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��� Introduction

The piecewise�linear Galerkin �nite element method of Chapter � can be extended in

several directions� The most important of these is multi�dimensional problems� however�

we�ll postpone this until the next chapter� Here� we�ll address and answer some other

questions that may be inferred from our brief encounter with the method�

�� Is the Galerkin method the best way to construct a variational principal for a partial

di�erential system�

	� How do we construct variational principals for more complex problems� Speci�cally�

how do we treat boundary conditions other than Dirichlet�


� The �nite element method appeared to converge as O�h� in strain energy and O�h��

in L� for the example of Section ��
� Is this true more generally�


� Can the �nite element solution be improved by using higher�degree piecewise�

polynomial approximations� What are the costs and bene�ts of doing this�

We�ll tackle the Galerkin formulations in the next two sections� examine higher�degree

piecewise polynomials in Sections 	�
 and 	��� and conclude with a discussion of approx�

imation errors in Section 	���

��� Galerkin�s Method and Extremal Principles

�For since the fabric of the universe is most perfect and the work of a most

wise creator� nothing at all takes place in the universe in which some rule of

maximum or minimum does not appear��

�
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� Leonhard Euler

Although the construction of variational principles from di�erential equations is an

important aspect of the �nite element method it will not be our main objective� We�ll

explore some properties of variational principles with a goal of developing a more thorough

understanding of Galerkin�s method and of answering the questions raised in Section 	���

In particular� we�ll focus on boundary conditions� approximating spaces� and extremal

properties of Galerkin�s method� Once again� we�ll use the model two�point Dirichlet

problem

L�u� �� ��p�x�u��� � q�x�u � f�x�� � � x � �� �	�	��a�

u��� � u��� � �� �	�	��b�

with p�x� � �� q�x� � �� and f�x� being smooth functions on � � x � ��

As described in Chapter �� the Galerkin form of �	�	��� is obtained by multiplying

�	�	��a� by a test function v � H�
� � integrating the result on ��� ��� and integrating the

second�order term by parts to obtain

A�v� u� � �v� f�� �v � H�
� � �	�	�	a�

where

�v� f� �

Z �

�

vfdx� �	�	�	b�

and

A�v� u� � �v�� pu�� � �v� qu� �

Z �

�

�v�pu� � vqu�dx� �	�	�	c�

and functions v belonging to the Sobolev space H� have bounded values ofZ �

�

��v��� � v��dx�

For �	�	���� a function v is in H�
� if it also satis�es the trivial boundary conditions

v��� � v��� � �� As we shall discover in Section 	�
� the de�nition of H�
� will depend on

the type of boundary conditions being applied to the di�erential equation�

There is a connection between self�adjoint di�erential problems such as �	�	��� and

the minimum problem� �nd w � H�
� that minimizes

I�w� � A�w�w�� 	�w� f� �

Z �

�

�p�w��� � qw� � 	wf �dx� �	�	�
�
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Maximum and minimum variational principles occur throughout mathematics and physics

and a discipline called the Calculus of Variations arose in order to study them� The initial

goal of this �eld was to extend the elementary theory of the calculus of the maxima and

minima of functions to problems of �nding the extrema of functionals such as I�w�� �A

functional is an operator that maps functions onto real numbers��

The construction of the Galerkin form �	�	�	� of a problem from the di�erential form

�	�	��� is straight forward� however� the construction of the extremal problem �	�	�
�

is not� We do not pursue this matter here� Instead� we refer readers to a text on the

calculus of variations such as Courant and Hilbert �
�� Accepting �	�	�
�� we establish

that the solution u of Galerkin�s method �	�	�	� is optimal in the sense of minimizing

�	�	�
��

Theorem ������ The function u � H�
� that minimizes ������� is the one that satis�es

������a� and conversely�

Proof� Suppose �rst that u�x� is the solution of �	�	�	a�� We choose a real parameter �

and any function v�x� � H�
� and de�ne the comparison function

w�x� � u�x� � �v�x�� �	�	�
�

For each function v�x� we have a one parameter family of comparison functions w�x� � H�
�

with the solution u�x� of �	�	�	a� obtained when � � �� By a suitable choice of � and

v�x� we can use �	�	�
� to represent any function in H�
� � A comparison function w�x�

and its variation �v�x� are shown in Figure 	�	���
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Figure 	�	��� A comparison function w�x� and its variation �v�x� from u�x��

Substituting �	�	�
� into �	�	�
�

I�w� � I�u� �v� � A�u� �v� u� �v�� 	�u� �v� f��
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Expanding the strain energy and L� inner products using �	�	�	b�c�

I�w� � A�u� u�� 	�u� f� � 	��A�v� u�� �v� f�� � ��A�v� v��

By hypothesis� u satis�es �	�	�	a�� so the O��� term vanishes� Using �	�	�
�� we have

I�w� � I�u� � ��A�v� v��

With p � � and q � �� we have A�v� v� � �� thus� u minimizes �	�	�
��

In order to prove the converse� assume that u�x� minimizes �	�	�
� and use �	�	�
� to

obtain

I�u� � I�u� �v��

For a particular choice of v�x�� let us regard I�u� �v� as a function ����� i�e��

I�u� �v� �� ���� � A�u� �v� u� �v�� 	�u� �v� f��

A necessary condition for a minimum to occur at � � � is ����� � �� thus� di�erentiating

����� � 	�A�v� v� � 	A�v� u�� 	�v� f�

and setting � � �

����� � 	�A�v� u�� �v� f�� � ��

Thus� u is a solution of �	�	�	a��

The following corollary veri�es that the minimizing function u is also unique�

Corollary ������ The solution u of ������a� �or �������� is unique�

Proof� Suppose there are two functions u�� u� � H�
� satisfying �	�	�	a�� i�e��

A�v� u�� � �v� f�� A�v� u�� � �v� f�� �v � H�
� �

Subtracting

A�v� u� � u�� � �� �v � H�
� �

Since this relation is valid for all v � H�
� � choose v � u� � u� to obtain

A�u� � u�� u� � u�� � ��

If q�x� � �� x � ��� ��� then A�u� � u�� u� � u�� is positive unless u� � u�� Thus� it

su�ces to consider cases when either �i� q�x� � �� x � ��� ��� or �ii� q�x� vanishes at

isolated points or subintervals of ��� ��� For simplicity� let us consider the former case�

The analysis of the latter case is similar�

When q�x� � �� x � ��� ��� A�u� � u�� u� � u�� can vanish when u�� � u�� � �� Thus�

u� � u� is a constant� However� both u� and u� satisfy the trivial boundary conditions

�	�	��b�� thus� the constant is zero and u� � u��
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Corollary ������ If u� w are smooth enough to permit integrating A�u� v� by parts then

the minimizer of �������� the solution of the Galerkin problem ������a�� and the solution

of the two�point boundary value problem ������� are all equivalent�

Proof� Integrate the di�erentiated term in �	�	�
� by parts to obtain

I�w� �

Z �

�

��w�pw��� � qw� � 	fw�dx� wpw�j���

The last term vanishes since w � H�
� � thus� using �	�	��a� and �	�	�	b� we have

I�w� � �w�L�w��� 	�w� f�� �	�	���

Now� follow the steps used in Theorem 	�	�� to show

A�v� u�� �v� f� � �v�L�u�� f� � �� �v � H�
� �

and� hence� establish the result�

The minimization problems �	�	�
� and �	�	��� are equivalent when w has su�cient

smoothness� However� minimizers of �	�	�
� may lack the smoothness to satisfy �	�	����

When this occurs� the solutions with less smoothness are often the ones of physical

interest�

Problems

�� Consider the �stationary value� problem� �nd functions w�x� that give stationary

values �maxima� minima� or saddle points� of

I�w� �

Z �

�

F �x� w� w��dx �	�	��a�

when w satis�es the �essential� �Dirichlet� boundary conditions

w��� � �� w��� � �� �	�	��b�

Let w � H�
E� where the subscript E denotes that w satis�es �	�	��b�� and consider

comparison functions of the form �	�	�
� where u � H�
E is the function that makes

I�w� stationary and v � H�
� is arbitrary� �Functions in H�

� satisfy trivial versions of

�	�	��b�� i�e�� v��� � v��� � ���

Using �	�	��� as an example� we would have

F �x� w� w�� � p�x��w��� � q�x�w� � 	wf�x�� � � � � ��

Smooth stationary values of �	�	��� would be minima in this case and correspond

to solutions of the di�erential equation �	�	��a� and boundary conditions �	�	��b��
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Di�erential equations arising from minimum principles like �	�	�
� or from station�

ary value principles like �	�	��� are called Euler�Lagrange equations�

Beginning with �	�	���� follow the steps used in proving Theorem 	�	�� to determine

the Galerkin equations satis�ed by u� Also determine the Euler�Lagrange equations

for smooth stationary values of �	�	����

��� Essential and Natural Boundary Conditions

The analyses of Section 	�	 readily extend to problems having nontrivial Dirichlet bound�

ary conditions of the form

u��� � �� u��� � �� �	�
��a�

In this case� functions u satisfying �	�	�	a� or w satisfying �	�	�
� must be members of

H� and satisfy �	�
��a�� We�ll indicate this by writing u� w � H�
E� with the subscript E

denoting that u and w satisfy the essential Dirichlet boundary conditions �	�
��a�� Since

u and w satisfy �	�
��a�� we may use �	�	�
� or the interpretation of �v as a variation

shown in Figure 	�	��� to conclude that v should still vanish at x � � and � and� hence�

belong to H�
� �

When u is not prescribed at x � � and�or �� the function v need not vanish there�

Let us illustrate this when �	�	��a� is subject to conditions

u��� � �� p���u���� � �� �	�
��b�

Thus� an essential or Dirichlet condition is speci�ed at x � � and a Neumann condition is

speci�ed at x � �� Let us construct a Galerkin form of the problem by again multiplying

�	�	��a� by a test function v� integrating on ��� ��� and integrating the second derivative

terms by parts to obtainZ �

�

v���pu��� � qu� f �dx � A�v� u�� �v� f�� vpu�j�� � �� �	�
�	�

With an essential boundary condition at x � �� we specify u��� � � and v��� � ��

however� u��� and v��� remain unspeci�ed� We still classify u � H�
E and v � H�

� since

they satisfy� respectively� the essential and trivial essential boundary conditions speci�ed

with the problem�

With v��� � � and p���u���� � �� we use �	�
�	� to establish the Galerkin problem

for �	�	��a� 	�
��b� as� determine u � H�
E satisfying

A�v� u� � �v� f� � v����� �v � H�
� � �	�
�
�
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Let us reiterate that the subscript E on H� restricts functions to satisfy Dirichlet �essen�

tial� boundary conditions� but not any Neumann conditions� The subscript � restricts

functions to satisfy trivial versions of any Dirichlet conditions but� once again� Neumann

conditions are not imposed�

As with problem �	�	���� there is a minimization problem corresponding to �	�	�
��

determine w � H�
E that minimizes

I�w� � A�w�w�� 	�w� f�� 	w����� �	�
�
�

Furthermore� in analogy with Theorem 	�	��� we have an equivalence between the Galerkin

�	�
�
� and minimization �	�
�
� problems�

Theorem ������ The function u � H�
E that minimizes �����	� is the one that satis�es

������� and conversely�

Proof� The proof is so similar to that of Theorem 	�	�� that we�ll only prove that the

function u that minimizes �	�
�
� also satis�es �	�
�
�� �The remainder of the proof is

stated as Problem � as the end of this section��

Again� create the comparison function

w�x� � u�x� � �v�x�� �	�
���

however� as shown in Figure 	�
��� v��� need not vanish� By hypothesis we have

x

u, w
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Figure 	�
��� Comparison function w�x� and variation �v�x� when Dirichlet data is pre�
scribed at x � � and Neumann data is prescribed at x � ��

I�u� � I�u� �v� � ���� � A�u� �v� u� �v�� 	�u� �v� f�� 	�u��� � �v������
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Di�erentiating with respect to � yields the necessary condition for a minimum as

����� � 	�A�v� u�� �v� f�� v����� � ��

thus� u satis�es �	�
�
��

As expected� Theorem 	�
�� can be extended when the minimizing function u is

smooth�

Corollary ������ Smooth functions u � H�
E satisfying ������� or minimizing �����	� also

satisfy ������a� �����b��

Proof� Using �	�	�	c�� integrate the di�erentiated term in �	�
�
� by parts to obtainZ �

�

v���pu��� � qu� f �dx� v����p���u����� �� � �� �v � H�
� � �	�
���

Since �	�
��� must be satis�ed for all possible test functions� it must vanish for those

functions satisfying v��� � �� Thus� we conclude that �	�	��a� is satis�ed� Similarly� by

considering test functions v that are nonzero in just a small neighborhood of x � �� we

conclude that the boundary condition �	�
��b� must be satis�ed� Since �	�
��� must be

satis�ed for all test functions v� the solution u must satisfy �	�	��a� in the interior of the

domain and �	�
��b� at x � ��

Neumann boundary conditions� or other boundary conditions prescribing derivatives

�cf� Problem 	 at the end of this section�� are called natural boundary conditions be�

cause they follow directly from the variational principle and are not explicitly imposed�

Essential boundary conditions constrain the space of functions that may be used as trial

or comparison functions� Natural boundary conditions impose no constraints on the

function spaces but� rather� alter the variational principle�

Problems

�� Prove the remainder of Theorem 	�
��� i�e�� show that functions that satisfy �	�
�
�

also minimize �	�
�
��

	� Show that the Galerkin form �	�	��a� with the Robin boundary conditions

p���u���� � ��u��� � ��� p���u���� � ��u��� � ��

is� determine u � H� satisfying

A�v� u� � �v� f� � v������ � ��u����� v������ � ��u����� �v � H��

Also show that the function w � H� that minimizes

I�w� � A�w�w�� 	�w� f�� 	��w��� � ��w���
� � 	��w���� ��w���

�

is u� the solution of the Galerkin problem�
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� Construct the Galerkin form of �	�	��� when

p�x� �

�
�� if � � x � ��	
	� if ��	 � x � �

�

Such a situation can arise in a steady heat�conduction problem when the medium

is made of two di�erent materials that are joined at x � ��	� What conditions

must u satisfy at x � ��	�

��� Piecewise Lagrange Polynomials

The �nite element method is not limited to piecewise�linear polynomial approximations

and its extention to higher�degree polynomials is straight forward� There is� however� a

question of the best basis� Many possibilities are available from design and approximation

theory� Of these� splines and Hermite approximations ��� are generally not used because

they o�er more smoothness and�or a larger support than needed or desired� Lagrange

interpolation �	� and a hierarchical approximation in the spirit of Newton�s divided�

di�erence polynomials will be our choices� The piecewise�linear �hat� function

	j�x� �

���
��

x�xj��
xj�xj��

� if xj�� � x � xj
xj���x

xj���xj
� if xj � x � xj��

�� otherwise

�	�
��a�

on the mesh

x� � x� � � � � � xN �	�
��b�

is a member of both classes� It has two desirable properties� �i� 	j�x� is unity at node

j and vanishes at all other nodes and �ii� 	j is only nonzero on those elements contain�

ing node j� The �rst property simpli�es the determination of solutions at nodes while

the second simpli�es the solution of the algebraic system that results from the �nite

element discretization� The Lagrangian basis maintains these properties with increasing

polynomial degree� Hierarchical approximations� on the other hand� maintain only the

second property� They are constructed by adding high�degree corrections to lower�degree

members of the series�

We will examine Lagrange bases in this section� beginning with the quadratic poly�

nomial basis� These are constructed by adding an extra node xj���� at the midpoint of

each element �xj��� xj�� j � �� 	� � � � � N �Figure 	�
���� As with the piecewise�linear basis

�	�
��a�� one basis function is associated with each node� Those associated with vertices

are
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Figure 	�
��� Finite element mesh for piecewise�quadratic Lagrange polynomial approxi�
mations�

	j�x� �

���
��

� � 
�
x�xj
hj

� � 	�
x�xj
hj

��� if xj�� � x � xj

�� 
�
x�xj
hj��

� � 	�
x�xj
hj��

��� if xj � x � xj��
�� otherwise

� j � �� �� � � � � N� �	�
�	a�

and those associated with element midpoints are

	j�����x� �

�
�� 
�

x�xj����
hj

��� if xj�� � x � xj
�� otherwise

� j � �� 	� � � � � N� �	�
�	b�

Here

hj � xj � xj��� j � �� 	� � � � � N� �	�
�	c�

These functions are shown in Figure 	�
�	� Their construction �to be described� invovles

satsifying

	j�xk� �

�
�� if j � k
�� otherwise

� j� k � �� ��	� �� � � � � N � �� N � ��	� N� �	�
�
�

Basis functions associated with a vertex are nonzero on at most two elements and those

associated with an element midpoint are nonzero on only one element� Thus� as noted�

the Lagrange basis function 	j is nonzero only on elements containing node j� The

functions �	�
�	a�b� are quadratic polynomials on each element� Their construction and

trivial extension to other �nite elements guarantees that they are continuous over the

entire mesh and� like �	�
���� are members of H��

The �nite element trial function U�x� is a linear combination of �	�
�	a�b� over the

vertices and element midpoints of the mesh that may be written as

U�x� �
NX
j��

cj	j�x� �
NX
j��

cj����	j�����x� �
�NX
j��

cj��	j���x�� �	�
�
�
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Figure 	�
�	� Piecewise�quadratic Lagrange basis functions for a vertex at x � � �left� and
an element midpoint at x � ���� �right�� When comparing with �	�
�	�� set xj�� � ���
xj���� � ����� xj � �� xj���� � ���� and xj�� � ��

Using �	�
�
�� we see that U�xk� � ck� k � �� ��	� �� � � � � N � ��	� N �

Cubic� quartic� etc� Lagrangian polynomials are generated by adding nodes to element

interiors� However� prior to constructing them� let�s introduce some terminology and

simplify the node numbering to better suit our task� Finite element bases are constructed

implicitly in an element�by�element manner in terms of shape functions� A shape function

is the restriction of a basis function to an element� Thus� for the piecewise�quadratic

Lagrange polynomial� there are three nontrivial shape functions on the element �j ��

�xj��� xj��

� the right portion of 	j���x�

Nj���j�x� � �� 
�
x� xj��

hj
� � 	�

x� xj��
hj

��� �	�
��a�

� 	j�����x�

Nj�����j�x� � �� 
�
x� xj����

hj
��� �	�
��b�

� and the left portion of 	j�x�

Nj�j�x� � � � 
�
x� xj
hj

� � 	�
x� xj
hj

��� x � �j� �	�
��c�

�Figure 	�
�
�� In these equations� Nk�j is the shape function associated with node k�

k � j � �� j � ��	� j� of element j �the subinterval �j�� We may use �	�
�
� and �	�
���

to write the restriction of U�x� to �j as

U�x� � cj��Nj���j � cj����Nj�����j � cjNj�j� x � �j�
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Figure 	�
�
� The three quadratic Lagrangian shape functions on the element �xj��� xj��
When comparing with �	�
���� set xj�� � �� xj���� � ���� and xj � ��

More generally� we will associate the shape function Nk�e�x� with mesh entity k of

element e� At present� the only mesh entities that we know of are vertices and �nodes

on� elements� however� edges and faces will be introduced in two and three dimensions�

The key construction concept is that the shape function Nk�e�x� is

�� nonzero only on element e and

	� nonzero only if mesh entity k belongs to element e�

A one�dimensional Lagrange polynomial shape function of degree p is constructed

on an element e using two vertex nodes and p � � nodes interior to the element� The

generation of shape functions is straight forward� but it is customary and convenient to

do this on a �canonical element�� Thus� we map an arbitrary element �e � �xj��� xj�

onto �� � 
 � � by the linear transformation

x�
� �
�� 


	
xj�� �

� � 


	
xj� 
 � ���� ��� �	�
���

Nodes on the canonical element are numbered according to some simple scheme� i�e�� �

to p with 
� � ��� 
p � �� and � � 
� � 
� � � � � � 
p�� � � �Figure 	�
�
�� These are

mapped to the actual physical nodes xj��� xj�����p� � � � � xj on �e using �	�
���� Thus�

xj���i�p �
�� 
i
	

xj�� �
� � 
i
	

xj� i � �� �� � � � � p�
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ξ

ξ

(ξ)

ξ   = 1ξ
1

1

N

−1 = ξ
0 Nk

k,e

Figure 	�
�
� An element e used to construct a p th�degree Lagrangian shape function
and the shape function Nk�e�x� associated with node k�

The Lagrangian shape function Nk�e�
� of degree p has a unit value at node k of

element e and vanishes at all other nodes� thus�

Nk�e�
l� � �kl �

�
�� if k � l
�� otherwise

� l � �� �� � � � � p� �	�
��a�

It is extended trivially when 
 �� ���� ��� The conditions expressed by �	�
��a� imply that

Nk�e�
� �

pY
l��� l ��k


 � 
l

k � 
l

�
�
 � 
���
 � 
�� � � � �
 � 
k����
 � 
k��� � � � �
 � 
p�

�
k � 
���
k � 
�� � � � �
k � 
k����
k � 
k��� � � � �
k � 
p�
�

�	�
��b�

We easily check that Nk�e �i� is a polynomial of degree p in 
 and �ii� it satis�es conditions

�	�
��a�� It is shown in Figure 	�
�
� Written in terms of shape function� the restriction

of U to the canonical element is

U�
� �

pX
k��

ckNk�e�
�� �	�
���

Example ��	��� Let us construct the quadratic Lagrange shape functions on the

canonical element by setting p � 	 in �	�
��b� to obtain

N��e�
� �
�
 � 
���
 � 
��

�
� � 
���
� � 
��
� N��e�
� �

�
 � 
���
 � 
��

�
� � 
���
� � 
��
�

N��e�
� �
�
 � 
���
 � 
��

�
� � 
���
� � 
��
�
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Setting 
� � ��� 
� � �� and 
� � � yields

N��e�
� �

�
 � ��

	
� N��e�
� � ��� 
��� N��e�
� �

�
 � ��


	
� �	�
���

These may easily be shown to be identical to �	�
�	� by using the transformation �	�
���

�see Problem � at the end of this section��

Example ��	��� Setting p � � in �	�
��b�� we obtain the linear shape functions on the

canonical element as

N��e �
�� 


	
� N��e �

� � 


	
� �	�
����

The two nodes needed for these shape functions are at the vertices 
� � �� and 
� � ��

Using the transformation �	�
���� these yield the two pieces of the hat function �	�
��a��

We also note that these shape functions were used in the linear coordinate transformation

�	�
���� This will arise again in Chapter ��

Problems

�� Show the the quadratic Lagrange shape functions �	�
��� on the canonical ���� ��
element transform to those on the physical element �	�
�	� upon use of �	�
���

	� Construct the shape functions for a cubic Lagrange polynomial from the general

formula �	�
��� by using two vertex nodes and two interior nodes equally spaced on

the canonical ���� �� element� Sketch the shape functions� Write the basis functions

for a vertex and an interior node�

��� Hierarchical Bases

With a hierarchical polynomial representation the basis of degree p � � is obtained as a

correction to that of degree p� Thus� the entire basis need not be reconstructed when

increasing the polynomial degree� With �nite element methods� they produce algebraic

systems that are less susceptible to round�o� error accumulation at high order than those

produced by a Lagrange basis�

With the linear hierarchical basis being the usual hat functions �	�
���� let us begin

with the piecewise�quadratic hierarchical polynomial� The restriction of this function to

element �e � �xj��� xj� has the form

U��x� � U��x� � cj����N
�
j�����e�x�� x � �e� �	����a�

where U��x� is the piecewise�linear �nite element approximation on �e

U��x� � cj��N
�
j���e�x� � cjN

�
j�e�x�� �	����b�
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Superscripts have been added to U and Nj�e to identify their polynomial degree� Thus�

N�
j���e�x� �

� xj�x

hj
� if x � �e

�� otherwise
� �	����c�

N�
j�e�x� �

� x�xj��
hj

� if x � �e

�� otherwise
�	����d�

are the usual hat function �	�
��� associated with a piecewise�linear approximation U��x��

The quadratic correction N�
j�����e�x� is required to �i� be a quadratic polynomial� �ii�

vanish when x �� �e� and �iii� be continuous� These conditions imply that N�
j�����e is

proportional to the quadratic Lagrange shape function �	�
��b� and we will take it to be

identical� thus�

N�
j�����e�x� �

�
�� 
�

x�xj����
hj

��� if x � �e

�� otherwise
� �	����e�

The normalization N�
j�����e�xj����� � � is not necessary� but seems convenient�

Like the quadratic Lagrange approximation� the quadratic hierarchical polynomial has

three nontrivial shape functions per element� however� two of them are linear and only

one is quadratic �Figure 	������ The basis� however� still spans quadratic polynomials�

Examining �	������ we see that cj�� � U�xj��� and cj � U�xj�� however�

U�xj����� �
cj�� � cj

	
� cj�����

Di�erentiating �	����a� twice with respect to x gives an interpretation to cj���� as

cj���� � �h�

�
U ���xj������

This interpretation may be useful but is not necessary�

A basis may be constructed from the shape functions in the manner described for

Lagrange polynomials� With a mesh having the structure used for the piecewise�quadratic

Lagrange polynomials �Figure 	�
���� the piecewise�quadratic hierarchical functions have

the form

U�x� �
NX
j��

cj	
�
j�x� �

NX
j��

cj����	
�
j�����x� �	���	�

where 	�j�x� is the hat function basis �	�
��a� and 	�j�x� � N�
j�e�x��

Higher�degree hierarchical polynomials are obtained by adding more correction terms

to the lower�degree polynomials� It is convenient to construct and display these poly�

nomials on the canonical ���� �� element used in Section 	�
� The linear transformation
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Figure 	����� Quadratic hierarchical shape on �xj��� xj�� When comparing with �	������
set xj�� � � and xj � ��

�	�
��� is again used to map an arbitrary element �xj��� xj� onto �� � 
 � �� The vertex

nodes at 
 � �� and � are associated with the linear shape functions and� for simplicity�

we will index them as �� and �� The remaining p�� shape functions are on the element

interior� They need not be associated with any nodes but� for convenience� we will asso�

ciate all of them with a single node indexed by � at the center �
 � �� of the element�

The restriction of the �nite element solution U�
� to the canonical element has the form

U�
� � c��N
�
���
� � c�N

�
� �
� �

pX
i��

ciN
i
��
�� 
 � ���� ��� �	���
�

�We have dropped the elemental index e on N i
j�e since we are only concerned with ap�

proximations on the canonical element�� The vertex shape functions N�
�� and N�

� are the

hat function segments �	�
���� on the canonical element

N�
���
� �

�� 


	
� N�

� �
� �
� � 


	
� 
 � ���� ��� �	���
�

Once again� the higher�degree shape functions N i
��
�� i � 	� 
� � � � � p� are required to have

the proper degree and vanish at the element�s ends 
 � ��� � to maintain continuity�

Any normalization is arbitrary and may be chosen to satisfy a speci�ed condition� e�g��

N�
� ��� � �� We use a normalization of Szab�o and Babu ska ��� which relies on Legendre

polynomials� The Legendre polynomial Pi�
�� i � �� is a polynomial of degree i in 


satisfying ����
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�� the di�erential equation

��� 
��P ��
i � 	
P �

i � i�i� ��Pi � �� �� � 
 � �� i � �� �	����a�

	� the normalization

Pi��� � �� i � �� �	����b�


� the orthogonality relationZ �

��

Pi�
�Pj�
�d
 �
	

	i� �

�
�� if i � j
�� otherwise

� �	����c�


� the symmetry condition

Pi��
� � ����iPi�
�� i � �� �	����d�

�� the recurrence relation

�i � ��Pi���
� � �	i� ��
Pi�
�� iPi���
�� i � �� �	����e�

and

�� the di�erentiation formula

P �
i���
� � �	i � ��Pi�
� � P �

i���
�� i � �� �	����f�

The �rst six Legendre polynomials are

P��
� � �� P��
� � 
�

P��
� �


� � �

	
� P��
� �

�
� � 



	
�

P��
� �

�
� � 
�
� � 


	
� P��
� �

�

� � ��
� � ��


�
� �	�����

With these preliminaries� we de�ne the shape functions

N i
��
� �

r
	i� �

	

Z �

��

Pi�����d�� i � 	� �	����a�

Using �	����d�f�� we readily show that

N i
��
� �

Pi�
�� Pi���
�p
	�	i� ��

� i � 	� �	����b�
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Use of the normalization and symmetry properties �	����b�d� further reveal that

N i
����� � N i

���� � �� i � 	� �	����c�

and use of the orthogonality property �	����c� indicates that

Z �

��

dN i
��
�

d


dN j
��
�

d

d
 � �ij� i� j � 	� �	����d�

Substituting �	����� into �	����b� gives

N�
� �
� �




	
p
�
�
� � ��� N�

� �
� �
�

	
p
��


�
� � ���

N�
� �
� �

�

�
p
�


��
� � �
� � ��� N�
� �
� �

�

�
p
��

��
� � ��
� � 

�� �	�����

Shape functions N i
��
�� i � 	� 
� � � � � �� are shown in Figure 	���	�

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4
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Figure 	���	� One�dimensional hierarchical shape functions of degrees 	 �solid�� 
���� 

���� � ���� and � �!� on the canonical element �� � 
 � ��

The representation �	���
� with use of �	����b�d� reveals that the parameters c�� and

c� correspond to the values of U���� and U���� respectively� however� the remaining

parameters ci� i � 	� do not correspond to solution values� In particular� using �	���
��
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�	����d�� and �	����b� yields

U��� �
c�� � c�

	
�

pX
i����

ciN
i
�����

Hierarchical bases can be constructed so that ci is proportional to diU����d
i� i � 	

�cf� �
�� Section 	���� however� the shape functions �	����� based on Legendre polynomials

reduce sensitivity of the basis to round�o� error accumulation� This is very important

when using high�order �nite element approximations�

Example ��
��� Let us solve the two�point boundary value problem

�pu�� � qu � f�x�� � � x � �� u��� � u��� � �� �	�����

using the �nite element method with piecewise�quadratic hierarchical approximations�

As in Chapter �� we simplify matters by assuming that p � � and q � � are constants�

By now we are aware that the Galerkin form of this problem is given by �	�	�	�� As

in Chapter �� introduce �cf� ���
����

AS
j �v� u� �

Z xj

xj��

pv�u�dx�

We use �	�
��� to map �xj��� xj� to the canonical ���� �� element as

AS
j �v� u� �

	

hj

Z �

��

p
dv

d


du

d

d
� �	������

Using �	���
�� we write the restriction of the piecewise�quadratic trial and text functions

to �xj��� xj� as

U�
� � �cj��� cj� cj�����

�
� N�

��

N�
�

N�
�

�
	 � V �
� � �dj��� dj� dj�����

�
� N�

��

N�
�

N�
�

�
	 � �	������

Substituting �	������ into �	������

AS
j �V� U� � �dj��� dj� dj�����Kj

�
� cj��

cj
cj����

�
	 �	����	a�

where Kj is the element sti�ness matrix

Kj �
	p

hj

Z �

��

d

d


�
� N�

��

N�
�

N�
�

�
	 d

d

�N�

��� N
�
� � N

�
� �d
�
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Substituting for the basis de�nitions �	���
� 	�����

Kj �
	p

hj

Z �

��

�

�
���	
��	



q

�
�

�
�	 ����	� ��	� 


r



	
�d
�

Integrating

Kj �
	p

hj

Z �

��

�
� ��
 ���
 �
p
��

���
 ��
 

p


��

�
p
�� 

p


�� 

��	

�
	 d
 �

p

hj

�
� � �� �
�� � �
� � 	

�
	 � �	����	b�

The orthogonality relation �	����d� has simpli�ed the sti�ness matrix by uncoupling the

linear and quadratic modes�

In a similar manner�

AM
j �V� U� �

Z xj

xj��

qV Udx �
qhj
	

Z �

��

V Ud
� �	����
a�

Using �	������

AM
j �V� U� � �dj��� dj� dj�����Mj

�
� cj��

cj
cj����

�
	 �	����
b�

where� upon use of �	���
� 	������ the element mass matrix Mj satis�es

Mj �
qhj
	

Z �

��

�
� N�

��

N�
�

N�
�

�
	 �N�

��� N
�
� � N

�
� �d
 �

qhj
�

�
� 	 � �p
�	

� 	 �p
�	

�p
�	 �p
�	 ���

�
	 �

�	����
c�

The higher and lower order terms of the element mass matrix have not decoupled� Com�

paring �	����	b� and �	����
c� with the forms developed in Section ��
 for piecewise�linear

approximations� we see that the piecewise linear sti�ness and mass matrices are contained

as the upper 	� 	 portions of these matrices� This will be the case for linear problems�

thus� each higher�degree polynomial will add a �border� to the lower�degree sti�ness and

mass matrices�

Finally� consider

�V� f�j �

Z xj

xj��

V fdx �
hj
	

Z �

��

V fd
� �	����
a�

Using �	������

�V� f�j � �dj��� dj� dj�����lj �	����
b�
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where

lj �
hj
	

Z �

��

�
� N�

��

N�
�

N�
�

�
	 f�x�
��d
� �	����
c�

As in Section ��
� we approximate f�x� by piecewise�linear interpolation� which we write

as

f�x� 	 N�
���
�fj�� �N�

� �
�fj

with fj �� f�xj�� The manner of approximating f�x� should clearly be related to the

degree p and we will need a more careful analysis� Postponing this until Chapters � and

�� we have

lj �
hj
	

Z �

��

�
� N�

��

N�
�

N�
�

�
	 �N�

��� N
�
� �d


�
fj��
fj



�

hj
�

�
� 	fj�� � fj

fj�� � 	fj
�p
�	�fj�� � fj�

�
	 �	����
d�

Using �	�	�	a� with �	����	a�� �	����
a�� and �	����
a�� we see that assembly requires

evluating the sum
NX
j��

�AS
j �V� U� � AM

j �V� U�� �V� f�j� � ��

Following the strategy used for the piecewise�linear solution of Section ��
� the local

sti�ness and mass matrices and load vectors are added into their proper locations in

their global counterparts� Imposing the condition that the system be satis�ed for all

choices of dj� j � ��	� �� 
�	� � � � � N � �� yields the linear algebraic system

�K�M�c � l� �	������

The structure of the sti�ness and mass matrices K and M and load vector l depend on

the ordering of the unknowns c and virtual coordinates d� One possibility is to order

them by increasing index� i�e��

c � �c���� c�� c���� c�� � � � � cN��� cN�����
T � �	������

As with the piecewise�linear basis� we have assumed that the homogeneous boundary

conditions have explicitly eliminated c� � cN � �� Assembly for this ordering is similar

to the one used in Section ��
 �cf� Problem 	 at the end of this section�� This is a natural

ordering and the one most used for this approximation� however� for variety� let us order

the unknowns by listing the vertices �rst followed by those at element midpoints� i�e��

c �

�
cL
cQ



� cL �

�



�

c�
c�
���

cN��

�
���	 � cQ �

�



�

c���
c���
���

cN����

�
���	 � �	������
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In this case� K� M� and l have a block structure and may be partitioned as

K �

�
KL �

� KQ



� M �

�
ML MLQ

MT
LQ MQ



� l �

�
lL
lQ



�	������

where� for uniform mesh spacing hj � h� j � �� 	� � � � � N � these matrices are

KL �
p

h

�





�

	 ��
�� 	 ��

� � �
� � �

� � �

�� 	 ��
�� 	

�
�����	 � KQ �

p

h

�





�

	
	

� � �

	
	

�
�����	 � �	������

ML �
qh

�

�





�


 �
� 
 �

� � � � � � � � �

� 
 �
� 


�
�����	 � MLQ � �qh

�

r



	

�





�

� �
� �

� � � � � �

� �
� �

�
�����	 �

MQ �
qh

�

�





�

�
�

� � �

�
�

�
�����	 � �	���	��

lL �
h

�

�



�

f� � 
f� � f�
f� � 
f� � f�

���
fN�� � 
fN�� � fN

�
���	 � lQ � � hp

	


�



�

f� � f�
f� � f�

���
fN�� � fN

�
���	 � �	���	��

With N � � vertex unknowns cL and N elemental unknowns cQ� the matrices KL and

ML are �N � ��� �N � ��� KQ and MQ are N �N � and MLQ is �N � ���N � Similarly�

lL and lQ have dimension N �� and N � respectively� The indicated ordering implies that

the 
 � 
 element sti�ness and mass matrices �	����	b� and �	����
c� for element j are

added to rows and columns j � �� j� and N � � � j of their global counterparts� The

�rst row and column of the element sti�ness and mass matrices are deleted when j � �

to satisfy the left boundary condition� Likewise� the second row and column of these

matrices are deleted when j � N to satisfy the right boundary condition�

The structure of the system matrix K�M is

K�M �

�
KL �ML MLQ

MT
LQ KQ �MQ



� �	���		�
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The matrix KL � ML is the same one used for the piecewise�linear solution of this

problem in Section ��
� Thus� an assembly and factorization of this matrix done during a

prior piecewise�linear �nite element analysis could be reused� A solution procedure using

this factorization is presented as Problem 
 at the end of this section� Furthermore� if

q � � then MLQ � � �cf� �	���	�b�� and the linear and quadratic portions of the system

uncouple�

In Example ��
��� we solved �	����� with p � �� q � �� and f�x� � x using piecewise�

linear �nite elements� Let us solve this problem again using piecewise�quadratic hier�

archical approximations and compare the results� Recall that the exact solution of this

problem is

u�x� � x� sinh x

sinh �
�

Results for the error in the L� norm are shown in Table 	���� for solutions obtained

with piecewise�linear and quadratic approximations� The results indicate that solutions

with piecewise�quadratic approximations are converging as O�h�� as opposed to O�h��

for piecewise�linear approximations� Subsequently� we shall show that smooth solutions

generally converge as O�hp��� in the L� norm and as O�hp� in the strain energy �or H��

norm�

N Linear Quadratic
DOF jjejj� jjejj��h� DOF jjejj� jjejj��h�


 
 ��	����	� ��
	����� � ���	���
� �������	�
� � �������
� ��
	����� �� �������
� �������	�
�� �� �������
� ��
	����� 
� ��������� �������	�

	 
� ��
����
� ��
	�����

Table 	����� Errors in L� and degrees of freedom �DOF� for piecewise�linear and piecewse�
quadratic solutions of Example 	�����

The number of elements N is not the only measure of computational complexity�

With higher�order methods� the number of unknowns �degrees of freedom� provides a

better index� Since the piecewise�quadratic solution has approximately twice the number

of unknowns of the linear solution� we should compare the linear solution with spacing h

and the quadratic solution with spacing 	h� Even with this analysis� the superiority of

the higher�order method in Table 	���� is clear�

Problems

�� Consider the approximation in strain energy of a given function u�
�� �� � 
 � ��

by a polynomial U�
� in the hierarchical form �	���
�� The problem consists of
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determining U�
� as the solution of the Galerkin problem

A�V� U� � A�V� u�� �V � Sp�

where Sp is a space of p th�degree polynomials on ���� ��� For simplicity� let us take

the strain energy as

A�v� u� �

Z �

��

v�u�d
�

With c�� � u���� and c� � u���� �nd expressions for determining the remaining

coe�cients ci� i � 	� 
� � � � � p� so that the approximation satis�es the speci�ed

Galerkin projection�

	� Show how to generate the global sti�ness and mass matrices and load vector for

Example 	���� when the equations and unknowns are written in order of increasing

index �	�������


� Suppose KL �ML have been assembled and factored by Gaussian elimination as

part of a �nite element analysis with piecewise�linear approximations� Devise an

algorithm to solve �	������ for cL and cQ that utilizes the given factorization�

��� Interpolation Errors

Errors of �nite element solutions can be measured in several norms� We have already

introduced pointwise and global metrics� In this introductory section on error analysis�

we�ll de�ne some basic principles and study interpolation errors� As we shall see shortly�

errors in interpolating a function u by a piecewise polynomial approximation U will

provide bounds on the errors of �nite element solutions�

Once again� consider a Galerkin problem for a second�order di�erential equation� �nd

u � H�
� such that

A�v� u� � �v� f�� �v � H�
� � �	�����

Also consider its �nite element counterpart� �nd U � SN
� such that

A�V� U� � �V� f�� �V � SN
� � �	���	�

Let the approximating space SN
� 
 H�

� consist of piecewise�polynomials of degree p on

N �element meshes� We begin with two fundamental results regarding Galerkin�s method

and �nite element approximations�
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Theorem ������ Let u � H�
� and U � SN

� 
 H�
� satisfy ������� and �������� respectively�

then

A�V� u� U� � �� �V � SN
� � �	���
�

Proof� Since V � SN
� it also belongs to H�

� � Thus� it may be used to replace v in �	������

Doing this and subtracting �	���	� yields the result�

We shall subsequently show that the strain energy furnishes an inner product� With

this interpretation� we may regard �	���
� as an orthogonality condition in a �strain

energy space� where A�v� u� is an inner product and
p
A�u� u� is a norm� Thus� the

�nite element solution error

e�x� �� u�x�� U�x� �	���
�

is orthogonal in strain energy to all functions V in the subspace SN
� � We use this orthog�

onality to show that solutions obtained by Galerkin�s method are optimal in the sence of

minimizing the error in strain energy�

Theorem ������ Under the conditions of Theorem ������

A�u� U� u� U� � min
V �SN

�

A�u� V� u� V �� �	�����

Proof� Consider

A�u� U� u� U� � A�u� u�� 	A�u� U� � A�U� U��

Use �	���
� with V replaced by U to write this as

A�u� U� u� U� � A�u� u�� 	A�u� U� � A�U� U� � 	A�u� U� U�

or

A�u� U� u� U� � A�u� u�� A�U� U��

Again� using �	���
� for any V � SN
�

A�u� U� u� U� � A�u� u�� A�U� U� � A�V� V �� A�V� V �� 	A�u� U� V �

or

A�u� U� u� U� � A�u� V� u� V �� A�U � V� U � V ��

Since the last term on the right is non�negative� we can drop it to obtain

A�u� U� u� U� � A�u� V� u� V �� �V � SN
� �

We see that equality is attained when V � U and� thus� �	����� is established�
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With optimality of Galerkin�s method� we may obtain estimates of �nite element

discretization errors by bounding the right side of �	����� for particular choices of V �

Convenient bounds are obtained by selecting V to be an interpolant of the exact solution

u� Bounds furnished in this manner generally provide the exact order of convergence in

the mesh spacing h� Furthermore� results similar to �	����� may be obtained in other

norms� They are rarely as precise as those in strain energy and typically indicate that

the �nite element solution di�ers by no more than a constant from the optimal solution

in the considered norm�

Thus� we will study the errors associated with interpolation problems� This can be

done either on a physical or a canonical element� but we will proceed using a canonical

element since we constructed shape functions in this manner� For our present purposes�

we regard u�
� as a known function that is interpolated by a p th�degree polynomial U�
�

on the canonical element ���� ��� Any form of the interpolating polynomial may be used�

We use the Lagrange form �	�
���� where

U�
� �

pX
k��

ckNk�
� �	�����

with Nk�
� given by �	�
��b�� �We have omitted the elemental index e on Nk for clarity

since we are concerned with one element�� An analysis of interpolation errors whith hi�

erarchical shape functions may also be done �cf� Problem � at the end of this section��

Although the Lagrangian and hierarchical shape functions di�er� the resulting interpola�

tion polynomials U�
� and their errors are the same since the interpolation problem has

a unique solution �	� ���

Selecting p�� distinct points xii � ���� ��� i � �� �� � � � � p� the interpolation conditions

are

U�
i� � u�
i� �� ui � ci� j � �� �� � � � � p� �	�����

where the rightmost condition follows from �	�
��a��

There are many estimates of pointwise interpolation errors� Here is a typical result�

Theorem ������ Let u�
� � Cp������ �� then� for each 
 � ���� ��� there exists a point


�
� � ���� �� such that the error in interpolating u�
� by a p th�degree polynomial U�
�

is

e�
� �
u�p��	�
�

�p� ��"

pY
i��

�
 � 
i�� �	�����

Proof� Although the proof is not di�cult� we�ll just sketch the essential details� A com�

plete analysis is given in numerical analysis texts such as Burden and Faires �	�� Chapter


� and Isaacson and Keller ���� Chapter ��
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Since

e�
�� � e�
�� � � � � � e�
p� � �

the error must have the form

e�
� � g�
�

pY
i��

�
 � 
i��

The error in interpolating a polynomial of degree p or less is zero� thus� g�
� must be

proportional to u�p��	� We may use a Taylor�s series argument to infer the existence of


�
� � ���� �� and
e�
� � Cu�p��	�
�

pY
i��

�
 � 
i��

Selecting u to be a polynomial of degree p � � and di�erentiating this expression p � �

times yields C as ���p� ��" and �	������

The pointwise error �	����� can be used to obtain a variety of global error estimates�

Let us estimate the error when interpolating a smooth function u�
� by a linear polyno�

mial U�
� at the vertices 
� � �� and 
� � � of an element� Using �	����� with p � �

reveals

e�
� �
u���
�

	
�
 � ���
 � ��� 
 � ���� ��� �	�����

Thus�

je�
�j � �

	
max
������

ju���
�j max
������

j
� � �j�

Now�

max
������

j
� � �j � ��

Thus�

je�
�j � �

	
max
������

ju���
�j�

Derivatives in this expression are taken with respect to 
� In most cases� we would

like results expressed in physical terms� The linear transformation �	�
��� provides the

necessary conversion from the canonical element to element j� �xj��� xj�� Thus�

d�u�
�

d
�
�

h�j



d�u�
�

dx�

with hj � xj � xj��� Letting

kf���k��j �� max
xj���x�xj

jf�x�j �	������
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denote the local �maximum norm� of f�x� on �xj��� xj�� we have

ke���k��j �
h�j
�
ku�����k��j� �	������

�Arguments have been replaced by a � to emphasize that the actual norm doesn�t depend

on x��

If u�x� were interpolated by a piecewise�linear function U�x� on N elements �xj��� xj��

j � �� 	� � � � � N � then �	������ could be used on each element to obtain an estimate of the

maximum error as

ke���k� � h�

�
ku�����k�� �	����	a�

where

kf���k� �� max
��j�N

kf���k��j� �	����	b�

and

h �� max
��j�N

�xj � xj���� �	����	c�

As a next step� let us use �	����� and �	�
��� to compute an error estimate in the L�

norm� thus� Z xj

xj��

e��x�dx �
hj
	

Z �

��

�
u���
�
��

	
�
� � ����d
�

Since j
� � �j � �� we haveZ xj

xj��

e��x�dx � hj
�

Z �

��

�u���
�
����d
�

Introduce the �local L� norm� of a function f�x� as

kf���k��j ��
�Z xj

xj��

f ��x�dx

����

� �	����
�

Then�

ke���k���j �
hj
�

Z �

��

�u���
�
����d
�

It is tempting to replace the integral on the right side of our error estimate by ku��k���j�
This is almost correct� however� 
 � 
�
�� We would have to verify that 
 varies smoothly

with 
� Here� we will assume this to be the case and expand u�� using Taylor�s theorem

to obtain

u���
� � u���
� � u�������
 � 
� � u���
� �O�j
 � 
j�� � � �
� 
��
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or

ju���
�j � Cju���
�j�
The constant C absorbs our careless treatment of the higher�order term in the Taylor�s

expansion� Thus� using �	�
���� we have

ke���k���j � C�hj
�

Z �

��

�u���
���d
 � C�
h�j
�


Z xj

xj��

�u���x���dx�

where derivatives in the rightmost expression are with respect to x� Using �	����
�

ke���k���j � C�
h�j
�

ku�����k���j� �	����
�

If we sum �	����
� over the N �nite elements of the mesh and take a square root we

obtain

ke���k� � Ch�ku�����k�� �	�����a�

where

kf���k�� �
NX
j��

kf���k���j� �	�����b�

�The constant C in �	�����a� replaces the constant C�� of �	����
�� but we won�t be

precise about identifying di�erent constants��

With a goal of estimating the error in H�� let us examine the error u��
� � U ��
��

Di�erentiating �	����� with respect to 


e��
� � u���
�
 �
u����
�

	

d


d

�
� � ���

Assuming that d
�d
 is bounded� we use �	����
� and �	�
��� to obtain

ke�k���j �
Z xj

xj��

�
de�x�

dx
��dx �

	

hj

Z �

��

�u���
�
 �
u����
�

	

d


d

�
� � ����d
�

Following the arguments that led to �	����
�� we �nd

ke����k���j � Ch�jku�����k���j�

Summing over the N elements

ke����k�� � Ch�ku�����k�� �	������
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To obtain an error estimate in the H� norm� we combine �	�����a� and �	������ to get

ke���k� � Chku�����k� �	�����a�

where

kf���k�� ��
NX
j��

�kf ����k���j � kf���k���j�� �	�����b�

The methodology developed above may be applied to estimate interpolation errors of

higher�degree polynomial approximations� A typical result follows�

Theorem ������ Introduce a mesh a � x� � x� � � � � � xN � b such that U�x� is a

polynomial of degree p or less on every subinterval �xj��� xj� and U � H��a� b�� Let U�x�

interpolate u�x� � Hp���a� b� such that no error results when u�x� is any polynomial of

degree p or less� Then� there exists a constant Cp � �� depending on p� such that

ku� Uk� � Cph
p��ku�p��	k� �	�����a�

and

ku� Uk� � Chppku�p��	k�� �	�����b�

where h satis�es �������c��

Proof� The analysis follows the one used for linear polynomials�

Problems

�� Choose a hierarchical polynomial �	���
� on a canonical element ���� �� and show

how to determine the coe�cients cj� j � ��� �� 	� � � � � p� to solve the interpolation

problem �	������
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