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Many exact solutions

http://eqworld.ipmnet.ru/en/solutions/lpde.htm

Linear Partial Differential Equations of Mathematical Physics
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Heat equation

1. THE FUNDAMENTAL SOLUTION

As we will see, in the case {1 = R", we will be able to represent general solutions the inhomoge-
neous heat equation

mn
(1.0.1) w—DAu=f A=Y

i=1
in terms of f, the initial data, and a single solution that has very special properties. This special
solution 1s called the fundamental solution.

Remark 1.0.1. Note that when {2 = R", there are no finite boundary conditions to worry about.
However, we do have to worry about “boundary conditions at oo.” Roughly speaking, this means
that we have to assume something about the growth rate of the solution as |x| — oc.

Definition 1.0.1. The fundamental solution I'n(t,x) to (1.0.1) is defined to be

et

|

, def 1 ~
(1.0.2) Co(t,7) = e

where z % (- 2™), |x]? et S (xh)2

E

t >0 zeR"

Let’s check that I'p(t, x) solves (1.0.1) when f = 0 in the next lemma.
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Heat equation

Lemma 1.0.1. ['p(t. x) is a solution to the heat equation (1.0.1) when f =0 for x € R™,t = 0.

IJ

Proof. We compute that {“:?,F”{L;r.] = (— i }F T Also, we compute &,I'p(t, ) =

(4w D)™/ {4 LI.}L}“-'E 4=
9m= Ell O gﬂ{r )2 |2
2o —ame 2 —
2w D|z|2 |:|?-
DATp(t,z) = ( “W}r"‘j;ﬁ% r+ ”JLHWE’?:!E ,]F_ Lerlrrla 1.0.1 now easily follows. u

Here are a few very important properties of I'p(t, x).

Lemma 1.0.2. I'p(t.x) has the following properties:

(1) If x # 0. then im, g+ ['p(t,z) =0
{2] lim,_0+ ['p(t,0) = x
fmn ['p(t,z)d"z =1 for allt =0

Proof. This 1s a good exercise for you to do on your own. L]

As we will see, (1) - (3) suggest that at £ = 0. I'p(0.x) behaves like the “delta distribution
centered at ). We'll make sense of this in the next lemma.
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Heat equation

Detfinition 1.0.2. The delta distribution 4 15 an example of a mathematical object called a distri-
bution. It acts on suitable functions &(z) as follows:

(1.0.3) (3,6) & &(0).

' ' ' L)
Remark 1.0.3. The notation (-,-) is meant to remind you of the L~ inner product

(1.0.4) {(fr9)= [ flz)g(z)d"z.

JER

The next lemma shows that ['p(t, ) behaves like the delta distribution as t — 07.

Lemma 1.0.3. Suppose that ¢(x) is a continuous function on R" and that there erist constants
a,b > 0 such that

(1.0.5) 6(z)| < aell®’.

Then

(1.0.6) lir[gl / [p(t,z)d(x)d"z = ¢(0).
t—0% Jpn
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Heat equation

Definition 1.1.1. If f and g are two functions on R", then we define their convolution f % g to be
the following function on R" :

def
(1.1.2) (Frg)z)= | fly)glz—y)d"y.
Convolution is an averaging process, in which the function f(z) is replaced by the “average value”
of f(x) relative to the “profile” function g(x).
The convolution operator plays a very important role in many areas of mathematics. Here are
two key properties. First, by making the change of variables z = = —y. d"z = d"y in (1.1.2), we see
that

(113)  (f+0)@) = [ el -pdy= [ fa-2)gE)d== (g% )

which imples that convolution 18 a commutative operation. Next, Fubini’'s theorem can be used to
show that

(1.1.4) [*(gxh)=(f=g)=h.

so that * 1s also associative.
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Heat equation

Theorem 1.1 (Solving the global Cauchy problem via the fundamental solution). Assume
that g(x) is a continuous function on R™ that verifies the bounds |g(z)| < ae®™, where a,b > 0 are
constants. Then there exists a solution u(t, z) to the homogeneous heat equation

(1.1.10) 4, — DAu=0, (t>0,z€R"),

u(0, ) = g(x), r e R"

eristing for (t,z) € [0,T) x R", where

def 1
1.1.11 T=—.
[ ) 4Db
Furthermore, u(t,x) can be represented as
(1.112) ult,2) = lg0) < To(t,)@) = [ g@Poltz—y)d'y

1 - yl' .
= o [, e
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Heat equation

The solution u(t, ) is of reqularity C>((0 % xR") (i.e., it is infinitely differentiable). Finally,

for each compact subinterval [0,T'] < [0, T]._ there exist constants A,B > 0 (depending on the
compact subinterval) such that

(1.1.13) u(t,z)| < AeBl=F

for all (t,z) € [0,T"] x R". The solution u(t,z) is the unique solution in the class of functions
verifying a bound of the form (1.1.13).

Remark 1.1.3. Note the very important smoothing property of diffusion: the solution to the
heat equation on all of R™ 1s smooth even if the data are merely continuous.

Remark 1.1.4. The formula (1.1.12) shows that solutions to (1.1.10) propagate with infinite
speed: even if the initial data g(r) have support that is contained within some compact region,
(1.1.12) shows that at any time ¢ = 0, the solution u(f, ) has “spread out over the entire space
E™." In contrast, as we will see later in the course, some 1mportant PDEs have finite speeds of
propagation (for example, the wave equation).
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Heat equation

In the next theorem, we extend the results of Theorem 1.1 to allow for an inhomogeneous term

f(t, ).

Theorem 1.2 (Duhamel’s principle). Let g(x) and T dzf‘rﬁ be as in Theorem 1.1. Also assume
that f(t,x), 0;f(t,x), and 3;0; f(t, z) are continuous, bounded functions on [0,T) xR" for 1 <i,j <
n. Then there erists a unique solution u(t,r) to the inhomogeneous heat equation

(1.1.19) u, — DAu = f(t,x), (t,r) € (0,00) x R,
u(0,z) = g(x), reR

existing for (t,z) € [0,T) x K. Furthermore, u(t,z) can be represented as

(1.1.20) w(t,z) = (Tp(t. )  g)(x) + [ﬂ (To(t —s.-) % £(s.-)(x) ds.

The solution has the following reqularity properties: uw € C([0,T) x R) N CY2((0,T) x R).

FProof. A slightly less technical version of this theorem i1s one of your homework exercises. L]
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Laplace equation

Definition 1.0.1. The fundamental solution ® corresponding to the operator A 1s

f il =nlz] n=2
oy def ) Oy -

def - . . : ’ \
where as usual |z| = /Y& {(z")? and w, is the surface area of a unit ball in B" (e.g. wq = 47).
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In mathematics, a fundamental solution
for a linear partial differential operator L
Is a formulation in the language of distribution theory of
the older idea of a Green's function, which normally
further addresses boundary conditions.
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Analytical solutions/Green’s functions

1.2. Nonhomogeneous Heat Equation %‘f = gi‘f + ®(x, t)

1.2-2. Solutions of boundary value problems in terms of the Green’s function.

We consider boundary value problems for the heat equation® on an interval 0 < = <[ with the general

initial condition
w=f(x) at t=0

and various homogeneous boundary conditions. The solution can be represented in terms of the
Green’s function as

[ i pl
ﬂ,'{;r..f.:}=/ f({‘}G’{I.{‘.i:}ci{‘ﬂ-f [fIJ(Q.T}G(I.Q.i—T}d{ dr.
0 0 J0
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1.2. Nonhomogeneous Heat Equation 2% - 2w $(x,t)

E

1.2-6. Domain: 0 < ¢ < [. First boundary value problem for the heat equation.

Boundary conditions are prescribed:
w=0 at z=0. w=0 at z=IL

Two forms of representation of the Green’s function:

2 = TE L A _2 .Ef.
G(z.{.t)= 7 Z Si.ll( H?I ) sin ( H;{‘ ) exp (——MFT )

= P AW : 2
_ 1 {E'}{p[—(‘r' {-I—Enf)]_exp[_(r—l-i;—l-inﬁj} }

dat 4at

n=0oa

The first series converges rapidly at large ¢ and the second series at small £.
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1.2. Nonhomogeneous Heat Equation 2% — a2 P (x, t)

ot Y oz?

1.2-7. Domain: 0 < < [. Second boundary value problem for the heat equation.

Boundary conditions are prescribed:

,[]-ul E’LH-‘
E—D at =0, E:ﬂ at = =I.

Two forms of representation of the Green’s function:

1 2™ o | -
G‘(:L{,.t):TjL?;ms(nzrr)mg(n?a)ﬁp(_an; )

1 - T — &+ 2ni)? r+ &+ 2nl)?
— Z {exp[—(‘r § +2nl) }—kexp[ (48 +2nD) }
2\/ mat — dat dat

The first series converges rapidly at large ¢ and the second series at small £.
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1.5. Heat Equation of the Form a9t (d? + 1 - ) + ®(r, t)

Nonhomogeneous heat (diffusion) equation with axial symmetry.

- i -

The two-dimensional Laplace equation has the following form:

Fw  Fw , , . .
— = =0 1in the Cartesian coordinate system.
dx dy

e raw + o = (0 1in the polar coordinate system
r Or dr r2 92 ’ } |

where r =rcosy., y =rsing, and r =/ 2 + 32
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: Qw _ (d*w . 10w
1.5. Heat Equation of the Form oy a( a2t o ) + ®(r, t)

Nonhomogeneous heat (diffusion) equation with axial symmetry.

1.5-1. Solutions of boundary value problems in terms of the Green’s function.

We consider boundary value problems for the nonhomogeneous heat equation with axial symmetry
in domain 0 < r < R with the general initial condition

w=f(r) at t=0

and various homogeneous boundary conditions (the solutions bounded at ~ = 0 are sought). The
solution can be represented in terms of the Green's function as

R t pRH
w(zr.t) = / FOGr. L. 1) dE+ f [ PE.TG(r. £t —T)dE dT.
Jo 0 Jo
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1.5. Heat Equation of the Form 9 a( 32 * 0 oy ) + ®(r, 1)

Nonhomogeneous heat (diffusion) equation with axial symmetry.

1.5-2. Domain: 0 < r < K. First boundary value problem for the heat equation.

A boundary condition is prescribed:
w=0 at r=R.
Green’s function:

= £ 2t
G(r. 1) = Z R? },20 )-‘rﬂ(”n )}Q(;LHR>EXP(—&;§ )

n=I

where the p,, are positive zeros of the Bessel function. Jy(u) = 0. Below are the numerical values
of the first ten roots:

iy =2.4048. i =5.5201, 3 =8.6537, pg=11.7915, pus=14.9300,
e =18.0711, p7=212116, ps=24.3525. po=27.4935, 0= 30.6346.

The zeroes of the Bessel function Jy(x) may be approximated by the formula
pin =24+3.13(n-1) (n=1,2.3,...).

which is accurate within 0.3%. As n — oo, we have i, — pi, — .
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1.5. Heat Equation of the Form oy a( a2t o ) + ®(r, t)

Nonhomogeneous heat (diffusion) equation with axial symmetry.

1.5-3. Domain: 0 < r < R. Second boundary value problem for the heat equation.

A boundary condition is prescribed:
Ow
— =0 at r=R.
ar

Green’s function:

JinT € apst
=g 3 () o () = ()

where the u,, are positive zeros of the first-order Bessel function. Jy () = 0. Below are the numerical
values of the first ten roots:

1 =3.8317.  jp=70156, p3=10.1735, py=133237. pus=16.4706.
i = 19.6159, iy =22.7601, pg =25.9037, o =29.0468, ju19 = 32.1897.

Asn — oo. we have ppig — pn — .
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PAUSE
Time for a break
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