ECOLE
POLYTECHNIQUE

UNIVERSITE PARIS-SACLAY

&;WJ&,——

Sept 18

Types of PDEs
and
Galerkin discretization

Jing-Rebecca Li
Equipe DEFI CMAP., Ecole Polytechnique
Institut national de recherche en informatique et en automatique (INRIA) Saclay

Mathematical and numerical foundations of modeling and simulation using PDEs. Sept 18 — 29, 2017

http.//www.cmap.polytechnique.fr/~jingrebeccali/frenchviethammaster?2_files/frenchvietnammaster2_jrl.html/ 1



L d

ECOLE 5 s
POLYTECHNIQUE
UNIVERSITE PARIS-SACLAY q P 7m.——

~

Classification of Second-Order Equations in n Variables

For more than three independent variables it is convenient to write the above PDE in the
following form:

! J-u du
a; bi— +cu+d =20 (42)
T; ;Z'l g c}ﬁax‘j g dx;j
where the coefficients a;;, b;, ¢, d are functions of x = (x7.x2,. .. Xn), = u(x1,x2,...,x,), and

n is the number of independent variables. Equation (42) can be written in matrix form as

i 1 [ 24 7 T du 7
ayp -+ dip 91 ox1
d d : . : . : _ B
u u
[ dn1 cr dmn || 9y L ox, -

We assume that the coefficient matrix 4 = (a;;) to be symmetric. If 4 is not symmetric, we
can always find a symmetric matrix a;; = %(a;-j +aj;) such that (42) can be rewritten as

n 82”
aj EJ + cu+d =20
?Zi ;Zi i Brgaxj ; 8.1,
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Classification of Second-Order Equations in n Variables

e Equation is called elliptic if all eigenvalues A; of 4 are non-zero and have the same sign.

e Equation is called hyperbolic if all eigenvalues A; of 4 are non-zero and have the same
sign except for one of the eigenvalues.

e Equation is called parabolic if any of the eigenvalues A; of 4 is zero. This means that the
coefficient matrix 4 is singular.
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Classification of Second-Order Equations in n Variables

Example 7

Classify the three-dimensional Laplace equation

?fx:{ _|_ ?'.;_]’T —I_ ?f:z — U
Solution The coefficient matrix is given by
1 00
A=101 0
0 0 1

As the coefficient matrix is already in diagonalized form it can be seen immediately that it has
three non-zero eigenvalues which are all positive. Hence, according to the classification rule the
given PDE is elliptic.
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Classification of Second-Order Equations in n Variables

Example 8

Classify the two-dimensional wave equation

sy — o (1 + tyy) = 0

Solution The coefficient matrix is given by

1 0 0
4=10 - 0
0 0 —c°

As the coefficient matrix is already in diagonalized form it can be seen immediately that it

has three non-zero eigenvalues which are all negative except one. Hence, according to the
classification rule the given PDE is hyperbolic.
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Classification of Second-Order Equations in n Variables

Example 9

Classify the two-dimensional heat equation

up — O (tyy + 1tyy) = 0

Solution The coefficient matrix is given by

0 0 0
A=10 —a 0
0 0 —«o

As the coefficient matrix is already in diagonalized form it can be seen immediately that it has
a zero eigenvalue. Hence, according to the classification rule the given PDE is parabolic.
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Partial Differential Equation Toolbox solves equations of the form

2
mﬂ+d%—V*(CVH)+HH =f.

ot 2
Green's first identity
This identity is derived from the divergence theorem applied to the vector field F = ¢/ V: Let ¢ and {/ be scalar

functions defined on some region U C Rd, and suppose that ¢ is twice continuously differentiable, and i/ is
once continuously differentiable. Then!1]

f(¢Aw+V¢-an) dvzf w(v(,o-n)dszj[ YV - dS
U ou ou

where A is the Laplace operator, OU is the boundary of region U, n is the outward pointing unit normal of
surface element dS and dS is the oriented surface element.

Green's second identity

If @ and Y are both twice continuously differentiable on U C R3, and € is once continuously differentiable, one

may choose F = (e Vo — e Vi to obtain

L0960V vl av = § e(vgE-vgt)as.
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When the m and d coefficients are 0, this reduces to

-V (cVu)+au="F,

which the documentation calls an elliptic equation, whether or not the equation is elliptic
in the mathematical sense. The equation holds in Q, where Q 1s a bounded domain in two
or three dimensions. ¢, a, f, and the unknown solution u are complex functions defined

on Q. ¢ can also be a 2-by-2 matrix function on Q. The boundary conditions specify a
combination of © and its normal derivative on the boundary:

*  Dirichlet: hu = r on the boundary Q.

*  Generalized Neumann: n -(cVu) + qu = g on 6Q.

*  Mixed: Only applicable to systems. A combination of Dirichlet and generalized
Neumann.

n 1s the outward unit normal. g, g, h, and r are functions defined on €.
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Assume that u is a solution of the differential equation. Multiply the equation with an
arbitrary test function v and integrate on Q:

j(—(V .cVu)v+ auu)dx = jfu dx.

Integrate by parts (i.e., use Green's formula) to obtain

j((cVu) -Vv+auv) dx - j n-(eVuv ds= jﬁ) dx.
Q aQ Q
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The boundary integral can be replaced by the boundary condition:

j((c?u) Vv +auv) dx — j (—qu+g)v ds= jﬁ! dx.
Q aQ Q

Replace the original problem with Find u such that

j((c?u) Vv +auv— fv) dx— j (-qu+g)vds=0 V.
Q )

This equation is called the variational, or weak, form of the differential equation.
Obviously, any solution of the differential equation is also a solution of the variational
problem. The reverse is true under some restrictions on the domain and on the coefficient
functions. The solution of the variational problem is also called the weak solution of the
differential equation.
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The solution u and the test functions v belong to some function space V. The next step is
to choose an Np-dimensional subspace V), < V . Project the weak form of the differential
B

equation onto a finite-dimensional function space simply means requesting u and v to lie

in V) rather than V. The solution of the finite dimensional problem turns out to be the
D
element of V), that lies closest to the weak solution when measured in the energy norm.
P

Convergence is guaranteed if the space V), tends to V as N,—o. Since the differential
b

operator is linear, we demand that the variational equation is satisfied for IV, test-

functions ®; € V,;, that form a basis, i.e.,
p

[((cVw) Vo +aug; — f9;) dx— [ (~qu+g)¢; ds=0, i=1,..,N,,.

' A
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Expand u in the same basis of V) elements
r

Np
u(x) = Zquij(x),
j=1

and obtain the system of equations

Nﬂ
Jj=1{ Q oQ
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Use the following notations:

K;j= j(CV‘?j)'V@i dx (stiffness matrix)
Q

M; ;= jarﬁj@- dx (mass matrix)
Q

Qi = j q¢ ;¢ ds
dQ

F = [fg; dx
Q

Gi = jg@i ds
0Q
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and rewrite the system in the form

K+M+QU=F+QG.

K, M, and @ are N,-by-IV, matrices, and F' and G are N,-vectors. K, M, and F are
produced by assema, while @, G are produced by assemb. When it is not necessary to
distinguish K, M, and € or F and G, we collapse the notations to KU = F, which form the

output of assempde.
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When the problem is self-adjoint and elliptic in the usual mathematical sense, the matrix
K+ M+ @ becomes symmetric and positive definite. Many common problems have
these characteristics, most notably those that can also be formulated as minimization

problems. For the case of a scalar equation, K, M, and @ are obviously symmetric. If ¢(x) >
6 >0, a(x) > 0 and g(x) > 0 with g(x) > 0 on some part of 6L, then, if U # 0.

UT (K +M+QU = [(eluf +au®) dx + [ qu? ds>0, if U 0.
Q dQ

UNK + M+ @)U is the energy norm.
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spaces. The software uses continuous functions that are linear on each element of a
2-D mesh, and are linear or quadratic on elements of a 3-D mesh. Piecewise linearity

guarantees that the integrals defining the stiffness matrix K exist. Projection onto Vy,
P

1s nothing more than linear interpolation, and the evaluation of the solution inside an

element is done just in terms of the nodal values. If the mesh is uniformly refined, Vj,
b

approximates the set of smooth functions on Q.
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A suitable basis for Vy 1in 2-D is the set of “tent” or “hat” functions bi- These are linear
D

on each element and take the value 0 at all nodes x; except for x;. For the definition of

basis functions for 3-D geometry, see “Finite Element Basis for 3-D” on page 5-10.
Requesting ¢;(x;) = 1 yields the very pleasant property

Np
H(Ii)Z ZUJIIPJ(II) ZUE'.
j=1

That 1s, by solving the FEM system we obtain the nodal values of the approximate
solution. The basis function ¢; vanishes on all the elements that do not contain the node
x;. The immediate consequence is that the integrals appearing in K;;, M;;, @;;, F; and G;
only need to be computed on the elements that contain the node x;. Secondly, it means
that K;; andM;; are zero unless x; and x; are vertices of the same element and thus K and
M are very sparse matrices. Their sparse structure depends on the ordering of the indices

of the mesh points.
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The integrals in the FEM matrices are computed by adding the contributions from each
element to the corresponding entries (i.e., only if the corresponding mesh point i1s a vertex

of the element). This process is commonly called assembling, hence the name of the
function assempde.

The assembling routines scan the elements of the mesh. For each element they compute
the so-called local matrices and add their components to the correct positions in the
sparse matrices or vectors.
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Triangular finite elements in 2 dimensions

r’xj,_*rj)

Figure 4.2.1: Triangular element with vertices 1,2, 3 having coordinates (@, y), (@2, ys2),
and (@3, y3)
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2

Figure 4.2.2: Shape function N, for Node 1 of element e (left) and basis function ¢, for
a cluster of four finite elements at Node 1.
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Consider a triangle given by the nodes P;, P5, and Ps as in the following figure.

The Local Triangle P1P2P3

Note: The local 3-by-3 matrices contain the integrals evaluated only on the current
triangle. The coefficients are assumed constant on the triangle and they are evaluated

A only in the triangle barycenter.
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The simplest computations are for the local mass matrix m:

area (AP P>Ps)
12

m; ;= j a(F,)¢; (x)¢;(x) dx = a(P,) (1+0; ;)
AP, R, P,
where P, 1s the center of mass of A P1PyPs3, 1.e.,

p :P1+P2+P3+
¢ 3

area (AP, B, Py)

fi:f(Pc) 3 .
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For the local stiffness matrix we have to evaluate the gradients of the basis functions
that do not vanish on P;PsP5. Since the basis functions are linear on the triangle P PoPs,

the gradients are constants. Denote the basis functions ¢4, ¢2, and ¢3 such that ¢p(P;) = 1.
If Po — Ps= [.xfl,yl]T then we have that

1 Y1
Vo, =
g 2area(aaP2%){—xJ

and after integration (taking ¢ as a constant matrix on the triangle)

ki j 1 [J’y‘xﬂc(%){yl }

L)~ 4 area (AP, P,P;) —x
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If two vertices of the triangle lie on the boundary 6Q, they contribute to the line integrals
associated to the boundary conditions. If the two boundary points are P; and Ps, then we

have
P, - P. o

and

P - By|

G,;:g(Pb)‘ ; i=1,2

where Pj 1s the midpoint of P1Ps.

For each triangle the vertices P,, of the local triangle correspond to the indices i,, of the
mesh points. The contributions of the individual triangle are added to the matrices such
that, e.g.,

Kz;wint «— Kimrz;; +km,n: m,n =1,23.
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PAUSE
Time for a break
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