
Chapter �

Finite Element Approximation

��� Introduction

Our goal in this chapter is the development of piecewise�polynomial approximations U

of a two� or three�dimensional function u� For this purpose� it su�ces to regard u as

being known and to determine U as its interpolant on a domain �� Concentrating on

two dimensions for the moment� let us partition � into a collection of �nite elements and

write U in the customary form

U�x� y� �
NX
j��

cj�j�x� y�� �	�
�
�

As we discussed� it is convenient to associate each basis function �j with a mesh entity�

e�g�� a vertex� edge� or element in two dimensions and a vertex� edge� face� or element

in three dimensions� We will discuss these entities and their hierarchical relationship

further in Chapter �� For now� if �j is associated with the entity indexed by j� then� as

described in Chapters 
 and �� �nite element bases are constructed so that �j is nonzero

only on elements containing entity j� The support of two�dimensional basis functions

associated with a vertex� an edge� and an element interior is shown in Figure 	�
�
�

As in one dimension� �nite element bases are constructed implicitly in an element�

by�element manner in terms of shape functions� �cf� Section ��	�� Once again� a shape

function on an element e is the restriction of a basis function �j�x� y� to element e�

We proceed by constructing shape functions on triangular elements �Section 	��� 	�	��

quadrilaterals �Sections 	��� 	�	�� tetrahedra �Section 	���
�� and hexahedra �Section

	������
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Figure 	�
�
� Support of basis functions associated with a vertex� edge� and element
interior �left to right��

��� Lagrange Shape Functions on Triangles

Perhaps the simplest two�dimensional Lagrangian �nite element basis is a piecewise�linear

polynomial on a grid of triangular elements� It is the two�dimensional analog of the hat

functions introduced in Section 
��� Consider an arbitrary triangle e with its vertices

indexed as 
� �� and � and vertex j having coordinates �xj� yj�� j � 
� �� � �Figure 	���
��

The linear shape function Nj�x� y� associated with vertex j satis�es

Nj�xk� yk� � �j�k� j� k � 
� �� �� �	���
�

�Again� we omit the subscript e from Nj�e whenever it is clear that we are discussing a

single element�� Let Nj have the form

Nj�x� y� � a� bx � cy� �x� y� � �e�

where �e is the domain occupied by element e� Imposing conditions �	���
� produces�
� 


�
�

�
� �

�
� 
 xj yj


 xk yk

 xl yl

�
�
�
� a

b
c

�
� � k �� l �� j� j� k� l � 
� �� ��

Solving this system by Crammer�s rule yields

Nj�x� y� �
Dk�l�x� y�

Cj�k�l
� k �� l �� j� j� k� l � 
� �� �� �	����a�

where

Dk�l � det

�
� 
 x y


 xk yk

 xl yl

�
� � �	����b�



���� Lagrange Shape Functions on Triangles �

�
�
�
�

�
�
�
�

�
�
�
�

2

3

1

(x  ,y  )

(x  ,y  )

(x  ,y  )
1 1

2 2

3 3

Figure 	���
� Triangular element with vertices 
� �� � having coordinates �x�� y��� �x�� y���
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Figure 	����� Shape function N� for Node 
 of element e �left� and basis function �� for
a cluster of four �nite elements at Node 
�

Cj�k�l � det

�
� 
 xj yj


 xk yk

 xl yl

�
� � �	����c�

Basis functions are constructed by combining shape functions on neighboring elements

as described in Section ��	� A sample basis function for a four�element cluster is shown in

Figure 	����� The implicit construction of the basis in terms of shape function eliminates

the need to know detailed geometric information such as the number of elements sharing
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a node� Placing the three nodes at element vertices guarantees a continuous basis� While

interpolation at three non�colinear points is �necessary and� su�cient to determine a

unique linear polynomial� it will not determine a continuous approximation� With vertex

placement� the shape function �e�g�� Nj� along any element edge is a linear function of

a variable along that edge� This linear function is determined by the nodal values at

the two vertex nodes on that edge �e�g�� j and k�� As shown in Figure 	����� the shape

function on a neighboring edge is determined by the same two nodal values� thus� the

basis �e�g�� �j� is continuous�

The restriction of U�x� y� to element e has the form

U�x� y� � c�N��x� y� � c�N��x� y� � c�N��x� y�� �x� y� � �e� �	�����

Using �	���
�� we have cj � U�xj � yj�� j � 
� �� ��

The construction of higher�order Lagrangian shape functions proceeds in the same

manner� In order to construct a p th�degree polynomial approximation on element e� we

introduce Nj�x� y�� j � 
� �� � � � � np� shape functions at np nodes� where

np �
�p� 
��p� ��

�
�	���	�

is the number of monomial terms in a complete polynomial of degree p in two dimensions�

We may write a shape function in the form

Nj�x� y� �

npX
i��

aiqi�x� y� � aTq�x� y� �	����a�

where

qT �x� y� � �
� x� y� x�� xy� y�� � � � � yp�� �	����b�

Thus� for example� a second degree �p � �� polynomial would have n� � � coe�cients

and

qT �x� y� � �
� x� y� x�� xy� y���

Including all np monomial terms in the polynomial approximation ensures isotropy in the

sense that the degree of the trial function is conserved under coordinate translation and

rotation�

With six parameters� we consider constructing a quadratic Lagrange polynomial by

placing nodes at the vertices and midsides of a triangular element� The introduction of

nodes is unnecessary� but it is a convenience� Indexing of nodes and other entities will be

discussed in Chapter �� Here� since we�re dealing with a single element� we number the
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Figure 	����� Arrangement of nodes for quadratic �left� and cubic �right� Lagrange �nite
element approximations�

nodes from 
 to � as shown in Figure 	����� The shape functions have the form �	�����

with n� � �

Nj � a� � a�x � a�y � a�x
� � a�xy � a�y

��

and the six coe�cients aj� j � 
� �� � � � � �� are determined by requiring

Nj�xk� yk� � �j�k� j� k � 
� �� � � � � ��

The basis

�j � �N�
e��Nj�e�x� y�

is continuous by virtue of the placement of the nodes� The shape function Nj�e is a

quadratic function of a local coordinate on each edge of the triangle� This quadratic

function of a single variable is uniquely determined by the values of the shape functions

at the three nodes on the given edge� Shape functions on shared edges of neighboring

triangles are determined by the same nodal values� hence� ensuring that the basis is

globally of class C��

The construction of cubic approximations would proceed in the same manner� A

complete cubic in two dimensions has 
� parameters� These parameters can be deter�

mined by selecting 
� nodes on each element� Following the reasoning described above�

we should place four nodes on each edge since a cubic function of one variable is uniquely

determined by prescribing four quantities� This accounts for nine of the ten nodes� The

last node can be placed at the centroid as shown in Figure 	�����

The construction of Lagrangian approximations is straight forward but algebraically

complicated� Complexity can be signi�cantly reduced by using one of the following two

coordinate transformations�
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Figure 	���	� Mapping an arbitrary triangular element in the �x� y��plane �left� to a
canonical 	�� right triangle in the ��� ���plane �right��

�� Transformation to a canonical element� The idea is to transform an arbitrary

element in the physical �x� y��plane to one having a simpler geometry in a computational

��� ���plane� For purposes of illustration� consider an arbitrary triangle having vertex

nodes numbered 
� �� and � which is mapped by a linear transformation to a unit 	��

right triangle� as shown in Figure 	���	�

Consider N�
� and N�

� as de�ned by �	������ �A superscript 
 has been added to

emphasize that the shape functions are linear polynomials�� The equation of the line

connecting Nodes 
 and � of the triangular element shown on the left of Figure 	���	 is

N�
� � �� Likewise� the equation of a line passing through Node � and parallel to the

line passing through Nodes 
 and � is N�
� � 
� Thus� to map the line N�

� � � onto the

line � � � in the canonical plane� we should set � � N�
� �x� y�� Similarly� the line joining

Nodes 
 and � satis�es the equation N�
� � �� We would like this line to become the line

� � � in the transformed plane� so our mapping must be � � N�
� �x� y�� Therefore� using

�	�����

� � N�
� �x� y� �

det

�
� 
 x y


 x� y�

 x� y�

�
�

det

�
� 
 x� y�


 x� y�

 x� y�

�
�
� � � N�

� �x� y� �

det

�
� 
 x y


 x� y�

 x� y�

�
�

det

�
� 
 x� y�


 x� y�

 x� y�

�
�
� �	�����

As a check� evaluate the determinants and verify that �x�� y��� ��� ��� �x�� y��� �
� ���

and �x�� y��� ��� 
��

Polynomials may now be developed on the canonical triangle to simplify the algebraic
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Figure 	����� Geometry of a triangular �nite element for a cubic polynomial Lagrange
approximation�

complexity and subsequently transformed back to the physical element�

�� Transformation using triangular coordinates� A simple procedure for constructing

Lagrangian approximations involves the use of a redundant coordinate system� The

construction may be described in general terms� but an example su�ces to illustrate the

procedure� Thus� consider the construction of a cubic approximation on the triangular

element shown in Figure 	����� The vertex nodes are numbered 
� �� and �� edge nodes

are numbered 	 to �� and the centroid is numbered as Node 
��

Observe that

� the line N�
� � � passes through Nodes �� �� �� and ��

� the line N�
� � 
�� passes through Nodes �� 
�� and �� and

� the line N�
� � ��� passes through Nodes 	 and ��

Since N�
� must vanish at Nodes � � 
� and be a cubic polynomial� it must have the form

N�
� �x� y� � �N�

� �N
�
� � 
����N�

� � ����

where the constant � is determined by normalizing N�
� �x�� y�� � 
� Since N�

� �x�� y�� � 
�

we �nd � � ��� and

N�
� �x� y� �

�

�
N�

� �N
�
� � 
����N�

� � �����

The shape function for an edge node is constructed in a similar manner� For example�

in order to obtain N�
� we observe that

� the line N�
� � � passes through Nodes 
� �� �� and ��
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� the line N�
� � � passes through Nodes �� �� �� and �� and

� the line N�
� � 
�� passes through Nodes �� 
�� and ��

Thus� N�
� must have the form

N�
� �x� y� � �N�

�N
�
� �N

�
� � 
����

Normalizing N�
� �x�� y�� � 
 gives

N�
� �x�� y�� � �

�

�




�
�
�

�
� 


�
��

Hence� � � ���� and

N�
� �x� y� �

��

�
N�
�N

�
� �N

�
� � 
����

Finally� the shape function N�
�� must vanish on the boundary of the triangle and is�

thus� determined as

N�
���x� y� � ��N�

�N
�
�N

�
� �

The cubic shape functions N�
� � N

�
� � and N�

�� are shown in Figure 	�����

The three linear shape functions N�
j � j � 
� �� �� can be regarded as a redundant

coordinate system known as triangular� or barycentric� coordinates� To be more

speci�c� consider an arbitrary triangle with vertices numbered 
� �� and � as shown

in Figure 	����� Let

�� � N�
� � �� � N�

� � �� � N�
� � �	�����

and de�ne the transformation from triangular to physical coordinates as

�
� x

y



�
� �

�
� x� x� x�

y� y� y�

 
 


�
�
�
� ��
��
��

�
� � �	�����

Observe that ���� ��� ��� has value �
����� at vertex 
� ���
��� at vertex � and �����
� at

vertex ��

An alternate� and more common� de�nition of the triangular coordinate system in�

volves ratios of areas of subtriangles to the whole triangle� Thus� let P be an arbitrary

point in the interior of the triangle� then the triangular coordinates of P are

�� �
AP��

A���
� �� �

AP��

A���
� �� �

AP��

A���
� �	�����

where A��� is the area of the triangle� AP�� is the area of the subtriangle having vertices

P � �� �� etc�
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Figure 	����� Cubic Lagrange shape functions associated with a vertex �left�� an
edge�right�� and the centroid �bottom� of a right 	�� triangular element�

The triangular coordinate system is redundant since two quantities su�ce to locate

a point in a plane� This redundancy is expressed by the third of equations �	������ which

states that

�� � �� � �� � 
�

This relation also follows by adding equations �	������

Although seemingly distinct� triangular coordinates and the canonical coordinates are

closely related� The triangular coordinate �� is equivalent to the canonical coordinate �

and �� is equivalent to �� as seen from �	����� and �	������

Problems


� With reference to the nodal placement and numbering shown on the left of Figure

	����� construct the shape functions for Nodes 
 and 	 of the quadratic Lagrange

polynomial� Derive your answer using triangular coordinates� Having done this�

also express your answer in terms of the canonical ��� �� coordinates� Plot or sketch
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Figure 	����� Triangular coordinate system�

the two shape functions on the canonical element�

�� A Lagrangian approximation of degree p on a triangle has three nodes at the vertices

and p � 
 nodes along each edge that are not at vertices� As we�ve discussed�

the latter placement ensures continuity on a mesh of triangular elements� If no

additional nodes are placed on edges� how many nodes are interior to the element

if the approximation is to be complete�

��� Lagrange Shape Functions on Rectangles

The triangle in two dimensions and the tetrahedron in three dimensions are the poly�

hedral shapes having the minimum number of edges and faces� They are optimal for

de�ning complete C� Lagrangian polynomials� Even so� Lagrangian interpolants are

simple to construct on rectangles and hexahedra by taking products of one�dimensional

Lagrange polynomials� Multi�dimensional polynomials formed in this manner are called

tensor�product� approximations� we�ll proceed by constructing polynomial shape func�

tions on canonical � � � square elements and mapping these elements to an arbitrary

quadrilateral elements� We describe a simple bilinear mapping here and postpone more

complex mappings to Chapter ��

We consider the canonical �� � square f��� ��j � 
 � �� � � 
g shown in Figure 	���
�

For simplicity� the vertices of the element have been indexed with a double subscript

as �
� 
�� ��� 
�� �
� ��� and ��� ��� At times it will be convenient to index the vertex

coordinats as �� � �
� �� � 
� �� � �
� and �� � 
� With nodes at each vertex� we

construct a bilinear Lagrangian polynomial U��� �� whose restriction to the canonical
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Figure 	���
� Node indexing for canonical square elements with bilinear �left� and bi�
quadratic �right� polynomial shape functions�

element has the form

U��� �� � c���N������ �� � c���N������ �� � c���N������ �� � c���N������ ��� �	���
a�

As with Lagrangian polynomials on triangles� the shape function Ni�j��� �� satis�es

Ni�j��k� �l� � �i�k�j�l� k� l � 
� �� �	���
b�

Once again� U��k� �l� � ck�l� however� now Ni�j is the product of one�dimensional hat

functions

Ni�j��� �� � �Ni��� �Nj��� �	���
c�

with

�N���� �

� �

�
� �	���
d�

�N���� �

 � �

�
� �
 � � � 
� �	���
e�

Similar formulas apply to �Nj���� j � 
� �� with � replaced by � and i replaced by j�

The shape function N��� is shown in Figure 	����� By examination of either this �gure or

�	���
c�e�� we see that Ni�j��� �� is a bilinear function of the form

Ni�j��� �� � a� � a�� � a�� � a���� �
 � �� � � 
� �	�����

The shape function is linear along the two edges containing node �i� j� and it vanishes

along the two opposite edges�

A basis may be constructed by uniting shape functions on elements sharing a node�

The piecewise bilinear basis functions �i�j when Node �i� j� is at the intersection of four
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Figure 	����� Bilinear shape function N��� on the ��
� 
����
� 
� canonical square element
�left� and bilinear basis function at the intersection of four square elements �right��

square elements is shown in Figure 	����� Since each shape function is a linear polynomial

along element edges� the basis will be continuous on a grid of square �or rectangular� ele�

ments� The restriction to a square �or rectangular� grid is critical and the approximation

would not be continuous on an arbitrary mesh of quadrilateral elements�

To construct biquadratic shape functions on the canonical square� we introduce �

nodes� �
�
�� ���
�� ������ and �
��� at the vertices� ���
�� ������ ������ and �
��� at mid�

sides� and ����� at the center �Figure 	���
�� The restriction of the interpolant U to this

element has the form

U��� �� �
�X

i��

�X
j��

ci�jNi�j��� �� �	����a�

where the shape functionsNi�j� i� j � 
� �� �� are products of the one�dimensional quadratic

polynomial Lagrange shape functions

Ni�j��� �� � �Ni��� �Nj���� i� j � 
� �� �� �	����b�

with �cf� Section ��	�

�N���� � ���
� ����� �	����c�

�N���� � ��
 � ����� �	����d�

�N���� � �
� ���� �
 � � � 
� �	����e�

Shape functions for a vertex� an edge� and the centroid are shown in Figure 	�����

Using �	����b�e�� we see that shape functions are biquadratic polynomials of the form

Ni�j��� �� � a� � a�� � a�� � a��
� � a��� � a��

� � a���
� � a	�

�� � a
�
���� �	���	�
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Figure 	����� Biquadratic shape functions associated with a vertex �left�� an edge �right��
and the centroid �bottom��

Although �	���	� contains some cubic and quartic monomial terms� interpolation accuracy

is determined by the highest�degree complete polynomial that can be represented exactly�

which� in this case� is a quadratic polynomial�

Higher�order shape functions are constructed in similar fashion�

����� Bilinear Coordinate Transformations

Shape functions on the canonical square elements may be mapped to arbitrary quadri�

laterals by a variety of transformations �cf� Chapter ��� The simplest of these is a

picewise�bilinear function that uses the same shape functions �	���
d�e� as the �nite el�

ement solution �	���
a�� Thus� consider a mapping of the canonical � � � square S to

a quadrilateral Q having vertices at �xi�j� yi�j�� i� j � 
� �� in the physical �x� y��plane

�Figure 	���	� using a bilinear transformation written in terms of �	���
d�e� as
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Figure 	���	� Bilinear mapping of the canonical square to a quadrilateral�

�
x��� ��
y��� ��

�
�

�X
i��

�X
j��

�
xij
yij

�
Ni�j��� ��� �	�����

where Ni�j��� �� is given by �	���
b��

The transformation is linear on each edge of the element� In particular� transforming

the edge � � �
 to the physical edge �x��� y�� � �x��� y�
� yields�
x
y

�
�

�
x��
y��

�

� �

�
�

�
x��
y��

�

 � �

�
� �
 � � � 
�

As � varies from �
 to 
� x and y vary linearly from �x��� y��� to �x��� y���� The locations

of the vertices �
��� and ����� have no e�ect on the transformation� This ensures that a

continuous approximation in the ��� ���plane will remain continuous when mapped to the

�x� y��plane� We have to ensure that the mapping is invertible and we�ll show in Chapter

� that this is the case when Q is convex�

Problems


� As noted� interpolation errors of the biquadratic approximation �	����� are the same

order as for a quadratic approximation on a triangle� Thus� for example� the L�

error in interpolating a smooth function u�x� y� by a piecewise biquadratic function

U�x� y� is O�h��� where h is the length of the longest edge of an element� The

extra degrees of freedom associated with the cubic and quartic terms do not gen�

erally improve the order of accuracy� Hence� we might try to eliminate some shape

functions and reduce the complexity of the approximation� Unknowns associated

with interior shape functions are only coupled to unknowns on the element and can

easily be eliminated by a variety of techniques� Considering the biquadratic poly�

nomial in the form �	����a�� we might determine c��� so that the coe�cient of the
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quartic term x�y� vanishes� Show how this may be done for a �� � square canon�

ical element� Polynomials of this type have been called serendipity by Zienkiewicz

���� In the next section� we shall see that they are also a part of the hierarchical

family of approximations� The parameter c��� is said to be constrained� since it is

prescribed in advance and not determined as part of the Galerkin procedure� Plot

or sketch shape functions associated with a vertex and a midside�

��� Hierarchical Shape Functions

We have discussed the advantages of hierarchical bases relative to Lagrangian bases for

one�dimensional problems in Section ���� Similar advantages apply in two and three di�

mensions� We�ll again use the basis of Szab�o and Babu�ska ���� but follow the construction

procedure of Shephard et al� ��� and Dey et al� ���� Hierarchical bases of degree p may

be constructed for triangles and squares� Squares are the simpler of the two� so let us

handle them �rst�

����� Hierarchical Shape Functions on Squares

We�ll construct the basis on the canonical element f��� ��j � 
 � �� � � 
g� indexing
the vertices� edges� and interiors as described for the biquadratic approximation shown

in Figure 	���
� The hierarchical polynomial of order p has a basis consisting of the

following shape functions�

Vertex shape functions� The four vertex shape functions are the bilinear functions

�	���
c�e�

N�
i�j � �Ni��� �Nj���� i� j � 
� �� �	�	�
a�

where

�N���� �

� �

�
� �N���� �


 � �

�
� �	�	�
b�

The shape function N�
��� is shown in the upper left portion of Figure 	�	�
�

Edge shape functions� For p � �� there are 	�p� 
� shape functions associated with

the midside nodes ��� 
�� ��� ��� ��� ��� and �
� ���

Nk
������ �� � �N���� �N

k���� �	�	��a�

Nk
������ �� � �N���� �N

k���� �	�	��b�

Nk
������ �� � �N���� �N

k���� �	�	��c�

Nk
������ �� � �N���� �N

k���� k � �� �� � � � � p� �	�	��d�
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where �Nk���� k � �� �� � � � � p� are the one�dimensional hierarchical shape functions given

by ������a� as

�Nk��� �

r
�k � 


�

Z �

��

Pk���	�d	� �	�	��e�

Edge shape functions Nk
��� are shown for k � �� �� 	� in Figure 	�	�
� The edge shape

functions are the product of a linear function of the variable normal to the edge to which

they are associated and a hierarchical polynomial of degree k in a variable on this edge�

The linear function � �Nj���� �Nj���� j � 
� �� blends� the edge function � �Nk���� �Nk����

onto the element so as to ensure continuity of the basis�

Interior shape functions� For p � 	� there are �p����p����� internal shape functions

associated with the centroid� Node ��� ��� The �rst internal shape function is the bubble

function�

N�����
��� � �
� ����
� ���� �	�	��a�

The remaining shape functions are products of N�����
��� and the Legendre polynomials as

N�����
��� � N�����

��� P����� �	�	��b�

N�����
��� � N�����

��� P����� �	�	��c�

N�����
��� � N�����

��� P����� �	�	��d�

N�����
��� � N�����

��� P����P����� �	�	��e�

N�����
��� � N�����

��� P����� � � � � �	�	��f�

The superscripts k� 
� and �� resectively� give the polynomial degree� the degree of P�����

and the degree of P����� The �rst six interior bubble shape functions Nk����
��� � 
�� � k�	�

k � 	� �� �� are shown in Figure 	�	��� These functions vanish on the element boundary

to maintain continuity�

On the canonical element� the interpolant U��� �� is written as the usual linear com�

bination of shape functions

U��� �� �
�X

i��

�X
j��

c�i�jN
�
i�j �

pX
k��

�
�X

j��

ck��jN
k
��j �

�X
i��

cki��N
k
i��� �

pX
k��

X
����k��

ck������� Nk����
��� �

�	�	�	�

The notation is somewhat cumbersome but it is explicit� The �rst summation identi�es

unknowns and shape functions associated with vertices� The two center summations

identify edge unknowns and shape functions for polynomial orders � to p� And� the

third summation identi�es the interior unknowns and shape functions of orders 	 to p�
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Figure 	�	�
� Hierarchical vertex and edge shape functions for k � 
 �upper left�� k � �
�upper right�� k � � �lower left�� and k � 	 �lower right��

Summations are understood to be zero when their initial index exceeds the �nal index�

A degree p approximation has 	 � 	�p� 
�� � �p� ����p� ����� unknowns and shape

functions� where q� � max�q� ��� This function is listed in Table 	�	�
 for p ranging from


 to �� For large values of p there are O�p�� internal shape functions and O�p� edge

functions�

����� Hierarchical Shape Functions on Triangles

We�ll express the hierarchical shape functions for triangular elements in terms of trian�

gular coordinates� indexing the vertices as 
� �� and �� the edges as 	� �� and �� and the

centroid as � �Figure 	�	���� The basis consists of the following shape functions�

Vertex Shape functions� The three vertex shape functions are the linear barycentric

coordinates �	�����

N�
i ���� ��� ��� � �i� i � 
� �� �� �	�	���




� Finite Element Approximation

−1

−0.5

0

0.5

1 −1

−0.5

0

0.5

1
0

0.2

0.4

0.6

0.8

1

−1

−0.5

0

0.5

1 −1

−0.5

0

0.5

1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

−1

−0.5

0

0.5

1 −1

−0.5

0

0.5

1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

−1

−0.5

0

0.5

1 −1

−0.5

0

0.5

1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

−1

−0.5

0

0.5

1 −1

−0.5

0

0.5

1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

−1

−0.5

0

0.5

1 −1

−0.5

0

0.5

1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

Figure 	�	��� Hierarchical interior shape functions N�����
��� � N�����

��� �top�� N�����
��� � N�����

��� �mid�

dle�� and N�����
��� � N�����

��� �bottom��



���� Hierarchical Shape Functions 
�

p Square Triangle
Dimension Dimension


 	 �
� � �
� 
� 
�
	 
� 
�
� �� �

� �� ��
� �� ��
� 	� 	�

Table 	�	�
� Dimension of the hierarchical basis of order p on square and triangular
elements�
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Figure 	�	��� Node placement and coordinates for hierarchical approximations on a tri�
angle�

Edge shape functions� For p � � there are ��p � 
� edge shape functions which are

each nonzero on one edge �to which they are associated� and vanish on the other two�

Each shape function is selected to match the corresponding edge shape function on a

square element so that a continuous approximation may be obtained on meshes with

both triangular and quadrilateral elements� Let us construct of the shape functions Nk
� �

k � �� �� � � � � p� associated with Edge 	� They are required to vanish on Edges � and �

and must have the form

Nk
� ���� ��� ��� � ���� ��

k���� k � �� �� � � � � p� �	�	��a�

where ��k��� is a shape function to be determined and � is a coordinate on Edge 	 that

has value �
 at Node 
� � at Node 	� and 
 at Node �� Since Edge 	 is �� � �� we have

Nk
� ���� ��� �� � ���� ��

k���� �� � �� � 
�
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The latter condition follows from �	����� with �� � �� Along Edge 	� �� ranges from 
 to

� and �� ranges from � to 
 as � ranges from �
 to 
� thus� we may select

�� � �
� ����� �� � �
 � ����� �� � �� �	�	��b�

While � may be de�ned in other ways� this linear mapping ensures that �� � �� � 
 on

Edge 	� Compatibility with the edge shape function �	�	��� requires

Nk
� ���� ��� �� � �Nk��� �

�
� ���
 � ��

	
��k���

where �Nk��� is the one�dimensional hierarchical shape function �	�	��e�� Thus�

��k��� �
	 �Nk���


� ��
� �	�	��c�

The result can be written in terms of triangular coordinates by using �	�	��b� to obtain

� � �� � ��� hence�

Nk
� ���� ��� ��� � ���� ��

k��� � ���� k � �� �� � � � � p� �	�	��a�

Shape functions along other edges follow by permuting indices� i�e��

Nk
� ���� ��� ��� � ���� ��

k��� � ���� �	�	��b�

Nk
� ���� ��� ��� � ���� ��

k��� � ���� k � �� �� � � � � p� �	�	��c�

It might appear that the shape functions ��k��� has singularities at � � 	
� however� the
one�dimensional hierarchical shape functions have �
� ��� as a factor� Thus� ��k��� is a

polynomial of degree k � �� Using �������� the �rst four of them are

������ � �
p
�� ������ � �

p

���

������ � �
r

�

�
���� � 
�� ������ � �

r
�

�
���� � ���� �	�	���

Interior shape functions� The �p� 
��p� ���� internal shape functions for p � � are

products of the bubble function

N�����
� � ������ �	�	��a�

and Legendre polynomials� The Legendre polynomials are functions of two of the three

triangular coordinates� Following Szab�o and Babu�ska ���� we present them in terms of

�� � �� and ��� Thus�

N�����
� � N�����

� P���� � ���� �	�	��b�

N�����
� � N�����

� P����� � 
�� �	�	��c�

N�����
� � N�����

� P���� � ���� �	�	��d�

N�����
� � N�����

� P���� � ���P����� � 
�� �	�	��e�

N�����
� � N�����

� P����� � 
�� � � � � �	�	��f�
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The shift in �� ensures that the range of the Legendre polynomials is ��
� 
��
Like the edge shape functions for a square �	�	���� the edge shape functions for a

triangle �	�	��� are products of a function on the edge ���k��i��j�� and a function ��i�j� i ��
j� that blends the edge function onto the element� However� the edge functions for the

triangle are not the same as those for the square� The two are related by �	�	��c�� Having

the same edge functions for all element shapes simpli�es construction of the element

sti�ness matrices ���� We can� of course� make the edge functions the same by rede�ning

the blending functions� Thus� using �	�	��a�c�� the edge function for Edge 	 can be �Nk���

if the blending function is
	����

� ��

�

In a similar manner� using �	�	��a� and �	�	��c�� the edge function for the shape function

Nk
��� can be ��k��� if the blending function is

�N�����
� ���

	
�

Shephard et al� ��� show that representations in terms of ��k involve fewer algebraic

operations and� hence� are preferred�

The �rst three edge and interior shape functions are shown in Figure 	�	�	� A degree

p hierarchical approximation on a triangle has ����p�
����p�
���p������ unknowns

and shape functions� This function is listed in Table 	�	�
� We see that for p  
� there are

two fewer shape functions with triangular elements than with squares� The triangular

element is optimal in the sense of using the minimal number of shape functions for a

complete polynomial of a given degree� This� however� does not mean that the complexity

of solving a given problem is less with triangular elements than with quadrilaterals� This

issue depends on the partial di�erential equations� the geometry� the mesh structure� and

other factors�

Carnevali et al� �	� introduced shape functions that produce better conditioned ele�

ment sti�ness matrices at higher values of p than the bases presented here ���� Adjerid

et al� �
� construct an alternate basis that appears to further reduce ill conditioning at

high p�

��� Three�Dimensional Shape Functions

Three�dimensional �nite element shape functions are constructed in the same manner as

in two dimensions� Common element shapes are tetrahedra and hexahedra and we will

examine some Lagrange and hierarchical approximations on these elements�
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Figure 	�	�	� Hierarchical edge and interior shape functions N�
� �top left�� N�

� �top right��
N�

� �middle left�� N�����
� �middle right�� N�����

� �bottom left�� N�����
� �bottom right��

����� Lagrangian Shape Functions on Tetrahedra

Let us begin with a linear shape function on a tetrahedron� We introduce four nodes

numbered �for convenience� as 
 to 	 at the vertices of the element �Figure 	���
�� Im�

posing the usual Lagrangian conditions that Nj�xk� yk� zk� � �jk� j� k � 
� �� �� 	� gives
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the shape functions as
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Figure 	���
� Node placement for linear shape functions on a tetrahedron and de�nition
of tetrahedral coordinates�

Nj�x� y� z� �
Dk�l�m�x� y� z�

Cj�k�l�m
� �j� k� l�m� a permutation of 
� �� �� 	� �	���
a�

where

Dk�l�m�x� y� z� � det

�
���


 x y z

 xk yk zk

 xl yl zl

 xm ym zm

�
��� � �	���
b�

Cj�k�l�m � det

�
���


 xj yj zj

 xk yk zk

 xl yl zl

 xm ym zm

�
��� � �	���
c�

Placing nodes at the vertices produces a linear shape function on each face that is uniquely

determined by its values at the three vertices on the face� This guarantees continuity of

bases constructed from the shape functions� The restriction of U to element e is

U�x� y� z� �
�X

j��

cjNj�x� y� z�� �	�����

As in two dimensions� we may construct higher�order polynomial interpolants by

either mapping to a canonical element or by introducing tetrahedral coordinates�� Fo�

cusing on the latter approach� let

�j � Nj�x� y� z�� j � 
� �� �� 	� �	����a�
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Figure 	����� Transformation of an arbitrary tetrahedron to a right� unit canonical tetra�
hedron�

and regard �j� j � 
� �� �� 	� as forming a redundant coordinate system on a tetrahedron�

The coordinates of a point P located at ���� ��� ��� ��� are �Figure 	���
�

�� �
VP���
V����

� �� �
VP���
V����

� �� �
VP���
V����

� �� �
VP���
V����

� �	����b�

where Vijkl is the volume of the tetrahedron with vertices at i� j� k� and l� Hence� the

coordinates of Vertex 
 are �
� �� �� ��� those of Vertex � are ��� 
� �� ��� etc� The plane

� � � is the plane A��� opposite to vertex 
� etc� The transformation from physical to

tetrahedral coordinates is�
���
x
y
z



�
��� �

�
���
x� x� x� x�
y� y� y� y�
z� z� z� z�

 
 
 


�
���

�
���
��
��
��
��

�
��� � �	���	�

The coordinate system is redundant as expressed by the last equation�

The transformation of an arbitrary tetrahedron to a right� unit canonical tetrahedron

�Figure 	����� follows the same lines� and we may de�ne it as

� � N��x� y� z�� � � N��x� y� z�� � � N��x� y� z�� �	�����

The face A��� �Figure 	����� is mapped to the plane � � �� the face A��� is mapped to

� � �� and A��� is mapped to � � �� In analogy with the two�dimensional situation� this

transformation is really the same as the mapping �	����� to tetrahedral coordinates�

A complete polynomial of degree p in three dimensions has

np �
�p� 
��p� ���p� ��

�
�	�����
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monomial terms �cf�� e�g�� Brenner and Scott ���� Section ����� With p � �� we have

n� � 
� monomial terms and we can determine Lagrangian shape functions by placing

nodes at the four vertices and at the midpoints of the six edges �Figure 	������ With

p � �� we have n� � �� and we can specify shape functions by placing a node at each of

the four vertices� two nodes on each of the six edges� and one node on each of the four

faces �Figure 	������ Higher degree polynomials also have nodes in the element�s interior�

In general there is 
 node at each vertex� p�
 nodes on each edge� �p�
��p����� nodes

on each face� and �p� 
��p� ���p� ���� nodes in the interior�
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Figure 	����� Node placement for quadratic �left� and cubic �right� interpolants on tetra�
hedra�

Example ������ The quadratic shape function N�
� associated with vertex Node 
 of a

tetrahedron �Figure 	����� left� is required to vanish at all nodes but Node 
� The plane

�� � � passes through face A��� and� hence� Nodes �� �� 	� �� �� 
�� Likewise� the plane

�� � 
�� passes through Nodes �� � �not shown�� and �� Thus� N�
� must have the form

N�
� ���� ��� ��� ��� � ������ � 
����

Since N�
� � 
 at Node 
 ��� � 
�� we �nd � � � and

N�
� ���� ��� ��� ��� � ������ � 
����

Similarly� the shape function N�
� associated with edge Node � �Figure 	����� left� is

required to vanish on the planes �� � � �Nodes �� �� 	� �� �� 
�� and �� � � �Nodes 
� ��

	� �� �� 
�� and have unit value at Node � ��� � �� � 
���� Thus� it must be

N�
� ���� ��� ��� ��� � 	�����



�� Finite Element Approximation

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
�� �

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
� �

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
� �

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

������

���
���
���
���

���
���
���
���

2,2,2

1,2,1

2,1,1 2,2,1

2,1,2

1,2,2

η

1,1,1

1,1,2
ζ

ξ

Figure 	���	� Node placement for a trilinear �left� and tri�quadratic �right� polynomial
interpolants on a cube�

����� Lagrangian Shape Functions on Cubes

In order to construct a trilinear approximation on the canonical cube f�� �� �j � 
 �
�� �� � � 
g� we place eight nodes numbered �i� j� k�� i� j� k � 
� �� at its vertices �Figure

	���	�� The shape function associated with Node �i� j� k� is taken as

Ni�j�k��� �� �� � �Ni��� �Nj��� �Nk��� �	����a�

where �Ni���� i � 
� �� are the hat function �	���
d�e�� The restriction of U to this element

has the form

U��� �� �� �
�X

i��

�X
j��

�X
k��

ci�j�kNi�j�k��� �� ��� �	����b�

Once again� ci�j�k � Ui�j�k � U��i� �j� �k��

The placement of nodes at the vertices produces bilinear shape functions on each

face of the cube that are uniquely determined by values at their four vertices on that

face� Once again� this ensures that shape functions and U are C� functions on a uniform

grid of cubes or rectangular parallelepipeds� Since each shape function is the product of

one�dimensional linear polynomials� the interpolant is a trilinear function of the form

U��� �� �� � a� � a�� � a�� � a�� � a��� � a��� � a��� � a	����

Other approximations and transformations follow their two�dimensional counterparts�

For example� tri�quadratic shape functions on the canonical cube are constructed by

placing �� nodes at the vertices� midsides� midfaces� and centroid of the element �Figure

	���	�� The shape function associated with Node �i� j� k� is given by �	����a� with �Ni���

given by �	����b�d��
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����� Hierarchical Approximations

As with the two�dimensional hierarchical approximations described in Section 	�	� we use

Szab�o and Babu�ska�s ��� shape function with the representation of Shephard et al� ����

The basis for a tetrahedral or a canonical cube begins with the vertex functions �	���
�

or �	������ respectively� As noted in Section 	�	� higher�order shape functions are written

as products

Nk
i �x� y� z� � ��k��� �� ���i��� �� �� �	�����

of an entity function ��k and a blending function �i�

� The entity function is de�ned on a mesh entity �vertex� edge� face� or element� and

varies with the degree k of the approximation� It does not depend on the shapes

of higher�dimensional entities�

� The blending function distributes the entity function over higher�dimensional enti�

ties� It depends on the shapes of the higher�dimensional entities but not on k�

The entity functions that are used to construct shape functions for cubic and tetra�

hedral elements follow�

Edge functions for both cubes and tetrahedra are given by �	�	��c� and �	�	��e� as

��k��� �

p
���k � 
�


� ��

Z �

��

Pk���	�d	� k � �� �	����a�

where � � ��
� 
� is a coordinate on the edge� The �rst four edge functions are presented

in �	�	����

Face functions for squares are given by �	�	��� divided by the square face blending

function �	�	��a�

��k������� �� � P����P����� 
� � � k � 	� k � 	� �	����b�

Here� ��� �� are canonical coordinates on the face� The �rst six square face functions are

������� � 
� ������� � ��

������� � �� ������� �
��� � 


�
�

������� � ��� ������� �
��� � 


�
�

Face functions for triangles are given by �	�	��� divided the triangular face blending

function �	�	��a�

��k�������� ��� ��� � P���� � ���P����� � 
�� 
� � � k � �� k � �� �	����c�
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As with square faces� ���� ��� ��� form a canonical coordinate system on the face� The

�rst six triangular face functions are

������� � 
� ������� � �� � ���

������� � ��� � 
� ������� �
���� � ���

� � 


�
�

������� � ��� � ������� � 
�� ������� �
����� � 
�� � 


�
�

Now� let�s turn to the blending functions�

The tetrahedral element blending function for an edge is

�ij���� ��� ��� ��� � �i�j �	���
�a�

when the edge is directed from Vertex i to Vertex j� Using either Figure 	���� or Figure

	���� as references� we see that the blending function ensures that the shape function

vanishes on the two faces not containing the edge to maintain continuity� Thus� if i � 


and j � �� the blending function for Edge �
� �� �which is marked with a � on the left of

Figure 	����� vanishes on the faces �� � � �Face A���� and �� � � �Face A�����

The blending function for a face is

�ijk���� ��� ��� ��� � �i�j�k �	���
�b�

when the vertices on the face are i� j� and k� Again� the blending function ensures that

the shape function vanishes on all faces but Aijk� Again referring to Figures 	���� or

	����� the blending function ���� vanishes when �� � � �Face A����� �� � � �Face A�����

and �� � � �Face A�����

The cubic element blending function for an edge is more di�cult to write with our

notation� Instead of writing the general result� let�s consider an edge parallel to the �

axis� Then

�����j�k��� �� �� �

� ��

	
�Nj��� �Nk���� �	���

a�

The factor �
� ����	 adjusts the edge function to �	����� as described in the paragraph

following �	�	���� The one�dimensional shape functions �Nj��� and �Nk��� ensure that the

shape function vanishes on all faces not containing the edge� Blending functions for other

edges are obtained by cyclic permutation of �� �� and � and the index� Thus� referring

to Figure 	���	� the edge function for the edge connecting vertices �� 
� 
 and �� �� 
 is

����������� �� �� �

� ��

	
�N���� �N�����

Since �N���
� � � �cf� �	����b��� the shape function vanishes on the rear face of the cube

shown in Figure 	���	� Since �N��
� � �� the shape function vanishes on the top face of
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the cube of Figure 	���	� Finally� the shape function vanishes at � � 	
 and� hence� on

the left and right faces of the cube of Figure 	���	� Thus� the blending function �	���

a�

has ensured that the shape function vanishes on all but the bottom and front faces of

the cube of Figure 	���	�

The cubic face blending function for a face perpendicular to the � axis is

�i�j�k��� �� �� � �Ni����
� ����
� ���� �	���

b�

Referring to Figure 	���	� the quadratic terms in � and � ensure that the shape func�

tion vanishes on the right� left �� � 	
�� top� and bottom �� � 	
� faces� The one�

dimensional shape function �Ni��� vanishes on the rear �� � �
� face when i � 
 and on

the front �� � 
� face when i � �� thus� the shape function vanishes on all faces but the

one to which it is associated�

Finally� there are elemental shape functions� For tetrahedra� there are �p � 
��p �
���p� ���� elemental functions for p � 	 that are given by

Nk������
� ���� ��� ��� ��� � ��������P���� � ���P����� � 
�P����� � 
��


 
� �� � � k � 	� k � 	� �� � � � � p� �	���
�a�

The subscript � is used to identify the element�s centroid� The shape functions vanish

on all element faces as indicated by the presence of the multiplier ��������� We could

also split this function into the product of an elemental function involving the Legendre

polynomials and the blend involving the product of the tetrahedral coordinates� However�

this is not necessary�

For p � � there are the following elemental shape functions for a cube

Nk������
� ��� �� �� � �
� ����
� ����
� ���P����P����P����� 
 
� �� � � k � ��

�	���
�b�

Again� the shape function vanishes on all faces of the element to maintain continuity�

Adding� we see that there are �p�����p�	���p������ element modes for a polynomial

of order p�

Shephard et al� ��� also construct blending functions for pyramids� wedges� and prisms�

They display several shape functions and also present entity functions using the basis of

Carnevali et al� �	��

Problems


� Construct the shape functions associated with a vertex� an edge� and a face node

for a cubic Lagrangian interpolant on the tetrahedron shown on the right of Figure

	����� Express your answer in the tetrahedral coordinates �	������
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Figure 	���
� Nomenclature for a �nite element in the physical �x� y��plane and for its
mapping to a canonical element in the computational ��� ���plane�

��� Interpolation Error Analysis

We conclude this chapter with a brief discussion of the errors in interpolating a function u

by a piecewise polynomial function U � This work extends our earlier study in Section ���

to multi�dimensional situations� Two� and three�dimensional interpolation is� naturally�

more complex� In one dimension� it was su�cient to study limiting processes where mesh

spacings tend to zero� In two and three dimensions� we must also ensure that element

shapes cannot be too distorted� This usually means that elements cannot become too

thin as the mesh is re�ned� We have been using coordinate mappings to construct

bases� Concentrating on two�dimensional problems� the coordinate transformation from

a canonical element in� say� the ��� ���plane to an actual element in the �x� y��plane must

be such that no distorted elements are produced�

Let�s focus on triangular elements and consider a linear mapping of a canonical unit�

right� 	�� triangle in the ��� ���plane to an element e in the �x� y��plane �Figure 	���
��

More complex mappings will be discussed in Chapter �� Using the transformation �	�����

to triangular coordinates in combination with the de�nitions �	����� and �	����� of the

canonical variables� we have

�
� x

y



�
� �

�
� x� x� x�

y� y� y�

 
 


�
�
�
� ��
��
��

�
� �

�
� x� x� x�

y� y� y�

 
 


�
�
�
� 
� � � �

�
�

�
� � �	���
�

The Jacobian of this transformation is

Je ��

�
x� x�
y� y�

�
� �	����a�
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Di�erentiating �	���
�� we �nd the determinant of this Jacobian as

det�Je� � �x� � x���y� � y��� �x� � x���y� � y��� �	����b�

Lemma ������ Let he be the longest edge and �e be the smallest angle of Element e�

then

h�e
�

sin�e � det�Je� � h�e sin�e� �	�����

Proof� Label the vertices of Element e as 
� �� and �� their angles as �� � �� � ��� and

the lengths of the edges opposite these angles as h�� h�� and h� �Figure 	���
�� With

�� � �e being the smallest angle of Element e� write the determinant of the Jacobian as

det�Je� � h�h� sin�e�

Using the law of sines we have h� � h� � h� � he� Replacing h� by h� in the above

expression yields the right�hand inequality of �	������ The triangular inequality gives

h� � h� � h�� Thus� at least one edge� say� h�  h���� This yields the left�hand

inequality of �	������

Theorem ������ Let ��x� y� � Hs��e� and  ���� �� � Hs���� be such that ��x� y� �
 ���� �� where �e is the domain of element e and �� is the domain of the canonical element�

Under the linear transformation �������� there exist constants cs and Cs� independent of

��  �� he� and �e such that

cs sin
s���� �eh

s��
e j�js��e

� j �js��� � Cs sin
���� �eh

s��
e j�js��e

�	���	a�

where the Sobolev seminorm is

j�j�s��e
�
X
j�j�s

ZZ
�e

�D����dxdy �	���	b�

with D�u being a partial derivative of order j�j � s �cf� Section 	����

Proof� Let us begin with s � �� whereZZ
�e

��dxdy � det�Je�

ZZ
��

 ��d�d�

or

j�j����e
� det�Je�j �j����� �

Dividing by det�Je� and using �	�����

j�j����e

sin�eh�e
� j �j����� �

�j�j����e

sin�eh�e
�
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Taking a square root� we see that �	���	a� is satis�ed with c� � 
 and C� �
p
��

With s � 
� we use the chain rule to get

�x �  ���x �  ���x� �y �  ���y �  ���y�

Then�

j�j����e
�

ZZ
�e

���x � ��y�dxdy � det�Je�

ZZ
��

�g��e �
�
� � �g��e ��  �� � g��e �

�
��d�d�

where

g��e � ��x � ��y � g��e � �x�x � �y�y� g��e � ��x � ��y�

Applying the inequality ab � �a� � b���� to the center term on the right yields

j�j���e � det�Je�

ZZ
��

�g��e �
�
� � g��e� �

�
� �

 ���� � g��e �
�
��d�d��

Letting

� � max�jg��e � g��ej� jg��e � g��ej�
and using �	���	b�� we have

j�j����e
� det�Je��j �j������ �	����a�

Either by using the chain rule above with � � x and y or by inverting the mapping

�	���
�� we may show that

�x �
y�

det�Je�
� �y � � x�

det�Je�
� �x � � y�

det�Je�
� �y � � x�

det�Je�
�

From �	������ jx�j� jx�j� jy�j� jy�j � he� thus� using �	������ we have j�xj� j�yj� j�xj� j�yj �
���he sin�e�� Hence�

� � 
�

�he sin�e��
�

Using this result and �	����� with �	����a�� we �nd

j�j����e
� 
�

sin�e
j �j������ �	����b�

Hence� the left�hand inequality of �	���	a� is established with c� � 
�	�

To establish the right inequality� we invert the transformation and proceed from ��

to �e to obtain

j �j����� �
 �j�j����e

det�Je�
�	����a�
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with

 � � max�j g��e �  g��ej� j g��e �  g��ej��

 g��e � x�� � x���  g��e � x�y� � x�y��  g��e � y�� � y���

We�ve indicated that jx�j� jx�j� jy�j� jy�j � he� Thus�  � � 	h�e and� using �	������ we �nd

j �j����� �
�

sin�e

j�j����e
� �	����b�

Thus� the right inequality of �	���	b� is established with C� � �
p
��

The remainder of the proof follows the same lines and is described in Axelsson and

Barker ����

With Theorem 	���
 established� we can concentrate on estimating interpolation errors

on the canonical triangle� For simplicity� we�ll use the Lagrange interpolating polynomial

 U��� �� �
nX

j��

 u��j� �j�Nj��� ��� �	�����

with n being the number of nodes on the standard triangle� However� with minor alter�

ations� the results apply to other bases and� indeed� other element shapes� We proceed

with one preliminary theorem and then present the main result�

Theorem ������ Let p be the largest integer for which the interpolant �����
� is exact

when  u��� �� is a polynomial of degree p� Then� there exists a constant C  � such that

j u�  U js��� � Cj ujp������ 
u � Hp������� s � �� 
� � � � � p� 
� �	�����

Proof� The proof utilizes the Bramble�Hilbert Lemma and is presented in Axelsson and

Barker ����

Theorem ������ Let � be a polygonal domain that has been discretized into a net of

triangular elements �e� e � 
� �� � � � � N� Let h and � denote the largest element edge

and smallest angle in the mesh� respectively� Let p be the largest integer for which �����
�

is exact when  u��� �� is a complete polynomial of degree p� Then� there exists a constant

C  �� independent of u � Hp�� and the mesh� such that

ju� U js � Chp���s

�sin��s
jujp��� 
u � Hp������ s � �� 
� �	�����

Remark �� The results are restricted s � �� 
 because� typically� U � H� �Hp���
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Proof� Consider an element e and use the left inequality of �	���	a� with � replaced by

u� U to obtain

ju� U j�s��e
� c��s sin��s�� �eh

��s��
e j u�  U j�s����

Next� use �	�����

ju� U j�s��e
� c��s sin��s�� �eh

��s��
e Cj uj�p������

Finally� use the right inequality of �	���	a� to obtain

ju� U j�s��e
� c��s sin��s�� �eh

��s��
e CC�

p�� sin
�� �eh

�p
e juj�p����e

�

Combining the constants

ju� U j�s��e
� C sin��s �eh

��p���s�
e juj�p����e

�

Summing over the elements and taking a square root gives �	������

A similar result for rectangles follows�

Theorem ������ Let the rectangular domain � be discretized into a mesh of rectangular

elements �e� e � 
� �� � � � � N� Let h and � denote the largest element edge and smallest

edge ratio in the mesh� respectively� Let p be the largest integer for which �����
� is exact

when  u��� �� is a complete polynomial of degree p� Then� there exists a constant C  ��

independent of u � Hp�� and the mesh� such that

ju� U js � Chp���s

�s
jujp��� 
u � Hp������ s � �� 
� �	���
��

Proof� The proof follows the lines of Theorem 	���� ����

Thus� small and large �near �� angles in triangular meshes and small aspect ratios

�the minimum to maximum edge ratio of an element� � in a rectangular mesh must be

avoided� If these quantities remain bounded then the mesh is uniform as expressed by

the following de�nition�

De�nition ������ A family of �nite element meshes !h is uniform if all angles of all

elements are bounded away from � and � and all aspect ratios are bounded away from

zero as the element size h� ��

With such uniform meshes� we can combine Theorems 	����� 	����� and 	���	 to obtain

a result that appears more widely in the literature�

Theorem ������ Let a family of meshes !h be uniform and let the polynomial inter�

polant U of u � Hp�� be exact whenever u is a complete polynomial of degree p� Then

there exists a constant C  � such that

ju� U js � Chp���sjujp��� s � �� 
� �	���

�



���� Three�Dimensional Shape Functions ��

Proof� Use the bounds on � and � with �	����� and �	���
�� to rede�ne the constant C

and obtain �	���

��

Theorems 	���� � 	���� only apply when u � Hp��� If u has a singularity and belongs

to Hq��� q � p� then the convergence rate is reduced to

ju� U js � Chq���sjujq��� s � �� 
� �	���
��

Thus� there appears to be little bene�t to using p th�degree piecewise�polynomial inter�

polants in this case� However� in some cases� highly graded nonuniform meshes can be

created to restore a higher convergence rate�
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