
Chapter �

Multi�Dimensional Variational

Principles

��� Galerkin�s Method and Extremal Principles

The construction of Galerkin formulations presented in Chapters � and � for one�dimensional

problems readily extends to higher dimensions� Following our prior developments� we�ll

focus on the model two�dimensional self�adjoint di�usion problem

L�u� 	 �
p
x� y�ux�x � 
p
x� y�uy�y � q
x� y�u 	 f
x� y�� 
x� y� � � 
�����a�

where  � �� with boundary � 
Figure ������ and p
x� y� � �� q
x� y� � �� 
x� y� � �

Essential boundary conditions

u
x� y� 	 �
x� y�� 
x� y� � �E � 
�����b�

are prescribed on the portion �E of � and natural boundary conditions

p
x� y�
�u
x� y�

�n
	 pru � n �	 p
ux cos � � uy sin �� 	 �
x� y�� 
x� y� � �N �


�����c�

are prescribed on the remaining portion �N of �� The angle � is the angle between

the x�axis and the outward normal n to � 
Figure �������

The Galerkin form of 
������ is obtained by multiplying 
�����a� by a test function v

and integrating over  to obtainZZ
�

v��
pux�x � 
puy�y � qu� f �dxdy 	 �� 
������

In order to integrate the second derivative terms by parts in two and three dimensions�

we use Green�s theorem or the divergence theoremZZ
�

r � adxdy 	

Z
��

a � nds 
�����a�

�
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Figure ������ Two�dimensional region  with boundary � and normal vector n to ��

where s is a coordinate on �� a 	 �a�� a��
T � and

r � a 	
�a�
�x

�
�a�
�y

� 
�����b�

In order to use this result in the present circumstances� let us introduce vector notation


pux�x � 
puy�y �	 r � 
pru�

and use the �product rule� for the divergence and gradient operators

r � 
vpru� 	 
rv� � 
pru� � vr � 
pru�� 
�����c�

Thus� ZZ
�

�vr � 
pru�dxdy 	

ZZ
�

�
rv� � 
pru��r � 
vpru��dxdy�

Now apply the divergence theorem 
������ to the second term to obtain
ZZ
�

�vr � 
pru�dxdy 	

ZZ
�

rv � prudxdy �

Z
��

vpru � nds�

Thus� 
������ becomes
ZZ
�

�rv � pru� v
qu� f��dxdy �

Z
��

vpunds 	 � 
������
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where 
�����c� was used to simplify the surface integral�

The integrals in 
������ must exist and� with u and v of the same class and p and q

smooth� this implies ZZ
�


u�x � u�y � u��dxdy

exists� This is the two�dimensional Sobolev space H�� Drawing upon our experiences

in one dimension� we expect u � H�
E� where functions in H�

E are in H� and satisfy the

Dirichlet boundary conditions 
�����b� on E� Likewise� we expect v � H�
� � which denotes

that v 	 � on �E � Thus� the variation v should vanish where the trial function u is

prescribed�

Let us extend the one�dimensional notation as well� Thus� the L� inner product is


v� f� �	

ZZ
�

vfdxdy 
�����a�

and the strain energy is

A
v� u� �	 
rv� pru� � 
v� qu� 	

ZZ
�

�p
vxux � vyuy� � qvu�dxdy� 
�����b�

We also introduce a boundary L� inner product as

� v�w �	

Z
��N

vwds� 
�����c�

The boundary integral may be restricted to �N since v 	 � on �E � With this nomen�

clature� the variational problem 
������ may be stated as� �nd u � H�
E satisfying

A
v� u� 	 
v� f�� � v� � �� �v � H�
� � 
������

The Neumann boundary condition 
�����c� was used to replace pun in the boundary

inner product� The variational problem 
������ has the same form as the one�dimensional

problem 
������� Indeed� the theory and extremal principles developed in Chapter � apply

to multi�dimensional problems of this form�

Theorem ������ The function w � H�
E that minimizes

I�w� 	 A
w�w�� �
w� f�� � � w� � � � 
������

is the one that satis�es �������� and conversely�

Proof� The proof is similar to that of Theorem ����� and appears as Problem � at the

end of this section�
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Corollary ������ Smooth functions u � H�
E satisfying ������� or minimizing ������� also

satisfy ��������

Proof� Again� the proof is left as an exercise�

Example ������ Suppose that the Neumann boundary conditions 
�����c� are changed

to Robin boundary conditions

pun � �u 	 �� 
x� y� � �N � 
�����a�

Very little changes in the variational statement of the problem 
�����a�b�� 
������� Instead

of replacing pun by � in the boundary inner product 
�����c�� we replace it by � � �u�

Thus� the Galerkin form of the problem is� �nd u � H�
E satisfying

A
v� u� 	 
v� f�� � v� � � �u �� �v � H�
� � 
�����b�

Example ����	� Variational principles for nonlinear problems and vector systems

of partial di�erential equations are constructed in the same manner as for the linear

scalar problems 
������� As an example� consider a thin elastic sheet occupying a two�

dimensional region � As shown in Figure ������ the Cartesian components 
u�� u�� of

the displacement vector vanish on the portion �E of of the boundary � and the com�

ponents of the traction are prescribed as 
S�� S�� on the remaining portion �N of ��

The equations of equilibrium for such a problem are 
cf�� e�g�� ���� Chapter ��

�	��
�x

�
�	��
�y

	 �� 
�����a�

�	��
�x

�
�	��
�y

	 �� 
x� y� � � 
�����b�

where 	ij� i� j 	 �� �� are the components of the two�dimensional symmetric stress tensor


matrix�� The stress components are related to the displacement components by Hooke�s

law

	�� 	
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Figure ������ Two�dimensional elastic sheet occupying the region � Displacement com�
ponents 
u�� u�� vanish on �E and traction components 
S�� S�� are prescribed on �N �

where E and 
 are constants called Young�s modulus and Poisson�s ratio� respectively�

The displacement and traction boundary conditions are

u�
x� y� 	 �� u�
x� y� 	 �� 
x� y� � �E� 
������a�

n�	�� � n�	�� 	 S�� n�	�� � n�	�� 	 S�� 
x� y� � �N � 
������b�

where n 	 �n�� n��
T 	 �cos �� sin ��T is the unit outward normal vector to � 
Figure

�������

Following the one�dimensional formulations� the Galerkin form of this problem is

obtained by multiplying 
�����a� and 
�����b� by test functions v� and v�� respectively�

integrated over � and using the divergence theorem� With u� and u� being components

of a displacement �eld� the functions v� and v� are referred to as components of the

virtual displacement �eld�

We use 
�����a� to illustrate the process� thus� multiplying by v� and integrating over

� we �nd ZZ
�

v��
�	��
�x

�
�	��
�y

�dxdy 	 ��

The three stress components are dependent on the two displacement components and

are typically replaced by these using 
�������� Were this done� the variational principle
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would involve second derivatives of u� and u�� Hence� we would want to use the divergence

theorem to obtain a symmetric variational form and reduce the continuity requirements

on u� and u�� We�ll do this� but omit the explicit substitution of 
������� to simplify the

presentation� Thus� we regard 	�� and 	�� as components of a two�vector� we use the

divergence theorem 
������ to obrain
ZZ
�

�
�v�
�x

	�� �
�v�
�y

	���dxdy 	

Z
��

v��n�	�� � n�	���ds�

Selecting v� � H�
� implies that the boundary integral vanishes on �E � This and the

subsequent use of the natural boundary condition 
������b� give
ZZ
�

�
�v�
�x

	�� �
�v�
�y

	���dxdy 	

Z
��N

v�S�ds� �v� � H�
� � 
������a�

Similar treatment of 
�����b� gives
ZZ
�

�
�v�
�x

	�� �
�v�
�y

	���dxdy 	

Z
��N

v�S�ds� �v� � H�
� � 
������b�

Equations 
������a� and 
������b� may be combined and written in a vector form�

Letting u 	 �u�� u��
T � etc�� we add 
������a� and 
������b� to obtain the Galerkin problem�

�nd u � H�
� such that

A
v�u� 	� v�S �� �v � H�
� � 
������a�

where

A
v�u� 	

ZZ
�

�
�v�
�x

	�� �
�v�
�y

	�� � 

�v�
�y

�
�v�
�x

�	���dxdy� 
������b�

� v�S �	

Z
��N


v�S� � v�S��ds� 
������c�

When a vector function belongs to H�� we mean that each of its components is in H��

The spaces H�
E and H�

� are identical since the displacement is trivial on �E �

The solution of 
������� also satis�es the following minimum problem�

Theorem ������ Among all functions w 	 �w�� w��
T � H�

E the solution u 	 �u�� u��
T of

�������� is the one that minimizes

I�w� 	
E

�
�� 
��

ZZ
�

f
�� 
��

�w�

�x
�� � 


�w�

�y
��� � 



�w�

�x
�
�w�

�y
��
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�

�� 
�

�


�w�

�y
�
�w�

�x
��gdxdy �

Z
��N


w�S� � w�S��ds�

and conversely�

Proof� The proof is similar to that of Theorem ������ The stress components 	ij� i� j 	

�� �� have been eliminated in favor of the displacements using 
��������

Let us conclude this section with a brief summary�

� A solution of the di�erential problem� e�g�� 
������� is called a �classical� or �strong�

solution� The function u � H�
B� where functions in H� have �nite values ofZZ

�

�
uxx�
� � 
uxy�

� � 
uyy�
� � 
ux�

� � 
uy�
� � u��dxdy

and functions in H�
B also satisfy all prescribed boundary conditions� e�g�� 
�����b�c��

� Solutions of a Galerkin problem such as 
������ are called �weak� solutions� They

may be elements of a larger class of functions than strong solutions since the high�

order derivatives are missing from the variational statement of the problem� For

the second�order di�erential equations that we have been studying� the variational

form 
e�g�� 
������� only contains �rst derivatives and u � H�
E� Functions in H�

have �nite values of ZZ
�

�
ux�
� � 
uy�

� � u��dxdy�

and functions in H�
E also satisfy the prescribed essential 
Dirichlet� boundary con�

dition 
�����b�� Test functions v are not varied where essential data is prescribed

and are elements of H�
� � They satisfy trivial versions of the essential boundary

conditions�

� While essential boundary conditions constrain the trial and test spaces� natural


Neumann or Robin� boundary conditions alter the variational statement of the

problem� As with 
������ and 
�������� inhomogeneous conditions add boundary

inner product terms to the variational statement�

� Smooth solutions of the Galerkin problem satisfy the original partial di�erential

equation
s� and natural boundary conditions� and conversely�

� Galerkin problems arising from self�adjoint di�erential equations also satisfy ex�

tremal problems� In this case� approximate solutions found by Galerkin�s method

are best in the sense of 
������� i�e�� in the sense of minimizing the strain energy of

the error�



� Multi�Dimensional Variational Principles

Problems

�� Prove Theorem ����� and its Corollary�

�� Prove Theorem ����� and aslo show that smooth solutions of 
������� satisfy the

di�erential system 
������ � 
��������

�� Consider an in�nite solid medium of material M containing an in�nite number of

periodically spaced circular cylindrical �bers made of material F � The �bers are

arranged in a square array with centers two units apart in the x and y directions


Figure ������� The radius of each �ber is a 
� ��� The aim of this problem is to

�nd a Galerkin problem that can be used to determine the e�ective conductivity

of the composite medium� Because of embedded symmetries� it su�ces to solve a

y

x

M

F a

θ

1

1

r

Figure ������ Composite medium consisting of a regular array of circular cylindrical �bers
embedded in in a matrix 
left�� Quadrant of a Periodicity cell used to solve this problem

right��

problem on one quarter of a periodicity cell as shown on the right of Figure ������

The governing di�erential equations and boundary conditions for the temperature
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or potential� etc�� u
x� y� within this quadrant are

r � 
pru� 	 �� 
x� y� � F � M �

ux
�� y� 	 ux
�� y� 	 �� � 	 y 	 ��

u
x� �� 	 �� u
x� �� 	 �� � 	 x 	 ��

u � C�� pur � C�� 
x� y� � x� � y� 	 a��


�������

The subscripts F and M are used to indicate the regions and properties of the �ber

and matrix� respectively� Thus� letting

 �	 f
x� y�j � 	 x 	 �� � 	 y 	 �g�

we have

F �	 f
r� ��j � 	 r 	 a� � 	 � 	 ���g�

and

M �	 � F �

The conductivity p of the �ber and matrix will generally be di�erent and� hence� p

will jump at r 	 a� If necessary� we can write

p
x� y� 	

�
pF � if x� � y� � a�

pM � if x� � y� � a�
�

Although the conductivities are discontinuous� the last boundary condition con�rms

that the temperature u and �ux pur are continuous at r 	 a�

���� Following the steps leading to 
������� show that the Galerkin form of this

problem consists of determining u � H�
E as the solution ofZZ

�F��M

p
uxvx � uyvy�dxdy 	 �� �v � H�
� �

De�ne the spaces H�
E and H�

� for this problem� The Galerkin problem appears

to be the same as it would for a homogeneous medium� There is no indication

of the continuity conditions at r 	 a�

���� Show that the function w � H�
E that minimizes

I�w� 	

ZZ
�F��M

p
w�
x � w�

y�dxdy

is the solution u of the Galerkin problem� and conversely� Again� there is little

evidence that the problem involves an inhomogeneous medium�
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��� Function Spaces and Approximation

Let us try to formalize some of the considerations that were raised about the properties

of function spaces and their smoothness requirements� Consider a Galerkin problem in

the form of 
������� Using Galerkin�s method� we �nd approximate solutions by solving


������ in a �nite�dimensional subspace SN of H�� Selecting a basis fjg
N
j�� for SN � we

consider approximations U � SN
E of u in the form

U
x� y� 	
NX
j��

cjj
x� y�� 
������

With approximations V � SN
� of v having a similar form� we determine U as the solution

of

A
V� U� 	 
V� f�� � V� � �� �V � SN
� � 
������


Nontrivial essential boundary conditions introduce di�erences between SN
E and SN

� and

we have not explicitly identi�ed these di�erences in 
��������

We�ve mentioned the criticality of knowing the minimum smoothness requirements

of an approximating space SN � Smooth 
e�g� C�� approximations are di�cult to con�

struct on nonuniform two� and three�dimensional meshes� We have already seen that

smoothness requirements of the solutions of partial di�erential equations are usually ex�

pressed in terms of Sobolev spaces� so let us de�ne these spaces and examine some of

their properties� First� let�s review some preliminaries from linear algebra and functional

analysis�

De�nition ������ V is a linear space if

�� u� v � V then u� v � V�

�� u � V then �u � V� for all constants �� and

�� u� v � V then �u� �v � V� for all constants �� ��

De�nition ������ A
u� v� is a bilinear form on V
V if� for u� v� w � V and all constants

� and ��

�� A
u� v� � �� and

�� A
u� v� is linear in each argument� thus�

A
u� �v � �w� 	 �A
u� v� � �A
u� w��

A
�u� �v� w� 	 �A
u� w� � �A
v� w��
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De�nition ������ An inner product A
u� v� is a bilinear form on V 
 V that

�� is symmetric in the sense that A
u� v� 	 A
v� u�� �u� v � V� and

�� A
u� u� � �� u �	 � and A
�� �� 	 �� �u � V�

De�nition ������ The norm k � kA associated with the inner product A
u� v� is

kukA 	
p
A
u� u� 
������

and it satis�es

�� kukA � �� u �	 �� k�kA 	 ��

�� ku� vkA 	 kukA � kvkA� and

�� k�ukA 	 j�jkukA� for all constants ��

The integrals involved in the norms and inner products are Lebesgue integrals rather

than the customary Riemann integrals� Functions that are Riemann integrable are also

Lebesgue integrable but not conversely� We have neither time nor space to delve into

Lebesgue integration nor will it be necessary for most of our discussions� It is� however�

helpful when seeking understanding of the continuity requirements of the various function

spaces� So� we�ll make a few brief remarks and refer those seeking more information to

texts on functional analysis ��� �� ���

With Lebesgue integration� the concept of the length of a subinterval is replaced by

the measure of an arbitrary point set� Certain sets are so sparse as to have measure

zero� An example is the set of rational numbers on ��� ��� Indeed� all countably in�nite

sets have measure zero� If a function u � V possesses a given property except on a set

of measure zero then it is said to have that property almost everywhere� A relevant

property is the notion of an equivalence class� Two functions u� v � V belong to the same

equivalence class if

ku� vkA 	 ��

With Lebesgue integration� two functions in the same equivalence class are equal almost

everywhere� Thus� if we are given a function u � V and change its values on a set of

measure zero to obtain a function v� then u and v belong to the same equivalence class�

We need one more concept� the notion of completeness� A Cauchy sequence fung
�
n�� �

V is one where

lim
m�n��

kum � unkA 	 ��
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If fung
�
n�� converges in k � kA to a function u � V then it is a Cauchy sequence� Thus�

using the triangular inequality�

lim
m�n��

kum � unkA 	 lim
m�n��

fkum � ukA � ku� unkAg 	 ��

A space V where the converse is true� i�e�� where all Cauchy sequences fung
�
n�� converge

in k � kA to functions u � V� is said to be complete�

De�nition ������ A complete linear space V with inner product A
u� v� and correspond�

ing norm kukA� u� v � V is called a Hilbert space�

Let�s list some relevant Hilbert spaces for use with variational formulations of bound�

ary value problems� We�ll present their de�nitions in two space dimensions� Their ex�

tension to one and three dimensions is obvious�

De�nition ������ The space L�
� consists of functions satisfying

L�
� �	 fuj

ZZ
�

u�dxdy ��g� 
�����a�

It has the inner product


u� v� 	

ZZ
�

uvdxdy 
�����b�

and norm

kuk� 	
p


u� u�� 
�����c�

De�nition ������ The Sobolev space Hk consists of functions u which belong to L� with

their �rst k � � derivatives� The space has the inner product and norm


u� v�k �	
X
j�j�k


D�u�D�v�� 
�����a�

kukk 	
p


u� u�k� 
�����b�

where

� 	 ���� ���
T � j�j 	 �� � ��� 
�����c�

with �� and �� non�negative integers� and

D�u �	
������u

�x���y��
� 
�����d�
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In particular� the space H� has the inner product and norm


u� v�� 	 
u� v� � 
ux� vx� � 
uy� vy� 	

ZZ
�


uv � uxvx � uyvy�dxdy 
�����a�

kuk� 	

�
�ZZ

�


u� � u�x � u�y�dxdy

�
�
���

� 
�����b�

Likewise� functions u � H� have �nite values of

kuk�� 	

ZZ
�

�u�xx � u�xy � u�yy � u�x � u�y � u��dxdy�

Example ��	��� We have been studying second�order di�erential equations of the

form 
������ and seeking weak solutions u � H� and U � SN � H� of 
������ and 
�������

respectively� Let us verify that H� is the correct space� at least in one dimension� Thus�

consider a basis of the familiar piecewise�linear hat functions on a uniform mesh with

spacing h 	 ��N

j
x� 	

��
�


x� xj����h� if xj�� 	 x � xj

xj�� � x��h� if xj 	 x � xj��
�� otherwise

� 
������

Since SN � H�� j and 
�
j must be in L�� j 	 �� �� ���� N � Consider C� approximations of

j
x� and �j
x� obtained by �rounding corners� in O
h�n��neighborhoods of the nodes

xj��� xj� xj�� as shown in Figure������ A possible smooth approximation of �j
x� is

�j
x�  �j�n
x� 	
�

�h
�tanh

n
x� xj���

h
� tanh

n
x� xj���

h
� � tanh

n
x� xj�

h
��

A smooth approximation j�n of j is obtained by integration as

j�n
x� 	
h

�n
ln

�
coshn

x� xj����h� coshn

x� xj����h�

cosh� n

x� xj��h�

	
�

Clearly� j�n and �j�n are elements of L�� The �rounding� disappears as n�� and

lim
n��

Z �

�

��j�n
x��
�dx  �h
��h�� 	 ��h�

The explicit calculations are somewhat involved and will not be shown� However� it

seems clear that the limiting function �j � L� and� hence� j � SN for �xed h�
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Figure ������ Smooth version of a piecewise linear hat function 
������ 
top�� its �rst
derivative 
center�� and the square of its �rst derivative 
bottom�� Results are shown
with xj�� 	 ��� xj 	 �� xj�� 	 � 
h 	 ��� and n 	 ���

Example ��	�	� Consider the piecewise�constant basis function on a uniform mesh

j
x� 	

�
�� if xj�� 	 x � xj
�� otherwise

� 
������

A smooth version of this function and its �rst derivative are shown in Figure ����� and

may be written as

j�n
x� 	
�

�
�tanh

n
x� xj���

h
� tanh

n
x� xj�

h
�

�j�n
x� 	
n

�h
�sech�

n
x� xj���

h
� sech�

n
x� xj�

h
��

As n � �� j�n approaches a square pulse� however� �j�n is proportional to the combi�

nation of delta functions

�j�n
x� � �
x� xj���� �
x� xj��
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Thus� we anticipate problems since delta functions are not elements of L�� Squaring

�j�n
x�

��j�n
x��
� 	 


n

�h
���sech�

n
x� xj���

h
��sech�

n
x� xj���

h
sech�

n
x� xj�

h
�sech�

n
x� xj�

h
��

As shown in Figure ������ the function sechn
x � xj��h is largest at xj and decays

exponentially fast from xj� thus� the center term in the above expression is exponentially

small relative to the �rst and third terms� Neglecting it yields

��j�n
x��
�  


n

�h
���sech�

n
x� xj���

h
� sech�

n
x� xj�

h
��

Thus� Z �

�

��j�n
x��
�dx 

n

��h
�tanh

n
x� xj���

h

� � sech�

n
x� xj���

h
�

� tanh
n
x� xj�

h

� � sech�

n
x� xj�

h
�����

This is unbounded as n��� hence� �j
x� �� L� and j
x� �� H��
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Figure ������ Smooth version of a piecewise constant function 
������ 
left� and its �rst
derivative 
right�� Results are shown with xj�� 	 �� xj 	 � 
h 	 ��� and n 	 ���

Although the previous examples lack rigor� we may conclude that a basis of continuous

functions will belong to H� in one dimension� More generally� u � Hk implies that

u � Ck�� in one dimension� The situation is not as simple in two and three dimensions�

The Sobolev space Hk is the completion with respect to the norm 
������ of Ck functions

whose �rst k partial derivatives are elements of L�� Thus� for example� u � H� implies

that u� ux� and uy are all elements of L�� This is not su�cient to ensure that u is

continuous in two and three dimensions� Typically� if � is smooth then u � Hk implies

that u � Cs
 � �� where s is the largest integer less than 
k � d��� in d dimensions

��� ��� In two and three dimensions� this condition implies that u � Ck���

Problems
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�� Assuming that p
x� y� � � and q
x� y� � �� 
x� y� � � �nd any other conditions

that must be satis�ed for the strain energy

A
v� u� 	

ZZ
�

�p
vxux � vyuy� � qvu�dxdy

to be an inner product and norm� i�e�� to satisfy De�nitions ����� and ������

�� Construct a variational problem for the fourth�order biharmonic equation

�
p�u� 	 f
x� y�� 
x� y� � �

where

�u 	 uxx � uyy

and p
x� y� � � is smooth� Assume that u satis�es the essential boundary conditions

u
x� y� 	 �� un
x� y� 	 �� 
x� y� � ��

where n is a unit outward normal vector to �� To what function space should the

weak solution of the variational problem belong�

��� Overview of the Finite Element Method

Let us conclude this chapter with a brief summary of the key steps in constructing a �nite�

element solution in two or three dimensions� Although not necessary� we will continue

to focus on 
������ as a model�

�� Construct a variational form of the problem� Generally� we will use Galerkin�s

method to construct a variational problem� As described� this involves multiplying the

di�erential equation be a suitable test function and using the divergence theorem to get

a symmetric formulation� The trial function u � H�
E and� hence� satis�es any prescribed

essential boundary conditions� The test function v � H�
� and� hence� vanishes where

essential boundary conditions are prescribed� Any prescribed Neumann or Robin bound�

ary conditions are used to alter the variational problem as� e�g�� with 
������ or 
�����b��

respectively�

Nontrivial essential boundary conditions introduce di�erences in the spaces H�
E and

H�
� � Furthermore� the �nite element subspace SN

E cannot satisfy non�polynomial bound�

ary conditions� One way of overcoming this is to transform the di�erential equation to

one having trivial essential boundary conditions 
cf� Problem � at the end of this sec�

tion�� This approach is di�cult to use when the boundary data is discontinuous or when

the problem is nonlinear� It is more important for theoretical than for practical reasons�
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The usual approach for handling nontrivial Dirichlet data is to interpolate it by the

�nite element trial function� Thus� consider approximations in the usual form

U
x� y� 	
NX
j��

cjj
x� y�� 
������

however� we include basis functions k for mesh entities 
vertices� edges� k that are on

�E � The coe�cients ck associated with these nodes are not varied during the solu�

tion process but� rather� are selected to interpolate the boundary data� Thus� with a

Lagrangian basis where k
xj� yj� 	 �k�j� we have

U
xk� yk� 	 �
xk� yk� 	 ck� 
xk� yk� � �E �

The interpolation is more di�cult with hierarchical functions� but it is manageable 
cf�

Section ����� We will have to appraise the e�ect of this interpolation on solution accuracy�

Although the spaces SN
E and SN

� di�er� the sti�ness and mass matrices can be made

symmetric for self�adjoint linear problems 
cf� Section �����

A third method of satisfying essential boundary conditions is given as Problem � at

the end of this section�

	� Discretize the domain� Divide  into �nite elements having simple shapes� such

as triangles or quadrilaterals in two dimensions and tetrahedra and hexahedra in three

dimensions� This nontrivial task generally introduces errors near �� Thus� the problem

is typically solved on a polygonal region � de�ned by the �nite element mesh 
Figure

������ rather than on � Such errors may be reduced by using �nite elements with curved

sides and or faces near � 
cf� Chapter ��� The relative advantages of using fewer curved

elements or a larger number of smaller straight�sided or planar�faced elements will have

to be determined�

�� Generate the element sti
ness and mass matrices and element load vector� Piece�

wise polynomial approximations U � SN
E of u and V � SN

� of v are chosen� The approx�

imating spaces SN
E and SN

� are supposed to be subspaces of H�
E and H�

� � respectively�

however� this may not be the case because of errors introduced in approximating the

essential boundary conditions and or the domain � These e�ects will also have to be

appraised 
cf� Section ����� Choosing a basis for SN � we write U and V in the form of


�������

The variational problem is written as a sum of contributions over the elements and

the element sti�ness and mass matrices and load vectors are generated� For the model

problem 
������ this would involve solving

N�X
e��

�Ae
V� U�� 
V� f�e� � V� � �e� 	 �� �V � SN
� � 
�����a�
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Figure ������ Two�dimensional domain  having boundary � 	 �E � �N with unit
normal n discretized by triangular �nite elements� Schematic representation of the as�
sembly of the element sti�ness matrix Ke and element load vector le into the global
sti�ness matrix K and load vector l�

where

Ae
V� U� 	

ZZ
�e


VxpUx � VypUy � V qU�dxdy� 
�����b�
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V� f�e 	

ZZ
�e

V fdxdy� 
�����c�

� V� � �e	

Z

��e�� ��N

V �ds� 
�����d�

e is the domain occupied by element e� and N� is the number of elements in the mesh�

The boundary integral 
�����d� is zero unless a portion of �e coincides with the boundary

of the �nite element domain � ��

Galerkin formulations for self�adjoint problems such as 
������ lead to minimum prob�

lems in the sense of Theorem ������ Thus� the �nite element solution is the best solution

in SN in the sense of minimizing the strain energy of the error A
u � U� u � U�� The

strain energy of the error is orthogonal to all functions V in SN
E as illustrated in Figure

����� for three�vectors�

�
�
�

�
�
�

�
�
�

�
�
�u

S
E
N

H 1
E

U

Figure ������ Subspace SN
E of H�

E illustrating the �best� approximation property of the
solution of Galerkin�s method�

�� Assemble the global sti
ness and mass matrices and load vector� The element

sti�ness and mass matrices and load vectors that result from evaluating 
�����b�d� are

added directly into global sti�ness and mass matrices and a load vector� As depicted

in Figure ������ the indices assigned to unknowns associated with mesh entities 
vertices

as shown� determine the correct positions of the elemental matrices and vectors in the

global sti�ness and mass matrices and load vector�



�� Multi�Dimensional Variational Principles

�� Solve the algebraic system� For linear problems� the assembly of 
������ gives rise

to a system of the form

dT �
K�M�c� l� 	 	� 
�����a�

where K and M are the global sti�ness and mass matrices� l is the global load vector�

cT 	 �c�� c�� ���� cN �
T � 
�����b�

and

dT 	 �d�� d�� ���� dN �
T � 
�����c�

Since 
�����a� must be satis�ed for all choices of d� we must have


K�M�c 	 l� 
������

For the model problem 
������� K�M will be sparse and positive de�nite� With proper

treatment of the boundary conditions� it will also be symmetric 
cf� Chapter ���

Each step in the �nite element solution will be examined in greater detail� Basis

construction is described in Chapter �� mesh generation and assembly appear in Chapter

�� error analysis is discussed in Chapter �� and linear algebraic solution strategies are

presented in Chapter ���

Problems

�� By introducing the transformation

!u 	 u� �

show that 
������ can be changed to a problem with homogeneous essential bound�

ary conditions� Thus� we can seek !u � H�
� �

�� Another method of treating essential boundary conditions is to remove them by

using a �penalty function�� Penalty methods are rarely used for this purpose� but

they are important for other reasons� This problem will introduce the concept and

reinforce the material of Section ���� Consider the variational statement 
������ as

an example� and modify it by including the essential boundary conditions

A
v� u� 	 
v� f�� � v� � ���N �� � v� �� u ���E � �v � H��

Here � is a penalty parameter and subscripts on the boundary integral indicate

their domain� No boundary conditions are applied and the problem is solved for u

and v ranging over the whole of H��
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Show that smooth solutions of this variational problem satisfy the di�erential equa�

tion 
�����a� as well as the natural boundary conditions 
�����c� and

u�
p

�

�u

�n
	 �� 
x� y� � E �

The penalty parameter � must be selected large enough for this natural boundary

condition to approximate the prescribed essential condition 
�����b�� This can be

tricky� If selected too large� it will introduce ill�conditioning into the resulting

algebraic system�
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