.1. Wave PDE: second order ODE in time

For the wave equation (m 6= 0, d = 0) we have the following time-dependent matrix
equations :

M
∂2U

∂t2
+KU + AU +QU = F +G, U =

 U1
...

UNp

 , (25)

where

Mij ≡
∫

Ω

mφj φi dx, i = 1, · · · , Np, j = 1, · · · , Np. (26)

5.2. Heat equation: first order ODE in time

For the heat or diffusion equation (m = 0, d 6= 0) we have the following time-
dependent matrix equations :

M
∂U

∂t
+KU + AU +QU = F +G, U =

 U1
...

UNp

 , (27)

where

Mij ≡
∫

Ω

d φj φi dx, i = 1, · · · , Np, j = 1, · · · , Np. (28)

The matrix M is called the mass matrix.

5.3. Calling a Matlab ODE solver with initial conditions

The Matlab ODE solver routines can be used to solve Eq. 27 or Eq. 28 to obtain
approximations to Uj(t), j = 1, · · ·Np. The initial conditions to be passed into the
ODE solvers will come from Eq. 4 or Eq. 5. For the wave equation, the initial
conditions are :

Uj(0) = w(Pj),
∂Uj
∂t

(0) = v(Pj), j = 1, · · · , Np.

For the heat equation, the initial conditions are :

Uj(0) = w(Pj), j = 1, · · · , Np.

10



6. Analytical solutions of PDEs

6.1. Fundamental solutions

Fundamental solutions solve the PDE in free space (Rdim ) with the δ function initial
condition. They can be used to generate solutions for arbitray initial conditions and
forcing terms in forms of convolutions.

Definition 3. A convolution of two function f and g is the function (of x):

f ? g(x) ≡
∫
Rdim

f(y)g(x− y)dy.

Convolution can be thought of as an averaging process, in which f(x) is replaced by
the ”averaged value” of f(x) relative to the ”profile” function g(x).

Theorem 2. The convolution operator is commutative:

(f ? g)(x) = (g ? f)(x),

and associative:
f ? (g ? h)(x) = (f ? g) ? h.

6.1.1. Heat equation

The heat equation in free space with the forcing term F (x, t):

∂u

∂t
− σ∆u = F (x, t), x ∈ Rdim, (29)

where the coefficient σ is a positive constant and ∆ = ∇·∇ is the Laplacian operator,
subject to the initial condition,

u(x, 0) = IC(x), x ∈ Rdim (30)

has solution

u(x, t) =

∫
Rdim

IC(y)G(x− y, t)dy +

∫ t

0

∫
Rdim

F (y, τ)G(x− y, t− τ)dydτ, (31)

where the fundamental solution for the heat equation is:

G(x, t) =
1

(4πσt)dim/2
e−‖x‖

2/(4σt) (32)

The dim can be 1,2 or 3.

11



6.1.2. Wave equation

The wave equation in free space with the forcing term F (x, t):

∂2u

∂t2
− c2∆u = F (x, t), x ∈ Rdim, (33)

where the wave speed c is a positive constant and ∆ = ∇·∇ is the Laplacian operator,
subject to the initial conditions,

u(x, 0) = IC(x), x ∈ Rdim,

ut(x, 0) = IT (x), x ∈ Rdim,
(34)

has solution

∂

∂t

∫
Rdim

G(x− y, t)IC(y)dy +

∫
Rdim

G(x− y, t)IT (y)dy

+

∫
Rdim

∫ t

0

G(x− y, t− τ)F (y, τ)dτdy

(35)

where in 3 dimensions:

G(x, t) =
1

4πc‖x‖
δ ((ct)− ‖x‖) , (36)

in 2 dimensions:

G(x, t) =

{
1

2πc
1√

(ct)2−‖x‖2
, ‖x‖ < (ct)

0 otherwise
(37)

in 1 dimension :

G(x, t) =

{
1
2c
, ‖x‖ < (ct)

0 otherwise
(38)

We show the solution that matches IC is related to the solution that matches IT .

Theorem 3. Let vIT denote the solution to the problem

utt = c2u, x ∈ Rdim,

u(x, 0) = 0,

ut(x, 0) = IT (x).

Then the function w ≡ ∂
∂t
vIC solves

utt = c2u, x ∈ Rdim,

u(x, 0) = IC(x),

ut(x, 0) = 0.

12



More concretely, in one dimension

u(x, t) =
1

2
(IC(x+ ct) + IC(x− ct))

+
1

2c

∫ x+ct

x−ct
IT (y)dy

+
1

2c

∫ t

τ=0

∫ x+c(t−τ)

x−c(t−τ)

F (y, τ)dydτ

In two dimensions

u(x, t) =
∂

∂t

(
1

2πc

∫
‖x−y‖≤ct

IC(y)√
c2t2 − ‖y − x‖2

dy

)

+
1

2πc

∫
‖x−y‖≤ct

IT (y)√
c2t2 − ‖y − x‖2

dy

+
1

2πc

∫ t

τ=0

∫
‖x−y‖≤c(t−τ)

F (y, τ)√
c2(t− τ)2 − ‖y − x‖2

dydτ

6.2. Green’s functions

Green’s functions are like fundamental solutions, with the added boundary condi-
tions.

6.2.1. Heat equation

In one dimension, Ω = [0, l], given the homogeneous Neumann boundary condition

∂u

∂x
= 0, x = {0, l},

then

u(x, t) =

∫ l

0

IC(y)G(x, y, t)dy +

∫ t

0

∫ l

0

F (y, τ)G(x, y, t− τ)dydτ,

where the Green’s function has two representations:

G(x, y, t) =
1

l
+

2

l

∞∑
n=1

cos
nπx

l
cos

nπy

l
e−

σn2π2t
l2

=
1

2
√
πσt

∞∑
n=−∞

e−
(x−y+2nl)2

4σt + e−
(x+y+2nl)2

4σt

The first series converges fast for large t, the second series converges fast for small t.

13



6.2.2. Wave equation

In one dimension, Ω = [0, l], given the homogeneous Neumann boundary condition

∂u

∂x
= 0, x = {0, l},

then

u(x, t) =
∂

∂t

∫ l

0

IC(y)G(x, y, t)dy +

∫ l

0

IT (y)G(x, y, t)dy

+

∫ t

0

∫ l

0

F (y, τ)G(x, y, t− τ)dydτ,

where the Green’s function is:

G(x, y, t) =
t

l
+

2

cπ

∞∑
n=1

1

n
cos

nπx

l
cos

nπy

l
sin−cnπt

l

7. Eigenfunction expansions for a separable problem

Let u(x, t) satisfy the following diffusion equation with a separable forcing term and
homogeneous Neumann boundary condition and initial condition:

∂

∂t
u(x, t)−∇ (D0∇u(x, t)) = k(x)f(t), x ∈ Ω, (39)

D0∇u(x, t) · ν(x) = 0, x ∈ Γ, (40)

u(x, t) = 0, x ∈ Ω, (41)

Let φn(x) and λn be the L2-normalized eigenfunctions and eigenvalues associated to
the Laplace operator with homogeneous Neumann boundary conditions:

−∇D0 (∇φn(x)) = λnφn(x), x ∈Ω, (42)

D0∇φn(x) · ν(x) = 0, x ∈ Γ (43)

such that ∫
Ω

|φn(x)|2dx = 1.

We claim that the solution u(x, t) is

u(x, t) =
∞∑
n=1

(an)φn(x)

∫ t

0

e−λn(t−s)f(s)ds, (44)

14



where the coefficients are

an =

∫
Ω

k(x)φn(x)dx. (45)

To prove the above claim, we need to show

1. u(x, 0) = 0;

2. D0∇u(x, t) · ν(x) = 0;

3. ∂
∂t
u(x, t)−∇ (D0∇u(x, t)) = k(x)f(t);

Remark 4. We just show below that u(x, t) satisfies the third item.

We use the properties of an ortho-normal basis to write k(x) in the eigenfunction
basis:

k(x) =
∞∑
n=1

(an)φn(x),

where an is the projection of k(x) on the elements of the basis:

an =

∫
Ω

k(x)φn(x)dx.

Then we show

∂

∂t

(
φn(x)

∫ t

0

e−λn(t−s)f(s)ds

)
−∇

(
D0∇

(
φn(x)

∫ t

0

e−λn(t−s)f(s)ds

))
= φn(x)f(t),

by computing

∂

∂t

(
φn(x)

∫ t

0

e−λn(t−s)f(s)ds

)
= φn(x)

(∫ t

0

(−λn)e−λn(t−s)f(s)ds+ f(t)

)
and

−∇
(
D0∇

(
φn(x)

∫ t

0

e−λn(t−s)f(s)ds

))
= λnφn(x)

∫ t

0

e−λn(t−s)f(s)ds.

7.1. Eigenfunctions and eigenvalues for rectangle and disk

For Neumann boundary condition the eigenvalues of the Laplacian operator

−∇ · ∇φ = λφ (46)

15



for a rectangle [0, lx]× [0, ly] are

φmn(x, y) = cos
πmx

lx
cos

πny

ly
, λmn =

π2m2

l2x
+
π2n2

l2y
, n,m = 0, 1, 2, · · · (47)

For a disk of radius R, the eigenfunctions are:

φnk(r, θ) = Jn

(αnkr
R

)
(Ancosnθ +Bn sinnθ), λnk =

α2
nk

R2
. (48)

The function Jn(z) is the nth Bessel function of the first kind, n = 0, 1, 2, · · · . The
number αnk is the k-th root, k = 1, 2, · · · , of J ′n(z), the derivative of Jn(z). The
coefficients An and Bn are arbitary constants, meaning that for each nk combination
there are two eigenfunctions, except when n = 0, where sinnθ ≡ 0, so there is only
one eigenfunction. In summary, when n = 0, λnk is a simple root (counted only
once), when n > 0, λnk is a double root (counted twice). Zero is also an eigenvalue.

Figure 1: The zeros of the derivatives of Bessel functions of the first kind.

8. Matlab programming

8.1. Creating the geometry

• Define a Geometry Description Matrix gdm.

16



Each column in the Geometry Description Matrix corresponds to an object
in the solid geometry model. Four types of solid objects are supported. The
object type is specified in row one:

– For the circle solid, row one contains 1, the second and third row contain
the center x- and y-coordinates respectively. Row four contains the radius
of the circle.

– For a polygon solid, row one contains 2, and the second row contains the
number, N, of line segments in the boundary. The following N rows contain
the x-coordinates of the starting points of the edges, and the following N
rows contain the y-coordinates of the starting points of the edges.

– For a rectangle solid, row one contains 3. The format is otherwise identical
to the polygon format.

– For an ellipse solid, row one contains 4, the second and third row contain
the center x- and y-coordinates respectively. Row four and five contain
the major and minor axes of the ellipse. The rotational angle of the ellipse
is stored in row six.

• Use decsg function to get the geometry description gdescription = decsg(gdm)

8.2. Create PDE Model

• Create empty PDE Model structure mypde = createpde();

• Create PDE Model geometry mygeom = geometryFromEdges(mypde,gdescription);
You can plot it to check: pdegplot(mygeom);

• Create finite elements mesh (P1 elements)
mymesh = generateMesh(mypde,’GeometricOrder’,’linear’,’hmax’,hmax);
where hmax is the target maximum edge size.
You can plot it to check: pdeplot(mymesh);

• Define the coefficients of the PDE:
specifyCoefficients(mypde,’m’,mcoeff,’d’,dcoeff,’c’,ccoeff,’a’,acoeff,’f ’,fcoeff);

Reminder, the coefficients are:

m
∂2u

∂t2
+ d

∂u

∂t
−∇ · (c∇u) + au = f.

17



The coefficients m, d, c, a, and f can be functions of location (x,y, and in 3
dimensions, z) and they can be functions of the solution u or its gradient.

The corresponding value of the coefficients can be defined in one of two ways:

– Numeric format as a scalar, vector or matrix
Example: specifyCoefficients(mypde,’m’,0,’d’,1,’c’,1,’a’,0,’f ’,0);

– MATLAB function format
Example: specifyCoefficients(mypde,’m’,0,’d’,1,’c’,1,’a’,0,’f ’,@forcingterm);

The required format for the function definition is the following.

∗ A function handle representation of an equation coefficient is required
to accept two input argument and return a single output argument.

∗ The function is of the form:
coef = coeffcn(location, state)

∗ The location argument is a structure that defines the location within
the domain where the coefficients are evaluated. The fields of the
location struct are as follows:
- location.x - x-coordinates of the evaluation points
- location.y - y-coordinates of the evaluation points
- location.z - z-coordinates of the evaluation points, 3-D only
- location.subdomain - subdomain ID corresponding to the points

∗ The fields of the state struct are as follows:
- state.u - The solution at the locations
- state.ux - The x-component of the solution gradient
- state.uy - The y-component of the solution gradient
- state.uz - The z-component of the solution gradient, 3-D only
- state.time - The time at which the solution is computed

∗ The output, coef, defines the coefficients at the requested locations.
Each j’th column of the coef matrix defines the coefficients at the
corresponding j’th location in the location struct. The coef matrix
has a size of MC-by-NL, where MC is the number of entries required
to define the coefficient and NL is the number of locations.

• Define the coefficients of the boundary conditions.
For Neumann boundary condition:

(c∇u) · n + qu = g, (x, y, z) ∈ Γ = ∂Ω,

where n is the unit outward-pointing normal to Ω, the command is

18



NumEdges = mygeom.NumEdges;

for ie = 1:NumEdges

applyBoundaryCondition(mypde,’neumann’,’edge’,ie,’g’,gcoeff,’q’,qcoeff);

end

For the Dirichlet boundary condition, the command is:

hu = r, (x, y, z) ∈ Γ = ∂Ω,

NumEdges = mygeom.NumEdges;

for ie = 1:NumEdges

applyBoundaryCondition(mypde,’dirichlet’,’edge’,ie,’r’,rcoeff,’h’,hcoeff);

end

The corresponding value of the coefficients can be defined in one of two ways:

– Numeric format as a scalar, vector or matrix
Example:

NumEdges = mygeom.NumEdges;

for ie = 1:NumEdges

applyBoundaryCondition(mypde,’neumann’,’edge’,ie,’g’,0,’q’,0);

end

– MATLAB function format
Example:

NumEdges = mygeom.NumEdges;

for ie = 1:NumEdges

applyBoundaryCondition(mypde,’neumann’,’edge’,ie,’g’,@neumannsource,’q’,0);

end

8.3. Solution of PDE Model

• Assemble the finite elements matrices.
FEM = assembleFEMatrices(mypde);

FEM is a struct containing the following fields

K: Stiffness matrix

A: Absorbtion/Reaction matrix

F: Force matrix

19



Q: Neumann boundary condition matrix

G: Neumann boundary condition vector

H: Dirichlet boundary condition matrix

R: Dirichlet boundary condition vector

M: Mass matrix

• Write down the ODE problem.

– For the heat or diffusion equation (m = 0, d 6= 0) we have the following
time-dependent matrix equations :

M
∂U

∂t
= −(KU + AU +QU) + F +G, U =

 U1
...

UNp

 ,
where

Mij ≡
∫

Ω

d φj φi dx, i = 1, · · · , Np, j = 1, · · · , Np.

– Example of the ODE right hand side function for the heat equation.

function Yout= odefun_rhs(t,Y)

global FEM_M FEM_K FEM_A FEM_Q FEM_G FEM_F

Yout = -(FEM_K*Y+FEM_A*Y+FEM_Q*Y)+FEM_G+FEM_F;

end

– For the wave equation (m 6= 0, d = 0) we have the following ODE:

M
∂2U

∂t2
= −(KU + AU +QU) + F +G, U =

 U1
...

UNp

 .
where

Mij ≡
∫

Ω

mφj φi dx, i = 1, · · · , Np, j = 1, · · · , Np.

20



Put into the first order ODE form so that the Matlab ODE solvers can
be used:[

M 0
0 I

]
∂

∂t

[
Ut
U

]
=

[
0 −(K + A+Q)
I 0

] [
Ut
U

]
+

[
F +G

0

]
,

– The matrix M is called the mass matrix.

• Choose a Matlab ODE solver.
Ex: ode45, ode23, ode113, ode15i, ode15s, ode23s, ode23t, ode23tb

• Set the options for the ODE solver.
options = odeset(’Mass’,FEM M,’AbsTol’,odesolve atol,’RelTol’,odesolve rtol,’Stats’,’on’);

• Define initial condition.
Ex. u0 = IC general(P(1,:),P(2,:));

function f = IC_general(x,y)

aa = 0.01;

nr = length(x);

f = zeros(1,nr);

f(1,:) = exp(-(((x+0.25)).^2+((y-0.25).^2))/aa);

end

• Define time interval on which to solve the ODE.
Ex. tlist = linspace(0,0.05,11);

• Solve ODE.
Ex. [TOUT,YOUT] = ode23t(@odefun rhs,tlist,u0’,options);
TOUT contains the time points.
TOUT =

[
t1 · · · tM

]
.

YOUT contains the solution at the time points at the finite elements nodes.

Y OUT =

 U1(t1) · · ·UNp(t1)
...

U1(tM) · · ·UNp(tM)


• Display the solution.

– At the initial time.
pdeplot(heatmodel,’XYData’,YOUT(1,:)’,’Contour’,’on’,’ColorMap’,’jet’);

– At the final time.
pdeplot(heatmodel,’XYData’,YOUT(end,:)’,’Contour’,’on’,’ColorMap’,’jet’);

21


	Classification of second order partial differential equations
	Important examples

	Notations for partial differential equations
	Gradient and Laplacian operators
	Domain where the PDE is defined
	Boundary conditions of the PDE
	Initial conditions of the PDE

	Solving PDEs numerically
	Weak formulation of PDE
	Finite elements
	More about P1 elements

	Discretization in space
	Time stepping of FEM matrix equations using ODE solvers
	Wave PDE: second order ODE in time
	Heat equation: first order ODE in time
	Calling a Matlab ODE solver with initial conditions

	Analytical solutions of PDEs
	Fundamental solutions
	Heat equation
	Wave equation

	Green's functions
	Heat equation
	Wave equation


	Eigenfunction expansions for a separable problem
	Eigenfunctions and eigenvalues for rectangle and disk

	Matlab programming
	Creating the geometry
	Create PDE Model
	Solution of PDE Model


