Chapter 1

Introduction

1.1 Historical Perspective

The finite element method is a computational technique for obtaining approximate solu-
tions to the partial differential equations that arise in scientific and engineering applica-
tions. Rather than approximating the partial differential equation directly as with, e.g.,
finite difference methods, the finite element method utilizes a variational problem that
involves an integral of the differential equation over the problem domain. This domain
is divided into a number of subdomains called finite elements and the solution of the
partial differential equation is approximated by a simpler polynomial function on each
element. These polynomials have to be pieced together so that the approximate solution
has an appropriate degree of smoothness over the entire domain. Once this has been
done, the variational integral is evaluated as a sum of contributions from each finite el-
ement. The result is an algebraic system for the approximate solution having a finite
size rather than the original infinite-dimensional partial differential equation. Thus, like
finite difference methods, the finite element process has discretized the partial differen-
tial equation but, unlike finite difference methods, the approximate solution is known

throughout the domain as a pieceise polynomial function and not just at a set of points.

Logan [10] attributes the discovery of the finite element method to Hrennikof [8] and
McHenry [11] who decomposed a two-dimensional problem domain into an assembly of
one-dimensional bars and beams. In a paper that was not recognized for several years,
Courant [6] used a variational formulation to describe a partial differential equation with
a piecewise linear polynomial approximation of the solution relative to a decomposition of
the problem domain into triangular elements to solve equilibrium and vibration problems.
This is essentially the modern finite element method and represents the first application

where the elements were pieces of a continuum rather than structural members.

Turner et al. [13] wrote a seminal paper on the subject that is widely regarded
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as the beginning of the finite element era. They showed how to solve one- and two-
dimensional problems using actual structural elements and triangular- and rectangular-
element decompositions of a continuum. Their timing was better than Courant’s [6],
since success of the finite element method is dependent on digital computation which
was emerging in the late 1950s. The concept was extended to more complex problems
such as plate and shell deformation (cf. the historical discussion in Logan [10], Chapter
1) and it has now become one of the most important numerical techniques for solving
partial differential equations. It has a number of advantages relative to other methods,

including
e the treatment of problems on complex irregular regions,
e the use of nonuniform meshes to reflect solution gradations,
e the treatment of boundary conditions involving fluxes, and
e the construction of high-order approximations.

Originally used for steady (elliptic) problems, the finite element method is now used
to solve transient parabolic and hyperbolic problems. Estimates of discretization errors
may be obtained for reasonable costs. These are being used to verify the accuracy of the
computation, and also to control an adaptive process whereby meshes are automatically
refined and coarsened and/or the degrees of polynomial approximations are varied so as

to compute solutions to desired accuracies in an optimal fashion [1, 2, 3, 4, 5, 7, 14].

1.2 Weighted Residual Methods

Our goal, in this introductory chapter, is to introduce the basic principles and tools of

the finite element method using a linear two-point boundary value problem of the form

Llu] := —%(p(x)g—z) +q(x)u = f(x), O<z<l, (1.2.1a)
u(0) = u(1) = 0. (1.2.1Db)

The finite element method is primarily used to address partial differential equations and is
hardly used for two-point boundary value problems. By focusing on this problem, we hope
to introduce the fundamental concepts without the geometric complexities encountered
in two and three dimensions.

Problems like (1.2.1) arise in many situations including the longitudinal deformation

of an elastic rod, steady heat conduction, and the transverse deflection of a supported
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cable. In the latter case, for example, u(x) represents the lateral deflection at position
x of a cable having (scaled) unit length that is subjected to a tensile force p, loaded by
a transverse force per unit length f(z), and supported by a series of springs with elastic
modulus ¢ (Figure 1.2.1). The situation resembles the cable of a suspension bridge. The
tensile force p is independent of x for the assumed small deformations of this model, but

the applied loading and spring moduli could vary with position.
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Figure 1.2.1: Deflection u of a cable under tension p, loaded by a force f per unit length,
and supported by springs having elastic modulus q.

Mathematically, we will assume that p(x) is positive and continuously differentiable
for z € [0,1], g() is non-negative and continuous on [0,1], and f(z) is continuous on
[0, 1].

Even problems of this simplicity cannot generally be solved in terms of known func-
tions; thus, the first topic on our agenda will be the development of a means of calculating
approximate solutions of (1.2.1). With finite difference techniques, derivatives in (1.2.1a)
are approximated by finite differences with respect to a mesh introduced on [0, 1] [12].
With the finite element method, the method of weighted residuals (MWR) is used to
construct an integral formulation of (1.2.1) called a variational problem. To this end, let

us multiply (1.2.1a) by a test or weight function v and integrate over (0, 1) to obtain
(v, L[u] = f) = 0. (1.2.2a)

We have introduced the L? inner product

(v,u) = /Olvuda: (1.2.2Dh)

to represent the integral of a product of two functions.

The solution of (1.2.1) is also a solution of (1.2.2a) for all functions v for which the
inner product exists. We’ll express this requirement by writing v € L?(0,1). All functions
of class L?*(0,1) are “square integrable” on (0, 1); thus, (v, v) exists. With this viewpoint

and notation, we write (1.2.2a) more precisely as

(v, Llu] — ) =0, Yo e L*0,1). (1.2.2¢)
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Equation (1.2.2¢) is referred to as a variational form of problem (1.2.1). The reason for
this terminology will become clearer as we develop the topic.

Using the method of weighted residuals, we construct approximate solutions by re-
placing w and v by simpler functions U and V' and solving (1.2.2¢) relative to these

choices. Specifically, we’ll consider approximations of the form

u(r) ~U(x) = Z cjp;(z), (1.2.3a)
v(z) = V(z) = Zdjz/)j(x). (1.2.3b)

The functions ¢;(z) and v¢;(z), j = 1,2,..., N, are preselected and our goal is to
determine the coefficients ¢;, j = 1,2,..., N, so that U is a good approximation of u.

For example, we might select

¢](1‘):¢](1‘):Sinjﬂ-x7 j:]‘727"'7N7

to obtain approximations in the form of discrete Fourier series. In this case, every function
satisfies the boundary conditions (1.2.1b), which seems like a good idea.

The approximation U is called a trial function and, as noted, V' is called a test func-
tion. Since the differential operator L[u] is second order, we might expect u € C?(0,1).
(Actually, u can be slightly less smooth, but C? will suffice for the present discussion.)
Thus, it’s natural to expect U to also be an element of C?(0,1). Mathematically, we re-
gard U as belonging to a finite-dimensional function space that is a subspace of C?(0, 1).
We express this condition by writing U € S¥(0,1) € C?(0,1). (The restriction of these
functions to the interval 0 < x < 1 will, henceforth, be understood and we will no longer
write the (0,1).) With this interpretation, we’ll call SV the trial space and regard the
preselected functions ¢;(x), j =1,2,..., N, as forming a basis for SV.

Likewise, since v € L?, we’ll regard V as belonging to another finite-dimensional
function space SV called the test space. Thus, V € S¥ ¢ L? and Yi(zr), 7 =1,2,... N,
provide a basis for SV.

Now, replacing v and u in (1.2.2¢) by their approximations V' and U, we have
(V,L[U]—f)=0, VVeSsV (1.2.4a)
The residual

r(z) = L[U] — f(z) (1.2.4b)
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is apparent and clarifies the name “method of weighted residuals.” The vanishing of the
inner product (1.2.4a) implies that the residual is orthogonal in L? to all functions V' in
the test space SN.

Substituting (1.2.3) into (1.2.4a) and interchanging the sum and integral yields

N

> di(y;, LIUT = f)=0, Vi, j=1,2,... N. (1.2.5)
j=1
Having selected the basis ¢;, j = 1,2,... , N, the requirement that (1.2.4a) be satisfied for
all V € SV implies that (1.2.5) be satisfied for all possible choices of dj, k =1,2,... , N.

This, in turn, implies that
(¢, LIU] = f) =0, j=1,2,...,N. (1.2.6)

Shortly, by example, we shall see that (1.2.6) represents a linear algebraic system for the
unknown coefficients ¢, k =1,2,... , N.

One obvious choice is to select the test space SN %o be the same as the trial space
and use the same basis for each; thus, ¢y (z) = ¢p(z), £ = 1,2,... , N. This choice leads

to Galerkin’s method
(6, Llu] — f)=0, j=1,2,...,N, (1.2.7)

which, in a slightly different form, will be our “work horse.” With ¢; € C?, j =
1,2,..., N, the test space clearly has more continuity than necessary. Integrals like
(1.2.4) or (1.2.6) exist for some pretty “wild” choices of V. Valid methods exist when V'
is a Dirac delta function (although such functions are not elements of L?) and when V
is a piecewise constant function (¢f. Problems 1 and 2 at the end of this section).

There are many reasons to prefer a more symmetric variational form of (1.2.1) than
(1.2.2), e.g., problem (1.2.1) is symmetric (self-adjoint) and the variational form should
reflect this. Additionally, we might want to choose the same trial and test spaces, as with
Galerkin’s method, but ask for less continuity on the trial space SY. This is typically
the case. As we shall see, it will be difficult to construct continuously differentiable
approximations of finite element type in two and three dimensions. We can construct
the symmetric variational form that we need by integrating the second derivative terms
in (1.2.2a) by parts; thus, using (1.2.1a)

1 1
/ v[=(pu)" + qu — fldz = / (v'pu’ + vqu — v f)dr — vpu')y = 0 (1.2.8)
0 0

where () = d( )/dx. The treatment of the last (boundary) term will need greater

attention. For the moment, let v satisfy the same trivial boundary conditions (1.2.1b) as
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u. In this case, the boundary term vanishes and (1.2.8) becomes
Alv,u) — (v, f) =0 (1.2.9a)

where
1
Av,u) = / (v'pu’ 4+ vqu)dz. (1.2.9b)
0

The integration by parts has eliminated second derivative terms from the formulation.
Thus, solutions of (1.2.9) might have less continuity than those satisfying either (1.2.1) or
(1.2.2). For this reason, they are called weak solutions in contrast to the strong solutions
of (1.2.1) or (1.2.2). Weak solutions may lack the continuity to be strong solutions, but
strong solutions are always weak solutions. In situations where weak and strong solutions
differ, the weak solution is often the one of physical interest.

Since we’ve added a derivative to v by the integration by parts, v must be restricted
to a space where functions have more continuity than those in L?. Having symmetry in

mind, we will select functions v and v that produce bounded values of

Alu,u) = /0 [p(v')? + qu?)dz.

Actually, since p and ¢ are smooth functions, it suffices for v and v to have bounded

values of
1
[ 1w+ la (1:2.10)
0

Functions where (1.2.10) exists are said to be elements of the Sobolev space H'. We've
also required that u and v satisfy the boundary conditions (1.2.1b). We identify those
functions in H' that also satisfy (1.2.1b) as being elements of H;]. Thus, in summary,

the variational problem consists of determining v € H{ such that
A(v,u) = (v, f), Vv € Hj. (1.2.11)

The bilinear form A(v,u) is called the strain energy. In mechanical systems it frequently
corresponds to the stored or internal energy in the system.

We obtain approximate solutions of (1.2.11) in the manner described earlier for the
more general method of weighted residuals. Thus, we replace u and v by their approxi-
mations U and V according to (1.2.3). Both U and V' are regarded as belonging to the
same finite-dimensional subspace S}’ of H} and ¢;, j = 1,2,..., N, forms a basis for

SY¥. Thus, U is determined as the solution of

AV, U)=(V,f), vV esp. (1.2.12a)
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The substitution of (1.2.3b) with ; replaced by ¢; in (1.2.12a) again reveals the more

explicit form
Alp;,U) = (¢, ), j=1,2,...,N. (1.2.12b)

Finally, to make (1.2.12b) totally explicit, we eliminate U using (1.2.3a) and interchange
a sum and integral to obtain

N
> aAld k) = (05, f),  i=12,...,N. (1.2.12¢)
k=1

Thus, the coefficients ¢, k =1,2,... , N, of the approximate solution (1.2.3a) are deter-
mined as the solution of the linear algebraic equation (1.2.12¢). Different choices of the
basis ¢;, j = 1,2,..., N, will make the integrals involved in the strain energy (1.2.9b)
and L? inner product (1.2.2b) easy or difficult to evaluate. They also affect the accuracy
of the approximate solution. An example using a finite element basis is presented in the
next section.

Problems

1. Consider the variational form (1.2.6) and select
Yi(r) = 0(r — xj), j=1,2,...,N,

where 0(x) is the Dirac delta function satisfying

d(xz) =0, x # 0, /00 §(x)dr =1,

and
O<m<ay<...<zy <L

Show that this choice of test function leads to the collocation method
£[U]_f(x)|:v:xj:0, j:1,2,...,N.

Thus, the differential equation (1.2.1) is satisfied exactly at N distinct points on
(0,1).

2. The subdomain method uses piecewise continuous test functions having the basis

L itr ez, miiy2)
V() = { 0, otherwise

where x;_1/9 = (; + x;_1)/2. Using (1.2.6), show that the approximate solution

U(z) satisfies the differential equation (1.2.1a) on the average on each subinterval

(xj—l/anj-i-l/Z)a .] = ]-727 s 7N'
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3. Consider the two-point boundary value problem
—u" +u=u, 0<z<l, u(0) = u(1) =0,

which has the exact solution

sinh z

sinh 1’

Solve this problem using Galerkin’s method (1.2.12¢) using the trial function

u(z) =z —

U(x) = ¢sinmz.

Thus, N = 1, ¢1(x) = ¢1(x) = sinmz in (1.2.3). Calculate the error in strain
energy as A(u,u) — A(U,U), where A(u,v) is given by (1.2.9b).

1.3 A Simple Finite Element Problem

Finite element methods are weighted residuals methods that use bases of piecewise poly-
nomials having small support. Thus, the functions ¢(z) and ¢(x) of (1.2.3, 1.2.4) are
nonzero only on a small portion of problem domain. Since continuity may be difficult to
impose, bases will typically use the minimum continuity necessary to ensure the existence
of integrals and solution accuracy. The use of piecewise polynomial functions simplify
the evaluation of integrals involved in the L? inner product and strain energy (1.2.2b,
1.2.9b) and help automate the solution process. Choosing bases with small support leads
to a sparse, well-conditioned linear algebraic system (1.2.12c)) for the solution.

Let us illustrate the finite element method by solving the two-point boundary value

problem (1.2.1) with constant coefficients, i.e.,
—pu"” + qu = f(z), 0<z<l, u(0) = u(1) =0, (1.3.1)

where p > 0 and ¢ > 0. As described in Section 1.2, we construct a variational form of
(1.2.1) using Galerkin’s method (1.2.11). For this constant-coefficient problem, we seek

to determine u € Hj satisfying
A(v,u) = (v, f), Vv € Hy, (1.3.2a)

where

(v,u) = /01 vudz, (1.3.2b)

1
A(U,u):/ (v'pu’ 4+ vqu)dz. (1.3.2c)
0
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With v and v belonging to H|, we are sure that the integrals (1.3.2b,c) exist and that
the trivial boundary conditions are satisfied.

We will subsequently show that functions (of one variable) belonging to H!' must
necessarily be continuous. Accepting this for the moment, let us establish the goal of
finding the simplest continuous piecewise polynomial approximations of v and v. This

would be a piecewise linear polynomial with respect to a mesh
O=zrp<m <...<zny=1 (133)

introduced on [0, 1]. Each subinterval (x;_1,2,), 7 =1,2,...,N,iscalled a finite element.

The basis is created from the “hat function”

é__l;j__lla if v, <z <
0, otherwise
b o,
1 —
| | | | X
I I I I I |
XO Xj-l Xj Xj+1 XN

Figure 1.3.1: One-dimensional finite element mesh and piecewise linear hat function

¢;(x).

As shown in Figure 1.3.1, ¢;(x) is nonzero only on the two elements containing the
node x;j. It rises and descends linearly on these two elements and has a maximal unit

value at * = ;. Indeed, it vanishes at all nodes but z;, i.e.,

1, if T = Tj
ZICORITE {0, otherwise (1.3.4b)

Using this basis with (1.2.3), we consider approximations of the form
N-1

Z cjo;(x (1.3.5)

Jj=1

Let’s examine this result more closely.
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Figure 1.3.2: Piecewise linear finite element solution U(z).

1. Since each ¢;(x) is a continuous piecewise linear function of z, their summation

U is also continuous and piecewise linear. Evaluating U at a node x; of the mesh

using (1.3.4b) yields
N-1

Ulze) = Y ¢jdy(an) = on.

j=1
Thus, the coefficients ¢, k = 1,2,... , N — 1, are the values of U at the interior
nodes of the mesh (Figure 1.3.2).

. By selecting the lower and upper summation indices as 1 and N —1 we have ensured

that (1.3.5) satisfies the prescribed boundary conditions

As an alternative, we could have added basis elements ¢y(z) and ¢y (z) to the

approximation and written the finite element solution as
N
Ulz) =) cjp(w). (1.3.6)
§=0

Since, using (1.3.4b), U(zg) = ¢o and U(xy) = cy, the boundary conditions are
satisfied by requiring ¢y = ¢y = 0. Thus, the representations (1.3.5) or (1.3.6) are

identical; however, (1.3.6) would be useful with non-trivial boundary data.

. The restriction of the finite element solution (1.3.5) or (1.3.6) to the element

[z;_1,z;] is the linear function

Ux) = ¢jaidj-1(z) + ¢io(x), @ € [wj-1,24], (1.3.7)
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since ¢;_1 and ¢; are the only nonzero basis elements on [z,_1, z;] (Figure 1.3.2).

Using Galerkin’s method in the form (1.2.12¢), we have to solve

=

-1

CkA(¢j7¢)k) = (¢j7f)7 Jj=12,...,N-L (138)

1

i

Equation (1.3.8) can be evaluated in a straightforward manner by substituting replacing
¢r and ¢; using (1.3.4) and evaluating the strain energy and L? inner product according
to (1.3.2b,c). This development is illustrated in several texts (e.g., [9], Section 1.2).
We’ll take a slightly more complex path to the solution in order to focus on the computer
implementation of the finite element method. Thus, write (1.2.12a) as the summation of

contributions from each element

N
S 4;(V,U) = (V. f);]=0, WV eSY, (1.3.92)

7=1

where

A;(V,U) = A7 (V,U) + AY (V,U), (1.3.9b)
AS(V,U) = / | pV'U"dx, (1.3.9¢)
A;VI(V,U):/m_ qVUdz, (1.3.9d)
V.= [ Vi (1.3.90

It is customary to divide the strain energy into two parts with AJS arising from internal
energies and Aé‘/" arising from inertial effects or sources of energy.
Matrices are simple data structures to manipulate on a computer, so let us write the

restriction of U(z) to [x;_1,z;] according to (1.3.7) as
U(z) = [¢j 1, ¢] [ (/);;;Eg) ] = [¢; 1(x), $j(2)] [ Cgl ] .z €lr1,a) (1.3.10a)

We can, likewise, use (1.2.3b) to write the restriction of the test function V() to [x;_1, z;]

in the same form

Vo) =) | ) [ =loi@a@l | G| selnaanl @i
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Our task is to substitute (1.3.10) into (1.3.9c-e) and evaluate the integrals. Let us begin
by differentiating (1.3.10a) while using (1.3.4a) to obtain

U'(x):[cj_l,cj]{_mﬂ:[-1/@,1/@][‘/’%1], velr o) (13.11a)

where

hj=x;—x;1, j=12...,N. (1.3.11b)
Thus, U'(x) is constant on [z,_1,z;] and is given by the first divided difference

U'(z) = 2—-L T € [xj_1, 7]

Substituting (1.3.11) and a similar expression for V'(x) into (1.3.9b) yields

A7 (V,U) = /;jlp[djhdj] { _%Zj ] [=1/hj, 1/hy] { Cgl ] dx

j_

awor=aan( [ o] 1) %]

The integrand is constant and can be evaluated to yield

or

AS(V,U) = [d;j—1, djK; { Cijl } . K; :hﬁj { _1 _1 } : (1.3.12)

The 2 x 2 matrix K is called the element stiffness matriz. It depends on j through hj,

but would also have such dependence if p varied with x. The key observation is that

K can be evaluated without knowing c¢;_i, ¢;, d;_1, or d; and this greatly simplifies the
automation of the finite element method.

The evaluation of A} proceeds similarly by substituting (1.3.10) into (1.3.9d) to

obtain

AN (VU) = / 7 dldy 1, dy] { ‘@j ] (651, 0] { ] dz.

j
:vj_l Cj
With ¢ a constant, the integrand is a quadratic polynomial in x that may be integrated
exactly (c¢f. Problem 1 at the end of this section) to yield
qgh; | 2 1
A;M(Vv, U) = [djfl,dJ]M] [ cj_lcj ] y M] = ?J |: 1 2 :| y (1313)
where M is called the element mass matriz because, as noted, it often arises from inertial

loading.
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The final integral (1.3.9e) cannot be evaluated exactly for arbitrary functions f(x).

Without examining this matter carefully, let us approximate it by its linear interpolant

f@) = fiadja(x) + fi¢i(z), @€ lrj, ), (1.3.14)

where f; := f(x;). Substituting (1.3.14) and (1.3.10b) into (1.3.9e) and evaluating the
integral yields

(V. f); = / j [dj-1,d;] [ qﬁé; } [Pj-1, @] [ f}jl ] dr = [d;j_1, d;]l; (1.3.15a)

j —
where

_hi P 2fia+
l; = EJ [ fjjl+2fj‘ ] (1.3.15b)

The vector 1; is called the element load vector and is due to the applied loading f(x).

The next step in the process is the substitution of (1.3.12), (1.3.13), and (1.3.15) into
(1.3.9a) and the summation over the elements. Since this our first example, we’ll simplify
matters by making the mesh uniform with h; = h=1/N, j =1,2,..., N, and summing
A7, AM and (V, f); separately. Thus, summing (1.3.12)

ul al pl 1 —1]7(¢

s _ — i1
sa-swaa 1 1% ]
7=1 7=1

The first and last contributions have to be modified because of the boundary conditions

which, as noted, prescribe ¢y = ¢y = dy = dy = 0. Thus,
s p 1 -1 C1
ZA 1][01] [dladZ]E |: 1 1 :| |: C :| + .-

iy, dy1E [ o ] [ o ] + v 2] fen ]

CN-1

Although this form of the summation can be readily evaluated, it obscures the need for the
matrices and complicates implementation issues. Thus, at the risk of further complexity,

we’ll expand each matrix and vector to dimension N — 1 and write the summation as

1 el

Co
ZAS [dida, -+ dya]7 |

CN-1
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1 -1 ¢
—1 1
p C2
+[d17 d27 e 7dN71]E
CN-1
C1
p €2
+"'+[d17d27"' 7dN71]E
1 -1
-1 1 CN-1
C1
Co
+[d1,d2;"'dN—1]% .
1 CN-1

Zero elements of the matrices have not been shown for clarity. With all matrices and

vectors having the same dimension, the summation is

N
> A =d"Ke, (1.3.16a)
j=1
where
[ 2 -1 T
-1 2 -1
P -1 2 -1
K=73 _ : (1.3.16b)
-1 2 -1
I -1 2|
c=[c, e, en ], (1.3.16¢)
d=[d,dy, - ,dy_1]". (1.3.16d)

The matrix K is called the global stiffness matriz. It is symmetric, positive definite, and
tridiagonal. In the form that we have developed the results, the summation over elements
is regarded as an assembly process where the element stiffness matrices are added into
their proper places in the global stiffness matrix. It is not necessary to actually extend the
dimensions of the element matrices to those of the global stiffness matrix. As indicated
in Figure 1.3.3, the elemental indices determine the proper location to add a local matrix

into the global matrix. Thus, the 2 x 2 element stiffness matrix K; is added to rows
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A5 = d, %[1] e

s 2 ]_ —]_ C1
~—~

—_——
A3
2 -1
-1 2 -1
-1 1
p
K==
h

15

- [dQ,de,]% { _1 _H [Z}

|

Figure 1.3.3: Assembly of the first three element stiffness matrices into the global stiffness

matrix.

j — 1 and j and columns j — 1 and j. Some modifications are needed for the first and

last elements to account for the boundary conditions.

The summations of A} and (V, f); proceed in the same manner and, using (1.3.13)

and (1.3.15), we obtain

§=0
where
(4 1
" 1 4 1
6
1 4
i 1
fo+4fi+ fo
l_h, fi+4fa+ f3

6

In—2 +4].£N—1 + fn

(1.3.17a)

(1.3.17b)

(1.3.17¢)

(1.3.17d)
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The matrix M and the vector 1 are called the global mass matriz and global load vector,
respectively.
Substituting (1.3.16a) and (1.3.17a,b) into (1.3.9a,b) gives

d'[(K+M)c -1 =0. (1.3.18)

As noted in Section 1.2, the requirement that (1.3.9a) hold for all V' € S{¥ is equivalent
to satisfying (1.3.18) for all choices of d. This is only possible when

(K +M)c =1 (1.3.19)

Thus, the nodal values ¢, k = 1,2,... , N — 1, of the finite element solution are deter-
mined by solving a linear algebraic system. With ¢ known, the piecewise linear finite
element U can be evaluated for any z using (1.2.3a). The matrix K + M is symmetric,
positive definite, and tridiagonal. Such systems may be solved by the tridiagonal algo-
rithm (¢f. Problem 2 at the end of this section) in O(N) operations, where an operation
is a scalar multiply followed by an addition.

The discrete system (1.3.19) is similar to the one that would be obtained from a

centered finite difference approximation of (1.3.1), which is [12]

(K +D)e =1, (1.3.20a)
where
1 fi él
Dogn| § . i=n é Coe=| 7| (1320m)
| 1 fN.A éN.fl

Thus, the qu and f terms in (1.3.1) are approximated by diagonal matrices with the
finite difference method. In the finite element method, they are “smoothed” by coupling
diagonal terms with their nearest neighbors using Simpson’s rule weights. The diagonal
matrix D is sometimes called a “lumped” approximation of the consistent mass matriz
M. Both finite difference and finite element solutions behave similarly for the present
problem and have the same order of accuracy at the nodes of a uniform mesh.

Example 1.3.1. Consider the finite element solution of
—u" +u=ur, 0<z<l, u(0) = u(1) =0,

which has the exact solution )
sinh

sinh 1’

u(z) =z —
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Relative to the more general problem (1.3.1), this example has p = ¢ =1 and f(z) = x.
We solve it using the piecewise-linear finite element method developed in this section on
uniform meshes with spacing h = 1/N for N = 4,8, ... ,128. Before presenting results,
it is worthwhile mentioning that the load vector (1.3.15) is exact for this example. Even
though we replaced f(z) by its piecewise linear interpolant according to (1.3.14), this
introduced no error since f(z) is a linear function of .

Letting
e(x) =u(r) — U(x) (1.3.21)

denote the discretization error, in Table 1.3.1 we display the maximum error of the finite

element solution and of its first derivative at the nodes of a mesh, i.e.,

oo o= max Je()l, oo = max [€ (2. (1.3.22)
We have seen that U'(x) is a piecewise constant function with jumps at nodes. Data in
Table 1.3.1 were obtained by using derivatives from the left, i.e., T; = lim,_,o x; —e. With
this interpretation, the results of second and fourth columns of Table 1.3.1 indicate that
le|so/h? and |€'|o /b are (essentially) constants; hence, we may conclude that |e|o, = O(h?)
and |e'|oc = O(h).

[N [ lelo | leloo/B? | [efloo [ le'loo/D ]

4 [0.269(-3) | 0.430(-2) | 0.111( 0) | 0.444
8 | 0.688(-4) | 0.441(-2) | 0.589(-1) | 0.471
16 | 0.172(-4) | 0.441(-2) | 0.303(-1) | 0.485
32 | 0.432(-5) | 0.442(-2) | 0.154(-1) | 0.492
64 | 0.108(-5) | 0.442(-2) | 0.775(-2) | 0.496
128 | 0.270(-6) | 0.442(-2) | 0.389(-2) | 0.498

Table 1.3.1: Maximum nodal errors of the piecewise-linear finite element solution and its
derivative for Example 1.3.1. (Numbers in parenthesis indicate a power of 10.)

The finite element and exact solutions of this problem are displayed in Figure 1.3.4 for
a uniform mesh with eight elements. It appears that the pointwise discretization errors
are much smaller at nodes than they are globally. We’ll see that this phenomena, called
superconvergence, applies more generally than this single example would imply.

Since finite element solutions are defined as continuous functions (of x), we can also
appraise their behavior in some global norms in addition to the discrete error norms used

in Table 1.3.1. Many norms could provide useful information. One that we will use quite
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0.06 T T T T T T T T T

0.05 ,

0.04 - n

0.03

0.02 N

0.01 N

0 ! ! ! ! ! ! ! ! !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 1.3.4: Exact and piecewise-linear finite element solutions of Example 1.3.1 on an
8-element mesh.

often is the square root of the strain energy of the error; thus, using (1.3.2c)

lella = /Ale, ) = {/Ol[p(e')2 n qu]dx}l/Z. (1.3.23a)

This expression may easily be evaluated as a summation over the elements in the spirit
of (1.3.9a). With p = ¢ =1 for this example,

lell3 = / ()2 + d.

The integral is the square of the norm used on the Sobolev space H'; thus,

1/2

lell: := {/01[(6’)2 + 62]dx} : (1.3.23b)

Other global error measures will be important to our analyses; however, the only one
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that we will introduce at the moment is the L norm

lello = [/01 ez(x)dx] " (1.3.23¢)

Results for the L? and strain energy errors, presented in Table 1.3.2 for this example,
indicate that |lel] = O(h?) and ||e||4 = O(h). The error in the H' norm would be
identical to that in strain energy. Later, we will prove that these a priori error estimates
are correct for this and similar problems. Errors in strain energy converge slower than
those in L? because solution derivatives are involved and their nodal convergence is O(h)
(Table 1.3.1).

| N [ lello [ llello/b? T Tlella [ llella/h]
4 [0.265(-2) | 0.425(-1) | 0.390(-1) | 0.156
8 |0.656(-3) | 0.426(-1) | 0.195(-1) | 0.157
16 | 0.167(-3) | 0.427(-1) | 0.979(-2) | 0.157
32 | 0.417(-4) | 0.427(-1) | 0.490(-2) | 0.157
64 | 0.104(-4) | 0.427(-1) | 0.245(-2) | 0.157
128 | 0.260(-5) | 0.427(-1) | 0.122(-2) | 0.157

Table 1.3.2: Errors in L? and strain energy for the piecewise-linear finite element solution
of Example 1.3.1. (Numbers in parenthesis indicate a power of 10.)

Problems

1. The integral involved in obtaining the mass matrix according to (1.3.13) may, of
course, be done symbolically. It may also be evaluated numerically by Simpson’s
rule which is exact in this case since the integrand is a quadratic polynomial. Recall,

that Simpson’s rule is
h h
/ F(o)ds ~ ¢ [F(0) +4F(1/2) + F(1)].
0
The mass matrix is

zj .
M, :/ { ¢<§>-1 ] (651, byde.
Tj—1 J
Using (1.3.4), determine M; by Simpson’s rule to verify the result (1.3.13). The

use of Simpson’s rule may be simpler than symbolic integration for this example
since the trial functions are zero or unity at the ends of an element and one half at

its center.
2. Consider the solution of the linear system

AX =F, (1.3.24a)
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where F and X are N-dimensional vectors and A is an N x N tridiagonal matrix

having the form

ap €
by a Co

byvo1 an-1 cN-1
by an

Assume that pivoting is not necessary and factor A as

A=1U,

(1.3.24b)

(1.3.25a)

where L and U are lower and upper bidiagonal matrices having the form

Uy V2

Uny-1 UN-1
Un

(1.3.25h)

(1.3.25¢)

Once the coefficients [, j = 2,3,... ,N,u;,j =1,2,... ,N,andv;,j =1,2,... ,N—
1, have been determined, the system (1.3.24a) may easily be solved by forward and

backward substitution. Thus, using (1.3.25a) in (1.3.24a) gives

LUX =F.
Let
Uux =Y,
then,
LY =F.

2.1. Using (1.3.24) and (1.3.25), show

uyp = an,

lj:bj/ujfla uj:aj—ljcj,l, j:2,3,

v; = ¢4, ]:2,3,,N

(1.3.26a)

(1.3.26h)

(1.3.26¢)
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2.2.

2.3.

2.4.

Show that Y and X are computed as
)/1 = F17
)/j:-F}_le}—la j:2737"'7N7
Xy =yn/un,
Xj:(}/}—Uij+1)/Uj, ]:N—l,N—Q,,l
Develop a procedure to implement this scheme for solving tridiagonal systems.
The input to the procedure should be N and vectors containing the coefficients
aj, bj, ¢j, fj, 7 =1,2,...,N. The procedure should output the solution X.
The coefficients a;, b;, etc., j = 1,2,..., N, should be replaced by u;, v;, etc.,
j=1,2,...,N, in order to save storage. If you want, the solution X can be

returned in F.

Estimate the number of arithmetic operations necessary to factor A and for

the forward and backward substitution process.

3. Consider the linear boundary value problem

—pu" +qu=f(r), O<z<l,  u(0)=4u(1)=0.

where p and ¢ are positive constants and f(z) is a smooth function.

3.1.

3.2.

Show that the Galerkin form of this boundary-value problem consists of finding

u € H} satisfying

1 1
A(v,u) — (v, f) = / (v'pu’ + vqu)dx — / vfdr =0, Yv € Hj.
0 0

For this problem, functions u(z) € Hy are required to be elements of H' and
satisfy the Dirichlet boundary condition «(0) = 0. The Neumann boundary

condition at x = 1 need not be satisfied by either u or v.

Introduce N equally spaced elements on 0 < x < 1 with nodes z; = jh,
j=0,1,... ,N (h=1/N). Approximate u by U having the form

Ulz) = Z crdr (),

where ¢;(z), j = 1,2,...,N, is the piecewise linear basis (1.3.4), and use
Galerkin’s method to obtain the global stiffness and mass matrices and the
load vector for this problem. (Again, the approximation U(z) does not satisfy
the natural boundary condition u'(1) = 0 nor does it have to. We will discuss

this issue in Chapter 2.)
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3.3. Write a program to solve this problem using the finite element method devel-
oped in Part 3.2b and the tridiagonal algorithm of Problem 2. Execute your
program with p =1, ¢ = 1, and f(z) = z and f(z) = z2. In each case, use
N =4, 8, 16, and 32. Let e(z) = u(z) — U(z) and, for each value of N, com-
pute |e|w, |€/(zn)], and ||e]|4 according to (1.3.22) and (1.3.23a). You may
(optionally) also compute ||e||p as defined by (1.3.23c). In each case, estimate

the rate of convergence of the finite element solution to the exact solution.

4. The Galerkin form of (1.3.1) consists of determining v € H{ such that (1.3.2) is
satisfied. Similarly, the finite element solution U € SY C H{ satisfies (1.2.12).
Letting e(x) = u(z) — U(x), show

Ale,e) = A(u,u) — A(U,U)

where the strain energy A(v,u) is given by (1.3.2¢). We have, thus, shown that the

strain energy of the error is the error of the strain energy.
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