Chapter 4

Finite Element Approximation

4.1 Introduction

Our goal in this chapter is the development of piecewise-polynomial approximations U
of a two- or three-dimensional function u. For this purpose, it suffices to regard u as
being known and to determine U as its interpolant on a domain 2. Concentrating on
two dimensions for the moment, let us partition {2 into a collection of finite elements and

write U in the customary form

Ulayy) =Y csoslay) (4.1.1)

As we discussed, it is convenient to associate each basis function ¢; with a mesh entity,
e.g., a vertex, edge, or element in two dimensions and a vertex, edge, face, or element
in three dimensions. We will discuss these entities and their hierarchical relationship
further in Chapter 5. For now, if ¢; is associated with the entity indexed by j, then, as
described in Chapters 1 and 2, finite element bases are constructed so that ¢; is nonzero
only on elements containing entity j. The support of two-dimensional basis functions

associated with a vertex, an edge, and an element interior is shown in Figure 4.1.1.

As in one dimension, finite element bases are constructed implicitly in an element-
by-element manner in terms of “shape functions” (¢f. Section 2.4). Once again, a shape
function on an element e is the restriction of a basis function ¢;(z,y) to element e.
We proceed by constructing shape functions on triangular elements (Section 4.2, 4.4),
quadrilaterals (Sections 4.3, 4.4), tetrahedra (Section 4.5.1), and hexahedra (Section
4.5.2).
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Figure 4.1.1: Support of basis functions associated with a vertex, edge, and element
interior (left to right).

4.2 Lagrange Shape Functions on Triangles

Perhaps the simplest two-dimensional Lagrangian finite element basis is a piecewise-linear
polynomial on a grid of triangular elements. It is the two-dimensional analog of the hat
functions introduced in Section 1.3. Consider an arbitrary triangle e with its vertices
indexed as 1, 2, and 3 and vertex j having coordinates (z;,y;), j =1, 2,3 (Figure 4.2.1).

The linear shape function N;(z,y) associated with vertex j satisfies
Ni(@r, ye) = 0jks  Jk=1,2,3. (4.2.1)

(Again, we omit the subscript e from N;. whenever it is clear that we are discussing a

single element.) Let N; have the form
Nj(z,y) =a+bz+cy,  (z,y) €L,

where . is the domain occupied by element e. Imposing conditions (4.2.1) produces

T Yy c

Solving this system by Crammer’s rule yields

D
N;(z,y) = kcl*(::ly) k4145 jkl=1,2,3 (4.2.2a)
J’,

where

1 = y
Dk,l = det 1 Tk Yk s (422b)
Loy



4.2. Lagrange Shape Functions on Triangles 3

2 (%)

1
3

(1Y)

Figure 4.2.1: Triangular element with vertices 1, 2,3 having coordinates (z1,y1), (22, y2),
and (x3,y3).

Figure 4.2.2: Shape function NV; for Node 1 of element e (left) and basis function ¢ for
a cluster of four finite elements at Node 1.

L oz oy
Cj,k,l = det 1 Tk Yk . (4220)
Loz oy

Basis functions are constructed by combining shape functions on neighboring elements
as described in Section 2.4. A sample basis function for a four-element cluster is shown in
Figure 4.2.2. The implicit construction of the basis in terms of shape function eliminates

the need to know detailed geometric information such as the number of elements sharing
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a node. Placing the three nodes at element vertices guarantees a continuous basis. While
interpolation at three non-colinear points is (necessary and) sufficient to determine a
unique linear polynomial, it will not determine a continuous approximation. With vertex
placement, the shape function (e.g., N;) along any element edge is a linear function of
a variable along that edge. This linear function is determined by the nodal values at
the two vertex nodes on that edge (e.g., j and k). As shown in Figure 4.2.2, the shape
function on a neighboring edge is determined by the same two nodal values; thus, the
basis (e.g., ¢;) is continuous.

The restriction of U(z,y) to element e has the form
U(.’L’,y) :ClNl(xay)+02N2(1‘7y)+c3N3(x7y)7 (x,y) GQB- (423)

Using (4.2.1), we have ¢; = U(x;,y,), j =1,2,3.
The construction of higher-order Lagrangian shape functions proceeds in the same

manner. In order to construct a p th-degree polynomial approximation on element e, we

introduce N;(z,y), j =1,2,...,n,, shape functions at n, nodes, where
1 2
n, = % (4.2.4)

is the number of monomial terms in a complete polynomial of degree p in two dimensions.

We may write a shape function in the form

Ni(z,y) =Y ag;(z,y) =a"q(z,y) (4.2.5a)
i=1
where
o' (zv,y) =[1,2,y, 2% zy,v% ..., ). (4.2.5D)

Thus, for example, a second degree (p = 2) polynomial would have n, = 6 coefficients
and
ot

a’ (z,y) =[1,2,y,2% zy,y%.

Including all n, monomial terms in the polynomial approximation ensures isotropy in the
sense that the degree of the trial function is conserved under coordinate translation and
rotation.

With six parameters, we consider constructing a quadratic Lagrange polynomial by
placing nodes at the vertices and midsides of a triangular element. The introduction of
nodes is unnecessary, but it is a convenience. Indexing of nodes and other entities will be

discussed in Chapter 5. Here, since we're dealing with a single element, we number the
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Figure 4.2.3: Arrangement of nodes for quadratic (left) and cubic (right) Lagrange finite
element approximations.

nodes from 1 to 6 as shown in Figure 4.2.3. The shape functions have the form (4.2.5)
with ny = 6

N;j = ay + ao® + azy + a4z’ + aszy + agy?,

and the six coefficients a;, j = 1,2,...,6, are determined by requiring

Nj(xkayk)zéj,ka j;k:1,2,...,6.

The basis
d)j = UiV:A1Nj,e(xa y)

is continuous by virtue of the placement of the nodes. The shape function N;. is a
quadratic function of a local coordinate on each edge of the triangle. This quadratic
function of a single variable is uniquely determined by the values of the shape functions
at the three nodes on the given edge. Shape functions on shared edges of neighboring
triangles are determined by the same nodal values; hence, ensuring that the basis is
globally of class C°.

The construction of cubic approximations would proceed in the same manner. A
complete cubic in two dimensions has 10 parameters. These parameters can be deter-
mined by selecting 10 nodes on each element. Following the reasoning described above,
we should place four nodes on each edge since a cubic function of one variable is uniquely
determined by prescribing four quantities. This accounts for nine of the ten nodes. The
last node can be placed at the centroid as shown in Figure 4.2.3.

The construction of Lagrangian approximations is straight forward but algebraically
complicated. Complexity can be significantly reduced by using one of the following two

coordinate transformations.
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Figure 4.2.4: Mapping an arbitrary triangular element in the (z,y)-plane (left) to a
canonical 45° right triangle in the (£, n)-plane (right).

1. Transformation to a canonical element. The idea is to transform an arbitrary
element in the physical (x,y)-plane to one having a simpler geometry in a computational
(&,m)-plane. For purposes of illustration, consider an arbitrary triangle having vertex
nodes numbered 1, 2, and 3 which is mapped by a linear transformation to a unit 45°
right triangle, as shown in Figure 4.2.4.

Consider N) and Nj as defined by (4.2.2). (A superscript 1 has been added to
emphasize that the shape functions are linear polynomials.) The equation of the line
connecting Nodes 1 and 3 of the triangular element shown on the left of Figure 4.2.4 is
N, = 0. Likewise, the equation of a line passing through Node 2 and parallel to the
line passing through Nodes 1 and 3 is N} = 1. Thus, to map the line N3 = 0 onto the
line £ = 0 in the canonical plane, we should set £ = Nj(z,y). Similarly, the line joining
Nodes 1 and 2 satisfies the equation N3 = 0. We would like this line to become the line
n = 0 in the transformed plane, so our mapping must be n = NJ (x,y). Therefore, using
(4.2.2)

| Y I =z y
det | 1 zy det | 1 =1
I z3 y3 Iz yo
£ = Ny(z,y) = —= = n=N(w,y) = —= = (426
Iz I x3 y3
det | 1 =z det | 1 z;
L1 x5 ys | |1 2 e

As a check, evaluate the determinants and verify that (z1,y;) — (0,0), (x2,y2) — (1,0),
and (x3,y3) — (0,1).
Polynomials may now be developed on the canonical triangle to simplify the algebraic
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Figure 4.2.5: Geometry of a triangular finite element for a cubic polynomial Lagrange
approximation.

complexity and subsequently transformed back to the physical element.

2. Transformation using triangular coordinates. A simple procedure for constructing
Lagrangian approximations involves the use of a redundant coordinate system. The
construction may be described in general terms, but an example suffices to illustrate the
procedure. Thus, consider the construction of a cubic approximation on the triangular
element shown in Figure 4.2.5. The vertex nodes are numbered 1, 2, and 3; edge nodes
are numbered 4 to 9; and the centroid is numbered as Node 10.

Observe that

e the line N = 0 passes through Nodes 2, 6, 7, and 3;
e the line N = 1/3 passes through Nodes 5, 10, and 8; and
e the line N! = 2/3 passes through Nodes 4 and 9.
Since N} must vanish at Nodes 2 - 10 and be a cubic polynomial, it must have the form
Ni(z,y) = aNy (N} — 1/3)(Ny —2/3)

where the constant « is determined by normalizing N7 (z1,4;) = 1. Since N} (z1,y1) = 1,
we find @ = 9/2 and

N3(ry) = S NLNY = 1/3)(V] — 2/3).

The shape function for an edge node is constructed in a similar manner. For example,

in order to obtain N} we observe that

e the line N = 0 passes through Nodes 1, 9, 8, and 3;
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e the line N/ = 0 passes through Nodes 2, 6, 7, and 3; and
e the line N! = 1/3 passes through Nodes 5, 10, and 8.

Thus, N} must have the form
Ni(z,y) = aNy Ny (N} —1/3).

Normalizing N3 (x4, y4) = 1 gives

21 .2 1
N3 (24, y4) = agg(g - g)-

Hence, a = 27/2 and
27

Niw.o) = TNV} - 1/3).
Finally, the shape function N3, must vanish on the boundary of the triangle and is,
thus, determined as
Nio(z,y) = 27N} Ny N.

The cubic shape functions N7, N2, and N}, are shown in Figure 4.2.6.

The three linear shape functions le, j = 1,2,3, can be regarded as a redundant
coordinate system known as “triangular” or “barycentric” coordinates. To be more
specific, consider an arbitrary triangle with vertices numbered 1, 2, and 3 as shown
in Figure 4.2.7. Let

¢, = N7, (= Ny, (3 = N3, (4.2.7)

and define the transformation from triangular to physical coordinates as

T Ty Tz X3 G
y =1y v ¥y G |- (4.2.8)
1 1 1 1 (3

Observe that ({1, (s, (3) has value (1,0,0) at vertex 1, (0,1,0) at vertex 2 and (0,0,1) at
vertex 3.

An alternate, and more common, definition of the triangular coordinate system in-
volves ratios of areas of subtriangles to the whole triangle. Thus, let P be an arbitrary

point in the interior of the triangle, then the triangular coordinates of P are

_ Api2
- Y
Al

_ Apa
- Y
Al

_ Apas

Cl - A123 )

G2

C3

(4.2.9)

where Ajo3 is the area of the triangle, Apy3 is the area of the subtriangle having vertices
P, 2 3, etc.
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Figure 4.2.6: Cubic Lagrange shape functions associated with a vertex (left), an
edge(right), and the centroid (bottom) of a right 45° triangular element.

The triangular coordinate system is redundant since two quantities suffice to locate
a point in a plane. This redundancy is expressed by the third of equations (4.2.8), which
states that

G+G+gG=1

This relation also follows by adding equations (4.2.9).

Although seemingly distinct, triangular coordinates and the canonical coordinates are
closely related. The triangular coordinate (5 is equivalent to the canonical coordinate &
and (3 is equivalent to 7, as seen from (4.2.6) and (4.2.7).

Problems

1. With reference to the nodal placement and numbering shown on the left of Figure
4.2.3, construct the shape functions for Nodes 1 and 4 of the quadratic Lagrange
polynomial. Derive your answer using triangular coordinates. Having done this,

also express your answer in terms of the canonical (£, 7) coordinates. Plot or sketch
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Figure 4.2.7: Triangular coordinate system.

the two shape functions on the canonical element.

2. A Lagrangian approximation of degree p on a triangle has three nodes at the vertices
and p — 1 nodes along each edge that are not at vertices. As we’ve discussed,
the latter placement ensures continuity on a mesh of triangular elements. If no
additional nodes are placed on edges, how many nodes are interior to the element
if the approximation is to be complete?

4.3 Lagrange Shape Functions on Rectangles

The triangle in two dimensions and the tetrahedron in three dimensions are the poly-
hedral shapes having the minimum number of edges and faces. They are optimal for
defining complete C° Lagrangian polynomials. Even so, Lagrangian interpolants are
simple to construct on rectangles and hexahedra by taking products of one-dimensional
Lagrange polynomials. Multi-dimensional polynomials formed in this manner are called
“tensor-product” approximations. we’ll proceed by constructing polynomial shape func-
tions on canonical 2 X 2 square elements and mapping these elements to an arbitrary
quadrilateral elements. We describe a simple bilinear mapping here and postpone more
complex mappings to Chapter 5.

We consider the canonical 2 x 2 square {(£,n)| —1 < &, 1 < 1} shown in Figure 4.3.1.
For simplicity, the vertices of the element have been indexed with a double subscript
as (1,1), (2,1), (1,2), and (2,2). At times it will be convenient to index the vertex
coordinats as & = —1, & =1, gy = —1, and 9, = 1. With nodes at each vertex, we

construct a bilinear Lagrangian polynomial U(£,n) whose restriction to the canonical
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Figure 4.3.1: Node indexing for canonical square elements with bilinear (left) and bi-
quadratic (right) polynomial shape functions.

element has the form

U€,n) =c1iNii(§,m) + c01N21(&,m) + c22N22(8, 1) + c1,2N12(€,m). (4.3.1a)

As with Lagrangian polynomials on triangles, the shape function N;;(£,n) satisfies

Nij(&em) = 6:xbi0n  kol=1,2. (4.3.1b)
Once again, U(&,m) = cxy; however, now N;; is the product of one-dimensional hat
functions
Nij (& m) = Ni(§)N;(n) (4.3.1¢)
with
Ni(§) = l;Qf, (4.3.1d)
Ny(§) = IT% —-1<¢<1. (4.3.1e)

Similar formulas apply to N;(n), 7 = 1,2, with £ replaced by 5 and i replaced by j.
The shape function Ny ; is shown in Figure 4.3.2. By examination of either this figure or

(4.3.1c-e), we see that N; ;(£,n) is a bilinear function of the form
Nij(€n) = a1 + as€ + azn + asdn, —1<&n< L (4.3.2)

The shape function is linear along the two edges containing node (i, ;) and it vanishes
along the two opposite edges.
A basis may be constructed by uniting shape functions on elements sharing a node.

The piecewise bilinear basis functions ¢; ; when Node (4, j) is at the intersection of four
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Figure 4.3.2: Bilinear shape function Ny ; on the [—1,1] x[—1, 1] canonical square element
(left) and bilinear basis function at the intersection of four square elements (right).

square elements is shown in Figure 4.3.2. Since each shape function is a linear polynomial
along element edges, the basis will be continuous on a grid of square (or rectangular) ele-
ments. The restriction to a square (or rectangular) grid is critical and the approximation
would not be continuous on an arbitrary mesh of quadrilateral elements.

To construct biquadratic shape functions on the canonical square, we introduce 9
nodes: (1,1), (2,1), (2,2), and (1,2) at the vertices; (3,1), (2,3), (3,2), and (1,3) at mid-
sides; and (3,3) at the center (Figure 4.3.1). The restriction of the interpolant U to this
element has the form
3
UE,m =2, cisNi(&n) (4.3.32)

=1 j=1
where the shape functions N, ;, i, 7 = 1, 2, 3, are products of the one-dimensional quadratic

polynomial Lagrange shape functions

Ni,j(ga 77) = Nz(g)N](n)a Za] =1,2,3, (433b)
with (c¢f. Section 2.4)
M) = —€(1-9)/2, (4.3.3¢)
M) = €0 +6)/2. (43:34)
Ny(§) = (1-¢%), -1<¢&<1. (4.3.3¢)

Shape functions for a vertex, an edge, and the centroid are shown in Figure 4.3.3.

Using (4.3.3b-e), we see that shape functions are biquadratic polynomials of the form

Nii(&,n) = a1 + aé + azn + a1 + asén + agn’ + arén’ + as€’n + agl’n’. (4.3.4)
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Figure 4.3.3: Biquadratic shape functions associated with a vertex (left), an edge (right),
and the centroid (bottom).

Although (4.3.4) contains some cubic and quartic monomial terms, interpolation accuracy
is determined by the highest-degree complete polynomial that can be represented exactly,

which, in this case, is a quadratic polynomial.

Higher-order shape functions are constructed in similar fashion.

4.3.1 Bilinear Coordinate Transformations

Shape functions on the canonical square elements may be mapped to arbitrary quadri-
laterals by a variety of transformations (¢f. Chapter 5). The simplest of these is a
picewise-bilinear function that uses the same shape functions (4.3.1d,e) as the finite el-
ement solution (4.3.1a). Thus, consider a mapping of the canonical 2 x 2 square S to
a quadrilateral () having vertices at (x;;,v:;), ¢,j = 1,2, in the physical (z,y)-plane
(Figure 4.3.4) using a bilinear transformation written in terms of (4.3.1d,e) as
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Figure 4.3.4: Bilinear mapping of the canonical square to a quadrilateral.

2 2
z(&,m) } [ Zij }
= N; i (&,7), 4.3.5
{ y(&m) 2; y | Vi) 435)
where N;;(£,n) is given by (4.3.1b).
The transformation is linear on each edge of the element. In particular, transforming
the edge n = —1 to the physical edge (211, y11 - (z21,y21) yields

o I 1_—5 Toq 1—+§ -
[y]_{yll} 2 +{y21] 9 1<E<T.

As £ varies from -1 to 1, z and y vary linearly from (211, %11) to (221, y21). The locations
of the vertices (1,2) and (2,2) have no effect on the transformation. This ensures that a
continuous approximation in the (&, n)-plane will remain continuous when mapped to the
(x,y)-plane. We have to ensure that the mapping is invertible and we’ll show in Chapter
5 that this is the case when () is convex.

Problems

1. As noted, interpolation errors of the biquadratic approximation (4.3.3) are the same
order as for a quadratic approximation on a triangle. Thus, for example, the L?
error in interpolating a smooth function u(z, y) by a piecewise biquadratic function
U(z,y) is O(h?), where h is the length of the longest edge of an element. The
extra degrees of freedom associated with the cubic and quartic terms do not gen-
erally improve the order of accuracy. Hence, we might try to eliminate some shape
functions and reduce the complexity of the approximation. Unknowns associated
with interior shape functions are only coupled to unknowns on the element and can
easily be eliminated by a variety of techniques. Considering the biquadratic poly-

nomial in the form (4.3.3a), we might determine ¢33 so that the coefficient of the
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quartic term z2y? vanishes. Show how this may be done for a 2 x 2 square canon-
ical element. Polynomials of this type have been called serendipity by Zienkiewicz
[8]. In the next section, we shall see that they are also a part of the hierarchical
family of approximations. The parameter c; 3 is said to be “constrained” since it is
prescribed in advance and not determined as part of the Galerkin procedure. Plot

or sketch shape functions associated with a vertex and a midside.

4.4 Hierarchical Shape Functions

We have discussed the advantages of hierarchical bases relative to Lagrangian bases for
one-dimensional problems in Section 2.5. Similar advantages apply in two and three di-
mensions. We'll again use the basis of Szabé and Babuska [7], but follow the construction
procedure of Shephard et al. [6] and Dey et al. [5]. Hierarchical bases of degree p may
be constructed for triangles and squares. Squares are the simpler of the two, so let us
handle them first.

4.4.1 Hierarchical Shape Functions on Squares

We'll construct the basis on the canonical element {(£,7)] — 1 < &,n < 1}, indexing
the vertices, edges, and interiors as described for the biquadratic approximation shown
in Figure 4.3.1. The hierarchical polynomial of order p has a basis consisting of the
following shape functions.

Vertex shape functions. The four vertex shape functions are the bilinear functions
(4.3.1c-e)

Ny = Ni(ON;(m), 1,5 =1,2, (4.4.1a)
where

- 1-— . 1

Ni(§) = Tg Ny (§) = %5 (4.4.1b)

The shape function Nll,1 is shown in the upper left portion of Figure 4.4.1.
Edge shape functions. For p > 2, there are 4(p — 1) shape functions associated with
the midside nodes (3, 1), (2,3), (3,2), and (1, 3):

Niy(&m) = Ni(pN*(6), (4.4.2a)
N§,(&m) = Nao(n)N*(¢), (4.4.2b)
Nf,g(f,n) = _1(§)Nk(77)a (4.4.2¢)
Nys(€,m) = Na(E)N*(m),  k=2,3,...,p, (4.4.2d)
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where N*(£), k = 2,3,...,p, are the one-dimensional hierarchical shape functions given

by (2.5.8a) as
[2k -1 [¢
= 5 Py_1(0)do. (4.4.2¢)
-1

Edge shape functions Ngﬁl are shown for k£ = 2,3,4, in Figure 4.4.1. The edge shape

functions are the product of a linear function of the variable normal to the edge to which
they are associated and a hierarchical polynomial of degree k in a variable on this edge.
The linear function (N;(€), N;(n), 7 = 1,2) “blends” the edge function (N*(€), N*(n))
onto the element so as to ensure continuity of the basis.

Interior shape functions. For p > 4, there are (p—2)(p—3)/2 internal shape functions
associated with the centroid, Node (3, 3). The first internal shape function is the “bubble

function”
N§;§"’ = (1-€)(1—n?). (4.4.3a)

The remaining shape functions are products of Ni’g ¥ and the Legendre polynomials as

Nop? = NypPi(g), (4.4.3b)
N33t = :j,l:?OPl(U)a (4.4.3¢)
N33 = NggPPy(€), (4.4.3d)
Nyg' = Ng$PPi(&)Pi(n), (4.4.3¢)
N33? = Ny3“Py(n), ... (4.4.3f)

The superscripts k, A, and p, resectively, give the polynomial degree, the degree of Py (&),
and the degree of P,(n). The first six interior bubble shape functions Néﬁ?’“, A =k—4,
k = 4,5,6, are shown in Figure 4.4.2. These functions vanish on the element boundary
to maintain continuity.

On the canonical element, the interpolant U(&,n) is written as the usual linear com-

bination of shape functions

p p

2 2
1 k k kA nrk oA
E:E:Cz,] i) +§, C3JN3]+§: Z3Nz3+ E, €33 N3,3 .
i=1 j=1 k=2 j=1 k=4 Mpu=k—4

(4.4.4)

The notation is somewhat cumbersome but it is explicit. The first summation identifies
unknowns and shape functions associated with vertices. The two center summations
identify edge unknowns and shape functions for polynomial orders 2 to p. And, the

third summation identifies the interior unknowns and shape functions of orders 4 to p.
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Figure 4.4.1: Hierarchical vertex and edge shape functions for k£ = 1 (upper left), k& = 2
(upper right), k = 3 (lower left), and k£ = 4 (lower right).

Summations are understood to be zero when their initial index exceeds the final index.
A degree p approximation has 4 + 4(p — 1)4 + (p — 2)4+(p — 3)+/2 unknowns and shape
functions, where ¢, = max(q,0). This function is listed in Table 4.4.1 for p ranging from
1 to 8. For large values of p there are O(p?) internal shape functions and O(p) edge

functions.

4.4.2 Hierarchical Shape Functions on Triangles

We’ll express the hierarchical shape functions for triangular elements in terms of trian-
gular coordinates, indexing the vertices as 1, 2, and 3; the edges as 4, 5, and 6; and the
centroid as 7 (Figure 4.4.3). The basis consists of the following shape functions.

Vertex Shape functions. The three vertex shape functions are the linear barycentric
coordinates (4.2.7)

Ni (G, Gs) = ¢ i=1,2,3. (4.4.5)
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Figure 4.4.2: Hierarchical interior shape functions Ni’g’o, Ni’;’o (top), Né’,’g’l, N36”§’0 (mid-
dle), and Ngi’?,l’l, N?i’??’2 (bottom).
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P Square Triangle
Dimension | Dimension

1 4 3

2 8 6

3 12 10

4 17 15

5 23 21

6 30 28

7 38 36

8 47 45

Table 4.4.1: Dimension of the hierarchical basis of order p on square and triangular
elements.

3(0,0,1)

(100 2(0,1,0)

5

Figure 4.4.3: Node placement and coordinates for hierarchical approximations on a tri-
angle.

FEdge shape functions. For p > 2 there are 3(p — 1) edge shape functions which are
each nonzero on one edge (to which they are associated) and vanish on the other two.
Each shape function is selected to match the corresponding edge shape function on a
square element so that a continuous approximation may be obtained on meshes with
both triangular and quadrilateral elements. Let us construct of the shape functions NJ,
k=23,...,p, associated with Edge 4. They are required to vanish on Edges 5 and 6

and must have the form

N (C1y o, () = GGYF(E), k=23,...,p, (4.4.6a)

where Y*(£) is a shape function to be determined and ¢ is a coordinate on Edge 4 that
has value -1 at Node 1, 0 at Node 4, and 1 at Node 2. Since Edge 4 is (3 = 0, we have

NE(G, 6o, 0) = GOXF(E), G +G=1.
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The latter condition follows from (4.2.8) with (3 = 0. Along Edge 4, (; ranges from 1 to
0 and (> ranges from 0 to 1 as £ ranges from -1 to 1; thus, we may select
G=01-9/2, G=0+¢/2, G=0. (4.4.6b)

While ¢ may be defined in other ways, this linear mapping ensures that (; + (s = 1 on
Edge 4. Compatibility with the edge shape function (4.4.2) requires

-0 +8) &

N3 (G562, 0) = N(§) = ————="X(9)
where N*(€) is the one-dimensional hierarchical shape function (4.4.2¢). Thus,
_ AN*(€
X = 1— (52)- (4.4.6¢)

The result can be written in terms of triangular coordinates by using (4.4.6b) to obtain
§ = G2 — Gu; hence,

Nf((l, (2, (3) = ClCzik(Cz — (1), k=2,3,...,p. (4.4.7a)

Shape functions along other edges follow by permuting indices, i.e.,
NE(C1,Go,Gs) = GaGaX*(Gs — Ga), (4.4.7b)
Nek(Ch G2, (3) = C3C1>_<k(C1 - G), k=2,3,...,p. (4.4.7¢)

It might appear that the shape functions {*(€) has singularities at £ = £1; however, the
one-dimensional hierarchical shape functions have (1 — £2) as a factor. Thus, Y*(¢) is a

polynomial of degree k — 2. Using (2.5.8), the first four of them are

(&) =-V6, X =—-VI10g,
) = —\/g (&% —1), X&) = —\/g (76* — 3¢). (4.4.8)

Interior shape functions. The (p — 1)(p — 2)/2 internal shape functions for p > 3 are
products of the bubble function

NP = (16 (4.4.92)

and Legendre polynomials. The Legendre polynomials are functions of two of the three
triangular coordinates. Following Szabd and Babuska [7], we present them in terms of
CQ - Cl and Cg. ThUS,

N?’I’O _ N}O”O’OH(CQ — ), (4.4.9b)
NAOL _ NBOOP (96 ), (4.4.9¢)
NZZO = NBOOP(c, — (), (4.4.9d)
NPV = NBOPP (¢ — ()P (26 — 1), (4.4.9¢)
NFOZ _ NBOOp (o 1), o (4.4.91)
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The shift in (3 ensures that the range of the Legendre polynomials is [—1, 1].

Like the edge shape functions for a square (4.4.2), the edge shape functions for a
triangle (4.4.7) are products of a function on the edge (Y*(¢;—¢;)) and a function ({;¢;, @ #
7) that blends the edge function onto the element. However, the edge functions for the
triangle are not the same as those for the square. The two are related by (4.4.6¢). Having
the same edge functions for all element shapes simplifies construction of the element
stiffness matrices [6]. We can, of course, make the edge functions the same by redefining
the blending functions. Thus, using (4.4.6a,c), the edge function for Edge 4 can be N*(¢)

if the blending function is
461G
1—¢&2

In a similar manner, using (4.4.2a) and (4.4.6¢), the edge function for the shape function

N3, can be x*(€) if the blending function is

Ni(n)(1 - ¢%)
4
Shephard et al. [6] show that representations in terms of ¥* involve fewer algebraic
operations and, hence, are preferred.

The first three edge and interior shape functions are shown in Figure 4.4.4. A degree
p hierarchical approximation on a triangle has 3+3(p—1)+(p—1);(p—2); /2 unknowns
and shape functions. This function is listed in Table 4.4.1. We see that for p > 1, there are
two fewer shape functions with triangular elements than with squares. The triangular
element is optimal in the sense of using the minimal number of shape functions for a
complete polynomial of a given degree. This, however, does not mean that the complexity
of solving a given problem is less with triangular elements than with quadrilaterals. This
issue depends on the partial differential equations, the geometry, the mesh structure, and
other factors.

Carnevali et al. [4] introduced shape functions that produce better conditioned ele-
ment stiffness matrices at higher values of p than the bases presented here [7]. Adjerid
et al. [1] construct an alternate basis that appears to further reduce ill conditioning at
high p.

4.5 Three-Dimensional Shape Functions

Three-dimensional finite element shape functions are constructed in the same manner as
in two dimensions. Common element shapes are tetrahedra and hexahedra and we will

examine some Lagrange and hierarchical approximations on these elements.
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Figure 4.4.4: Hierarchical edge and interior shape functions N7 (top left), N3 (top right),
N} (middle left), N2*° (middle right), N;""* (bottom left), N2*%! (bottom right).

4.5.1 Lagrangian Shape Functions on Tetrahedra

Let us begin with a linear shape function on a tetrahedron. We introduce four nodes
numbered (for convenience) as 1 to 4 at the vertices of the element (Figure 4.5.1). Im-

posing the usual Lagrangian conditions that N;(zy, vk, 2¢) = ik, J, k = 1,2,3,4, gives
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the shape functions as

4(0,0,0,1)

3(0,0,1,0)

1(1,0,0,0)

2(0,1,0,0)

Figure 4.5.1: Node placement for linear shape functions on a tetrahedron and definition
of tetrahedral coordinates.

Nj(z,y,z) = M, (4, k,1,m) a permutation of 1,2,3, 4, (4.5.1a)
ok olm
where
1z vy =z
Dy ym(z,y, 2) = det 1 i’; ‘Z’Z ZZ'; : (4.5.1b)
1 Ty Ym 2m

i Yi %
T Ye Zk
T y &
J“m ym Zm

Cj,k,l,m = det (451C)

U Gy G W S

Placing nodes at the vertices produces a linear shape function on each face that is uniquely
determined by its values at the three vertices on the face. This guarantees continuity of

bases constructed from the shape functions. The restriction of U to element e is

Ulx,y,z) = chNj(x,y,z). (4.5.2)

Jj=1

As in two dimensions, we may construct higher-order polynomial interpolants by
either mapping to a canonical element or by introducing “tetrahedral coordinates.” Fo-

cusing on the latter approach, let

¢ = Nj(z,y, 2), j=1,2,3,4, (4.5.3a)
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4(0,0,1)

4 2
X 1(0,0,0) 2(1,0,0)

Figure 4.5.2: Transformation of an arbitrary tetrahedron to a right, unit canonical tetra-
hedron.

and regard (;, j = 1,2, 3,4, as forming a redundant coordinate system on a tetrahedron.
The coordinates of a point P located at ({1, (o, (3,(4) are (Figure 4.5.1)

VP234 VP134 VP124 VP123
_ , _ , - : = , 4.5.3b
Cl ‘/1234 C2 ‘/1234 CS ‘/1234 C4 ‘/1234 ( )

where Vjji; is the volume of the tetrahedron with vertices at 7, j, k, and [. Hence, the
coordinates of Vertex 1 are (1,0,0,0), those of Vertex 2 are (0,1,0,0), etc. The plane
¢ = 0 is the plane Ay34 opposite to vertex 1, etc. The transformation from physical to

tetrahedral coordinates is

z Ty T2 T3 T4 1

Yyl _ | Y2 Ys U G (4.5.4)
Z 21 X2 23 4 G| o
1 1 1 1 1 Ca

The coordinate system is redundant as expressed by the last equation.
The transformation of an arbitrary tetrahedron to a right, unit canonical tetrahedron

(Figure 4.5.2) follows the same lines, and we may define it as

£ = No(z,y,2), n = Ns3(z,y,2), ¢ = Ny(z,y, 2). (4.5.5)

The face Aj34 (Figure 4.5.2) is mapped to the plane £ = 0, the face A9 is mapped to
n =0, and Aj93 is mapped to ( = 0. In analogy with the two-dimensional situation, this
transformation is really the same as the mapping (4.5.3) to tetrahedral coordinates.

A complete polynomial of degree p in three dimensions has

0y = (p+1)(pg2)(p+3) (4.5.6)
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monomial terms (cf., e.g., Brenner and Scott [3], Section 3.6). With p = 2, we have
ny = 10 monomial terms and we can determine Lagrangian shape functions by placing
nodes at the four vertices and at the midpoints of the six edges (Figure 4.5.3). With
p = 3, we have n3 = 20 and we can specify shape functions by placing a node at each of
the four vertices, two nodes on each of the six edges, and one node on each of the four
faces (Figure 4.5.3). Higher degree polynomials also have nodes in the element’s interior.
In general there is 1 node at each vertex, p— 1 nodes on each edge, (p —1)(p—2)/2 nodes
on each face, and (p —1)(p — 2)(p — 3)/6 nodes in the interior.

4

10

2

Figure 4.5.3: Node placement for quadratic (left) and cubic (right) interpolants on tetra-
hedra.

Ezample 4.5.1. The quadratic shape function N? associated with vertex Node 1 of a
tetrahedron (Figure 4.5.3, left) is required to vanish at all nodes but Node 1. The plane
(1 = 0 passes through face As3, and, hence, Nodes 2, 3, 4, 6, 9, 10. Likewise, the plane
¢1 = 1/2 passes through Nodes 5, 7 (not shown), and 8. Thus, N7 must have the form

N1, o, Gy Gr) = ali (G — 1/2).
Since N =1 at Node 1 (¢; = 1), we find & = 2 and
N7 (1 Co, Gy Ca) = 2G1 (G — 1/2).
Similarly, the shape function N2 associated with edge Node 5 (Figure 4.5.3, left) is

required to vanish on the planes (; = 0 (Nodes 2, 3, 4, 6, 9, 10) and ¢, = 0 (Nodes 1, 3,
4,7,8,10) and have unit value at Node 5 (¢; = (3 = 1/2). Thus, it must be

N52(<17 <27 <37 C4) — 4C1C2-



26 Finite Element Approximation

11,2 122
21,2
N
®
E/ 121 >
o o
211 221

Figure 4.5.4: Node placement for a trilinear (left) and tri-quadratic (right) polynomial
interpolants on a cube.

4.5.2 Lagrangian Shape Functions on Cubes

In order to construct a trilinear approximation on the canonical cube {&,n,(| —1 <
&,n,¢ < 1}, we place eight nodes numbered (4, j,k), 7,7,k = 1,2, at its vertices (Figure
4.5.4). The shape function associated with Node (i, j, k) is taken as

Nij(€m,¢) = Ni(§)N; () Ni(C) (4.5.7a)
where N;(€), i = 1,2, are the hat function (4.3.1d,e). The restriction of U to this element

has the form

2 2 2
U&= 3> cijulNijul&n.0), (4.5.7b)

i=1 j=1 k=1
Once again, ¢; i = Ui jr = U(&, 05, Ck)-

The placement of nodes at the vertices produces bilinear shape functions on each
face of the cube that are uniquely determined by values at their four vertices on that
face. Once again, this ensures that shape functions and U are C° functions on a uniform
grid of cubes or rectangular parallelepipeds. Since each shape function is the product of

one-dimensional linear polynomials, the interpolant is a trilinear function of the form

U(&,n, () = a1 + asf + azn + as{ + as{n + agnC + a7CE + agdnq.

Other approximations and transformations follow their two-dimensional counterparts.
For example, tri-quadratic shape functions on the canonical cube are constructed by
placing 27 nodes at the vertices, midsides, midfaces, and centroid of the element (Figure
4.5.4). The shape function associated with Node (i, 7, k) is given by (4.5.7a) with N;(&)
given by (4.3.3b-d).
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4.5.3 Hierarchical Approximations

As with the two-dimensional hierarchical approximations described in Section 4.4, we use
Szabé and Babuska’s [7] shape function with the representation of Shephard et al. [6].
The basis for a tetrahedral or a canonical cube begins with the vertex functions (4.5.1)
or (4.5.7), respectively. As noted in Section 4.4, higher-order shape functions are written

as products

Nf(z,y,2) = X* (&, ) Bi(&n,¢) (4.5.8)

of an entity function ¥* and a blending function g;.

e The entity function is defined on a mesh entity (vertex, edge, face, or element) and
varies with the degree k of the approximation. It does not depend on the shapes

of higher-dimensional entities.

e The blending function distributes the entity function over higher-dimensional enti-

ties. It depends on the shapes of the higher-dimensional entities but not on k.

The entity functions that are used to construct shape functions for cubic and tetra-

hedral elements follow.
Edge functions for both cubes and tetrahedra are given by (4.4.6¢) and (4.4.2e) as

V2(2k — 1)
X6 = T1-e / P k> 2, (4.5.9a)
where £ € [—1, 1] is a coordinate on the edge. The first four edge functions are presented
n (4.4.8).

Face functions for squares are given by (4.4.3) divided by the square face blending
function (4.4.3a)

ME ) =P Pun),  Atp=k-4, k>4 (4.5.9b)

Here, (£,n) are canonical coordinates on the face. The first six square face functions are

9_64’0’0 —1, —5 1,0 —¢,
_ _ 362 — 1
X5,0,1 — 1, X6,2,0 _ S
TP L |

2
Face functions for triangles are given by (4.4.9) divided the triangular face blending
function (4.4.9a)

Xk )\,u(Cl, C27 C3) — f)/\(é“2 Cl) (2C3 — 1) A+ W= k — 3, k > 3. (459C)
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As with square faces, ((1,(s,(3) form a canonical coordinate system on the face. The

first six triangular face functions are

00 =1, Y =G - ¢,
3(G— )2 — 1
O =90 — 1, 0 = (G gl) ,
: ) 3(2¢ — 1)2 — 1
P =(G-G)2G - 1), 02 = (26 5 ) )

Now, let’s turn to the blending functions.

The tetrahedral element blending function for an edge is

B (€1, G2, G35 Ca) = GG (4.5.10a)

when the edge is directed from Vertex ¢ to Vertex j. Using either Figure 4.5.2 or Figure
4.5.3 as references, we see that the blending function ensures that the shape function
vanishes on the two faces not containing the edge to maintain continuity. Thus, if 1 =1
and j = 2, the blending function for Edge (1,2) (which is marked with a 5 on the left of
Figure 4.5.3) vanishes on the faces (; = 0 (Face Ayy) and (o = 0 (Face Ajzy).

The blending function for a face is

Biji(C1, G2, (3, Ca) = GGk (4.5.10b)

when the vertices on the face are 7, j, and k. Again, the blending function ensures that
the shape function vanishes on all faces but A;;,. Again referring to Figures 4.5.2 or
4.5.3, the blending function ;53 vanishes when ¢; = 0 (Face Aszy), (o = 0 (Face Ajz4),
and (3 =0 (Face Aja).

The cubic element blending function for an edge is more difficult to write with our
notation. Instead of writing the general result, let’s consider an edge parallel to the &
axis. Then

2
Broasel€m, Q) = TNy N(0) (45,11
The factor (1 — £2)/4 adjusts the edge function to (4.5.9) as described in the paragraph
following (4.4.9). The one-dimensional shape functions N;(n) and N (¢) ensure that the
shape function vanishes on all faces not containing the edge. Blending functions for other
edges are obtained by cyclic permutation of &, n, and ¢ and the index. Thus, referring
to Figure 4.5.4, the edge function for the edge connecting vertices 2,1,1 and 2,2,1 is

1—772 _ _
52,172,1(577774) = 1 N2(§)N1(C)-

Since Ny(—1) = 0 (¢f. (4.5.7b)), the shape function vanishes on the rear face of the cube

shown in Figure 4.5.4. Since N;(1) = 0, the shape function vanishes on the top face of
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the cube of Figure 4.5.4. Finally, the shape function vanishes at » = 4+1 and, hence, on
the left and right faces of the cube of Figure 4.5.4. Thus, the blending function (4.5.11a)
has ensured that the shape function vanishes on all but the bottom and front faces of
the cube of Figure 4.5.4.

The cubic face blending function for a face perpendicular to the & axis is

Bigw(€m,¢) = Ni(§)(1 = n*)(1 = ¢7). (4.5.11b)

Referring to Figure 4.5.4, the quadratic terms in n and ¢ ensure that the shape func-
tion vanishes on the right, left (n = +1), top, and bottom ({ = +1) faces. The one-
dimensional shape function N;(¢) vanishes on the rear (€ = —1) face when i = 1 and on
the front (£ = 1) face when i = 2; thus, the shape function vanishes on all faces but the
one to which it is associated.

Finally, there are elemental shape functions. For tetrahedra, there are (p — 1)(p —

2)(p — 3)/6 elemental functions for p > 4 that are given by

NG (G Coy Gy Ga) = C1GaCaCaPa(Co — 1) Pu(2G — 1) P, (26 — 1),
VA+pu+v=~k—4, k=4,5...,p. (4.5.12a)

The subscript 0 is used to identify the element’s centroid. The shape functions vanish
on all element faces as indicated by the presence of the multiplier (;(2(3(4. We could
also split this function into the product of an elemental function involving the Legendre
polynomials and the blend involving the product of the tetrahedral coordinates. However,
this is not necessary.

For p > 6 there are the following elemental shape functions for a cube

NgH (& Q) = (1= )1 =) (1 = OIROPmPAC), YA+ p+v=Fk—6.
(4.5.12b)

Again, the shape function vanishes on all faces of the element to maintain continuity.
Adding, we see that there are (p—5),(p—4)4(p—3)+/6 element modes for a polynomial
of order p.

Shephard et al. [6] also construct blending functions for pyramids, wedges, and prisms.
They display several shape functions and also present entity functions using the basis of
Carnevali et al. [4].

Problems

1. Construct the shape functions associated with a vertex, an edge, and a face node
for a cubic Lagrangian interpolant on the tetrahedron shown on the right of Figure

4.5.3. Express your answer in the tetrahedral coordinates (4.5.3).
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3(0,1
- 01

1 (X 11y 1) h3 2 (X 2'y 2)
® g
1(0,0) 2(1,0

Y

Figure 4.6.1: Nomenclature for a finite element in the physical (x,y)-plane and for its
mapping to a canonical element in the computational (£, n)-plane.

4.6 Interpolation Error Analysis

We conclude this chapter with a brief discussion of the errors in interpolating a function u
by a piecewise polynomial function U. This work extends our earlier study in Section 2.6
to multi-dimensional situations. Two- and three-dimensional interpolation is, naturally,
more complex. In one dimension, it was sufficient to study limiting processes where mesh
spacings tend to zero. In two and three dimensions, we must also ensure that element
shapes cannot be too distorted. This usually means that elements cannot become too
thin as the mesh is refined. We have been using coordinate mappings to construct
bases. Concentrating on two-dimensional problems, the coordinate transformation from
a canonical element in, say, the (£, n)-plane to an actual element in the (z, y)-plane must
be such that no distorted elements are produced.

Let’s focus on triangular elements and consider a linear mapping of a canonical unit,
right, 45° triangle in the (£, n)-plane to an element e in the (x,y)-plane (Figure 4.6.1).
More complex mappings will be discussed in Chapter 5. Using the transformation (4.2.8)
to triangular coordinates in combination with the definitions (4.2.6) and (4.2.7) of the

canonical variables, we have

X r1T T2 I3 Cl 1 To I3 1— f —n
Yyl =1vn Y ys Gl=|un ¥ ys 3 : (4.6.1)
1 1 1 1 (3 1 1 1 n

The Jacobian of this transformation is

J, = { Te ] . (4.6.2a)
Ye Yn
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Differentiating (4.6.1), we find the determinant of this Jacobian as

det(J.) = (wo — z1)(y3 — 1) — (23 — 1) (y2 — Y1)- (4.6.2b)

Lemma 4.6.1. Let h, be the longest edge and a, be the smallest angle of Element e,
then

h2
?e sin a, < det(J,) < A2 sin a. (4.6.3)

Proof. Label the vertices of Element e as 1, 2, and 3; their angles as a; < as < ag3; and
the lengths of the edges opposite these angles as hy, hy, and hy (Figure 4.6.1). With

a1 = a, being the smallest angle of Element e, write the determinant of the Jacobian as
det (Je) = h2h3 sin Qle.

Using the law of sines we have hy < hy < hy = h.. Replacing hy by hjz in the above
expression yields the right-hand inequality of (4.6.3). The triangular inequality gives
hs < hy + he. Thus, at least one edge, say, hy > h3/2. This yields the left-hand
inequality of (4.6.3). O

Theorem 4.6.1. Let 0(x,y) € H*(Q.) and 0(€,n) € H*(Qy) be such that 0(x,y) =
é(f, n) where Q. is the domain of element e and €y is the domain of the canonical element.
Under the linear transformation (4.6.1), there exist constants cs and Cy, independent of
0, 0, he, and o, such that

¢, sin® /2 achi 050, < |9~|5,Q0 < C,sin /2 achi 050, (4.6.4a)

where the Sobolev seminorm is

02, = > / / (D®0)?dxdy (4.6.4b)

|K|=s"q]
with D®u being a partial derivative of order |k| = s (cf. Section 3.2).

Proof. Let us begin with s = 0, where
/ / 0%dxdy = det(J,) / / 6%dcdn
Qe Qo

013 0, = det(To) 1615 -
Dividing by det(J.) and using (4.6.3)

or

216150,

sin . h?’

032 ~
o, _
sin a,.h?

2
0,00 >
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Taking a square root, we see that (4.6.4a) is satisfied with ¢o = 1 and Cy = /2.

With s = 1, we use the chain rule to get
9,5 = égfx + énn:va Hy = égfy + énny-

Then,

|6

2 = / / (62 + 02)dady = det(J,) / / (91,602 + 292,00, + g5..02)d&dn
Qe Qo

where
2 2 _ 2 2
Gre =& + &, G2,e = Eaw + Eyy, g3,e = Ny + 10

Applying the inequality ab < (a? + b?)/2 to the center term on the right yields

1012, < det(J.) / / (91,608 + g2.0(0F + 02) + g3 02)dEdn.
Qo

Letting
6 = max(|gie + G2.el, |93,e + 92,])

and using (4.6.4b), we have
01 o, < det(J.)3101% g, (4.6.5a)

Either by using the chain rule above with # = x and y or by inverting the mapping
(4.6.1), we may show that

Ty e = — Ye ___Te
det(J,) T Tdet@) T T det(dn)

Y
gw_ K

= de@) T

From (4.6.2), |x¢l, |2y, [vel, |yn| < he; thus, using (4.6.3), we have ||, &, 72, [my| <
2/(hesin o). Hence,

§ < 16
~ (hesina,)?

Using this result and (4.6.3) with (4.6.5a), we find

16 -
— 017 - (4.6.5b)

01>, <
| |1’Qe sin a,

Hence, the left-hand inequality of (4.6.4a) is established with ¢; = 1/4.
To establish the right inequality, we invert the transformation and proceed from €2
to €2, to obtain

2

2 1,Q 6.6
sl . ° 4- . ;i
1.8% det(Je) ( )

G
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with
5 = max(|§1,e + §2,6|7 |§3,e + §2,e|)7

gl,e = xz + :L.727’ 9276 = xfyg + xnyna 9376 = yg + y%

We've indicated that |z¢|, |2, [ve|, |yy| < he. Thus, § < 4h2 and, using (4.6.3), we find

~ 8
012, < ——
| |1’Q° ~ sina,

1013 g, - (4.6.6b)

Thus, the right inequality of (4.6.4b) is established with C; = 2v/2.
The remainder of the proof follows the same lines and is described in Axelsson and
Barker [2]. O

With Theorem 4.6.1 established, we can concentrate on estimating interpolation errors

on the canonical triangle. For simplicity, we’ll use the Lagrange interpolating polynomial

n

U(&m) =Y al,n)Ni(&,m), (4.6.7)

i=1

with n being the number of nodes on the standard triangle. However, with minor alter-
ations, the results apply to other bases and, indeed, other element shapes. We proceed

with one preliminary theorem and then present the main result.

Theorem 4.6.2. Let p be the largest integer for which the interpolant (4.6.7) is exact
when @(&,n) is a polynomial of degree p. Then, there exists a constant C' > 0 such that

i — Ulsgy < Clitlpr1.00, ~ Yu€ HYQ),  s5=0,1,...,p+1. (4.6.8)

Proof. The proof utilizes the Bramble-Hilbert Lemma and is presented in Axelsson and
Barker [2]. O

Theorem 4.6.3. Let Q be a polygonal domain that has been discretized into a net of
triangular elements ., e = 1,2,..., Na. Let h and o denote the largest element edge
and smallest angle in the mesh, respectively. Let p be the largest integer for which (4.6.7)
is exact when (&, n) is a complete polynomial of degree p. Then, there exists a constant
C > 0, independent of w € HP™' and the mesh, such that

C'thrlfs

U< 2
Ju s < [sin o/

||y, Yu € HPT(Q), s=0,1. (4.6.9)

Remark 1. The results are restricted s = 0, 1 because, typically, U € H' n HP*!,
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Proof. Consider an element e and use the left inequality of (4.6.4a) with 6 replaced by
u — U to obtain

lu — U|§,Qe < ¢t sin™ M b B2 0 — U|§,Qo'

Next, use (4.6.8)

lu — U|§,Qe < ¢;?sin~ %! aeh;25+20|ﬂ|§+1’90.

Finally, use the right inequality of (4.6.4a) to obtain

2 S22l 254202 oL p2py 12
lu—Ulq, <c,sin ach, = CC,,  sin  achPlul,, g -

Combining the constants
lu — U|§,Qe < Csin™% aehz(p+1_s)|u|12,+1,ge.
Summing over the elements and taking a square root gives (4.6.9). O

A similar result for rectangles follows.

Theorem 4.6.4. Let the rectangular domain €2 be discretized into a mesh of rectangular
elements ., e =1,2,..., Na. Let h and 3 denote the largest element edge and smallest
edge ratio in the mesh, respectively. Let p be the largest integer for which (4.6.7) is exact
when @(&€,n) is a complete polynomial of degree p. Then, there exists a constant C' > 0,
independent of u € HP™' and the mesh, such that

Chpti=s o1
|U—U|5 S T|U|p+1, Yue H (Q), 820,1. (4610)
Proof. The proof follows the lines of Theorem 4.6.3 [2]. O

Thus, small and large (near m) angles in triangular meshes and small aspect ratios
(the minimum to maximum edge ratio of an element) (3 in a rectangular mesh must be
avoided. If these quantities remain bounded then the mesh is uniform as expressed by

the following definition.

Definition 4.6.1. A family of finite element meshes A, is uniform if all angles of all
elements are bounded away from 0 and 7 and all aspect ratios are bounded away from
zero as the element size h — 0.

With such uniform meshes, we can combine Theorems 4.6.2, 4.6.3, and 4.6.4 to obtain

a result that appears more widely in the literature.

Theorem 4.6.5. Let a family of meshes Ay, be uniform and let the polynomial inter-
polant U of u € HP™' be exact whenever u is a complete polynomial of degree p. Then

there exists a constant C' > 0 such that

lu—Uls < ChP 5 lulyyy, s=0,1. (4.6.11)
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Proof. Use the bounds on o and 3 with (4.6.9) and (4.6.10) to redefine the constant C
and obtain (4.6.11). O

Theorems 4.6.2 - 4.6.5 only apply when v € HP*!. If u has a singularity and belongs
to H! ¢ < p, then the convergence rate is reduced to

lu —Uly < Ch™*|uly, s=0,1. (4.6.12)

Thus, there appears to be little benefit to using p th-degree piecewise-polynomial inter-
polants in this case. However, in some cases, highly graded nonuniform meshes can be

created to restore a higher convergence rate.



36

Finite Element Approximation



Bibliography

[1]

S. Adjerid, M. Aiffa, and J.E. Flaherty. Hierarchical finite element bases for triangular
and tetrahedral elements. Computer Methods in Applied Mechanics and Engineering,
2000. to appear.

O. Axelsson and V.A. Barker. Finite Element Solution of Boundary Value Problems.
Academic Press, Orlando, 1984.

S.C. Brenner and L.R. Scott. The Mathematical Theory of Finite Element Methods.
Springer-Verlag, New York, 1994.

P. Carnevali, R.V. Morric, Y.Tsuji, and B. Taylor. New basis functions and com-
putational procedures for p-version finite element analysis. International Journal of
Numerical Methods in Enginneering, 36:3759-3779, 1993.

S. Dey, M.S. Shephard, and J.E. Flaherty. Geometry-based issues associated with
p-version finite element computations. Computer Methods in Applied Mechanics and
Engineering, 150:39 — 50, 1997.

M.S. Shephard, S. Dey, and J.E. Flaherty. A straightforward structure to construct
shape functions for variable p-order meshes. Computer Methods in Applied Mechanics
and Engineering, 147:209-233, 1997.

B. Szabé and 1. Babuska. Finite Element Analysis. John Wiley and Sons, New York,
1991.

0.C. Zienkiewicz. The Finite Element Method. McGraw-Hill, New York, third edition,
1977.

37



