Chapter 3

Multi-Dimensional Variational
Principles

3.1 Galerkin’s Method and Extremal Principles

The construction of Galerkin formulations presented in Chapters 1 and 2 for one-dimensional
problems readily extends to higher dimensions. Following our prior developments, we’ll

focus on the model two-dimensional self-adjoint diffusion problem

Llu] = =(p(z, Y)ua)s — (P(z, Y)uy)y + q(z,y)u = f(z,y),  (z,9) €Q,  (3.11a)
where Q C R? with boundary 99 (Figure 3.1.1) and p(z,y) > 0, ¢(z,y) > 0, (x,y) € Q.

Essential boundary conditions

u(z,y) = a(x,y), (x,y) € 00, (3.1.1b)
are prescribed on the portion 92 of 9€2 and natural boundary conditions
0
p(z, y)% = pVu - n = p(uycosf + u,sinf) = 3(x,y), (x,y) € 00y,

(3.1.1¢c)

are prescribed on the remaining portion 02y of 9€2. The angle 6 is the angle between
the z-axis and the outward normal n to 9Q (Figure 3.1.1).
The Galerkin form of (3.1.1) is obtained by multiplying (3.1.1a) by a test function v

and integrating over ) to obtain
/ / v[=(pug)e — (puy)y + qu — fldrdy = 0, (3.1.2)
Q

In order to integrate the second derivative terms by parts in two and three dimensions,

we use Green’s theorem or the divergence theorem

/ V -adzdy = /a -nds (3.1.3a)

Q onN
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Figure 3.1.1: Two-dimensional region €2 with boundary 02 and normal vector n to 0.

where s is a coordinate on 992, a = [ay, ay)?, and

. aal 8a2
Vea=—"+ 3 (3.1.3h)

In order to use this result in the present circumstances, let us introduce vector notation
(Pus)e + (puy)y =V - (pVu)
and use the “product rule” for the divergence and gradient operators
V- (vpVu) = (Vv) - (pVu) + vV - (pVu). (3.1.3¢)

Thus,
// —vV - (pVu)dxdy = / [(Vv) - (pVu) = V - (vpVu)|dzdy.

Now apply the divergence theorem (3.1.3) to the second term to obtain

// —oV - (pVu da:dy—/ Vo - pVudxdy — /vqu-nds.

Thus, (3.1.2) becomes

/ Vv - pVu+v(qu — f)]dzdy — /vpunds =0 (3.1.4)
B
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where (3.1.1c) was used to simplify the surface integral.

The integrals in (3.1.4) must exist and, with « and v of the same class and p and ¢

//(ui + up + u?)dedy
0

exists. This is the two-dimensional Sobolev space H!. Drawing upon our experiences

smooth, this implies

in one dimension, we expect u € Hp, where functions in H}, are in H' and satisfy the
Dirichlet boundary conditions (3.1.1b) on Q. Likewise, we expect v € H}, which denotes
that v = 0 on 0Qg. Thus, the variation v should vanish where the trial function u is
prescribed.

Let us extend the one-dimensional notation as well. Thus, the L? inner product is
(v, f) == // vfdzdy (3.1.5a)
Q

and the strain energy is

A(v,u) == (Vou,pVu) + (v, qu) = //[p(kuw + vyuy) + quuldrdy. (3.1.5b)

We also introduce a boundary L? inner product as

<v,w >= /des. (3.1.5¢)

00N

The boundary integral may be restricted to 92y since v = 0 on 02g. With this nomen-
clature, the variational problem (3.1.4) may be stated as: find u € H}, satisfying

A(v,u) = (v, f)+ < v, >, Yv € Hj. (3.1.6)

The Neumann boundary condition (3.1.1c) was used to replace pu, in the boundary
inner product. The variational problem (3.1.6) has the same form as the one-dimensional
problem (2.3.3). Indeed, the theory and extremal principles developed in Chapter 2 apply
to multi-dimensional problems of this form.

Theorem 3.1.1. The function w € Hj, that minimizes
Iw] = A(w,w) = 2(w, f) =2 < w, 3 >. (3.1.7)
is the one that satisfies (3.1.6), and conversely.

Proof. The proof is similar to that of Theorem 2.2.1 and appears as Problem 1 at the

end of this section. O
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Corollary 3.1.1. Smooth functions u € H} satisfying (3.1.6) or minimizing (3.1.7) also
satisfy (3.1.1).

Proof. Again, the proof is left as an exercise. O

Ezxample 8.1.1. Suppose that the Neumann boundary conditions (3.1.1c) are changed

to Robin boundary conditions
Pun + yu = 3, (xz,y) € 00y. (3.1.8a)

Very little changes in the variational statement of the problem (3.1.1a,b), (3.1.8). Instead
of replacing pu, by § in the boundary inner product (3.1.5¢), we replace it by 3 — ~yu.
Thus, the Galerkin form of the problem is: find u € H}, satisfying

A(v,u) = (v, f)+ < v, 8 —yu >, Vv € Hy. (3.1.8b)

Example 3.1.2. Variational principles for nonlinear problems and vector systems
of partial differential equations are constructed in the same manner as for the linear
scalar problems (3.1.1). As an example, consider a thin elastic sheet occupying a two-
dimensional region . As shown in Figure 3.1.2; the Cartesian components (uq, us) of
the displacement vector vanish on the portion 0Q2j of of the boundary 02 and the com-

ponents of the traction are prescribed as (S, S3) on the remaining portion 9Qy of 0S).

The equations of equilibrium for such a problem are (cf., e.g., [6], Chapter 4)

oy 0012

= 1.
5% T oy 0, (3.1.9a)
0012 0099

= Q .1.9b
5z T oy 0, (=,y9)€Q, (3.1.9b)

where 045, 7, 7 = 1, 2, are the components of the two-dimensional symmetric stress tensor

(matrix). The stress components are related to the displacement components by Hooke’s

law
. E 8u1 8uz
011 = 1_1/2( oz +v 8y ), (3110&)
. E 8u1 8uz
0929 — 11— 1/2 (l/ 83: ay ), (3110b)
E 0 0
12 = (28 22y (3.1.10¢)
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Figure 3.1.2: Two-dimensional elastic sheet occupying the region 2. Displacement com-
ponents (ug, us) vanish on 0Qx and traction components (Sy, Se) are prescribed on 9y .

where F and v are constants called Young’s modulus and Poisson’s ratio, respectively.

The displacement and traction boundary conditions are

uy(z,y) =0, us(z,y) =0, (x,y) € 00g, (3.1.11a)
nio11 + nao1g = Si, n1012 + Nao2 = Sa, (z,y) € 0Qn, (3.1.11b)
where n = [ny,ny|" = [cos®,sinf]” is the unit outward normal vector to 9Q (Figure

3.1.2).

Following the one-dimensional formulations, the Galerkin form of this problem is
obtained by multiplying (3.1.9a) and (3.1.9b) by test functions v; and vy, respectively,
integrated over €2, and using the divergence theorem. With u; and us being components
of a displacement field, the functions v; and vy are referred to as components of the
virtual displacement field.

We use (3.1.9a) to illustrate the process; thus, multiplying by v; and integrating over

Q, we find
80'11 80'12 .
//vl[ o T oy |dzdy = 0.
Q

The three stress components are dependent on the two displacement components and

are typically replaced by these using (3.1.10). Were this done, the variational principle
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would involve second derivatives of u; and uy. Hence, we would want to use the divergence
theorem to obtain a symmetric variational form and reduce the continuity requirements
on u; and uy. We’ll do this, but omit the explicit substitution of (3.1.10) to simplify the
presentation. Thus, we regard oy; and 015 as components of a two-vector, we use the

divergence theorem (3.1.3) to obrain

v v
//[ax1 o11 + ayl Ulg]dl‘dy = /01[7110'11 +n2012]ds.
Q

o0

Selecting v; € Hj implies that the boundary integral vanishes on dQg. This and the

subsequent use of the natural boundary condition (3.1.11b) give

// 81}1 —o0 + aay oz|dxdy = / v151ds, Vv, € Hj. (3.1.12a)

a0
Similar treatment of (3.1.9b) gives
0 0
/ ﬁa'lg ﬂ0'22]d1'dy = / UQSQdS, VUQ € H& (3112b)
o0y

Equations (3.1.12a) and (3.1.12b) may be combined and written in a vector form.
Letting u = [uy, us]|”, etc., we add (3.1.12a) and (3.1.12b) to obtain the Galerkin problem:
find u € H} such that

A(v,u) =< v,S >, Vv € Hy, (3.1.13a)
where
ov ov ov ov
A(V, 11) = //[a—xla'll + 8—?;0'22 + (8—; + a—;)alz]dxdy, (3113b)
Q
<V, S >= / (U151 + ’UgSQ)dS. (31130)
0N

When a vector function belongs to H', we mean that each of its components is in H*.
The spaces H}, and Hj are identical since the displacement is trivial on 0.

The solution of (3.1.13) also satisfies the following minimum problem.

Theorem 3.1.2. Among all functions w = [wy, wq]T € HL the solution u = [uy, us]” of
(3.1.13) is the one that minimizes

8w1 Qwsy ow; 0wy,
Iiw] = 1_y2 //{1—u T+ (G (g + 2y
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+(1;V)

0 0
G+ G2 rdy = [ w15+ wnSi)ds,

NN

and conversely.

Proof. The proof is similar to that of Theorem 2.2.1. The stress components o0;;, i, 7 =

1,2, have been eliminated in favor of the displacements using (3.1.10). O
Let us conclude this section with a brief summary.

e A solution of the differential problem, e.g., (3.1.1), is called a “classical” or “strong”

solution. The function u € Hg, where functions in H? have finite values of
J [ Ce)? 0y )+ @22 + ()7 )y
0

and functions in H% also satisfy all prescribed boundary conditions, e.g., (3.1.1b,c).

e Solutions of a Galerkin problem such as (3.1.6) are called “weak” solutions. They
may be elements of a larger class of functions than strong solutions since the high-
order derivatives are missing from the variational statement of the problem. For
the second-order differential equations that we have been studying, the variational
form (e.g., (3.1.6)) only contains first derivatives and u € Hj. Functions in H'

have finite values of

/ / [(12)? + (uy)? + u?] dadly.

and functions in H} also satisfy the prescribed essential (Dirichlet) boundary con-
dition (3.1.1b). Test functions v are not varied where essential data is prescribed
and are elements of H}. They satisfy trivial versions of the essential boundary

conditions.

e While essential boundary conditions constrain the trial and test spaces, natural
(Neumann or Robin) boundary conditions alter the variational statement of the
problem. As with (3.1.6) and (3.1.13), inhomogeneous conditions add boundary

inner product terms to the variational statement.

e Smooth solutions of the Galerkin problem satisfy the original partial differential

equation(s) and natural boundary conditions, and conversely.

e Galerkin problems arising from self-adjoint differential equations also satisfy ex-
tremal problems. In this case, approximate solutions found by Galerkin’s method
are best in the sense of (2.6.5), i.e., in the sense of minimizing the strain energy of

the error.
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Problems

1. Prove Theorem 3.1.1 and its Corollary.

2. Prove Theorem 3.1.2 and aslo show that smooth solutions of (3.1.13) satisfy the
differential system (3.1.9) - (3.1.11).

3. Consider an infinite solid medium of material M containing an infinite number of
periodically spaced circular cylindrical fibers made of material F'. The fibers are
arranged in a square array with centers two units apart in the x and y directions
(Figure 3.1.3). The radius of each fiber is @ (< 1). The aim of this problem is to
find a Galerkin problem that can be used to determine the effective conductivity

of the composite medium. Because of embedded symmetries, it suffices to solve a

>

Figure 3.1.3: Composite medium consisting of a regular array of circular cylindrical fibers
embedded in in a matrix (left). Quadrant of a Periodicity cell used to solve this problem
(right).

problem on one quarter of a periodicity cell as shown on the right of Figure 3.1.3.

The governing differential equations and boundary conditions for the temperature
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(or potential, etc.) u(z,y) within this quadrant are

V. (pVu) =0, (z,y) € Qp UQu,
. (0,y) = us(1,y) =0, 0<y<1,
u(z,0) =0, u(z,1) =1, 0<z<1,
ueC?, pu, € C°, (z,y) € 2* +9* = a”.

(3.1.14)

The subscripts F' and M are used to indicate the regions and properties of the fiber

and matrix, respectively. Thus, letting
Q:={(z,y)|0<z <1, 0<y <1},
we have
Qp :={(r,0)|0<r<a, 0<0<7/2},
and
Qﬂliziﬂ-—glp.
The conductivity p of the fiber and matrix will generally be different and, hence, p

will jump at » = a. If necessary, we can write

| opr, 2?4+ y*<a®
p(z,y) = { par, if 22 442 > a?

Although the conductivities are discontinuous, the last boundary condition confirms

that the temperature v and flux pu, are continuous at r = a.

3.1. Following the steps leading to (3.1.6), show that the Galerkin form of this

problem consists of determining v € H}, as the solution of

// P(uzvy + uyvy)drdy = 0, Vv € Hj.

QprpUQ

Define the spaces H}, and H{ for this problem. The Galerkin problem appears
to be the same as it would for a homogeneous medium. There is no indication

of the continuity conditions at r = a.

3.2. Show that the function w € H}, that minimizes
Iw] = // p(w} + w})dxdy
QpURy

is the solution u of the Galerkin problem, and conversely. Again, there is little

evidence that the problem involves an inhomogeneous medium.
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3.2 Function Spaces and Approximation

Let us try to formalize some of the considerations that were raised about the properties
of function spaces and their smoothness requirements. Consider a Galerkin problem in
the form of (3.1.6). Using Galerkin’s method, we find approximate solutions by solving
(3.1.6) in a finite-dimensional subspace SV of H'. Selecting a basis {¢;}}_, for SV, we

consider approximations U € S¥ of u in the form
N
Ulz,y) =Y cibi(x,y). (3.2.1)
7j=1

With approximations V' € SY of v having a similar form, we determine U as the solution
of

AV, U)=(V, )+ <V,B>, V¥V eSSy (3.2.2)

(Nontrivial essential boundary conditions introduce differences between SY and S}’ and
we have not explicitly identified these differences in (3.2.2).)

We’ve mentioned the criticality of knowing the minimum smoothness requirements
of an approximating space S. Smooth (e.g. C') approximations are difficult to con-
struct on nonuniform two- and three-dimensional meshes. We have already seen that
smoothness requirements of the solutions of partial differential equations are usually ex-
pressed in terms of Sobolev spaces, so let us define these spaces and examine some of
their properties. First, let’s review some preliminaries from linear algebra and functional

analysis.
Definition 3.2.1. V is a linear space if
1. u,v € Vthenu+v €V,
2. u € V then au € V, for all constants «, and
3. u,v € V then au + v € V, for all constants «, .

Definition 3.2.2. A(u,v) is a bilinear form on V x V if, for u,v,w € V and all constants
a and (3,

1. A(u,v) € R, and
2. A(u,v) is linear in each argument; thus,
A(u, av + fw) = aA(u,v) + fA(u, w),

Alau + pv,w) = aA(u, w) + BA(v, w).
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Definition 3.2.3. An inner product A(u,v) is a bilinear form on V x V that

1. is symmetric in the sense that A(u,v) = A(v,u), Yu,v € V, and

2. A(u,u) >0, u#0and A(0,0) =0, Vu € V.
Definition 3.2.4. The norm || - |4 associated with the inner product A(u,v) is

lu|la = VA(u, u) (3.2.3)

and it satisfies

L lulla >0, u#0, [|0|4 =0,

2. flu+vlla < llulla+ ||lv]l4; and

3. ||aul|a = ||||ul| 4, for all constants a.

The integrals involved in the norms and inner products are Lebesgue integrals rather
than the customary Riemann integrals. Functions that are Riemann integrable are also
Lebesgue integrable but not conversely. We have neither time nor space to delve into
Lebesgue integration nor will it be necessary for most of our discussions. It is, however,
helpful when seeking understanding of the continuity requirements of the various function
spaces. So, we’ll make a few brief remarks and refer those seeking more information to
texts on functional analysis [3, 4, 5].

With Lebesgue integration, the concept of the length of a subinterval is replaced by
the measure of an arbitrary point set. Certain sets are so sparse as to have measure
zero. An example is the set of rational numbers on [0, 1]. Indeed, all countably infinite
sets have measure zero. If a function u € V possesses a given property except on a set
of measure zero then it is said to have that property almost everywhere. A relevant
property is the notion of an equivalence class. Two functions u,v € V belong to the same

equivalence class if

|lu —v||a = 0.

With Lebesgue integration, two functions in the same equivalence class are equal almost
everywhere. Thus, if we are given a function v € V and change its values on a set of
measure zero to obtain a function v, then u and v belong to the same equivalence class.

We need one more concept, the notion of completeness. A Cauchy sequence {u, }52 | €

VY is one where

lim ||ty — un|la = 0.
m,n—00



12 Multi-Dimensional Variational Principles

If {u,}5°, converges in || - ||4 to a function u € V then it is a Cauchy sequence. Thus,

using the triangular inequality,

Hm ||t — uplla < limoo{”um —ulla + ||u—uy|la} =0.

m,n— 00 m,n—

A space V where the converse is true, i.e., where all Cauchy sequences {u, }5°, converge

in || - ||4 to functions u € V, is said to be complete.

Definition 3.2.5. A complete linear space V with inner product A(u, v) and correspond-

ing norm |Ju||4, u,v € V is called a Hilbert space.

Let’s list some relevant Hilbert spaces for use with variational formulations of bound-
ary value problems. We’'ll present their definitions in two space dimensions. Their ex-

tension to one and three dimensions is obvious.

Definition 3.2.6. The space L*(f2) consists of functions satisfying
L*(Q) == {u] // u?dzdy < oo} (3.2.4a)
0

It has the inner product

(u,v) = // uvdxdy (3.2.4b)

and norm

[ullo = v/ (u, u). (3.2.4¢)

Definition 3.2.7. The Sobolev space H* consists of functions u which belong to L? with

their first £ > 0 derivatives. The space has the inner product and norm

(w,v) =Y _ (D"u, DFv), (3.2.5a)
K<k

ulle = v/ (u, wr, (3.2.5b)

where
k = [k, Ko]”, |K| = K1 + Ko, (3.2.5¢)

with x; and ko non-negative integers, and

8I€1+I€2u

DRy = — .
Y oxr1Qyt2

(3.2.5d)
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In particular, the space H' has the inner product and norm

(uy,0)1 = (uy0) + (g, vg) + (uy, vy) = //(uv + ugpvy + uyvy)drdy (3.2.6a)
0
1/2
lulls = //(u2 +ud +ud)dady| (3.2.6b)
0

Likewise, functions u € H? have finite values of
|5 = //[ui,x + ui,y + “Zy +u? + “Z + u?]dady.
Q

Example 3.2.1. We have been studying second-order differential equations of the
form (3.1.1) and seeking weak solutions u € H' and U € S¥ C H' of (3.1.6) and (3.2.2),
respectively. Let us verify that H'! is the correct space, at least in one dimension. Thus,
consider a basis of the familiar piecewise-linear hat functions on a uniform mesh with
spacing h = 1/N

(x—zj_1)/h, ifz;; <z <,
pj(z) =< (wjy1—2x)/h, ifz; <z <wjip . (3.2.7)
0, otherwise

Since SV C H', ¢; and ¢ must be in L?, j = 1,2,..., N. Consider C* approximations of
¢j(z) and ¢}(x) obtained by “rounding corners” in O(h/n)-neighborhoods of the nodes
Tj_1, Tj, Tj11 as shown in Figure3.2.1. A possible smooth approximation of ¢(x) is

(z — xj11) (z — @)

1
¢i(x) = ¢}, (x) = ﬁ[tanh nT + tanh — — 2tanh -

(z —5)
h h I

A smooth approximation ¢;, of ¢; is obtained by integration as

h [cosh n((x —xj41)/h) coshn((z —x;_1)/h)

(1) = o " cosh® n((z — z;)/h)

Clearly, ¢;, and ¢}, are elements of L?. The “rounding” disappears as n — oo and

1

lim [ [¢ ()]2dz ~ 2h(1/h)? = 2/h.

Jn
n—oo [, ’

The explicit calculations are somewhat involved and will not be shown. However, it
seems clear that the limiting function ¢ € L? and, hence, ¢; € SV for fixed h.
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Figure 3.2.1: Smooth version of a piecewise linear hat function (3.2.7) (top), its first
derivative (center), and the square of its first derivative (bottom). Results are shown
with z; 1 = -1, 2; =0, zj41 =1 (h=1), and n = 10.

Example 3.2.2. Consider the piecewise-constant basis function on a uniform mesh

. . 1, ifl'j_1§1'<l'j
0j(x) = { 0, otherwise ' (3.2.8)

A smooth version of this function and its first derivative are shown in Figure 3.2.2 and

may be written as

Pjn(T) = %[tanh % ~tanh M |
) = P ree2™E  T1) e n(@ — 1)
¢j,n($) - 2h[SeCh : sech . ]

As n — oo, ¢,, approaches a square pulse; however, qﬁ;’n is proportional to the combi-
nation of delta functions

d);n(x) x 0(z —xj_1) — 6(x — x;).
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Thus, we anticipate problems since delta functions are not elements of L?. Squaring

0 (7)

bz (e @ —mi) o on(r—xa) o on(r — 1)) an(z — )
[¢j,n(x)] = (2h,) [sech . 2sech - sech . +sech . ].

As shown in Figure 3.2.2, the function sechn(z — x;)/h is largest at z; and decays

exponentially fast from z;; thus, the center term in the above expression is exponentially

small relative to the first and third terms. Neglecting it yields

L~ (T 2lsechtME T e E)
[0 (7)] = (2h,) [sech 7 + sech ; !
Thus,
/1[¢/' (2)]%dx ~ L[tanh M(Q + SechQM)
o " T 12k h N

+ tanh M(? + sech2w)]é.

This is unbounded as n — oo; hence, ¢j(x) ¢ L* and ¢;(z) ¢ H'.

_ L L
-0.5 0 0.5 1 15 -0.5 0 0.5 1 15

Figure 3.2.2: Smooth version of a piecewise constant function (3.2.8) (left) and its first
derivative (right). Results are shown with z; 1 =0, ; =1 (h = 1), and n = 20.

Although the previous examples lack rigor, we may conclude that a basis of continuous
functions will belong to H'! in one dimension. More generally, v € H* implies that
u € C*~1 in one dimension. The situation is not as simple in two and three dimensions.
The Sobolev space H* is the completion with respect to the norm (3.2.5) of C* functions
whose first k partial derivatives are elements of L?. Thus, for example, v € H' implies
that u, u,, and u, are all elements of L?. This is not sufficient to ensure that u is
continuous in two and three dimensions. Typically, if 92 is smooth then u € H* implies
that u € C*(QQ U JQ) where s is the largest integer less than (k — d/2) in d dimensions
[1, 2]. In two and three dimensions, this condition implies that u € C*~2.

Problems
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1. Assuming that p(z,y) > 0 and ¢(z,y) > 0, (z,y) € Q, find any other conditions

that must be satisfied for the strain energy
Av,u) = //[p(vxux + vyuy) + quuldzdy
Q

to be an inner product and norm, i.e., to satisfy Definitions 3.2.3 and 3.2.4.

2. Construct a variational problem for the fourth-order biharmonic equation

A(pAu) = f(z,y), (z,y) € Q,

where

AU = Ugy + Uy,

and p(z,y) > 01is smooth. Assume that u satisfies the essential boundary conditions
u(z,y) =0, un(z,y) =0, (z,y) € 09,

where n is a unit outward normal vector to 2. To what function space should the

weak solution of the variational problem belong?

3.3 Overview of the Finite Element Method

Let us conclude this chapter with a brief summary of the key steps in constructing a finite-
element solution in two or three dimensions. Although not necessary, we will continue
to focus on (3.1.1) as a model.

1. Construct a variational form of the problem. Generally, we will use Galerkin’s
method to construct a variational problem. As described, this involves multiplying the
differential equation be a suitable test function and using the divergence theorem to get
a symmetric formulation. The trial function u € H}, and, hence, satisfies any prescribed
essential boundary conditions. The test function v € H{ and, hence, vanishes where
essential boundary conditions are prescribed. Any prescribed Neumann or Robin bound-
ary conditions are used to alter the variational problem as, e.g., with (3.1.6) or (3.1.8b),
respectively.

Nontrivial essential boundary conditions introduce differences in the spaces H}, and
H}. Furthermore, the finite element subspace S cannot satisfy non-polynomial bound-
ary conditions. One way of overcoming this is to transform the differential equation to
one having trivial essential boundary conditions (¢f. Problem 1 at the end of this sec-
tion). This approach is difficult to use when the boundary data is discontinuous or when

the problem is nonlinear. It is more important for theoretical than for practical reasons.
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The usual approach for handling nontrivial Dirichlet data is to interpolate it by the

finite element trial function. Thus, consider approximations in the usual form

chd)] z,Y); (3.3.1)
Jj=1
however, we include basis functions ¢, for mesh entities (vertices, edges) k that are on
00g. The coefficients ¢, associated with these nodes are not varied during the solu-
tion process but, rather, are selected to interpolate the boundary data. Thus, with a

Lagrangian basis where ¢y (z;,y;) = d, we have

Ul(zk, yr) = a(xk, yp) = Ck, (T, yr) € 0Qp.

The interpolation is more difficult with hierarchical functions, but it is manageable (cf.
Section 4.4). We will have to appraise the effect of this interpolation on solution accuracy.
Although the spaces Sy and SY¥ differ, the stiffness and mass matrices can be made
symmetric for self-adjoint linear problems (¢f. Section 5.5).

A third method of satisfying essential boundary conditions is given as Problem 2 at
the end of this section.

2. Discretize the domain. Divide () into finite elements having simple shapes, such
as triangles or quadrilaterals in two dimensions and tetrahedra and hexahedra in three
dimensions. This nontrivial task generally introduces errors near 0€). Thus, the problem
is typically solved on a polygonal region Q) defined by the finite element mesh (Figure
3.3.1) rather than on €. Such errors may be reduced by using finite elements with curved
sides and/or faces near 092 (cf. Chapter 4). The relative advantages of using fewer curved
elements or a larger number of smaller straight-sided or planar-faced elements will have
to be determined.

3. Generate the element stiffness and mass matrices and element load vector. Piece-
wise polynomial approximations U € Sy of u and V € S} of v are chosen. The approx-
imating spaces SN and SY are supposed to be subspaces of HL and H¢, respectively;
however, this may not be the case because of errors introduced in approximating the
essential boundary conditions and/or the domain Q. These effects will also have to be
appraised (cf. Section 7.3). Choosing a basis for SV, we write U and V in the form of
(3.3.1).

The variational problem is written as a sum of contributions over the elements and
the element stiffness and mass matrices and load vectors are generated. For the model
problem (3.1.1) this would involve solving

Na

SIAWVU) = (Vo f)em <ViB>]=0, YV eSy, (3.3.2a)

e=1
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Figure 3.3.1: Two-dimensional domain () having boundary 02 = 0Q2g U 0€)y with unit
normal n discretized by triangular finite elements. Schematic representation of the as-
sembly of the element stiffness matrix K, and element load vector 1, into the global

stiffness matrix K and load vector 1.

where

A (V,U) = //(prUI + V,pU, + VqU)dzdy, (3.3.2b)
Qe

R\

8
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Vi fe = // V fdxdy, (3.3.2¢)

<V,B >.= / V Bds, (3.3.2d)

80NN

Q). is the domain occupied by element e, and N is the number of elements in the mesh.
The boundary integral (3.3.2d) is zero unless a portion of 9€2, coincides with the boundary
of the finite element domain 9.

Galerkin formulations for self-adjoint problems such as (3.1.6) lead to minimum prob-
lems in the sense of Theorem 3.1.1. Thus, the finite element solution is the best solution
in SV in the sense of minimizing the strain energy of the error A(u — U,u — U). The
strain energy of the error is orthogonal to all functions V' in S¥ as illustrated in Figure
3.3.2 for three-vectors.

Figure 3.3.2: Subspace S of Hj illustrating the “best” approximation property of the
solution of Galerkin’s method.

4. Assemble the global stiffness and mass matrices and load vector. The element
stiffness and mass matrices and load vectors that result from evaluating (3.3.2b-d) are
added directly into global stiffness and mass matrices and a load vector. As depicted
in Figure 3.3.1, the indices assigned to unknowns associated with mesh entities (vertices
as shown) determine the correct positions of the elemental matrices and vectors in the

global stiffness and mass matrices and load vector.
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5. Solve the algebraic system. For linear problems, the assembly of (3.3.2) gives rise

to a system of the form
d"[(K +M)c -1 =0, (3.3.3a)

where K and M are the global stiffness and mass matrices, 1 is the global load vector,

o

c 17, (3.3.3b)

C1,Coy ey CN
and
d” = [dy, ds, ..., dN]". (3.3.3¢)
Since (3.3.3a) must be satisfied for all choices of d, we must have
(K+M)c=1 (3.3.4)

For the model problem (3.1.1), K + M will be sparse and positive definite. With proper
treatment of the boundary conditions, it will also be symmetric (¢f. Chapter 5).

Each step in the finite element solution will be examined in greater detail. Basis
construction is described in Chapter 4, mesh generation and assembly appear in Chapter
5, error analysis is discussed in Chapter 7, and linear algebraic solution strategies are
presented in Chapter 11.

Problems

1. By introducing the transformation
U=u—«

show that (3.1.1) can be changed to a problem with homogeneous essential bound-

ary conditions. Thus, we can seek @ € H{.

2. Another method of treating essential boundary conditions is to remove them by
using a “penalty function.” Penalty methods are rarely used for this purpose, but
they are important for other reasons. This problem will introduce the concept and
reinforce the material of Section 3.1. Consider the variational statement (3.1.6) as

an example, and modify it by including the essential boundary conditions
A(v,u) = (v, f)+ < v, 8 >s0y +A < v, —u >0, Vo € H.

Here A\ is a penalty parameter and subscripts on the boundary integral indicate
their domain. No boundary conditions are applied and the problem is solved for u

and v ranging over the whole of H'.
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Show that smooth solutions of this variational problem satisfy the differential equa-
tion (3.1.1a) as well as the natural boundary conditions (3.1.1¢) and
p Ou

277 Qp.
utTEo=a (z,y) € Qp

The penalty parameter A must be selected large enough for this natural boundary
condition to approximate the prescribed essential condition (3.1.1b). This can be
tricky. If selected too large, it will introduce ill-conditioning into the resulting
algebraic system.
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