
Chapter �

Introduction

��� Historical Perspective

The �nite element method is a computational technique for obtaining approximate solu�

tions to the partial di�erential equations that arise in scienti�c and engineering applica�

tions� Rather than approximating the partial di�erential equation directly as with� e�g��

�nite di�erence methods� the �nite element method utilizes a variational problem that

involves an integral of the di�erential equation over the problem domain� This domain

is divided into a number of subdomains called �nite elements and the solution of the

partial di�erential equation is approximated by a simpler polynomial function on each

element� These polynomials have to be pieced together so that the approximate solution

has an appropriate degree of smoothness over the entire domain� Once this has been

done� the variational integral is evaluated as a sum of contributions from each �nite el�

ement� The result is an algebraic system for the approximate solution having a �nite

size rather than the original in�nite�dimensional partial di�erential equation� Thus� like

�nite di�erence methods� the �nite element process has discretized the partial di�eren�

tial equation but� unlike �nite di�erence methods� the approximate solution is known

throughout the domain as a pieceise polynomial function and not just at a set of points�

Logan ���� attributes the discovery of the �nite element method to Hrennikof �	� and

McHenry ���� who decomposed a two�dimensional problem domain into an assembly of

one�dimensional bars and beams� In a paper that was not recognized for several years�

Courant �
� used a variational formulation to describe a partial di�erential equation with

a piecewise linear polynomial approximation of the solution relative to a decomposition of

the problem domain into triangular elements to solve equilibrium and vibration problems�

This is essentially the modern �nite element method and represents the �rst application

where the elements were pieces of a continuum rather than structural members�

Turner et al� ���� wrote a seminal paper on the subject that is widely regarded

�
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as the beginning of the �nite element era� They showed how to solve one� and two�

dimensional problems using actual structural elements and triangular� and rectangular�

element decompositions of a continuum� Their timing was better than Courants �
��

since success of the �nite element method is dependent on digital computation which

was emerging in the late ����s� The concept was extended to more complex problems

such as plate and shell deformation �cf� the historical discussion in Logan ����� Chapter

�� and it has now become one of the most important numerical techniques for solving

partial di�erential equations� It has a number of advantages relative to other methods�

including

� the treatment of problems on complex irregular regions�

� the use of nonuniform meshes to re�ect solution gradations�

� the treatment of boundary conditions involving �uxes� and

� the construction of high�order approximations�

Originally used for steady �elliptic� problems� the �nite element method is now used

to solve transient parabolic and hyperbolic problems� Estimates of discretization errors

may be obtained for reasonable costs� These are being used to verify the accuracy of the

computation� and also to control an adaptive process whereby meshes are automatically

re�ned and coarsened and�or the degrees of polynomial approximations are varied so as

to compute solutions to desired accuracies in an optimal fashion ��� �� �� �� �� �� ����

��� Weighted Residual Methods

Our goal� in this introductory chapter� is to introduce the basic principles and tools of

the �nite element method using a linear two�point boundary value problem of the form

L�u� �� �
d

dx
�p�x�

du

dx
� � q�x�u � f�x�� � � x � �� ������a�

u��� � u��� � �� ������b�

The �nite element method is primarily used to address partial di�erential equations and is

hardly used for two�point boundary value problems� By focusing on this problem� we hope

to introduce the fundamental concepts without the geometric complexities encountered

in two and three dimensions�

Problems like ������� arise in many situations including the longitudinal deformation

of an elastic rod� steady heat conduction� and the transverse de�ection of a supported
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cable� In the latter case� for example� u�x� represents the lateral de�ection at position

x of a cable having �scaled� unit length that is subjected to a tensile force p� loaded by

a transverse force per unit length f�x�� and supported by a series of springs with elastic

modulus q �Figure ������� The situation resembles the cable of a suspension bridge� The

tensile force p is independent of x for the assumed small deformations of this model� but

the applied loading and spring moduli could vary with position�
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Figure ������ De�ection u of a cable under tension p� loaded by a force f per unit length�
and supported by springs having elastic modulus q�

Mathematically� we will assume that p�x� is positive and continuously di�erentiable

for x � ��� ��� q�x� is non�negative and continuous on ��� ��� and f�x� is continuous on

��� ���

Even problems of this simplicity cannot generally be solved in terms of known func�

tions� thus� the �rst topic on our agenda will be the development of a means of calculating

approximate solutions of �������� With �nite di�erence techniques� derivatives in ������a�

are approximated by �nite di�erences with respect to a mesh introduced on ��� �� �����

With the �nite element method� the method of weighted residuals �MWR� is used to

construct an integral formulation of ������� called a variational problem� To this end� let

us multiply ������a� by a test or weight function v and integrate over ��� �� to obtain

�v�L�u�� f� � �� ������a�

We have introduced the L� inner product

�v� u� ��

Z
�

�

vudx ������b�

to represent the integral of a product of two functions�

The solution of ������� is also a solution of ������a� for all functions v for which the

inner product exists� Well express this requirement by writing v � L���� ��� All functions

of class L���� �� are �square integrable� on ��� ��� thus� �v� v� exists� With this viewpoint

and notation� we write ������a� more precisely as

�v�L�u�� f� � �� �v � L���� ��� ������c�
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Equation ������c� is referred to as a variational form of problem �������� The reason for

this terminology will become clearer as we develop the topic�

Using the method of weighted residuals� we construct approximate solutions by re�

placing u and v by simpler functions U and V and solving ������c� relative to these

choices� Speci�cally� well consider approximations of the form

u�x� � U�x� �
NX
j��

cj�j�x�� ������a�

v�x� � V �x� �
NX
j��

dj�j�x�� ������b�

The functions �j�x� and �j�x�� j � �� �� � � � � N � are preselected and our goal is to

determine the coe�cients cj� j � �� �� � � � � N � so that U is a good approximation of u�

For example� we might select

�j�x� � �j�x� � sin j�x� j � �� �� � � � � N�

to obtain approximations in the form of discrete Fourier series� In this case� every function

satis�es the boundary conditions ������b�� which seems like a good idea�

The approximation U is called a trial function and� as noted� V is called a test func�

tion� Since the di�erential operator L�u� is second order� we might expect u � C���� ���

�Actually� u can be slightly less smooth� but C� will su�ce for the present discussion��

Thus� its natural to expect U to also be an element of C���� ��� Mathematically� we re�

gard U as belonging to a �nite�dimensional function space that is a subspace of C���� ���

We express this condition by writing U � SN��� �� � C���� ��� �The restriction of these

functions to the interval � � x � � will� henceforth� be understood and we will no longer

write the ��� ���� With this interpretation� well call SN the trial space and regard the

preselected functions �j�x�� j � �� �� � � � � N � as forming a basis for SN �

Likewise� since v � L�� well regard V as belonging to another �nite�dimensional

function space �SN called the test space� Thus� V � �SN � L� and �j�x�� j � �� �� � � � � N �

provide a basis for �SN �

Now� replacing v and u in ������c� by their approximations V and U � we have

�V�L�U �� f� � �� �V � �SN � ������a�

The residual

r�x� �� L�U �� f�x� ������b�
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is apparent and clari�es the name �method of weighted residuals�� The vanishing of the

inner product ������a� implies that the residual is orthogonal in L� to all functions V in

the test space �SN �

Substituting ������� into ������a� and interchanging the sum and integral yields

NX
j��

dj��j�L�U �� f� � �� �dj� j � �� �� � � � � N� �������

Having selected the basis �j� j � �� �� � � � � N � the requirement that ������a� be satis�ed for

all V � �SN implies that ������� be satis�ed for all possible choices of dk� k � �� �� � � � � N �

This� in turn� implies that

��j�L�U �� f� � �� j � �� �� � � � � N� �����
�

Shortly� by example� we shall see that �����
� represents a linear algebraic system for the

unknown coe�cients ck� k � �� �� � � � � N �

One obvious choice is to select the test space �SN to be the same as the trial space

and use the same basis for each� thus� �k�x� � �k�x�� k � �� �� � � � � N � This choice leads

to Galerkin�s method

��j�L�u�� f� � �� j � �� �� � � � � N� �������

which� in a slightly di�erent form� will be our �work horse�� With �j � C�� j �

�� �� � � � � N � the test space clearly has more continuity than necessary� Integrals like

������� or �����
� exist for some pretty �wild� choices of V � Valid methods exist when V

is a Dirac delta function �although such functions are not elements of L�� and when V

is a piecewise constant function �cf� Problems � and � at the end of this section��

There are many reasons to prefer a more symmetric variational form of ������� than

�������� e�g�� problem ������� is symmetric �self�adjoint� and the variational form should

re�ect this� Additionally� we might want to choose the same trial and test spaces� as with

Galerkins method� but ask for less continuity on the trial space SN � This is typically

the case� As we shall see� it will be di�cult to construct continuously di�erentiable

approximations of �nite element type in two and three dimensions� We can construct

the symmetric variational form that we need by integrating the second derivative terms

in ������a� by parts� thus� using ������a�Z
�

�

v���pu��� � qu� f �dx �

Z
�

�

�v�pu� � vqu� vf�dx� vpu�j�� � � �����	�

where � �� � d� ��dx� The treatment of the last �boundary� term will need greater

attention� For the moment� let v satisfy the same trivial boundary conditions ������b� as
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u� In this case� the boundary term vanishes and �����	� becomes

A�v� u�� �v� f� � � ������a�

where

A�v� u� �

Z
�

�

�v�pu� � vqu�dx� ������b�

The integration by parts has eliminated second derivative terms from the formulation�

Thus� solutions of ������� might have less continuity than those satisfying either ������� or

�������� For this reason� they are called weak solutions in contrast to the strong solutions

of ������� or �������� Weak solutions may lack the continuity to be strong solutions� but

strong solutions are always weak solutions� In situations where weak and strong solutions

di�er� the weak solution is often the one of physical interest�

Since weve added a derivative to v by the integration by parts� v must be restricted

to a space where functions have more continuity than those in L�� Having symmetry in

mind� we will select functions u and v that produce bounded values of

A�u� u� �

Z
�

�

�p�u��� � qu��dx�

Actually� since p and q are smooth functions� it su�ces for u and v to have bounded

values of Z
�

�

��u��� � u��dx� ��������

Functions where �������� exists are said to be elements of the Sobolev space H�� Weve

also required that u and v satisfy the boundary conditions ������b�� We identify those

functions in H� that also satisfy ������b� as being elements of H�
� � Thus� in summary�

the variational problem consists of determining u � H�
� such that

A�v� u� � �v� f�� �v � H�

� � ��������

The bilinear form A�v� u� is called the strain energy� In mechanical systems it frequently

corresponds to the stored or internal energy in the system�

We obtain approximate solutions of �������� in the manner described earlier for the

more general method of weighted residuals� Thus� we replace u and v by their approxi�

mations U and V according to �������� Both U and V are regarded as belonging to the

same �nite�dimensional subspace SN� of H�
� and �j� j � �� �� � � � � N � forms a basis for

SN� � Thus� U is determined as the solution of

A�V� U� � �V� f�� �V � SN� � �������a�
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The substitution of ������b� with �j replaced by �j in �������a� again reveals the more

explicit form

A��j� U� � ��j� f�� j � �� �� � � � � N� �������b�

Finally� to make �������b� totally explicit� we eliminate U using ������a� and interchange

a sum and integral to obtain

NX
k��

ckA��j� �k� � ��j� f�� j � �� �� � � � � N� �������c�

Thus� the coe�cients ck� k � �� �� � � � � N � of the approximate solution ������a� are deter�

mined as the solution of the linear algebraic equation �������c�� Di�erent choices of the

basis �j� j � �� �� � � � � N � will make the integrals involved in the strain energy ������b�

and L� inner product ������b� easy or di�cult to evaluate� They also a�ect the accuracy

of the approximate solution� An example using a �nite element basis is presented in the

next section�

Problems

�� Consider the variational form �����
� and select

�j�x� � ��x� xj�� j � �� �� � � � � N�

where ��x� is the Dirac delta function satisfying

��x� � �� x �� ��

Z
�

��

��x�dx � ��

and

� � x� � x� � � � � � xN � ��

Show that this choice of test function leads to the collocation method

L�U �� f�x�jx�xj � �� j � �� �� � � � � N�

Thus� the di�erential equation ������� is satis�ed exactly at N distinct points on

��� ���

�� The subdomain method uses piecewise continuous test functions having the basis

�j�x� ��

�
�� if x � �xj����� xj�����
�� otherwise

�

where xj���� � �xj � xj������ Using �����
�� show that the approximate solution

U�x� satis�es the di�erential equation ������a� on the average on each subinterval

�xj����� xj������ j � �� �� � � � � N �
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�� Consider the two�point boundary value problem

�u�� � u � x� � � x � �� u��� � u��� � ��

which has the exact solution

u�x� � x�
sinh x

sinh �
�

Solve this problem using Galerkins method �������c� using the trial function

U�x� � c� sin�x�

Thus� N � �� ���x� � ���x� � sin�x in �������� Calculate the error in strain

energy as A�u� u�� A�U� U�� where A�u� v� is given by ������b��

��� A Simple Finite Element Problem

Finite element methods are weighted residuals methods that use bases of piecewise poly�

nomials having small support� Thus� the functions ��x� and ��x� of ������� ������ are

nonzero only on a small portion of problem domain� Since continuity may be di�cult to

impose� bases will typically use the minimum continuity necessary to ensure the existence

of integrals and solution accuracy� The use of piecewise polynomial functions simplify

the evaluation of integrals involved in the L� inner product and strain energy ������b�

�����b� and help automate the solution process� Choosing bases with small support leads

to a sparse� well�conditioned linear algebraic system �������c�� for the solution�

Let us illustrate the �nite element method by solving the two�point boundary value

problem ������� with constant coe�cients� i�e��

�pu�� � qu � f�x�� � � x � �� u��� � u��� � �� �������

where p � � and q � �� As described in Section ���� we construct a variational form of

������� using Galerkins method ��������� For this constant�coe�cient problem� we seek

to determine u � H�
� satisfying

A�v� u� � �v� f�� �v � H�

� � ������a�

where

�v� u� �

Z
�

�

vudx� ������b�

A�v� u� �

Z
�

�

�v�pu� � vqu�dx� ������c�
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With u and v belonging to H�
� � we are sure that the integrals ������b�c� exist and that

the trivial boundary conditions are satis�ed�

We will subsequently show that functions �of one variable� belonging to H� must

necessarily be continuous� Accepting this for the moment� let us establish the goal of

�nding the simplest continuous piecewise polynomial approximations of u and v� This

would be a piecewise linear polynomial with respect to a mesh

� � x� � x� � � � � � xN � � �������

introduced on ��� ��� Each subinterval �xj��� xj�� j � �� �� � � � � N � is called a �nite element�

The basis is created from the �hat function�

�j�x� �

���
��

x�xj��
xj�xj��

� if xj�� � x � xj
xj���x

xj���xj
� ifxj � x � xj��

�� otherwise

� ������a�

x x x x

1

x

jj-10 j+1

j
(x)

N
x

φ

Figure ������ One�dimensional �nite element mesh and piecewise linear hat function
�j�x��

As shown in Figure ������ �j�x� is nonzero only on the two elements containing the

node xj� It rises and descends linearly on these two elements and has a maximal unit

value at x � xj� Indeed� it vanishes at all nodes but xj� i�e��

�j�xk� � �jk ��

�
�� if xk � xj
�� otherwise

� ������b�

Using this basis with �������� we consider approximations of the form

U�x� �
N��X
j��

cj�j�x�� �������

Lets examine this result more closely�
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x x x x x

x

jj-10 j+1 N

φ
j
(x)φ

j-1
(x)

c

c

j
j-1

j+1

c

1

U(x)

Figure ������ Piecewise linear �nite element solution U�x��

�� Since each �j�x� is a continuous piecewise linear function of x� their summation

U is also continuous and piecewise linear� Evaluating U at a node xk of the mesh

using ������b� yields

U�xk� �
N��X
j��

cj�j�xk� � ck�

Thus� the coe�cients ck� k � �� �� � � � � N � �� are the values of U at the interior

nodes of the mesh �Figure �������

�� By selecting the lower and upper summation indices as � and N�� we have ensured

that ������� satis�es the prescribed boundary conditions

U��� � U��� � ��

As an alternative� we could have added basis elements ���x� and �N�x� to the

approximation and written the �nite element solution as

U�x� �
NX
j��

cj�j�x�� �����
�

Since� using ������b�� U�x�� � c� and U�xN � � cN � the boundary conditions are

satis�ed by requiring c� � cN � �� Thus� the representations ������� or �����
� are

identical� however� �����
� would be useful with non�trivial boundary data�

�� The restriction of the �nite element solution ������� or �����
� to the element

�xj��� xj� is the linear function

U�x� � cj���j���x� � cj�j�x�� x � �xj��� xj�� �������
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since �j�� and �j are the only nonzero basis elements on �xj��� xj� �Figure �������

Using Galerkins method in the form �������c�� we have to solve

N��X
k��

ckA��j� �k� � ��j� f�� j � �� �� � � � � N � �� �����	�

Equation �����	� can be evaluated in a straightforward manner by substituting replacing

�k and �j using ������� and evaluating the strain energy and L� inner product according

to ������b�c�� This development is illustrated in several texts �e�g�� ���� Section �����

Well take a slightly more complex path to the solution in order to focus on the computer

implementation of the �nite element method� Thus� write �������a� as the summation of

contributions from each element

NX
j��

�Aj�V� U�� �V� f�j� � �� �V � SN� � ������a�

where

Aj�V� U� � AS
j �V� U� � AM

j �V� U�� ������b�

AS
j �V� U� �

Z xj

xj��

pV �U �dx� ������c�

AM
j �V� U� �

Z xj

xj��

qV Udx� ������d�

�V� f�j �

Z xj

xj��

V fdx� ������e�

It is customary to divide the strain energy into two parts with AS
j arising from internal

energies and AM
j arising from inertial e�ects or sources of energy�

Matrices are simple data structures to manipulate on a computer� so let us write the

restriction of U�x� to �xj��� xj� according to ������� as

U�x� � �cj��� cj�

�
�j���x�
�j�x�

�
� ��j���x�� �j�x��

�
cj��
cj

�
� x � �xj��� xj�� �������a�

We can� likewise� use ������b� to write the restriction of the test function V �x� to �xj��� xj�

in the same form

V �x� � �dj��� dj�

�
�j���x�
�j�x�

�
� ��j���x�� �j�x��

�
dj��
dj

�
� x � �xj��� xj�� �������b�
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Our task is to substitute �������� into ������c�e� and evaluate the integrals� Let us begin

by di�erentiating �������a� while using ������a� to obtain

U ��x� � �cj��� cj�

�
���hj
��hj

�
� ����hj� ��hj�

�
cj��
cj

�
� x � �xj��� xj�� �������a�

where

hj � xj � xj��� j � �� �� � � � � N� �������b�

Thus� U ��x� is constant on �xj��� xj� and is given by the �rst divided di�erence

U ��x� �
cj � cj��

hj
� x � �xj��� xj��

Substituting �������� and a similar expression for V ��x� into ������b� yields

AS
j �V� U� �

Z xj

xj��

p�dj��� dj�

�
���hj
��hj

�
����hj� ��hj�

�
cj��
cj

�
dx

or

AS
j �V� U� � �dj��� dj�

�Z xj

xj��

p

�
��h�j ���h�j

���h�j ��h�j

�
dx

��
cj��
cj

�
�

The integrand is constant and can be evaluated to yield

AS
j �V� U� � �dj��� dj�Kj

�
cj��
cj

�
� Kj �

p

hj

�
� ��

�� �

�
� ��������

The �	 � matrix Kj is called the element sti�ness matrix� It depends on j through hj�

but would also have such dependence if p varied with x� The key observation is that

Kj can be evaluated without knowing cj��� cj� dj��� or dj and this greatly simpli�es the

automation of the �nite element method�

The evaluation of AM
j proceeds similarly by substituting �������� into ������d� to

obtain

AM
j �V� U� �

Z xj

xj��

q�dj��� dj�

�
�j��
�j

�
��j��� �j�

�
cj��
cj

�
dx�

With q a constant� the integrand is a quadratic polynomial in x that may be integrated

exactly �cf� Problem � at the end of this section� to yield

AM
j �V� U� � �dj��� dj�Mj

	
cj��cj



� Mj �

qhj



�
� �
� �

�
� ��������

whereMj is called the element mass matrix because� as noted� it often arises from inertial

loading�
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The �nal integral ������e� cannot be evaluated exactly for arbitrary functions f�x��

Without examining this matter carefully� let us approximate it by its linear interpolant

f�x� � fj���j���x� � fj�j�x�� x � �xj��� xj�� ��������

where fj �� f�xj�� Substituting �������� and �������b� into ������e� and evaluating the

integral yields

�V� f�j �

Z xj

xj��

�dj��� dj�

�
�j��
�j

�
��j��� �j�

�
fj��
fj

�
dx � �dj��� dj�lj �������a�

where

lj �
hj



�
�fj�� � fj
fj�� � �fj

�
� �������b�

The vector lj is called the element load vector and is due to the applied loading f�x��

The next step in the process is the substitution of ��������� ��������� and �������� into

������a� and the summation over the elements� Since this our �rst example� well simplify

matters by making the mesh uniform with hj � h � ��N � j � �� �� � � � � N � and summing

AS
j � A

M
j � and �V� f�j separately� Thus� summing ��������

NX
j��

AS
j �

NX
j��

�dj��� dj�
p

h

�
� ��

�� �

� �
cj��
cj

�
�

The �rst and last contributions have to be modi�ed because of the boundary conditions

which� as noted� prescribe c� � cN � d� � dN � �� Thus�

NX
j��

AS
j � �d��

p

h
����c�� � �d�� d��

p

h

�
� ��

�� �

� �
c�
c�

�
� 
 
 


��dN��� dN���
p

h

�
� ��

�� �

� �
cN��
cN��

�
� �dN���

p

h
����cN����

Although this form of the summation can be readily evaluated� it obscures the need for the

matrices and complicates implementation issues� Thus� at the risk of further complexity�

well expand each matrix and vector to dimension N � � and write the summation as

NX
k��

AS
j � �d�� d�� 
 
 
 � dN���

p

h

�
����

�
�
�����
�
���

c�
c�
���

cN��

�
����
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��d�� d�� 
 
 
 � dN���
p

h

�
����

� ��
�� �

�
�����
�
���

c�
c�
���

cN��

�
����

� 
 
 
� �d�� d�� 
 
 
 � dN���
p

h

�
���� � ��

�� �

�
�����
�
���

c�
c�
���

cN��

�
����

��d�� d�� 
 
 
dN���
p

h

�
����

�

�
�����
�
���

c�
c�
���

cN��

�
����

Zero elements of the matrices have not been shown for clarity� With all matrices and

vectors having the same dimension� the summation is

NX
j��

AS
j � d

T
Kc� ������
a�

where

K �
p

h

�
�������

� ��
�� � ��

�� � ��
� � � � � � � � �

�� � ��
�� �

�
��������
� ������
b�

c � �c�� c�� 
 
 
 � cN���
T � ������
c�

d � �d�� d�� 
 
 
 � dN���
T � ������
d�

The matrix K is called the global sti�ness matrix� It is symmetric� positive de�nite� and

tridiagonal� In the form that we have developed the results� the summation over elements

is regarded as an assembly process where the element sti�ness matrices are added into

their proper places in the global sti�ness matrix� It is not necessary to actually extend the

dimensions of the element matrices to those of the global sti�ness matrix� As indicated

in Figure ������ the elemental indices determine the proper location to add a local matrix

into the global matrix� Thus� the � 	 � element sti�ness matrix Kj is added to rows
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AS
� � d�

p

h
�����z� c� AS

� � �d�� d��
p

h

�
� ��

�� �

�
� �z �

�
c�
c�

�

AS
� � �d�� d��

p

h

�
� ��

�� �

�
� �z �

�
c�
c�

�

K �
p

h

�
����������

� ��
�� � ��

�� �

�
�����������

Figure ������ Assembly of the �rst three element sti�ness matrices into the global sti�ness
matrix�

j � � and j and columns j � � and j� Some modi�cations are needed for the �rst and

last elements to account for the boundary conditions�

The summations of AM
j and �V� f�j proceed in the same manner and� using ��������

and ��������� we obtain

NX
j��

AM
j � d

T
Mc� �������a�

NX
j��

�V� f�j � d
T
l �������b�

where

M �
qh




�
�����

� �
� � �

� � �
� � �

� � �

� � �
� �

�
������ � �������c�

l �
h




�
���

f� � �f� � f�
f� � �f� � f�

���
fN�� � �fN�� � fN

�
���� � �������d�
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The matrix M and the vector l are called the global mass matrix and global load vector�

respectively�

Substituting ������
a� and �������a�b� into ������a�b� gives

d
T ��K�M�c� l� � �� ������	�

As noted in Section ���� the requirement that ������a� hold for all V � SN� is equivalent

to satisfying ������	� for all choices of d� This is only possible when

�K�M�c � l� ��������

Thus� the nodal values ck� k � �� �� � � � � N � �� of the �nite element solution are deter�

mined by solving a linear algebraic system� With c known� the piecewise linear �nite

element U can be evaluated for any x using ������a�� The matrix K �M is symmetric�

positive de�nite� and tridiagonal� Such systems may be solved by the tridiagonal algo�

rithm �cf� Problem � at the end of this section� in O�N� operations� where an operation

is a scalar multiply followed by an addition�

The discrete system �������� is similar to the one that would be obtained from a

centered �nite di�erence approximation of �������� which is ����

�K�D��c � �l� �������a�

where

D � qh

�
���

�
�

� � �

�

�
���� � �l � h

�
���

f�
f�
���

fN��

�
���� � �c �

�
���

�c�
�c�
���

�cN��

�
���� � �������b�

Thus� the qu and f terms in ������� are approximated by diagonal matrices with the

�nite di�erence method� In the �nite element method� they are �smoothed� by coupling

diagonal terms with their nearest neighbors using Simpsons rule weights� The diagonal

matrix D is sometimes called a �lumped� approximation of the consistent mass matrix

M� Both �nite di�erence and �nite element solutions behave similarly for the present

problem and have the same order of accuracy at the nodes of a uniform mesh�

Example ������ Consider the �nite element solution of

�u�� � u � x� � � x � �� u��� � u��� � ��

which has the exact solution

u�x� � x�
sinh x

sinh �
�
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Relative to the more general problem �������� this example has p � q � � and f�x� � x�

We solve it using the piecewise�linear �nite element method developed in this section on

uniform meshes with spacing h � ��N for N � �� 	� � � � � ��	� Before presenting results�

it is worthwhile mentioning that the load vector �������� is exact for this example� Even

though we replaced f�x� by its piecewise linear interpolant according to ��������� this

introduced no error since f�x� is a linear function of x�

Letting

e�x� � u�x�� U�x� ��������

denote the discretization error	 in Table ����� we display the maximum error of the �nite

element solution and of its �rst derivative at the nodes of a mesh� i�e��

jej� �� max
��j�N

je�xj�j� je�j� �� max
��j�N

je��x�j �j� ��������

We have seen that U ��x� is a piecewise constant function with jumps at nodes� Data in

Table ����� were obtained by using derivatives from the left� i�e�� x�j � lim��� xj�	� With

this interpretation� the results of second and fourth columns of Table ����� indicate that

jej��h
� and je�j��h are �essentially� constants� hence� we may conclude that jej� � O�h��

and je�j� � O�h��

N jej� jej��h
� je�j� je�j��h

� ���
����� ��������� ������ �� �����
	 ��
		���� ��������� ���	����� �����
�
 ��������� ��������� ��������� ���	�
�� ��������� ��������� ��������� �����

� ����	���� ��������� ��������� ����

��	 �������
� ��������� ���	����� ����	

Table ������ Maximum nodal errors of the piecewise�linear �nite element solution and its
derivative for Example ������ �Numbers in parenthesis indicate a power of ����

The �nite element and exact solutions of this problem are displayed in Figure ����� for

a uniform mesh with eight elements� It appears that the pointwise discretization errors

are much smaller at nodes than they are globally� Well see that this phenomena� called

superconvergence� applies more generally than this single example would imply�

Since �nite element solutions are de�ned as continuous functions �of x�� we can also

appraise their behavior in some global norms in addition to the discrete error norms used

in Table ������ Many norms could provide useful information� One that we will use quite
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Figure ������ Exact and piecewise�linear �nite element solutions of Example ����� on an
	�element mesh�

often is the square root of the strain energy of the error� thus� using ������c�

kekA ��
p
A�e� e� �

�Z
�

�

�p�e��� � qe��dx

����

� �������a�

This expression may easily be evaluated as a summation over the elements in the spirit

of ������a�� With p � q � � for this example�

kek�A �

Z
�

�

��e��� � e��dx�

The integral is the square of the norm used on the Sobolev space H�� thus�

kek� ��

�Z
�

�

��e��� � e��dx

����

� �������b�

Other global error measures will be important to our analyses� however� the only one



���� A Simple Finite Element Problem ��

that we will introduce at the moment is the L� norm

kek� ��

�Z
�

�

e��x�dx

����
� �������c�

Results for the L� and strain energy errors� presented in Table ����� for this example�

indicate that kek� � O�h�� and kekA � O�h�� The error in the H� norm would be

identical to that in strain energy� Later� we will prove that these a priori error estimates

are correct for this and similar problems� Errors in strain energy converge slower than

those in L� because solution derivatives are involved and their nodal convergence is O�h�

�Table �������

N kek� kek��h
� kekA kekA�h

� ���
����� ��������� ��������� ����

	 ��
�
���� ����
���� ��������� �����
�
 ���
����� ��������� ��������� �����
�� ��������� ��������� ��������� �����

� ��������� ��������� ��������� �����
��	 ���
����� ��������� ��������� �����

Table ������ Errors in L� and strain energy for the piecewise�linear �nite element solution
of Example ������ �Numbers in parenthesis indicate a power of ����

Problems

�� The integral involved in obtaining the mass matrix according to �������� may� of

course� be done symbolically� It may also be evaluated numerically by Simpsons

rule which is exact in this case since the integrand is a quadratic polynomial� Recall�

that Simpsons rule isZ h

�

F�x�dx �
h



�F��� � �F�h��� � F�h���

The mass matrix is

Mj �

Z xj

xj��

�
�j��
�j

�
��j��� �j�dx�

Using �������� determine Mj by Simpsons rule to verify the result ��������� The

use of Simpsons rule may be simpler than symbolic integration for this example

since the trial functions are zero or unity at the ends of an element and one half at

its center�

�� Consider the solution of the linear system

AX � F� �������a�
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where F and X are N �dimensional vectors and A is an N 	N tridiagonal matrix

having the form

A �

�
�����
a� c�
b� a� c�

� � � � � � � � �

bN�� aN�� cN��
bN aN

�
������ � �������b�

Assume that pivoting is not necessary and factor A as

A � LU� �������a�

where L and U are lower and upper bidiagonal matrices having the form

L �

�
�����

�
l� �

l� �
� � � � � �

lN �

�
������ � �������b�

U �

�
�����
u� v�

u� v�
� � � � � �

uN�� vN��
uN

�
������ � �������c�

Once the coe�cients lj� j � �� �� � � � � N � uj� j � �� �� � � � � N � and vj� j � �� �� � � � � N�

�� have been determined� the system �������a� may easily be solved by forward and

backward substitution� Thus� using �������a� in �������a� gives

LUX � F� ������
a�

Let

UX � Y� ������
b�

then�

LY � F� ������
c�

���� Using �������� and ��������� show

u� � a��

lj � bj�uj��� uj � aj � ljcj��� j � �� �� � � � � N�

vj � cj� j � �� �� � � � � N�
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���� Show that Y and X are computed as

Y� � F��

Yj � Fj � ljYj��� j � �� �� � � � � N�

XN � yN�uN �

Xj � �Yj � vjXj����uj� j � N � �� N � �� � � � � ��

���� Develop a procedure to implement this scheme for solving tridiagonal systems�

The input to the procedure should be N and vectors containing the coe�cients

aj� bj� cj� fj� j � �� �� � � � � N � The procedure should output the solution X�

The coe�cients aj� bj� etc�� j � �� �� � � � � N � should be replaced by uj� vj� etc��

j � �� �� � � � � N � in order to save storage� If you want� the solution X can be

returned in F�

���� Estimate the number of arithmetic operations necessary to factor A and for

the forward and backward substitution process�

�� Consider the linear boundary value problem

�pu�� � qu � f�x�� � � x � �� u��� � u���� � ��

where p and q are positive constants and f�x� is a smooth function�

���� Show that the Galerkin form of this boundary�value problem consists of �nding

u � H�
� satisfying

A�v� u�� �v� f� �

Z
�

�

�v�pu� � vqu�dx�

Z
�

�

vfdx � �� �v � H�

� �

For this problem� functions u�x� � H�
� are required to be elements of H� and

satisfy the Dirichlet boundary condition u��� � �� The Neumann boundary

condition at x � � need not be satis�ed by either u or v�

���� Introduce N equally spaced elements on � � x � � with nodes xj � jh�

j � �� �� � � � � N �h � ��N�� Approximate u by U having the form

U�x� �
NX
j��

ck�k�x��

where �j�x�� j � �� �� � � � � N � is the piecewise linear basis �������� and use

Galerkins method to obtain the global sti�ness and mass matrices and the

load vector for this problem� �Again� the approximation U�x� does not satisfy

the natural boundary condition u���� � � nor does it have to� We will discuss

this issue in Chapter ���
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���� Write a program to solve this problem using the �nite element method devel�

oped in Part ���b and the tridiagonal algorithm of Problem �� Execute your

program with p � �� q � �� and f�x� � x and f�x� � x�� In each case� use

N � �� 	� �
� and ��� Let e�x� � u�x�� U�x� and� for each value of N � com�

pute jej�� je
��xN �j� and kekA according to �������� and �������a�� You may

�optionally� also compute kek� as de�ned by �������c�� In each case� estimate

the rate of convergence of the �nite element solution to the exact solution�

�� The Galerkin form of ������� consists of determining u � H�
� such that ������� is

satis�ed� Similarly� the �nite element solution U � SN� � H�
� satis�es ���������

Letting e�x� � u�x�� U�x�� show

A�e� e� � A�u� u�� A�U� U�

where the strain energy A�v� u� is given by ������c�� We have� thus� shown that the

strain energy of the error is the error of the strain energy�
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