
Chapter �

Introduction

��� Historical Perspective

The �nite element method is a computational technique for obtaining approximate solu�

tions to the partial di�erential equations that arise in scienti�c and engineering applica�

tions� Rather than approximating the partial di�erential equation directly as with� e�g��

�nite di�erence methods� the �nite element method utilizes a variational problem that

involves an integral of the di�erential equation over the problem domain� This domain

is divided into a number of subdomains called �nite elements and the solution of the

partial di�erential equation is approximated by a simpler polynomial function on each

element� These polynomials have to be pieced together so that the approximate solution

has an appropriate degree of smoothness over the entire domain� Once this has been

done� the variational integral is evaluated as a sum of contributions from each �nite el�

ement� The result is an algebraic system for the approximate solution having a �nite

size rather than the original in�nite�dimensional partial di�erential equation� Thus� like

�nite di�erence methods� the �nite element process has discretized the partial di�eren�

tial equation but� unlike �nite di�erence methods� the approximate solution is known

throughout the domain as a pieceise polynomial function and not just at a set of points�

Logan ���� attributes the discovery of the �nite element method to Hrennikof �	� and

McHenry ���� who decomposed a two�dimensional problem domain into an assembly of

one�dimensional bars and beams� In a paper that was not recognized for several years�

Courant �
� used a variational formulation to describe a partial di�erential equation with

a piecewise linear polynomial approximation of the solution relative to a decomposition of

the problem domain into triangular elements to solve equilibrium and vibration problems�

This is essentially the modern �nite element method and represents the �rst application

where the elements were pieces of a continuum rather than structural members�

Turner et al� ���� wrote a seminal paper on the subject that is widely regarded

�



� Introduction

as the beginning of the �nite element era� They showed how to solve one� and two�

dimensional problems using actual structural elements and triangular� and rectangular�

element decompositions of a continuum� Their timing was better than Courant
s �
��

since success of the �nite element method is dependent on digital computation which

was emerging in the late ����s� The concept was extended to more complex problems

such as plate and shell deformation �cf� the historical discussion in Logan ����� Chapter

�� and it has now become one of the most important numerical techniques for solving

partial di�erential equations� It has a number of advantages relative to other methods�

including

� the treatment of problems on complex irregular regions�

� the use of nonuniform meshes to re�ect solution gradations�

� the treatment of boundary conditions involving �uxes� and

� the construction of high�order approximations�

Originally used for steady �elliptic� problems� the �nite element method is now used

to solve transient parabolic and hyperbolic problems� Estimates of discretization errors

may be obtained for reasonable costs� These are being used to verify the accuracy of the

computation� and also to control an adaptive process whereby meshes are automatically

re�ned and coarsened and�or the degrees of polynomial approximations are varied so as

to compute solutions to desired accuracies in an optimal fashion ��� �� �� �� �� �� ����

��� Weighted Residual Methods

Our goal� in this introductory chapter� is to introduce the basic principles and tools of

the �nite element method using a linear two�point boundary value problem of the form

L�u� �� �
d

dx
�p�x�

du

dx
� � q�x�u � f�x�� � � x � �� ������a�

u��� � u��� � �� ������b�

The �nite element method is primarily used to address partial di�erential equations and is

hardly used for two�point boundary value problems� By focusing on this problem� we hope

to introduce the fundamental concepts without the geometric complexities encountered

in two and three dimensions�

Problems like ������� arise in many situations including the longitudinal deformation

of an elastic rod� steady heat conduction� and the transverse de�ection of a supported
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cable� In the latter case� for example� u�x� represents the lateral de�ection at position

x of a cable having �scaled� unit length that is subjected to a tensile force p� loaded by

a transverse force per unit length f�x�� and supported by a series of springs with elastic

modulus q �Figure ������� The situation resembles the cable of a suspension bridge� The

tensile force p is independent of x for the assumed small deformations of this model� but

the applied loading and spring moduli could vary with position�
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Figure ������ De�ection u of a cable under tension p� loaded by a force f per unit length�
and supported by springs having elastic modulus q�

Mathematically� we will assume that p�x� is positive and continuously di�erentiable

for x � ��� ��� q�x� is non�negative and continuous on ��� ��� and f�x� is continuous on

��� ���

Even problems of this simplicity cannot generally be solved in terms of known func�

tions� thus� the �rst topic on our agenda will be the development of a means of calculating

approximate solutions of �������� With �nite di�erence techniques� derivatives in ������a�

are approximated by �nite di�erences with respect to a mesh introduced on ��� �� �����

With the �nite element method� the method of weighted residuals �MWR� is used to

construct an integral formulation of ������� called a variational problem� To this end� let

us multiply ������a� by a test or weight function v and integrate over ��� �� to obtain

�v�L�u�� f� � �� ������a�

We have introduced the L� inner product

�v� u� ��

Z
�

�

vudx ������b�

to represent the integral of a product of two functions�

The solution of ������� is also a solution of ������a� for all functions v for which the

inner product exists� We
ll express this requirement by writing v � L���� ��� All functions

of class L���� �� are �square integrable� on ��� ��� thus� �v� v� exists� With this viewpoint

and notation� we write ������a� more precisely as

�v�L�u�� f� � �� �v � L���� ��� ������c�
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Equation ������c� is referred to as a variational form of problem �������� The reason for

this terminology will become clearer as we develop the topic�

Using the method of weighted residuals� we construct approximate solutions by re�

placing u and v by simpler functions U and V and solving ������c� relative to these

choices� Speci�cally� we
ll consider approximations of the form

u�x� � U�x� �
NX
j��

cj�j�x�� ������a�

v�x� � V �x� �
NX
j��

dj�j�x�� ������b�

The functions �j�x� and �j�x�� j � �� �� � � � � N � are preselected and our goal is to

determine the coe�cients cj� j � �� �� � � � � N � so that U is a good approximation of u�

For example� we might select

�j�x� � �j�x� � sin j�x� j � �� �� � � � � N�

to obtain approximations in the form of discrete Fourier series� In this case� every function

satis�es the boundary conditions ������b�� which seems like a good idea�

The approximation U is called a trial function and� as noted� V is called a test func�

tion� Since the di�erential operator L�u� is second order� we might expect u � C���� ���

�Actually� u can be slightly less smooth� but C� will su�ce for the present discussion��

Thus� it
s natural to expect U to also be an element of C���� ��� Mathematically� we re�

gard U as belonging to a �nite�dimensional function space that is a subspace of C���� ���

We express this condition by writing U � SN��� �� � C���� ��� �The restriction of these

functions to the interval � � x � � will� henceforth� be understood and we will no longer

write the ��� ���� With this interpretation� we
ll call SN the trial space and regard the

preselected functions �j�x�� j � �� �� � � � � N � as forming a basis for SN �

Likewise� since v � L�� we
ll regard V as belonging to another �nite�dimensional

function space �SN called the test space� Thus� V � �SN � L� and �j�x�� j � �� �� � � � � N �

provide a basis for �SN �

Now� replacing v and u in ������c� by their approximations V and U � we have

�V�L�U �� f� � �� �V � �SN � ������a�

The residual

r�x� �� L�U �� f�x� ������b�
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is apparent and clari�es the name �method of weighted residuals�� The vanishing of the

inner product ������a� implies that the residual is orthogonal in L� to all functions V in

the test space �SN �

Substituting ������� into ������a� and interchanging the sum and integral yields

NX
j��

dj��j�L�U �� f� � �� �dj� j � �� �� � � � � N� �������

Having selected the basis �j� j � �� �� � � � � N � the requirement that ������a� be satis�ed for

all V � �SN implies that ������� be satis�ed for all possible choices of dk� k � �� �� � � � � N �

This� in turn� implies that

��j�L�U �� f� � �� j � �� �� � � � � N� �����
�

Shortly� by example� we shall see that �����
� represents a linear algebraic system for the

unknown coe�cients ck� k � �� �� � � � � N �

One obvious choice is to select the test space �SN to be the same as the trial space

and use the same basis for each� thus� �k�x� � �k�x�� k � �� �� � � � � N � This choice leads

to Galerkin�s method

��j�L�u�� f� � �� j � �� �� � � � � N� �������

which� in a slightly di�erent form� will be our �work horse�� With �j � C�� j �

�� �� � � � � N � the test space clearly has more continuity than necessary� Integrals like

������� or �����
� exist for some pretty �wild� choices of V � Valid methods exist when V

is a Dirac delta function �although such functions are not elements of L�� and when V

is a piecewise constant function �cf� Problems � and � at the end of this section��

There are many reasons to prefer a more symmetric variational form of ������� than

�������� e�g�� problem ������� is symmetric �self�adjoint� and the variational form should

re�ect this� Additionally� we might want to choose the same trial and test spaces� as with

Galerkin
s method� but ask for less continuity on the trial space SN � This is typically

the case� As we shall see� it will be di�cult to construct continuously di�erentiable

approximations of �nite element type in two and three dimensions� We can construct

the symmetric variational form that we need by integrating the second derivative terms

in ������a� by parts� thus� using ������a�Z
�

�

v���pu��� � qu� f �dx �

Z
�

�

�v�pu� � vqu� vf�dx� vpu�j�� � � �����	�

where � �� � d� ��dx� The treatment of the last �boundary� term will need greater

attention� For the moment� let v satisfy the same trivial boundary conditions ������b� as
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u� In this case� the boundary term vanishes and �����	� becomes

A�v� u�� �v� f� � � ������a�

where

A�v� u� �

Z
�

�

�v�pu� � vqu�dx� ������b�

The integration by parts has eliminated second derivative terms from the formulation�

Thus� solutions of ������� might have less continuity than those satisfying either ������� or

�������� For this reason� they are called weak solutions in contrast to the strong solutions

of ������� or �������� Weak solutions may lack the continuity to be strong solutions� but

strong solutions are always weak solutions� In situations where weak and strong solutions

di�er� the weak solution is often the one of physical interest�

Since we
ve added a derivative to v by the integration by parts� v must be restricted

to a space where functions have more continuity than those in L�� Having symmetry in

mind� we will select functions u and v that produce bounded values of

A�u� u� �

Z
�

�

�p�u��� � qu��dx�

Actually� since p and q are smooth functions� it su�ces for u and v to have bounded

values of Z
�

�

��u��� � u��dx� ��������

Functions where �������� exists are said to be elements of the Sobolev space H�� We
ve

also required that u and v satisfy the boundary conditions ������b�� We identify those

functions in H� that also satisfy ������b� as being elements of H�
� � Thus� in summary�

the variational problem consists of determining u � H�
� such that

A�v� u� � �v� f�� �v � H�

� � ��������

The bilinear form A�v� u� is called the strain energy� In mechanical systems it frequently

corresponds to the stored or internal energy in the system�

We obtain approximate solutions of �������� in the manner described earlier for the

more general method of weighted residuals� Thus� we replace u and v by their approxi�

mations U and V according to �������� Both U and V are regarded as belonging to the

same �nite�dimensional subspace SN� of H�
� and �j� j � �� �� � � � � N � forms a basis for

SN� � Thus� U is determined as the solution of

A�V� U� � �V� f�� �V � SN� � �������a�
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The substitution of ������b� with �j replaced by �j in �������a� again reveals the more

explicit form

A��j� U� � ��j� f�� j � �� �� � � � � N� �������b�

Finally� to make �������b� totally explicit� we eliminate U using ������a� and interchange

a sum and integral to obtain

NX
k��

ckA��j� �k� � ��j� f�� j � �� �� � � � � N� �������c�

Thus� the coe�cients ck� k � �� �� � � � � N � of the approximate solution ������a� are deter�

mined as the solution of the linear algebraic equation �������c�� Di�erent choices of the

basis �j� j � �� �� � � � � N � will make the integrals involved in the strain energy ������b�

and L� inner product ������b� easy or di�cult to evaluate� They also a�ect the accuracy

of the approximate solution� An example using a �nite element basis is presented in the

next section�

Problems

�� Consider the variational form �����
� and select

�j�x� � ��x� xj�� j � �� �� � � � � N�

where ��x� is the Dirac delta function satisfying

��x� � �� x �� ��

Z
�

��

��x�dx � ��

and

� � x� � x� � � � � � xN � ��

Show that this choice of test function leads to the collocation method

L�U �� f�x�jx�xj � �� j � �� �� � � � � N�

Thus� the di�erential equation ������� is satis�ed exactly at N distinct points on

��� ���

�� The subdomain method uses piecewise continuous test functions having the basis

�j�x� ��

�
�� if x � �xj����� xj�����
�� otherwise

�

where xj���� � �xj � xj������ Using �����
�� show that the approximate solution

U�x� satis�es the di�erential equation ������a� on the average on each subinterval

�xj����� xj������ j � �� �� � � � � N �
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�� Consider the two�point boundary value problem

�u�� � u � x� � � x � �� u��� � u��� � ��

which has the exact solution

u�x� � x�
sinh x

sinh �
�

Solve this problem using Galerkin
s method �������c� using the trial function

U�x� � c� sin�x�

Thus� N � �� ���x� � ���x� � sin�x in �������� Calculate the error in strain

energy as A�u� u�� A�U� U�� where A�u� v� is given by ������b��

��� A Simple Finite Element Problem

Finite element methods are weighted residuals methods that use bases of piecewise poly�

nomials having small support� Thus� the functions ��x� and ��x� of ������� ������ are

nonzero only on a small portion of problem domain� Since continuity may be di�cult to

impose� bases will typically use the minimum continuity necessary to ensure the existence

of integrals and solution accuracy� The use of piecewise polynomial functions simplify

the evaluation of integrals involved in the L� inner product and strain energy ������b�

�����b� and help automate the solution process� Choosing bases with small support leads

to a sparse� well�conditioned linear algebraic system �������c�� for the solution�

Let us illustrate the �nite element method by solving the two�point boundary value

problem ������� with constant coe�cients� i�e��

�pu�� � qu � f�x�� � � x � �� u��� � u��� � �� �������

where p � � and q � �� As described in Section ���� we construct a variational form of

������� using Galerkin
s method ��������� For this constant�coe�cient problem� we seek

to determine u � H�
� satisfying

A�v� u� � �v� f�� �v � H�

� � ������a�

where

�v� u� �

Z
�

�

vudx� ������b�

A�v� u� �

Z
�

�

�v�pu� � vqu�dx� ������c�
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With u and v belonging to H�
� � we are sure that the integrals ������b�c� exist and that

the trivial boundary conditions are satis�ed�

We will subsequently show that functions �of one variable� belonging to H� must

necessarily be continuous� Accepting this for the moment� let us establish the goal of

�nding the simplest continuous piecewise polynomial approximations of u and v� This

would be a piecewise linear polynomial with respect to a mesh

� � x� � x� � � � � � xN � � �������

introduced on ��� ��� Each subinterval �xj��� xj�� j � �� �� � � � � N � is called a �nite element�

The basis is created from the �hat function�

�j�x� �

���
��

x�xj��
xj�xj��

� if xj�� � x � xj
xj���x

xj���xj
� ifxj � x � xj��

�� otherwise

� ������a�

x x x x

1

x

jj-10 j+1

j
(x)

N
x

φ

Figure ������ One�dimensional �nite element mesh and piecewise linear hat function
�j�x��

As shown in Figure ������ �j�x� is nonzero only on the two elements containing the

node xj� It rises and descends linearly on these two elements and has a maximal unit

value at x � xj� Indeed� it vanishes at all nodes but xj� i�e��

�j�xk� � �jk ��

�
�� if xk � xj
�� otherwise

� ������b�

Using this basis with �������� we consider approximations of the form

U�x� �
N��X
j��

cj�j�x�� �������

Let
s examine this result more closely�
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x x x x x

x

jj-10 j+1 N

φ
j
(x)φ

j-1
(x)

c

c

j
j-1

j+1

c

1

U(x)

Figure ������ Piecewise linear �nite element solution U�x��

�� Since each �j�x� is a continuous piecewise linear function of x� their summation

U is also continuous and piecewise linear� Evaluating U at a node xk of the mesh

using ������b� yields

U�xk� �
N��X
j��

cj�j�xk� � ck�

Thus� the coe�cients ck� k � �� �� � � � � N � �� are the values of U at the interior

nodes of the mesh �Figure �������

�� By selecting the lower and upper summation indices as � and N�� we have ensured

that ������� satis�es the prescribed boundary conditions

U��� � U��� � ��

As an alternative� we could have added basis elements ���x� and �N�x� to the

approximation and written the �nite element solution as

U�x� �
NX
j��

cj�j�x�� �����
�

Since� using ������b�� U�x�� � c� and U�xN � � cN � the boundary conditions are

satis�ed by requiring c� � cN � �� Thus� the representations ������� or �����
� are

identical� however� �����
� would be useful with non�trivial boundary data�

�� The restriction of the �nite element solution ������� or �����
� to the element

�xj��� xj� is the linear function

U�x� � cj���j���x� � cj�j�x�� x � �xj��� xj�� �������
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since �j�� and �j are the only nonzero basis elements on �xj��� xj� �Figure �������

Using Galerkin
s method in the form �������c�� we have to solve

N��X
k��

ckA��j� �k� � ��j� f�� j � �� �� � � � � N � �� �����	�

Equation �����	� can be evaluated in a straightforward manner by substituting replacing

�k and �j using ������� and evaluating the strain energy and L� inner product according

to ������b�c�� This development is illustrated in several texts �e�g�� ���� Section �����

We
ll take a slightly more complex path to the solution in order to focus on the computer

implementation of the �nite element method� Thus� write �������a� as the summation of

contributions from each element

NX
j��

�Aj�V� U�� �V� f�j� � �� �V � SN� � ������a�

where

Aj�V� U� � AS
j �V� U� � AM

j �V� U�� ������b�

AS
j �V� U� �

Z xj

xj��

pV �U �dx� ������c�

AM
j �V� U� �

Z xj

xj��

qV Udx� ������d�

�V� f�j �

Z xj

xj��

V fdx� ������e�

It is customary to divide the strain energy into two parts with AS
j arising from internal

energies and AM
j arising from inertial e�ects or sources of energy�

Matrices are simple data structures to manipulate on a computer� so let us write the

restriction of U�x� to �xj��� xj� according to ������� as

U�x� � �cj��� cj�

�
�j���x�
�j�x�

�
� ��j���x�� �j�x��

�
cj��
cj

�
� x � �xj��� xj�� �������a�

We can� likewise� use ������b� to write the restriction of the test function V �x� to �xj��� xj�

in the same form

V �x� � �dj��� dj�

�
�j���x�
�j�x�

�
� ��j���x�� �j�x��

�
dj��
dj

�
� x � �xj��� xj�� �������b�
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Our task is to substitute �������� into ������c�e� and evaluate the integrals� Let us begin

by di�erentiating �������a� while using ������a� to obtain

U ��x� � �cj��� cj�

�
���hj
��hj

�
� ����hj� ��hj�

�
cj��
cj

�
� x � �xj��� xj�� �������a�

where

hj � xj � xj��� j � �� �� � � � � N� �������b�

Thus� U ��x� is constant on �xj��� xj� and is given by the �rst divided di�erence

U ��x� �
cj � cj��

hj
� x � �xj��� xj��

Substituting �������� and a similar expression for V ��x� into ������b� yields

AS
j �V� U� �

Z xj

xj��

p�dj��� dj�

�
���hj
��hj

�
����hj� ��hj�

�
cj��
cj

�
dx

or

AS
j �V� U� � �dj��� dj�

�Z xj

xj��

p

�
��h�j ���h�j

���h�j ��h�j

�
dx

��
cj��
cj

�
�

The integrand is constant and can be evaluated to yield

AS
j �V� U� � �dj��� dj�Kj

�
cj��
cj

�
� Kj �

p

hj

�
� ��

�� �

�
� ��������

The �	 � matrix Kj is called the element sti�ness matrix� It depends on j through hj�

but would also have such dependence if p varied with x� The key observation is that

Kj can be evaluated without knowing cj��� cj� dj��� or dj and this greatly simpli�es the

automation of the �nite element method�

The evaluation of AM
j proceeds similarly by substituting �������� into ������d� to

obtain

AM
j �V� U� �

Z xj

xj��

q�dj��� dj�

�
�j��
�j

�
��j��� �j�

�
cj��
cj

�
dx�

With q a constant� the integrand is a quadratic polynomial in x that may be integrated

exactly �cf� Problem � at the end of this section� to yield

AM
j �V� U� � �dj��� dj�Mj

	
cj��cj



� Mj �

qhj



�
� �
� �

�
� ��������

whereMj is called the element mass matrix because� as noted� it often arises from inertial

loading�
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The �nal integral ������e� cannot be evaluated exactly for arbitrary functions f�x��

Without examining this matter carefully� let us approximate it by its linear interpolant

f�x� � fj���j���x� � fj�j�x�� x � �xj��� xj�� ��������

where fj �� f�xj�� Substituting �������� and �������b� into ������e� and evaluating the

integral yields

�V� f�j �

Z xj

xj��

�dj��� dj�

�
�j��
�j

�
��j��� �j�

�
fj��
fj

�
dx � �dj��� dj�lj �������a�

where

lj �
hj



�
�fj�� � fj
fj�� � �fj

�
� �������b�

The vector lj is called the element load vector and is due to the applied loading f�x��

The next step in the process is the substitution of ��������� ��������� and �������� into

������a� and the summation over the elements� Since this our �rst example� we
ll simplify

matters by making the mesh uniform with hj � h � ��N � j � �� �� � � � � N � and summing

AS
j � A

M
j � and �V� f�j separately� Thus� summing ��������

NX
j��

AS
j �

NX
j��

�dj��� dj�
p

h

�
� ��

�� �

� �
cj��
cj

�
�

The �rst and last contributions have to be modi�ed because of the boundary conditions

which� as noted� prescribe c� � cN � d� � dN � �� Thus�

NX
j��

AS
j � �d��

p

h
����c�� � �d�� d��

p

h

�
� ��

�� �

� �
c�
c�

�
� 
 
 


��dN��� dN���
p

h

�
� ��

�� �

� �
cN��
cN��

�
� �dN���

p

h
����cN����

Although this form of the summation can be readily evaluated� it obscures the need for the

matrices and complicates implementation issues� Thus� at the risk of further complexity�

we
ll expand each matrix and vector to dimension N � � and write the summation as

NX
k��

AS
j � �d�� d�� 
 
 
 � dN���

p

h

�
����


�
�
�����
�
���


c�
c�
���

cN��

�
����
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��d�� d�� 
 
 
 � dN���
p

h

�
����


� ��
�� �

�
�����
�
���


c�
c�
���

cN��

�
����

� 
 
 
� �d�� d�� 
 
 
 � dN���
p

h

�
����
 � ��

�� �

�
�����
�
���


c�
c�
���

cN��

�
����

��d�� d�� 
 
 
dN���
p

h

�
����


�

�
�����
�
���


c�
c�
���

cN��

�
����

Zero elements of the matrices have not been shown for clarity� With all matrices and

vectors having the same dimension� the summation is

NX
j��

AS
j � d

T
Kc� ������
a�

where

K �
p

h

�
�������


� ��
�� � ��

�� � ��
� � � � � � � � �

�� � ��
�� �

�
��������
� ������
b�

c � �c�� c�� 
 
 
 � cN���
T � ������
c�

d � �d�� d�� 
 
 
 � dN���
T � ������
d�

The matrix K is called the global sti�ness matrix� It is symmetric� positive de�nite� and

tridiagonal� In the form that we have developed the results� the summation over elements

is regarded as an assembly process where the element sti�ness matrices are added into

their proper places in the global sti�ness matrix� It is not necessary to actually extend the

dimensions of the element matrices to those of the global sti�ness matrix� As indicated

in Figure ������ the elemental indices determine the proper location to add a local matrix

into the global matrix� Thus� the � 	 � element sti�ness matrix Kj is added to rows
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AS
� � d�

p

h
�����z� c� AS

� � �d�� d��
p

h

�
� ��

�� �

�
� �z �

�
c�
c�

�

AS
� � �d�� d��

p

h

�
� ��

�� �

�
� �z �

�
c�
c�

�

K �
p

h

�
����������


� ��
�� � ��

�� �

�
�����������

Figure ������ Assembly of the �rst three element sti�ness matrices into the global sti�ness
matrix�

j � � and j and columns j � � and j� Some modi�cations are needed for the �rst and

last elements to account for the boundary conditions�

The summations of AM
j and �V� f�j proceed in the same manner and� using ��������

and ��������� we obtain

NX
j��

AM
j � d

T
Mc� �������a�

NX
j��

�V� f�j � d
T
l �������b�

where

M �
qh




�
�����


� �
� � �

� � �
� � �

� � �

� � �
� �

�
������ � �������c�

l �
h




�
���


f� � �f� � f�
f� � �f� � f�

���
fN�� � �fN�� � fN

�
���� � �������d�
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The matrix M and the vector l are called the global mass matrix and global load vector�

respectively�

Substituting ������
a� and �������a�b� into ������a�b� gives

d
T ��K�M�c� l� � �� ������	�

As noted in Section ���� the requirement that ������a� hold for all V � SN� is equivalent

to satisfying ������	� for all choices of d� This is only possible when

�K�M�c � l� ��������

Thus� the nodal values ck� k � �� �� � � � � N � �� of the �nite element solution are deter�

mined by solving a linear algebraic system� With c known� the piecewise linear �nite

element U can be evaluated for any x using ������a�� The matrix K �M is symmetric�

positive de�nite� and tridiagonal� Such systems may be solved by the tridiagonal algo�

rithm �cf� Problem � at the end of this section� in O�N� operations� where an operation

is a scalar multiply followed by an addition�

The discrete system �������� is similar to the one that would be obtained from a

centered �nite di�erence approximation of �������� which is ����

�K�D��c � �l� �������a�

where

D � qh

�
���


�
�

� � �

�

�
���� � �l � h

�
���


f�
f�
���

fN��

�
���� � �c �

�
���


�c�
�c�
���

�cN��

�
���� � �������b�

Thus� the qu and f terms in ������� are approximated by diagonal matrices with the

�nite di�erence method� In the �nite element method� they are �smoothed� by coupling

diagonal terms with their nearest neighbors using Simpson
s rule weights� The diagonal

matrix D is sometimes called a �lumped� approximation of the consistent mass matrix

M� Both �nite di�erence and �nite element solutions behave similarly for the present

problem and have the same order of accuracy at the nodes of a uniform mesh�

Example ������ Consider the �nite element solution of

�u�� � u � x� � � x � �� u��� � u��� � ��

which has the exact solution

u�x� � x�
sinh x

sinh �
�
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Relative to the more general problem �������� this example has p � q � � and f�x� � x�

We solve it using the piecewise�linear �nite element method developed in this section on

uniform meshes with spacing h � ��N for N � �� 	� � � � � ��	� Before presenting results�

it is worthwhile mentioning that the load vector �������� is exact for this example� Even

though we replaced f�x� by its piecewise linear interpolant according to ��������� this

introduced no error since f�x� is a linear function of x�

Letting

e�x� � u�x�� U�x� ��������

denote the discretization error	 in Table ����� we display the maximum error of the �nite

element solution and of its �rst derivative at the nodes of a mesh� i�e��

jej� �� max
��j�N

je�xj�j� je�j� �� max
��j�N

je��x�j �j� ��������

We have seen that U ��x� is a piecewise constant function with jumps at nodes� Data in

Table ����� were obtained by using derivatives from the left� i�e�� x�j � lim��� xj�	� With

this interpretation� the results of second and fourth columns of Table ����� indicate that

jej��h
� and je�j��h are �essentially� constants� hence� we may conclude that jej� � O�h��

and je�j� � O�h��

N jej� jej��h
� je�j� je�j��h

� ���
����� ��������� ������ �� �����
	 ��
		���� ��������� ���	����� �����
�
 ��������� ��������� ��������� ���	�
�� ��������� ��������� ��������� �����

� ����	���� ��������� ��������� ����

��	 �������
� ��������� ���	����� ����	

Table ������ Maximum nodal errors of the piecewise�linear �nite element solution and its
derivative for Example ������ �Numbers in parenthesis indicate a power of ����

The �nite element and exact solutions of this problem are displayed in Figure ����� for

a uniform mesh with eight elements� It appears that the pointwise discretization errors

are much smaller at nodes than they are globally� We
ll see that this phenomena� called

superconvergence� applies more generally than this single example would imply�

Since �nite element solutions are de�ned as continuous functions �of x�� we can also

appraise their behavior in some global norms in addition to the discrete error norms used

in Table ������ Many norms could provide useful information� One that we will use quite
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Figure ������ Exact and piecewise�linear �nite element solutions of Example ����� on an
	�element mesh�

often is the square root of the strain energy of the error� thus� using ������c�

kekA ��
p
A�e� e� �

�Z
�

�

�p�e��� � qe��dx

����

� �������a�

This expression may easily be evaluated as a summation over the elements in the spirit

of ������a�� With p � q � � for this example�

kek�A �

Z
�

�

��e��� � e��dx�

The integral is the square of the norm used on the Sobolev space H�� thus�

kek� ��

�Z
�

�

��e��� � e��dx

����

� �������b�

Other global error measures will be important to our analyses� however� the only one
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that we will introduce at the moment is the L� norm

kek� ��

�Z
�

�

e��x�dx

����
� �������c�

Results for the L� and strain energy errors� presented in Table ����� for this example�

indicate that kek� � O�h�� and kekA � O�h�� The error in the H� norm would be

identical to that in strain energy� Later� we will prove that these a priori error estimates

are correct for this and similar problems� Errors in strain energy converge slower than

those in L� because solution derivatives are involved and their nodal convergence is O�h�

�Table �������

N kek� kek��h
� kekA kekA�h

� ���
����� ��������� ��������� ����

	 ��
�
���� ����
���� ��������� �����
�
 ���
����� ��������� ��������� �����
�� ��������� ��������� ��������� �����

� ��������� ��������� ��������� �����
��	 ���
����� ��������� ��������� �����

Table ������ Errors in L� and strain energy for the piecewise�linear �nite element solution
of Example ������ �Numbers in parenthesis indicate a power of ����

Problems

�� The integral involved in obtaining the mass matrix according to �������� may� of

course� be done symbolically� It may also be evaluated numerically by Simpson
s

rule which is exact in this case since the integrand is a quadratic polynomial� Recall�

that Simpson
s rule isZ h

�

F�x�dx �
h



�F��� � �F�h��� � F�h���

The mass matrix is

Mj �

Z xj

xj��

�
�j��
�j

�
��j��� �j�dx�

Using �������� determine Mj by Simpson
s rule to verify the result ��������� The

use of Simpson
s rule may be simpler than symbolic integration for this example

since the trial functions are zero or unity at the ends of an element and one half at

its center�

�� Consider the solution of the linear system

AX � F� �������a�
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where F and X are N �dimensional vectors and A is an N 	N tridiagonal matrix

having the form

A �

�
�����

a� c�
b� a� c�

� � � � � � � � �

bN�� aN�� cN��
bN aN

�
������ � �������b�

Assume that pivoting is not necessary and factor A as

A � LU� �������a�

where L and U are lower and upper bidiagonal matrices having the form

L �

�
�����


�
l� �

l� �
� � � � � �

lN �

�
������ � �������b�

U �

�
�����

u� v�

u� v�
� � � � � �

uN�� vN��
uN

�
������ � �������c�

Once the coe�cients lj� j � �� �� � � � � N � uj� j � �� �� � � � � N � and vj� j � �� �� � � � � N�

�� have been determined� the system �������a� may easily be solved by forward and

backward substitution� Thus� using �������a� in �������a� gives

LUX � F� ������
a�

Let

UX � Y� ������
b�

then�

LY � F� ������
c�

���� Using �������� and ��������� show

u� � a��

lj � bj�uj��� uj � aj � ljcj��� j � �� �� � � � � N�

vj � cj� j � �� �� � � � � N�
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���� Show that Y and X are computed as

Y� � F��

Yj � Fj � ljYj��� j � �� �� � � � � N�

XN � yN�uN �

Xj � �Yj � vjXj����uj� j � N � �� N � �� � � � � ��

���� Develop a procedure to implement this scheme for solving tridiagonal systems�

The input to the procedure should be N and vectors containing the coe�cients

aj� bj� cj� fj� j � �� �� � � � � N � The procedure should output the solution X�

The coe�cients aj� bj� etc�� j � �� �� � � � � N � should be replaced by uj� vj� etc��

j � �� �� � � � � N � in order to save storage� If you want� the solution X can be

returned in F�

���� Estimate the number of arithmetic operations necessary to factor A and for

the forward and backward substitution process�

�� Consider the linear boundary value problem

�pu�� � qu � f�x�� � � x � �� u��� � u���� � ��

where p and q are positive constants and f�x� is a smooth function�

���� Show that the Galerkin form of this boundary�value problem consists of �nding

u � H�
� satisfying

A�v� u�� �v� f� �

Z
�

�

�v�pu� � vqu�dx�

Z
�

�

vfdx � �� �v � H�

� �

For this problem� functions u�x� � H�
� are required to be elements of H� and

satisfy the Dirichlet boundary condition u��� � �� The Neumann boundary

condition at x � � need not be satis�ed by either u or v�

���� Introduce N equally spaced elements on � � x � � with nodes xj � jh�

j � �� �� � � � � N �h � ��N�� Approximate u by U having the form

U�x� �
NX
j��

ck�k�x��

where �j�x�� j � �� �� � � � � N � is the piecewise linear basis �������� and use

Galerkin
s method to obtain the global sti�ness and mass matrices and the

load vector for this problem� �Again� the approximation U�x� does not satisfy

the natural boundary condition u���� � � nor does it have to� We will discuss

this issue in Chapter ���
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���� Write a program to solve this problem using the �nite element method devel�

oped in Part ���b and the tridiagonal algorithm of Problem �� Execute your

program with p � �� q � �� and f�x� � x and f�x� � x�� In each case� use

N � �� 	� �
� and ��� Let e�x� � u�x�� U�x� and� for each value of N � com�

pute jej�� je
��xN �j� and kekA according to �������� and �������a�� You may

�optionally� also compute kek� as de�ned by �������c�� In each case� estimate

the rate of convergence of the �nite element solution to the exact solution�

�� The Galerkin form of ������� consists of determining u � H�
� such that ������� is

satis�ed� Similarly� the �nite element solution U � SN� � H�
� satis�es ���������

Letting e�x� � u�x�� U�x�� show

A�e� e� � A�u� u�� A�U� U�

where the strain energy A�v� u� is given by ������c�� We have� thus� shown that the

strain energy of the error is the error of the strain energy�
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