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Introduction

This thesis introduces a mathematical framework for cell membrane imaging. It
aims at exhibiting the fundamental mechanisms underlying the fact that effective
biological tissue electrical properties and their frequency dependence reflect the tis-
sue composition and physiology. The objectives are twofold: (i) to understand how
the dependence of the effective electrical admittivity measures the complexity of the
cellular organization of the tissue; (ii) to develop electrical tissue property imaging
approaches in order to improve differentiation of tissue pathologies. Mathematical
and numerical models obtained in this thesis could be utilized in studying the dis-
ease status, in monitoring effectiveness of treatment in individual patients. They
may also find diagnostic applications in long term goal.

Biological tissues possess characteristic distributions of electrical conductivity
and permittivity [96]. Conductivity can be regarded as a measure of the ability to
transport charge throughout material’s volume under an applied electric field, while
permittivity is a measure of the ability of the dipoles within a material to rotate (or of
the material to store charge) under an applied external field. At low frequencies, bi-
ological tissues behave like a conductor, but capacitive effects become important at
higher frequencies due to the membranous structures [120, 122]. The electric behav-
ior of a biological tissue under the influence of an electric field at frequency w can
be characterized by its frequency-dependent admittivity ke f := se f (w) + iwee f (w),
where se f and ee f are respectively its effective conductivity and permittivity.

Electrical impedance spectroscopy assesses the frequency dependence of the ef-
fective admittivity by measuring it across a range of frequencies from a few Hz to
hundreds of MHz. Effective admittivity of biological tissues and its frequency de-
pendence vary with tissue composition, membrane characteristics, intra-and extra-
cellular fluids and other factors.

In this thesis, we prove that admittance spectroscopy provides information about
the microscopic structure of the medium and physiological and pathological condi-
tions of the tissue. Moreover, we propose an optimal control scheme for recon-
structing admittivity distributions from multi-frequency micro-electrical impedance
tomography and prove its local convergence and stability.

In Part I, a homogenization theory is established to quantify the effective admit-
tivity of a tissue described as a cell suspension.

The determination of the effective, or macroscopic, property of a suspension is an
enduring problem in physics [99]. It has been studied by many distinguished scien-
tists, including Maxwell, Poisson [111], Faraday, Rayleigh [113], Fricke [61], Lorentz,
Debye, and Einstein [55]. Many studies have been conducted on approximate ana-
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lytic expressions for overall admittivity of a cell suspension from the knowledge of
pointwise conductivity distribution, and these studies were mostly restricted to the
simplified model of a strongly dilute suspension of spherical or ellipsoidal cells.

In Chapter 1 we consider a periodic suspension of identical cells of arbitrary
shape. We apply at the boundary of the medium an electric field of frequency w.
The medium outside the cells has an admittivity of k0 := s0 + iwe0. Each cell is
composed of an isotropic homogeneous core of admittivity k0 and a thin membrane
of constant thickness d and admittivity km := sm + iwem. The thickness d is consid-
ered to be very small relative to the typical cell size and the membrane is considered
very resistive, i.e., sm ⌧ s0. In this context, the potential in the medium passes an
effective discontinuity over the cell boundary; the jump is proportional to its normal
derivative with a coefficient of the effective thickness, given by dk0 /km. The normal
derivative of the potential is continuous across the cell boundaries.

We use homogenization techniques with asymptotic expansions to derive a ho-
mogenized problem and to define an effective admittivity of the medium. We prove
a rigorous convergence of the initial problem to the homogenized problem via two-
scale convergence.

For dilute cell suspensions, we use in Chapter 2 layer potential techniques to ex-
pand the effective admittivity in terms of cell volume fraction. Through the effective
thickness, d k0/km, the first-order term in this expansion can be expressed in terms
of a membrane polarization tensor, M, that depends on the operating frequency w.
We retrieve the Maxwell-Wagner-Fricke formula for concentric circular-shaped cells.
This explicit formula has been generalized in many directions: in three dimension
for concentric spherical cells; to include higher power terms of the volume fraction
for concentric circular and spherical cells; and to include various shapes such as
concentric, confocal ellipses and ellipsoids; see [35, 36, 58, 59, 60, 95, 119, 120, 122].

The imaginary part of the membrane polarization tensor M is proven to be pos-
itive for d small enough. Its two eigenvalues are maximal for frequencies 1/ti, i =
1, 2, of order of a few MHz with physically plausible parameters values. This dis-
persion phenomenon well known by the biologists is referred to as the b-dispersion.
The associated characteristic times ti correspond to Debye relaxation times. Given
this, we show that different microscopic organizations of the medium can be dis-
tinguished via ti, i = 1, 2, alone. The relaxation times ti are computed numerically
for different configurations: one circular or elliptic cell, two or three cells in close
proximity. The obtained results illustrate the viability of imaging cell suspensions
using the spectral properties of the membrane polarization. The Debye relaxation
times are shown to be able to give the microscopic structure of the medium.

In Chapter 3, we show that our results can be extended to the random case by
considering a randomly deformed periodic medium. We also derive a rigorous ho-
mogenization theory for cells (and hence interfaces) that are randomly deformed
from a periodic structure by random, ergodic, and stationary deformations. We
prove a new formula for the overall conductivity of a dilute suspension of randomly
deformed cells. Again, the spectral properties of the membrane polarization can be
used to classify different microscopic structures of the medium through their Debye
relaxation times. For recent works on effective properties of dilute random media,
we refer to [10, 42].
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In Chapter 4 we present some numerical results to illustrate the fact that the
Debye relaxation times are characteristics of microstructures of the tissue. We also
show some numerical results for nondilute suspensions. We observe that in the gen-
eral case, Debye relaxation times, defined in exactly the same way as for dilute sus-
pensions in Chapter 2, are characteristics of microstructures of the tissue. Moreover,
they are invariant with respect to rigid transformations. However, they do depend
on the volume fraction. Therefore, in the general nondilute case, microstructure
classification can only be done for fixed volume fraction. This important finding is
also illustrated here.

In Part II, we propose and analyze an optimal control approach for imaging
the admittivity distributions of biological tissues. We consider the imaging of ad-
mittivity distributions of biological tissues from multi-frequency micro-electrical
impedance data.

Micro-electrical impedance tomography [84, 94] can be used to reconstruct a high
resolution admittivity distribution from internal measurements of electrical poten-
tial at multiple frequencies. The technique uses planar arrays of micro-electrodes
to nondestructively sense thin layers of biological samples [39, 84, 86, 114, 130]. It
has potential applications in cell electrofusion and electroporation, cell culturing,
cell differentiation and drug screening; see [33, 84, 87, 88, 93, 98, 112, 115, 133]. It
is capable of high-resolution imaging. Other methods of electrical tissue property
imaging using internal data are investigated in [11, 13, 14, 15, 27, 63, 123, 124, 132].
Resolution and stability enhancements are achieved from internal measurements
[18, 22, 23].

To solve the admittivity imaging problem from multi-frequency micro-electrical
data, we design an optimal control optimization algorithm. We show that the mini-
mization functional is Fréchet differentiable and we compute its derivative. Then we
construct an initial guess by solving a boundary value problem and prove the con-
vergence of a minimizing sequence. It is worth emphasizing that internal potential
measurements at a single frequency are known to be insufficient for reconstructing
the admittivity distribution.

In Part III, we mathematically formulate the optical imaging of the spatial distri-
butions of the transmembrane potential changes induced in cells by applied external
electric fields. The use of optical detection methods for the measurement of fluores-
cence response to membrane electric fields was reported in the early 1970s. Since
then, considerable advances have been reported [90]. In [68], it has been demon-
strated experimentally that membrane potential changes can be imaged with the
resolution of the optical microscopy. The key feature of this system is the com-
bined use of an external electric field and fluorescence tomography. The fluorescent
indicators are designed in such a way that they respond linearly to the electrical po-
tential jump across the membrane. As shown in this thesis, the application of the
electric field enhances the membrane fluorescence imaging and its sensitivity to the
membrane.

The propagation of light through a highly scattering medium with low absorp-
tion is well described by the diffusion equation [106]. Diffuse optical imaging tech-
niques measure the spatially-dependent absorption and scattering properties of a
tissue. A light source illuminates the tissue, and detectors measure the intensity of
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the exiting light at the boundary of the tissue, after it undergoes multiple scattering
and absorption. One can use these measurements to reconstruct, from the diffusion
equation, a map of the optical parameters of the studied biological tissue [92, 118].

Diffuse optical imaging techniques use near infrared light, because absorption by
biological tissue is minimal at these wavelengths, and one can then produce images
deep in living subjects or samples, up to several centimeters.

These techniques can be used to image fluorescing targets, known as fluorophores,
in tissues. When excited by light at a specific wavelength, fluorophores emit light
at a different wavelength in order to decay to their ground state. Measurements of
emitted light exiting at the boundary of the tissue, combined with measurements
of residual excitation light from sources after it went through the tissue, provide an
insight of the tissue optical properties. More precisely, these measurements allow
us to reconstruct a map of the tissue optical parameters, the distribution of fluo-
rophore concentration, and fluorophore lifetime, which is the time they spend in
their excited state before emitting light [50, 107]. The fluorescent indicators, which
can be chosen with excitation and emission wavelengths in the near infrared light
spectrum, accumulate in specific areas. With such techniques, one can then localize
proteins, cells or diseased tissues, visualize in vivo biological processes, and obtain
measurements of the concentration in tissues of important physiological markers,
such as oxygenated hemoglobin [128, 104, 105]. Detailed structural information as
well as indications of pathology can be obtained from these images.

Part III provides a mathematical model for spatial distribution of membrane elec-
trical potential changes by fluorescence diffuse optical tomography. The resolving
power of the imaging method in the presence of measurement noise is derived. The
proposed mathematical model can be used for cell membrane tracking with the res-
olution of the optical microscope.

The results in this thesis are from [16, 17, 26].



Part I

Spectroscopic imaging of a dilute cell
suspension
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In Part I, a homogenization theory is derived to describe the effective admit-
tivity of cell suspensions. A new formula is reported for dilute cases that gives
the frequency-dependent effective admittivity with respect to the membrane po-
larization. Different microstructures are shown to be distinguishable via spectro-
scopic measurements of the overall admittivity using the spectral properties of the
membrane polarization. The Debye relaxation times associated with the membrane
polarization tensor are shown to be able to give the microscopic structure of the
medium. A natural measure of the admittivity anisotropy is introduced and its de-
pendence on the frequency of applied current is derived. A Maxwell-Wagner-Fricke
formula is given for concentric circular cells, and the results can be extended to the
random cases. A randomly deformed periodic medium is also considered and a
new formula is derived for the overall admittivity of a dilute suspension of ran-
domly deformed cells.

Part I is organized as follows.
Chapter 1 is devoted to the analysis of the problem. It introduces the problem

settings and state the main results of this work. We prove existence and uniqueness
results and establish useful a priori estimates. We consider a periodic cell suspension
and derive spectral properties of the overall conductivity.

Chapter 2 is devoted to spectroscopic imaging of a dilute suspension. We con-
sider the problem of determining the effective property of a suspension of cells when
the volume fraction goes to zero. We make use of the asymptotic expansion of the ef-
fective admittivity in terms of the volume fraction to image a permittivity inclusion.
We also discuss selective spectroscopic imaging using a pulsed approach. Finally,
we introduce a natural measure of the conductivity anisotropy and derive its de-
pendence on the frequency of applied current.

In Chapter 3 we extend our results to the case of randomly deformed periodic
media. In Chapter 4 we provide numerical examples that support our main findings
in Part I.
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Chapter 1

Homogenization of cell membranes

1.1 Problem settings and main results

The aim of this section is to introduce the problem settings and state the main results
of this chapter.

1.1.1 Periodic domain

We consider the probe domain W to be a bounded open set of R2 of class C2. The
domain contains a periodic array of cells whose size is controlled by #. Let C be a
C2,h domain being contained in the unit square Y = [0, 1]2, see Figure 1.4. Here,
0 < h < 1 and C represents a reference cell. We divide the domain W periodically in
each direction in identical squares (Y#,n)n of size #, where

Y#,n = #n + #Y.

Here, n 2 N# :=
n

n 2 Z2|Y#,n \ W 6= ∆
o

.
We consider that a cell C#,n lives in each small square Y#,n. As shown in Figure 1.3,

all cells are identical, up to a translation and scaling of size #, to the reference cell C:

8n 2 N#, C#,n = #n + # C.

So are their boundaries (G#,n)n2N# to the boundary G of C:

8n 2 N#, G#,n = #n + # G.

Let us also assume that all the cells are strictly contained in W, that is for every
n 2 N#, the boundary G#,n of the cell C#,n does not intersect the boundary ∂W:

∂W \ (
[

n2N#

G#,n) = ∆.
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1.1.2 Electrical model of the cell

Set for any open set D of R2 :

L2
0(D) :=

⇢
f 2 L2(D)

���
Z

∂D
f (x)ds(x) = 0

�

and

H1(D) :=
n

f 2 L2(D)
���|r f | 2 L2(D)

o
.

We consider in this section the reference cell C immersed in a domain D. We
apply a sinusoidal electrical current g 2 L2

0(∂D) with angular frequency w at the
boundary of D.

The medium outside the cell, D \ C, is a homogeneous isotropic medium with
admittivity k0 := s0 + iwe0. The cell C is composed of an isotropic homogeneous
core of admittivity k0 and a thin membrane of constant thickness d with admittivity
km := sm + iwem. We make the following assumptions:

s0 > 0, sm > 0, e0 > 0, em � 0.

If we apply a sinusoidal current g(x) sin(wt) on the boundary ∂D in the low
frequency range below 10 MHz, the resulting time harmonic potential ǔ is governed
approximately by

8
><

>:

r · (k0 + (km � k0)cGd)rǔ) = 0 in D

k0
∂ǔ
∂n

���
∂D

= g,

where Gd := {x 2 C : dist(x, G) < d} and cGd is the characteristic function of the
set Gd.

The membrane thickness d is considered to be very small compared to the typical
size r of the cell i.e. d/r ⌧ 1. According to the transmission condition, the normal

component of the current density k0
∂u
∂n

can be regarded as continuous across the
thin membrane G.

We set b :=
d

km
. Since the membrane is very resistive, i.e. sm/s0 ⌧ 1, the po-

tential u in D undergoes a jump across the cell membrane G, which can be approxi-

mated at first order by bk0
∂u
∂n

. A rigorous proof of this result, based on asymptotic
expansions of layer potentials, can be found in [77].

More precisely, u is the solution of the following equations:
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8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

r · k0ru = 0 in D \ C,

r · k0ru = 0 in C,

k0
∂u
∂n

���
+
= k0

∂u
∂n

���
�

on G,

u|+ � u|� � bk0
∂u
∂n

= 0 on G,

k0
∂u
∂n

���
∂D

= g,
Z

∂D
g(x)ds(x) = 0,

Z

D\C
u(x)dx = 0.

(1.1)

Here n is the outward unit normal vector and u|±(x) denotes lim
t!0+

u(x ± tn(x)) for

x on the concerned boundary. Likewise,
∂u
∂n

���
±

:= lim
t!0+

ru(x ± tn(x)) · n(x).

For any open set B in R2, we denote H1
C(B) the Sobolev space H1(B)/C which

can be represented as :

H1
C(B) =

⇢
u 2 H1(B) |

Z

B
u(x)dx = 0

�
.

The following result holds.
Theorem 1.1.1. There exists a unique solution u := (u+, u�) in H1

C(D+)⇥ H1(D�) to
(1.1).
Proof. To prove the well-posedness of (1.1) we introduce the following Hilbert space:
V := H1

C(D)⇥ H1(D) equipped with the following natural norm for our problem:

8u 2 VkukV = kru+kL2(D+) + kru�kL2(D�) + ku+ � u�kL2(G).

We write the variational formulation of (1.1) as follows:
Find u 2 V such that for all v := (v+, v�) 2 V :

8
>><

>>:

Z

D+
k0ru+(x) ·rv�(x) dx +

Z

D�
k0ru+(x) ·rv�(x) dx

+
1

bk0

Z

G
(u+ � u�)(v+ � v�) ds(x) =

1
ko

Z

∂W
gv ds(x).

Since Re(k0) = s0 > 0 and Re(
1

bk0
) =

sms0 + #m#0
d|k0|

> 0, we can apply Lax-Milgram

theory to obtain existence and uniqueness of a solution to problem (1.1).

We finish this section with a few numerical simulations to illustrate the typical
profile of the potential u. We consider an elliptic domain D in which lives an elliptic
cell. We choose to virtually apply at the boundary of D an electrical current g =
ei⇤30r. We take realistic values for our parameters, which are the same as those used
in Chapter 4.

The real and imaginary parts of u outside and inside the cell are represented on
the figure .

We can observe that the potential jumps across the cell membrane. We plot the
outside and inside gradient vector fields (Figure ).
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0

0.1

0.2

0

0.1

0.2

0.3

Figure 1.1: Real and imaginary parts of the potential u outside and inside the cell.1.1.2

Figure 1.2: Gradient vector fields of the real and imaginary parts of u.1.1.2
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1.1.3 Governing equation

We denote by W+
# the medium outside the cells and W�

# the medium inside the cells:

W+
# = W \ (

[

n2N#

Y#,n \ C#,n), W�
# =

[

n2N#

C#,n.

Set G# :=
[

n2N#

G#,n. By definition, the boundaries ∂W+
# and ∂W�

# of respectively W+
#

and W�
# satisfy:

∂W+
# = ∂W [ G#, ∂W�

# = G#.

We apply a sinusoidal current g(x) sin(wt) at x 2 ∂W, where g 2 L2
0(∂W). The

induced time-harmonic potential u# in W satisfies [77, 108, 109]:
8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

r · k0ru+
# = 0 in W+

# ,

r · k0ru�
# = 0 in W�

# ,

k0
∂u+

#

∂n
= k0

∂u�
#

∂n
on G#,

u+
# � u�

# � # bk0
∂u+

#

∂n
= 0 on G#,

k0
∂u+

#

∂n

���
∂W

= g,
Z

∂W
g(x)ds(x) = 0,

Z

W+
#

u+
# (x)dx = 0,

(1.2)

where u# =

8
<

:

u+
# in W+

# ,

u�
# in W�

# .

Note that the previously introduced constant b, i.e., the ratio between the thick-
ness of the membrane of C and its admittivity, becomes #b. Because the cells (C#,n)n2N#

are in squares of size #, the thickness of their membranes is given by #d and conse-
quently, a factor # appears.

1.1.4 Main results in the periodic case

We set Y+ := Y \ C and Y� := C.
Throughout this chapter, we assume that dist(Y�, ∂Y) = O(1). We write the

solution u# as
8x 2 W u#(x) = u0(x) + #u1(x,

x
#
) + o(#), (1.3)

with

y 7�! u1(x, y)Y-periodic and u1(x, y) =

(
u+

1 (x, y) in W ⇥ Y+,

u�
1 (x, y) in W ⇥ Y�.

The following theorem holds.
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∂W
G# (#d, km)

W�
# (k0)

W+
# (k0)

Figure 1.3: Schematic illustration of the periodic medium W.

G
(d, km)

Y�

(k0)

Y+

(k0)

Figure 1.4: Schematic illustration of a unit period Y.
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Theorem 1.1.2. (i) The solution u# to (1.2) two-scale converges to u0 and ru#(x) two-
scale converges to ru0(x) + cY+(y)ryu+

1 (x, y) + cY�(y)ryu�
1 (x, y), where cY±

are the characteristic functions of Y±.

(ii) The function u0 in (1.3) is the solution in H1
C(W) to the following homogenized prob-

lem: (
r · K⇤ ru0(x) = 0 in W,

n · K⇤ru0 = g on ∂W,
(1.4)

where K⇤, the effective admittivity of the medium, is given by

8(i, j) 2 {1, 2}2, K⇤
i,j = k0

✓
dij +

Z

Y
(cY+rw+

i + cY�rw�
i ) · ej

◆
, (1.5)

and the function (wi)i=1,2 are the solutions of the following cell problems:
8
>>>>>>>>>>>><

>>>>>>>>>>>>:

r · k0r(w+
i (y) + yi) = 0 in Y+,

r · k0r(w�
i (y) + yi) = 0 in Y�,

k0
∂

∂n
(w+

i (y) + yi) = k0
∂

∂n
(w�

i (y) + yi) on G,

w+
i � w�

i � bk0
∂

∂n
(w+

i (y) + yi) = 0 on G,

y 7�! wi(y) Y-periodic.

(1.6)

(iii) Moreover, u1 can be written as

8(x, y) 2 W ⇥ Y, u1(x, y) =
2

Â
i=1

∂u0
∂xi

(x)wi(y). (1.7)

We define the integral operator LG : C2,h(G) ! C1,h(G), with 0 < h < 1 by

LG[j](x) =
1

2p

Z

G

∂2 ln |x � y|
∂n(x)∂n(y)

j(y)ds(y), x 2 G. (1.8)

LG is the normal derivative of the double layer potential DG.
Since LG is positive, one can prove that the operator I + aLG : C2,h(G) ! C1,h(G)

is a bounded operator and has a bounded inverse provided that < a > 0 [49, 102].
As the fraction f of the volume occupied by the cells goes to zero, we derive an

expansion of the effective admittivity for arbitrary shaped cells in terms of the vol-
ume fraction. We refer to the suspension, as periodic dilute. The following theorem
holds.

Theorem 1.1.3. The effective admittivity of a periodic dilute suspension admits the follow-
ing asymptotic expansion:

K⇤ = k0

 
I + f M

✓
I � f

2
M
◆�1

!
+ o( f 2), (1.9)
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where r =
p
|Y�|, f = r2,

M =

✓
Mij = bk0

Z

r�1G
njy

⇤
i (y)ds(y)

◆

(i,j)2{1,2}2
, (1.10)

and y⇤
i is defined by

y⇤
i = �

⇣
I + bk0Lr�1G

⌘�1
[ni]. (1.11)

1.1.5 Description of the random cells and interfaces
We describe the domains occupied by the cells. As mentioned earlier, they are
formed by randomly deforming a periodic structure. We transform the aforemen-
tioned periodic structure by a random diffeomorphism F : R2 ! R2. Let

R+
2 :=

[

n2Z2

(n + Y+), R�
2 :=

[

n2Z2

(n + Y�), G :=
[

n2Z2

(n + G).

The cells, the environment and the interfaces are hence deformed to F(R�
2 ), F(R+

2 )
and F(G). We emphasize that the topology of these sets are the same as before. Fi-
nally, the deformed structure is scaled to size #, where 0 < # ⌧ 1, by the dilation op-
erator #I where I is the identity operator. The final sets #F(R�

2 ), #F(G) and #F(R+
2 )

thus are realistic models for the random cells, membranes and the environment for
the biological problem at hand.

To model the cells inside an arbitrary bounded domain W as in (1.2), we would
like to set W+

# := W \ #F(R�
2 ) and G# := W \ #F(G). However, a technicality is

encountered, precisely, the intersection of #F(G) with the boundary ∂W may not
be empty. In this case, some cells are cut by the boundary of the body, which is
not physically admissible. Moreover, an arbitrary diffeomorphism F may allow
some deformed cells in #F(R�

2 ) to get arbitrarily close to each other. This imposes
difficulties for rigorous mathematical analysis. In order to resolve these issues, we
will impose a few conditions on F and refine the above construction in the next
subsection.

1.1.6 Stationary ergodic setting

Let (O,F , P) be some probability space on which F(x, g) : R2 ⇥O ! R2 is defined.
Throughout this chapter, we assume that the space L2(W) is separable. For a random
variable X 2 L1(O, dP), we will denote its expectation by

EX =
Z

O
X(g)dP(g).

Throughout this chapter, we assume that the group (Z2,+) acts on O by some
action {tn : O ! O}n2Z2 , and that for all n 2 Z2, tn is P-preserving, that is,

P(A) = P(tn A), for all A 2 F .
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We assume further that the action is ergodic, which means that for any A 2 F , if
tn A = A for all n 2 Z2, then necessarily P(A) 2 {0, 1}.

Following [44], we say that a random process F 2 L1
loc(R

2, L1(O)) is (discrete)
stationary if

8n 2 Z2, F(x + n, g) = F(x, tng) for almost every x and g. (1.12)

Clearly, a deterministic periodic function is a special case of stationary process.
However, we precise that the above notion of stationarity is different from the clas-
sical one, see for instance [103] and [79]. Throughout this chapter, we presume sta-
tionarity in the sense of (1.12) if not stated otherwise. What makes this notion useful
is the following version of ergodic theorem [53, 73].

Proposition 1.1.1. Let F 2 L•(R2, L1(O)) be a stationary random process. Equip Z2

with the norm |n|• = max1i2 |ni| for all n 2 Z2. Then

1
(2N + 1)2 Â

|n|•N
F(x, tng)

L•
���!
N!•

EF(x, ·) for a.e. g 2 O.

This implies in particular that if the family {F( ·# , g)} is bounded in Lp
loc(R

2), for some
p 2 [1, •), then

F
⇣x

#
, g
⌘

*
#!0

E

✓Z

Y
F(x, ·)dx

◆
in Lp

loc(R
2) for a.e. g 2 O.

The convergence holds also in the weak-⇤ sense for p = •.

We assume that for every g 2 O, F(·, g) is a diffeomorphsim from R2 to R2 and
that it satisfies

rF(x, g) is stationary. (1.13)

ess inf
g2O,x2R2

det(rF(x, g)) = k > 0, (1.14)

ess sup
g2O,x2R2

|rF(x, g)|F = k0 > 0, (1.15)

where | · |F is the Frobenius norm and ess inf and ess sup are the essential infimum
and the essentiel supremum, respectively. To avoid the intersection of ∂W and the
random cells #F(R�

2 ) and the collision of cells, that is when two connected com-
ponents of #F(R�

2 ) get as close as o(#), we need the further modification in the
construction of cells. To this end, we assume further that

kF(·, g)� I(·)kL•(R2) 
dist(Y�, ∂Y)

2
for a.e. g 2 O. (1.16)

Note that this implies also that kF�1 � IkL•  dist(Y�, ∂Y)/2 a.s. in O. Now,
given a bounded and simply connected open set W with smooth boundary and a
small number # ⌧ 1, we denote by W1/# the scaled set {x 2 R2 | #x 2 W}. Let ]W1/#

be the shrunk set

]W1/# := {x 2 W1/# | dist(x, ∂W1/#) � dist(Y�, ∂Y)}.
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We introduce for n 2 Z2, Yn and Y±
n the translated cubes, reference cells and refer-

ence environments: Yn := n + Y, Y±
n := n + Y±. Let I# ⇢ Z2 be the indices of cubes

Yn such that Yn 2 ]W1/#. Note that I# corresponds to N# in the periodic case. We set
W�

# to be

W�
# := Â

n2I#

#F(Y�
n ) (1.17)

and then W+
# = W \ W�

# . We also define the following two notations:

E# := Â
n2I#

#F(Yn) and K# := W \ E#. (1.18)

Clearly, E# encloses all the cells in #F(Y�
n ), n 2 I# and their immediate surround-

ings #F(Y+
n ); K# is a cushion layer near the boundary that prevents the cells from

touching the boundary. From the construction we see that

inf
x2W�

#

dist(x, ∂W) � #dist(Y�, ∂Y) and sup
x2K#

dist(x, ∂W)  (3dist(Y�, ∂Y)+
p

2)#.

Furthermore, we can check that

sup
n,j2I# ,n 6=j

inf
x2#F(Y�

n ),y2#F(Y�
j )

|x � y| � dist(Y�, ∂Y)#.

This shows that the cells in W are well separated, i.e., with a distance comparable to
(if not much larger than) the size of the cells; see Figure 1.5.

1.1.7 Main results in the random case

The first important result in the random case concerns an auxiliary problem which
produces oscillating test functions that are used in the stochastic homogenization
procedure. In the following theorem, a function f ext in W1,s

loc(R
2) is said to be an ex-

tension of f 2 W1,s
loc(R

+
2 ) if f ext = f on R+

2 and k f extkW1,s(K)  C(K, R+
2 )k f kW1,s(R+

2 \K),
for any compact subset K.

The following theorem holds.

Theorem 1.1.4. Let F(·, g) be a random diffeomorphism from R2 to R2 defined on the
probability space (O,F , P), and assume that (1.13)(1.14)(1.15) hold. For any fixed vector
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∂W
G# (#d, km)

W�
# (k0)

W+
# (k0)

F

Figure 1.5: Schematic illustration of the randomly deformed periodic medium W.



20 CHAPTER 1. HOMOGENIZATION OF CELL MEMBRANES

p 2 R2, the system
8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

r · k0(rw+
p (y) + p) = 0 in F(R+

2 , g),

r · k0(rw�
p (y) + p) = 0 in F(R�

2 , g),

k0
∂w+

p

∂n
(y)�

∂w�
p

∂n
(y) = 0 on F(G2, g),

w+
p � w�

p � bk0
∂w+

p

∂n
(y) = 0 on F(G2, g),

w±
p (y, g) = ew±

p (F�1(y, g), g),

r ew±
p are stationary,

9w̃ext
p 2 H1

loc(R
2) that extends w̃+

p s.t. E
⇣R

Y rw̃ext
p (ỹ, ·)dỹ

⌘
= 0,

(1.19)

admits a unique (up to an addition of a random variable) weak solution wp = w+
p cF(R+

2 ) +

w�
p cF(R�

2 ), where w±
p 2 L2(O, H1

loc(F(R±
2 ))).

The precise weak formulation of the system above is postponed to Chapter 3,
where the proof of this theorem is given; see (3.1). We remark that the non-unique
additive random variable is not important and what matters is the fact that the gra-
dient rwp of the solution is unique. The second main result in the random case is
the following homogenization theorem.

Theorem 1.1.5. Let W be a bounded and connected open subset of R2 with regular bound-
ary. Let F be a random diffeomorphism on (O,F , P) satisfying (1.13)(1.14)(1.15)(1.16).
Assume that the cells W�

# are constructed as in Section 1.1.6. Then for a.e. g 2 O, the
solution u#(·, g) = (u+

# , u�
# ) of (1.2) satisfies the following properties:

(i) We can extend u+
# (·, g) to uext

# (·, g) 2 H1(W), where uext
# (·, g) converges weakly, as

# ! 0, to a deterministic function u0 2 H1(W).

(ii) The function u#(·, g) converges strongly in L2(W) to u0 above. Further, let Q be the
trivial extension operator setting Q f = 0 outside the domain of f , and define

$ := det
✓

E

Z

Y
rF(z, ·)dz

◆�1
, q := $ E

Z

Y�
detrF(z, ·)dz, (1.20)

where det denotes the determinant. Then, Qu�
# converges weakly to qu0 in L2(W)

with q < 1.

(iii) The function u0 is the unique weak solution in H1
C(W) to the homogenized equation

(
r · K⇤ru0(x) = 0, x 2 W,

n(x) · K⇤ru0(x) = g, x 2 ∂W,
(1.21)
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The homogenized admittivity coefficient K⇤ is given by 8(i, j) 2 {1, 2}2,

K⇤
ij = k0

✓
dij + $E

Z

F(Y)
ej · (cF(Y+)rw+

ei
+ cF(Y�)rw�

ei
)(y, ·) dy

◆
, (1.22)

where {ei}2
i=1 is the Euclidean basis of R2 and for each p 2 R2, the pair of functions

(w+
p , w�

p ) is the unique solution to the auxiliary system (1.19).

In the dilute limit r :=
p
|Y�| ⌧ 1 , we obtain the following approximation of

the effective permittivity for the dilute suspension:

K⇤
ij = k0(I + f EMij) + o( f ), (1.23)

where $ accounts for the averaged change of volume due to the random diffeomor-
phism and f := $r2 is the volume fraction occupied by the cells ; the polarization
matrix M is defined by

Mij = bk0

Z

r�1F(G)
ỹinj ds(ỹ), (1.24)

where
ỹi = �(I + bk0n ·rDr�1F(G))

�1[ni],

with Dr�1F(G) the double layer potential associated to the deformed inclusion scaled
to the unit length scale.

1.2 Analysis of the problem

For a fixed #, recall that H1
C(W

+
# ) denotes the Sobolev space H1(W+

# )/C, which can
be represented as

H1
C(W

+
# ) =

⇢
u 2 H1(W+

# ) |
Z

W+
#

u(x)dx = 0
�

.

The natural functional space for (1.2) is

W# :=
n

u = u+c+
# + u�c�

# | u+ 2 H1
C(W

+
# ), u� 2 H1(W�

# )
o

,

where c±
# are the characteristic functions of the sets W±

# . We can verify that

kukW# =
⇣
kru+k2

L2(W+
# ) + kru�k2

L2(W�
# ) + #ku+ � u�k2

L2(G#)

⌘ 1
2

defines a norm on W#. In fact, as it will be seen in Proposition 1.2.2, this norm is
equivalent to the standard norm on W# which is

kukH1
C(W

+
# )⇥H1(W�

# ) =
⇣
kru+k2

L2(W+
# ) + kru�k2

L2(W�
# ) + ku�k2

L2(W�
# )

⌘ 1
2 .
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1.2.1 Existence and uniqueness of a solution

Problem (1.2) should be understood through its weak formulation as follows: For a
fixed # > 0, find u# 2 W# such that

Z

W+
#

k0ru+
# (x) ·rv+(x)dx +

Z

W�
#

k0ru�
# (x) ·rv�(x)ds(x)

+
1
#b

Z

G#

(u+
# � u�

# )(x)(v+ � v�)(x)ds(x) =
Z

∂W
g(x)v+(x)ds(x),

(1.25)
for any function v 2 W#.

Define the sesquilinear form a#(·, ·) on W# ⇥ W# by

a#(u, v) :=
Z

W+
#

k0ru+ ·rv+dx+
Z

W�
#

k0ru� ·rv�dx+
1
#b

Z

G#

(u+�u�)(v+ � v�)ds.

(1.26)
Associate the following anti-linear form on W# to the boundary data g:

`(u) :=
Z

∂W
gu+ds.

The forms a# and ` are bounded. Moreover, a# is coercive in the following sense

< k�1
0 a#(u, u) =

✓Z

W+
#

|ru+|2dx +
Z

W�
#

|ru�|2dx
◆
+

1
#b0

Z

G#

|u+�u�|2ds � Ckuk2
W#

,

where b0 := d(s0sm +w2e0#m)/(s2
m +w2e2

m). Consequently, due to the Lax–Milgram
theorem we have existence and uniqueness for (1.2) for each fixed # and for every
g 2 O. Note that C can be chosen independent of #.

Proposition 1.2.1. Let g 2 H�1/2(∂W). There exists a unique u# 2 W# so that

a#(u#, j) = `(j), 8j 2 W#. (1.27)

To end this subsection we remark that the two norms on W# are equivalent.

Proposition 1.2.2. The norm k · kW# is equivalent with the standard norm on H1
C(W

+
# )⇥

H1(W�
# ). Moreover, we can find two positive constants C1 < C2, independent of #, so that

C1kukW#  kukH1
C⇥H1  C2kukW# , (1.28)

for any u 2 H1
C(W

+
# )⇥ H1(W�

# ).

Similar equivalence relation was established by Monsurrò [100], whose method
can be adapted easily to the current case. For the sake of completeness, we present
the details in Appendix A.3.
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1.2.2 Energy estimate
For any fixed g 2 O and a sequence of # ! 0, by solving (1.2) we obtain the sequence
u# = u+

# c+
# + u�

# c�
# . We obtain some a priori estimates for u#.

We first recall that the extension theorem A.1.2 yields a Poincaré–Wirtinger in-
equality in H1

C(W
+
# ) with a constant independent of #. Indeed, Corollary A.2.1 shows

that for all v+ 2 H1
C(W

+
# ), there exists a constant C, independent of #, such that

kv+kL2(W+
# )  Ckrv+kL2(W+

# ).

Similarly, we can find a constant, independent of #, by applying the trace theorem
in H1(W+

# ). Using Corollary A.2.2, the following result holds.

Proposition 1.2.3. Let g 2 H� 1
2 (∂W). For any g 2 O, let W = W+

# [ G# [ W�
# . Then

there exist constants C’s, independent of # and g, such that the solution u# to (1.2) satisfies
the following estimates:

kru+
# kL2(W+

# ) + kru�
# kL2(W�

# )  C|k0|�1kgk
H� 1

2 (∂W)
, (1.29)

ku+
# � u�

# kL2(G#)  C|k0|�1p#b0kgk
H� 1

2 (∂W)
. (1.30)

Proof. By taking j = u# in (1.27), and taking the real part of resultant equality, we
get

kru+
# k2

L2(W+
# ) + kru�

# k2
L2(W�

# ) + (#b0)�1ku+
# � u�

# k2
L2(G#)

= <k�1
0 hg, u+

# i. (1.31)

Here hg, u+
# i =

Z

∂W
gu+

# ds is the pairing on H� 1
2 (∂W)⇥ H

1
2 (∂W), for which we have

the estimate

|hg, u+
# i|  kgk

H� 1
2 (∂W)

ku+
# kH

1
2 (∂W)

 C1kgk
H� 1

2 (∂W)
ku+

# kH1(W+
# ).

thanks to the Cauchy - Schwartz inequality and Corollary (A.2.2). C1 is here a con-
stant which does not depend on #.

Applying Proposition (1.2.2) yields

|hg, u+
# i|  C2kgk

H� 1
2 (∂W)

ku#kW# ,

with a constant C2 independent of #.
Using this in (1.31) along with the coercivity of a we get

ku#kW#  C3|k0|�1kgk
H� 1

2 (∂W)
,

where C3 is still independent of #.
It follows also that

|hg, u+
# i|  C2C3|k0|�1kgk

H� 1
2 (∂W)

.

Substitute this estimate into the right-hand side of (1.31), we get the desired esti-
mates.
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Next, we apply the extension theorem (Theorem A.1.2) to obtain a bounded se-
quence in H1(W) for which we can extract a converging subsequence.

Proposition 1.2.4. Suppose that the same conditions of the previous proposition hold. Let
P#

g : H1(W+
# ) ! H1(W) be the extension operator of Theorem A.1.2. Then we have

kP#
gu+

# kH1(W)  C|k0|�1kgk
H� 1

2 (∂W)
, (1.32)

and
kP#

gu+
# � u#kL2(W)  C#|k0|�1(1 +

p
b0)kgk

H� 1
2 (∂W)

.

Proof. The first inequality is a direct result of (A.11), (A.11), (A.13) and (1.29). For
the second inequality, we have

kP#
gu+

# � u#kL2(W) = kP#
gu+

# � u�
# kL2(W�

# )

 C
p

#kP#
gu+

# � u�
# kL2(G#) + C#kr(P#

gu+
# � u�

# )kL2(W�
# ).

Here, we have used estimate (A.18). Now, kP#
gu+

# � u�
# kL2(G#) = ku+

# � u�
# kL2(G#) is

bounded in (1.30). The second term is bounded from above by

C#krP#
gu+

# kL2(W�
# ) + C#kru�

# kL2(W�
# )  C#(kru+

# kL2(W+
# ) + kru�

# kL2(W�
# )),

where we have used again (A.11). This gives the desired estimates.

Remark 1.2.1. As a consequence of the previous proposition, we get a sequence in H1(W),
namely P#

gu+
# , which is a good estimate of u# in L2(W) and from which we can extract a

subsequence weakly converging in H1(W) and strongly in L2(W).

1.3 Homogenization

We follow [8, 9] to derive a homogenized problem for the model with two-scale
asymptotic expansions and to prove a rigorous two-scale convergence. In [100],
the homogenization of an analogue problem is developed and proved with another
method.

1.3.1 Two-scale asymptotic expansions
We assume that the solution u# admits the following two-scale asymptotic expansion

8x 2 W u#(x) = u0(x) + #u1(x,
x
#
) + o(#),

with

y 7�! u1(x, y)Y-periodic and u1(x, y) =

(
u+

1 (x, y) in W ⇥ Y+,

u�
1 (x, y) in W ⇥ Y�.

We choose a test function j# of the same form as u#:

8x 2 W, j#(x) = j0(x) + #j1(x,
x
#
),
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with j0 smooth in W, j1(x, .) Y-periodic,

j1(x, y) =

(
j+

1 (x, y) in W ⇥ Y+,

j�
1 (x, y) in W ⇥ Y�,

and j±
1 smooth in W ⇥ Y±.

In order to prove items (ii) and (iii) in Theorem 1.1.2, we perform an asymptotic
expansion of the variational formulation (1.27). We thus inject these ansatz in the
variational formulation and only consider the order 0 of the different integrals.

At order 0,
ru#(x) = ru0(x) +ryu1(x,

x
#
) + o(#).

Thanks to Lemma 1.3.1, we then have for the two first integrals:
Z

W+
#

k0

⇣
ru0(x) +ryu+

1 (x,
x
#
)
⌘
·
⇣
rj0(x) +ry j+

1 (x,
x
#
)
⌘

dx

=
Z

W

Z

Y+
k0
�
ru0(x) +ryu+

1 (x, y)
�
·
�
rj0(x) +ry j+

1 (x, y)
�

dxdy + o(#)

and
Z

W�
#

k0

⇣
ru0(x) +ryu�

1 (x,
x
#
)
⌘
·
⇣
rj0(x) +ry j�

1 (x,
x
#
)
⌘

dx

=
Z

W

Z

Y�
k0
�
ru0(x) +ryu�

1 (x, y)
�
·
�
rj0(x) +ry j�

1 (x, y)
�

dxdy + o(#).

We write the third integral in (1.26) as the sum, over all squares Y#,n, of integrals
on the boundaries G#,n. We have

1
b#

Z

G#

⇣
u+

# (x,
x
#
)� u�

# (x,
x
#
)
⌘ ⇣

j+
# (x,

x
#
)� j�

# (x,
x
#
)
⌘

ds(x)

=
1
b# Â

n2N#

Z

G#,n

⇣
u+

# (x,
x
#
)� u�

# (x,
x
#
)
⌘ ⇣

j+
# (x,

x
#
)� j�

# (x,
x
#
)
⌘

ds(x).

Let x0,n be the center of Y#,n for each n 2 N#. We perform Taylor expansions with
respect to the variable x around x0,n for all functions (ui)i2{1,2} and (ji)i2{1,2} on
Y#,n. After the change of variables #(y � y0,n) = x � x0,n, we obtain that

u#(x) = u0(x0,n) + #u1(x, y) + #(y � y0,n) ·ru0(x0,n) + o(#),

j#(x) = j0(x0,n) + #j1(x, y) + #(y � y0,n) ·rj0(x0,n) + o(#).

Consequently, the third integral in the variational formulation (1.27) becomes

#2

b Â
n2N#

Z

Gn

�
u+

1 (x0,n, y)� u�
1 (x0,n, y)

� �
j+

1 (x0,n, y)� j�
1 (x0,n, y)

�
ds(y).
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Finally, Lemma 1.3.1 gives us that

1
#b

Z

G#

�
u+

# � u�
#

� �
j+

# � j�
#

�
ds

=
1
b

Z

W

Z

G

�
u+

1 (x, y)� u�
1 (x, y)

� �
j+

1 (x, y)� j�
1 (x, y)

�
dxds(y) + o(#).

Moreover, we can easily see that
Z

∂W
gj+

# ds =
Z

∂W
gj0ds + o(#).

The order 0 of the variational formula is thus given by
Z

W

Z

Y+
k0
�
ru0(x) +ryu+

1 (x, y)
�
·
�
rj0(x) +ry j+

1 (x, y)
�

dxdy

+
Z

W

Z

Y�
k0
�
ru0(x) +ryu�

1 (x, y)
�
·
�
rj0(x) +ry j�

1 (x, y)
�

dxdy

+
1
b

Z

W

Z

G

�
u+

1 (x, y)� u�
1 (x, y)

� �
j+

1 (x, y)� j�
1 (x, y)

�
dxds(y)

�
Z

∂W
g(x)j0(x)ds(x) = 0.

By taking j0 = 0, it follows that
Z

W

Z

Y+
k0
�
ru0(x) +ryu+

1 (x, y)
�
·ry j+

1 (x, y)dxdy

+
Z

W

Z

Y�
k0
�
ru0(x) +ryu�

1 (x, y)
�
·ry j�

1 (x, y)dxdy

+
1
b

Z

W

Z

G

�
u+

1 (x, y)� u�
1 (x, y)

� �
j+

1 (x, y)� j�
1 (x, y)

�
dxds(y) = 0,

which is exactly the variational formulation of the cell problem (1.6) and definition
(1.7) of u1.

By taking j1 = 0, we recover the variational formulation of the homogenized
problem (1.4):

Z

W

Z

Y+
k0
�
ru0(x) +ryu+

1 (x, y)
�
·rj0(x)dxdy

+
Z

W

Z

Y�
k0
�
ru0(x) +ryu�

1 (x, y)
�
·rj0(x)dxdy

�
Z

∂W
g(x)j0(x)ds(x) = 0.

We introduce some function spaces, which will be very useful in the following:

• C•
] (D) is the space of functions, which are Y - periodic and in C•(D),
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• L2
](D) is the completion of C•

] (D) in the L2-norm,

• H1
] (D) is the completion of C•

] (D) in the H1-norm,

• L2(W, H1
] (D)) is the space of square integrable functions on W with values in

the space H1
] (D),

• D(W) is the space of infinitely smooth functions with compact support in W,

• D(W, C•
] (D)) is the space of infinitely smooth functions with compact support

in W and with values in the space C•
] ,

where D is Y, Y+, Y� or G.
The following lemma was used in the preceding proof. It follows from [8, Lemma

3.1].

Lemma 1.3.1. Let f be a smooth function. We have

(i) #2 Â
n2N#

Z

G#,n
f (x0,n, y)ds(y) =

Z

W

Z

G
f (x, y)dxds(y) + o(#);

(ii)
Z

W+
#

f (x,
x
#
) dx =

Z

W

Z

Y+
f (x, y) dxdy + o(#)

and
Z

W�
#

f (x,
x
#
) dx =

Z

W

Z

Y�
f (x, y) dxdy + o(#).

We prove that the following lemmas hold.

Lemma 1.3.2. The homogenized problem admits a unique solution in H1
C(W).

Proof. The effective admittivity can be rewritten as

K⇤
i,j = k0

Z

Y+
(rw+

i + ei) · (rw+
j + ej)dx + k0

Z

Y�
(rw�

i + ei) · (rw�
j + ej)dx

+
1
b

Z

G
(w+

i � w�
i )(w

+
j � w�

j )ds, i, j = 1, 2.

Therefore, it follows that, for x = (x1, x2) 2 R2,

K⇤x · x = k0

Z

Y+
|rw+ + x|2dx + k0

Z

Y�
|rw� + x|2dx +

1
b

Z

G
|w+ � w�|2ds,

where w = Âi xiwi. Since <eb � 0,

K⇤x · x � k0

Z

Y+
|rw+ + x|2dx + k0

Z

Y�
|rw� + x|2dx.

Consequently, it follows from [6] that there exist two positive constants C1 and C2
such that

C1|x|2  <eK⇤x · x  C2|x|2.

Standard elliptic theory yields existence and uniqueness of a solution to the homog-
enized problem in H1

C(W).
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Figure 1.6: Real and imaginary parts of the cell problem solution w1.

Lemma 1.3.3. The cell problem (1.6) admits a unique solution in H1
] (Y

+)/C ⇥ H1
] (Y

�).

Proof. Let us introduce the Hilbert space

W :=
n

v := v+cY+ + v�cY� |(v+, v�) 2 H1
C(Y

+)⇥ H1(Y�)
o

,

equipped with the norm

kvk2
W = krv+k2

L2(Y+) + krv�k2
L2(Y�) + kv+ � v�k2

L2(G).

We consider the following problem:
8
>>>>>>>>>><

>>>>>>>>>>:

Find wi 2 W] such that for all j 2 W]
Z

Y+
k0rw+

i (y) ·rj+(y)dy +
Z

Y�
k0rw�

i (y) ·rj�(y)dy

+
1
b

Z

G

�
w+

i � w�
i
�
(y)
�

j+ � j�� (y)ds(y) =

�
Z

Y+
k0ryi ·rj+(y)dy �

Z

Y�
k0ryi ·rj�(y)dy.

(1.33)

Lax–Milgram theorem gives us existence and uniqueness of a solution. More-
over, one can show that this ensures the existence of a unique solution in H1

] (Y
+)/C⇥

H1
] (Y

�) for the cell problem (1.6).

We present in the following numerical examples the real and imaginary parts of
the solutions w1 and w2 of the cell problems.

1.3.2 Convergence

We present in this section a rigorous proof of the convergence of the initial prob-
lem to the homogenized one. We use for this purpose the two-scale convergence
technique and hence need first of all some bounds on u# to ensure the convergence.
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Figure 1.7: Real and imaginary parts of the cell problem solution w2.

Figure 1.8: Gradient vector field of the real and imaginary parts of w1.

Figure 1.9: Gradient vector field of the real and imaginary parts of w2.
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A priori estimates

Theorem 1.3.1. The function u+
# is uniformly bounded with respect to # in H1(W+

# ), i.e.,
there exists a constant C, independent of #, such that

ku+
# kH1(W+

# )  C.

Proof. Combining (1.29) and Poincaré - Wirtinger inequality, we obtain immediately
the wanted result.

The proof of the following result follows the one of Lemma 2.8 in [100].

Lemma 1.3.4. There exists a constant C, which does not depend on #, such that for all
v 2 W#:

kv�kL2(W�
# )  CkvkW# .

Proof. We write the norm kv�kL2(W�
# ) as a sum over all the cells.

kv�k2
L2(W�

# ) = Â
n2N#

kv�k2
L2(Y�

#,n)
= Â

n2N#

Z

Y�
#,n
|v�(x)|2dx.

We perform the change of variable y =
x
#

and get

kv�k2
L2(W�

# ) = #2 Â
n2N#

Z

Y�
n
|v�# (y)|2dy, (1.34)

where v�# (y) := v�(#y) for all y 2 Y� and Y�
n = n + Y� with n 2 N#.

Recall that W denotes the following Hilbert space:

W :=
n

v := v+cY+ + v�cY� |(v+, v�) 2 H1
C(Y

+)⇥ H1(Y�)
o

,

equipped with the norm:

kvk2
W = krv+k2

L2(Y+) + krv�k2
L2(Y�) + kv+ � v�k2

L2(G).

We first prove that there exists a constant C1, independent of #, such that for
every v 2 W:

kv�kL2(Y�)  C1kvkW . (1.35)

We proceed by contradiction. Suppose that for any n 2 N⇤, there exists vn 2 W#

such that
kv�n kL2(Y�) = 1 and kvnkW  1

n
.

Since kv�n kL2(Y�) = 1 and krv�n kL2(Y�)  kvnkW  1
n

, v�n is bounded in H1(Y�).

Therefore it converges weakly in H1(Y�). By compactness, we can extract a subse-
quence, still denoted v�n , such that v�n converges strongly in L2(Y�). We denote by
l its limit.
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Besides, rv�n converges strongly to 0 in L2(Y�). We thus have rl = 0 and l
constant in Y�.

By applying in Y+ the trace theorem and Poincaré–Wirtinger inequality to v+n ,
one also gets that

kv�n kL2(G)  kv+n � v�n kL2(G) + kv+n kL2(G)  kv+n � v�n kL2(G) + Ckv+n kH1(Y+) 
C0

n
.

Consequently, v�n converges strongly to 0 in L2(G) and l = 0 on G.
We have then l = 0 in Y�, which leads to a contradiction. This proves (1.35).
We can now find an upper bound to (1.34):

kv�k2
L2(W�

# )  #2C1 Â
n2N#

Z

Y+
n
|rv+# (y)|2dy+

Z

Y�
n
|rv�# (y)|2dy+

Z

Gn
|v+# (y)� v�# (y)|2ds(y).

After the change of variable x = #y, one gets

kv�k2
L2(W�

# )  # C1

⇣
krv+k2

L2(W+
# ) + krv�k2

L2(W�
# ) + #kv+ � v�k2

L2(G#)

⌘
.

Since # < 1, there exists a constant C2, which does not depend on # such that for
every v 2 W#,

kv�kL2(W�
# )  C2kvkW# ,

which completes the proof.

Theorem 1.3.2. u�
# is uniformly bounded in # in H1(W�

# ), i.e., there exists a constant C
independent of #, such that

ku�
# kH1(W�

# )  C.

Proof. By definition of the norm on W# , kru�
# k2

L2(W�
# )

 ku#k2
W#

.
We thus have with the result of Lemma 1.3.4:

ku�
# k2

H1(W�
# )  C1ku#k2

W#
, (1.36)

with a constant C1 which does not depend on #.
Furthermore, using the result of Theorem 1.3.1, there exists a constant C2 inde-

pendent of # such that
|a(u#, u#)|  C2.

We use the coercivity of a and get a uniform bound in # of u# in W#. This bound and

(1.36) complete the proof.

Two-scale convergence

We first recall the definition of two-scale convergence and a few results of this theory
[5].

Definition 1.3.1. A sequence of functions u# in L2(W) is said to two-scale converge to a
limit u0 belonging to L2(W ⇥ Y) if, for any function y in L2(W, C](Y)), we have

lim
#!0

Z

W
u#(x)y(x,

x
#
)dx =

Z

W

Z

Y
u0(x, y)y(x, y)dxdy.
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This notion of two-scale convergence makes sense because of the next compact-
ness theorem.

Theorem 1.3.3. From each bounded sequence u# in L2(W), we can extract a subsequence,
and there exists a limit u0 2 L2(W ⇥ Y) such that this subsequence two-scale converges to
u0.

Two-scale convergence can be extended to sequences defined on periodic sur-
faces.

Proposition 1.3.1. For any sequence u# in L2(G#) such that

#
Z

G#

|u#|2dx  C, (1.37)

there exists a subsequence, still denoted u#, and a limit function u0 2 L2(W, L2(G)) such
that u# two-scale converges to u0 in the sense

lim
#!0

#
Z

G#

u#(x)y(x,
x
#
)ds(x) =

Z

W

Z

G
u0(x, y)y(x, y)dxds(y),

for any function y 2 L2(W, C](Y)).

Remark 1.3.1. If u# and ru# are bounded in L2(W), one can prove by using for example [7,
Lemma 2.4.9] that u# verifies the uniform bound (1.37). The two-scale limit on the surface
is then the trace on G of the two-scale limit of u# in W.

In order to prove item (i) in Theorem 1.1.2, we need the following results.

Lemma 1.3.5. Let the functions (u#)# be the sequence of solutions of (1.2). There exist
functions u(x) 2 H1(W), v+(x, y) 2 L2(W, H1

] (Y
+)) and v�(x, y) 2 L2(W, H1

] (Y
�))

such that, up to a subsequence,
0

BBBB@

u#

c+
# (

x
#
)ru+

#

c�
# (

x
#
)ru�

#

1

CCCCA
two-scale converge to

0

BBBB@

u(x)

cY+(y)
⇣
ru(x) +ryv+(x, y)

⌘

cY�(y)
⇣
ru(x) +ryv�(x, y)

⌘

1

CCCCA
.

Proof. We denote by ·̃ the extension by zero of functions on W+
# and W�

# in the re-
spective domains W�

# and W+
# .

From the previous estimates, eu±
# and gru

±
# are bounded sequences in L2(W). Up

to a subsequence, they two-scale converge to t±(x, y) and x±(x, y). Since eu±
# and

gru
±
# vanish in W⌥

# , so do t± and x±.
Consider j 2 D(W, C•

] (Y))
2 such that j = 0 for y 2 Y�. By integrating by parts,

it follows that

#
Z

W+
#

ru+
# (x) · j(x,

x
#
)dx = �

Z

W+
#

u+
# (x)

⇣
divy j(x,

x
#
) + # divx j(x,

x
#
)
⌘

dx.
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We take the limit of this equality as # ! 0:

0 = �
Z

W

Z

Y+
t+(x, y)divy j(x, y)dxdy.

Therefore, t+ does not depend on y in Y+, i.e., there exists a function u+ 2 L2(W)
such that t+(x, y) = cY+(y)u+(x) for all (x, y) 2 W ⇥ Y.

Take now j 2 D(W, C•
] (Y))

2 such that j = 0 for y 2 Y� and divy j = 0.
Similarly, we have

Z

W+
#

ru+
# (x) · j(x,

x
#
)dx = �

Z

W+
#

u+
# (x)divx j(x,

x
#
)dx,

and thus
Z

W

Z

Y+
x+(x, y) · j(x, y)dxdy = �

Z

W

Z

Y+
u+(x)divx j(x, y)dxdy. (1.38)

For j independent of y, this implies that u+ 2 H1(W). Furthermore, if we inte-
grate by parts the right-hand side of (1.38), we get

Z

W

Z

Y+
x+(x, y) · j(x, y)dxdy =

Z

W

Z

Y+
ru+(x) · j(x, y)dxdy,

for all j 2 D(W, C•
] (Y

+))2 such that divy j = 0 and j(x, y) · n(y) = 0 for y on G.
Since the orthogonal of the divergence-free functions are exactly the gradients,

there exists a function v+ 2 L2(W, H1
] (Y

+)) such that

x+(x, y) = cY+(y)
�
ru+(x) +ryv+(x, y)

�
,

for all (x, y) 2 W ⇥ Y.
Likewise, there exist functions u� 2 H1(W) and v� 2 L2(W, H1

] (Y
�)) such that

t�(x, y) = cY�(y)u�(x), and x�(x, y) = cY�(y)
�
ru�(x) +ryv�(x, y)

�
,

for all (x, y) 2 W ⇥ Y.
Furthermore, thanks to Remark 1.3.1, we have also

#
Z

G#

u±
# (x)j(x,

x
#
)dx ��!

#!0

Z

W

Z

G
u±(x, y)j(x, y)dxdy,

for all j 2 L2(W, C•
] (G)).

Recall that u# is a solution to the following variational form:
Z

W+
#

k0ru+
# (x) ·rj+

# (x)dx +
Z

W�
#

k0ru�
# (x) ·rj�

# (x)dx

+
1
#b

Z

G#

�
u+

# � u�
#

� �
j+

# � j�
#

�
ds � k0

Z

∂W
gj+

# ds = 0,

for all (j+
# , j�

# ) 2 (H1(W+
# ), H1(W�

# )).
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We multiply this equality by #2 and take the limit when # goes to 0. The first two
terms disappear and we obtain, for all (j+, j�) 2 D(W, C•

] (Y
+))⇥D(W, C•

] (Y
�)):

1
b

Z

W

Z

G
(u+(x)� u�(x))(j+(x, y)� j�(x, y))dxdy = 0.

Thus u+(x) = u�(x) for all x 2 W, and u# two-scale converges to u = u+ =
u� 2 H1(W). This completes the proof.

Now, we are ready to prove Theorem 1.1.2. For this, we need to show that u, v+
and v� are respectively u0, solution of the homogenized problem (up to a constant),
u+

1 defined in (1.7) (up to a constant) and u�
1 defined in (1.7). The uniqueness of a

solution for the homogenized problem and the cell problems will then allow us to
conclude the convergence, not only up to a subsequence.

Proof. We first want to retrieve the expression of u1 as a test function of the deriva-
tives of u0 and the cell problem solutions wi.

We choose in the variational formulation (1.25) a function j# of the form

j#(x) = #j1(x,
x
#
),

where j1 2 D(W, C•
] (Y

+))⇥D(W, C•
] (Y

�)).

Lemma 1.3.5 shows the two-scale convergence of the following three terms:
Z

W+
#

k0ru+
# (x) ·rj+

# (x)dx ��!
#!0

Z

W

Z

Y+
k0
�
ru(x) +ryv+(x, y)

�
·ry j+

1 (x, y)dxdy

Z

W�
#

k0ru�
# (x) ·rj�

# (x)dx ��!
#!0

Z

W

Z

Y�
k0
�
ru(x) +ryv�(x, y)

�
·ry j�

1 (x, y)dxdy

Z

∂W
g(x)j+

# (x)ds(x) ��!
#!0

0.

We can not take directly the limit as # ! 0 in the last term:

1
#b

Z

G#

(u+
# (x)� u�

# (x))(j+
# (x)� f

�
# (x))ds(x)

=
1
b

Z

G#

(u+
# (x)� u�

# (x))
⇣

j+
1 (x,

x
#
)� j�

1 (x,
x
#
)
⌘

ds(x).

Lemma A.4.1 ensures the existence of a function q 2 (D(W, H1
] (Y

+))⇥D(W, H1
] (Y

�)))2

such that for all y 2 H1
] (Y

+)/C ⇥ H1
] (Y

�) :

Z

Y+
ry+(y) · q

+
(x, y)dy +

Z

Y�
ry�(y) · q

�
(x, y)dy

+
Z

G

�
y+(y)� y�(y)

� �
j+

1 (x, y)� j�
1 (x, y)

�
ds(y) = 0.

(1.39)
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We make the change of variables y =
x
#

, sum over all (Y#,n)n2N# , and choose
y = u# to get
Z

G#

(u+
# (x)� u�

# (x))
⇣

j+
1 (x,

x
#
)� j�

1 (x,
x
#
)
⌘

ds(x) =

�
Z

W+
#

ru+
# (x,

x
#
) · q+(x,

x
#
)dx �

Z

W�
#

ru�
# (x,

x
#
) · q�(x,

x
#
)dx.

We can now take the limit as # goes to 0:

lim
#!0

Z

G#

(u+
# (x)� u�

# (x))
⇣

j+
1 (x,

x
#
)� j�

1 (x,
x
#
)
⌘

ds(x) =

�
Z

Y+

�
ru(x) +ryv+(x, y)

�
· q

+
(x, y)dxdy �

Z

Y�

�
ru(x) +ryv�(x, y)

�
· q

�
(x, y)dxdy.

Finally, the variational formula (1.39) gives us

lim
#!0

Z

G#

(u+
# (x)� u�

# (x))
⇣

j+
1 (x,

x
#
)� j�

1 (x,
x
#
)
⌘

ds(x) =
Z

W

Z

G

�
v+(y)� v�(y)

� �
j+

1 (x, y)� j�
1 (x, y)

�
ds(y).

For j#(x) = #j1(x,
x
#
), with j1 2 D(W, C•

] (Y
+))⇥D(W, C•

] (Y
�)), the two-scale

limit of the variational formula is
Z

W

Z

Y+
k0
�
ru(x) +ryv+(x, y)

�
·ry j+

1 (x, y)dxdy

+
Z

W

Z

Y�
k0
�
ru(x) +ryv�(x, y)

�
·ry j�

1 (x, y)dxdy

+
1
b

Z

W

Z

G

�
v+(y)� v�(y)

� �
j+

1 (x, y)� j�
1 (x, y)

�
ds(y) = 0.

By density, this formula hold true for j1 2 L2(W, H1
] (Y

+)) ⇥ L2(W, H1
] (Y

�)).
One can recognize the formula verified by u±

1 and the definition of the cell problems.
Hence, separation of variables and uniqueness of the solutions of the cell problems
in W give

v�(x, y) = u�
1 = Â

i=1,2

∂u0
∂xi

(x)w�
i (y)

and, up to a constant:

v+(x, y) = u+
1 = Â

i=1,2

∂u0
∂xi

(x)w+
i (y).

We now choose in the variational formula verified by u# a test function j#(x) =
j(x), with j 2 C•

c (W).
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The limit of (1.25) as # goes to 0 is then given by
Z

W

Z

Y+
k0
�
ru(x) +ryv+(x, y)

�
·rj(x)dxdy

+
Z

W

Z

Y�
k0
�
ru(x) +ryv�(x, y)

�
·rj(x)dxdy

+
Z

∂W
g(x)f(x)ds(x) = 0.

By density, this formula hold true for j 2 H1(W), which leads exactly to the varia-
tional formula of the homogenized problem (1.4). Since the solution of this problem
is unique in H1

C(W), u# converges to u0, not only up to a subsequence. Likewise,
ru# two-scale converges to ru0 + cY+ryu+

1 + cY�ryu�
1 .



Chapter 2

Effective admittivity for a dilute
suspension and spectroscopic imaging

2.1 Effective admittivity for a dilute suspension

In general, the effective admittivity given by formula (1.5) can not be computed ex-
actly except for a few configurations. In this section, we consider the problem of
determining the effective property of a suspension of cells when the volume frac-
tion |Y�| goes to zero. In other words, the cells have much less volume than the
medium surrounding them. This kind of suspension is called dilute. Many approxi-
mations for the effective properties of composites are based on the solution for dilute
suspension.

2.1.1 Computation of the effective admittivity
We investigate the periodic double-layer potential used in calculating effective per-
mittivity of a suspension of cells. We introduce the periodic Green function G], for
the Laplace equation in Y, given by

8x 2 Y, G](x) = Â
n2Z2\{0}

ei2pn·x

4p2|n|2 .

The following lemma from [32, 29] plays an essential role in deriving the effective
properties of a suspension in the dilute limit.

Lemma 2.1.1. The periodic Green function G] admits the following decomposition:

8x 2 Y, G](x) =
1

2p
ln |x|+ R2(x), (2.1)

where R2 is a smooth function with the following Taylor expansion at 0:

R2(x) = R2(0)�
1
4
(x2

1 + x2
2) + O(|x|4). (2.2)
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Let L2
0(G) :=

⇢
j 2 L2(G)

���
Z

G
j(x)ds(x) = 0

�
.

We define the periodic double-layer potential eDG of the density function j 2
L2

0(G):
eDG[j](x) =

Z

G

∂

∂ny
G](x � y)j(y)ds(y).

The double-layer potential has the following properties [29].

Lemma 2.1.2. Let j 2 L2
0(G). eDG[j] verifies:

(i) D eDG[j] = 0 in Y+,

D eDG[j] = 0 in Y�,

(ii)
∂

∂n
eDG[j]

���
+
=

∂

∂n
eDG[j]

���
�

on G,

(iii) eDG[j]
���
±
=

✓
⌥1

2
I + eKG

◆
[j] on G,

where eKG : L2
0(G) 7! L2

0(G) is the Neumann–Poincaré operator defined by

8x 2 G, eKG[j](x) =
Z

G

∂

∂ny
G](x � y)j(y)ds(y).

The following integral representation formula holds.

Theorem 2.1.1. Let wi be the unique solution in W of (1.6) for i = 1, 2. wi admits the
following integral representation in Y:

wi = �bk0 eDG

⇣
I + bk0 eLG

⌘�1
[ni], (2.3)

where eLG =
∂ eDG
∂n

and n = (ni)i=1,2 is the outward unit normal to G.

Proof. Let j := �bk0

⇣
I + bk0 eL

⌘�1
[ni]. j verifies :

Z

G
j(y)ds(y) = �bk0

Z

G

∂

∂n
( eDG[j](y) + yi)ds(y) = 0.

The first equality comes from the definition of j and the second from an integration
by parts and the fact that eDG[j] and I are harmonic. Consequently, j 2 L2

0(G).
We now introduce Vi := eDG[j]. Vi is solution to the following problem:

8
>>>>>>>>>><

>>>>>>>>>>:

r · k0rVi = 0 in Y+,

r · k0rVi = 0 in Y�,

k0
∂Vi
∂n

���
+
= k0

∂Vi
∂n

���
�

on G,

Vi|+ � Vi|� = j on G,

y 7�! Vi(y) Y-periodic.
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We use the definitions of j and Vi and recognize that the last problem is exactly
problem (1.6). The uniqueness of the solution in W gives us the wanted result.

From Theorem 1.1.2, the effective admittivity of the medium K⇤ is given by

8(i, j) 2 {1, 2}2, K⇤
i,j = k0

✓
dij +

Z

Y
rwi · ej

◆
.

After an integration by parts, we get

8(i, j) 2 {1, 2}2, K⇤
i,j = k0

✓
dij +

Z

∂Y
wi(y)nj(y) ds(y)�

Z

G

�
w+

i � w�
i
�

nj(y) ds(y)
◆

.

Because of the Y-periodicity of wi, we have:
Z

∂Y
wi(y)nj ds(y) = 0.

Finally, the integral representation 2.3 gives us that

8(i, j) 2 {1, 2}2, K⇤
i,j = k0

✓
dij � (bk0)

Z

G

⇣
I + bk0 eLG

⌘�1
[ni]nj ds(y)

◆
.

We consider that we are in the context of a dilute suspension, i.e., the size of the
cell is small compared to the square:

��Y��� ⌧ |Y| = 1. We perform the change of
variable: z = r�1y with r = |Y�| 1

2 and obtain that

8(i, j) 2 {1, 2}2, K⇤
i,j = k0

✓
dij � r2(bk0)

Z

r�1G

⇣
I + rbk0 eLG

⌘�1
[ni](rz)nj(z) ds(z)

◆
,

where n is the outward unit normal to G. Note that, in the same way as before, b
becomes rb when we rescale the cell.

Let us introduce ji = �
⇣

I + rbk0 eLG

⌘�1
[ni] and yi(z) = ji(rz) for all z 2 r�1G.

From (2.1), we get, for any z 2 r�1G, after changes of variable in the integrals:

eLG[ji](rz) =
∂

∂n
eDG[ji](rz) = r�1 ∂

∂n
Dr�1G[yi](z)+

∂

∂n(z)

Z

r�1G

∂

∂n(y)
R2(rz� ry)j(ry)ds(y).

Besides, the expansion (2.2) gives us that the estimate

rR2(r(z � y)) · n(y) = �r

2
(z � y) · n(y) + O(r3),

holds uniformly in z, y 2 r�1G.
We thus get the following expansion:

eLG[ji](rz) = r�1Lr�1G[yi](z)�
r

2 Â
j=1,2

nj

Z

r�1G
njyi(y)ds(y) + O(r4).

Using y⇤
i defined by (1.11) we get on r�1G:

yi = y⇤
i + bk0

r2

2 Â
j=1,2

y⇤
j

Z

r�1G
nj(y)yi(y)ds(y) + O(r4). (2.4)

By iterating the formula (2.4), we obtain on r�1G that

yi = y⇤
i + bk0

r2

2 Â
j=1,2

y⇤
j

Z

r�1G
nj(y)y⇤

i (y)ds(y) + O(r4).

Therefore, one can easily see that Theorem 1.1.3 holds.
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2.1.2 Case of concentric circular-shaped cells: the Maxwell-Wagner-
Fricke formula

We consider in this section that the cells are disks of radius r0. r�1G becomes a circle
of radius r0.

For all g 2 L2((0, 2p)), we introduce the Fourier coefficients:

8m 2 Z, ĝ(m) =
1

2p

Z 2p

0
g(j)e�imjdj,

and have then for all j 2 (0, 2p) :

g(j) =
•

Â
m=�•

ĝ(m)eimj.

For f 2 C2,h(r�1G), we obtain after a few computations:

8q 2]0, 2p[, (I + bk0Lr�1G)
�1[ f ](q) = Â

n2Z⇤

✓
1 + bk0

|n|
2r0

◆�1
f̂ (n) einq.

For p = 1, 2, y⇤
p = �(I + bk0Lr�1G)

�1[np] then have the following expression:

8q 2 (0, 2p), y⇤
p = �

✓
1 +

bk0
2r0

◆�1
np.

Consequently, we get for (p, q) 2 {1, 2}2 :

Mp,q = �dpq
bk0pr0

1 +
bk0
2r0

,

and hence,

=Mp,q = dp,q
pr0dw(ems0 � e0sm)

(sm + s0
d

2r0
)2 + w2(em + e0

d

2r0
)2

. (2.5)

Formula (2.5) is the two-dimensional version of the Maxwell-Wagner-Fricke for-
mula, which gives the effective admittivity of a dilute suspension of spherical cells
covered by a thin membrane.

An explicit formula for the case of elliptic cells can be derived by using the spec-
trum of the integral operator Lr�1G, which can be identified by standard Fourier
methods [76].

2.1.3 Debye relaxation times
From (2.5), it follows that the imaginary part of the membrane polarization attains
its maximum with respect to the frequency at

1
t
=

sm + s0
d

2r0

em + e0
d

2r0

.
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This dispersion phenomenon due to the membrane polarization is well known and
referred to as the b-dispersion. The associated characteristic time t corresponds to
a Debye relaxation time.

For arbitrary-shaped cells, we define the first and second Debye relaxation times,
ti, i = 1, 2, by

1
ti

:= arg max
w

|li(w)|, (2.6)

where l1  l2 are the eigenvalues of the imaginary part of the membrane polariza-
tion tensor M(w). Note that if the cell is of circular shape, l1 = l2.

As it will be shown later, the Debye relaxation times can be used for identifying
the microstructure.

2.1.4 Properties of the membrane polarization tensor and the De-
bye relaxation times

In this subsection, we derive important properties of the membrane polarization
tensor and the Debye relaxation times defined respectively by (1.10) and (2.6). In
particular, we prove that the Debye relaxation times are invariant with respect to
translation, scaling, and rotation of the cell.

First, since the kernel of Lr�1G is invariant with respect to translation, it follows
that M(C, bk0) is invariant with respect to translation of the cell C.

Next, from the scaling properties of the kernel of Lr�1G we have

M(sC, bk0) = s2M(C,
bk0

s
)

for any scaling parameter s > 0.
Finally, we have

M(RC, bk0) = RM(C, bk0)Rt for any rotation R,

where t denotes the transpose.
Therefore, the Debye relaxation times are translation and rotation invariant. More-

over, for scaling, we have

ti(hC, bk0) = ti(C,
bk0
h

), i = 1, 2, h > 0.

Since b is proportional to the thickness of the cell membrane, b/h is nothing else
than the real rescaled coefficient b for the cell C. The Debye relaxation times (ti) are
therefore invariant by scaling.

Since Lr�1G is self-adjoint, it follows that M is symmetric. Finally, we show posi-
tivity of the imaginary part of the matrix M for d small enough.

We consider that the cell contour G can be parametrized by polar coordinates.
We have, up to O(d3),

M + br�1|G| = �b2
Z

r�1G
nLr�1G[n] ds, (2.7)
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where again we have assumed that s0 = 1 and e0 = 0.
Recall that

b =
dsm

s2
m + w2#2

m
� i

dw#m
s2

m + w2#2
m

.

Hence, the positivity of Lr�1G yields

= M � dw#m
2r(s2

m + w2#2
m)

|G|I

for d small enough, where I is the identity matrix.
Finally, by using (2.7) one can see that the eigenvalues of = M have one maxi-

mum each with respect to the frequency. Let li, i = 1, 2, l1 � l2, be the eigenvalues
of
R

r�1G nLr�1G[n]ds. We have

li =
dw#m

r(s2
m + w2#2

m)
|G|� 2d2w#msm

(s2
m + w2#2

m)2 li, i = 1, 2. (2.8)

Therefore, ti is the inverse of the positive root of the following polynomial in w:

�#4
m|G|w4 + 6d#2

msmlirw2 + s4
m|G|.

2.1.5 Anisotropy measure
Anisotropic electrical properties can be found in biological tissues such as muscles
and nerves. In this subsection, based on formula (1.9), we introduce a natural mea-
sure of the conductivity anisotropy and derive its dependence on the frequency of
applied current. Assessment of electrical anisotropy of muscle may have useful
clinical application. Because neuromuscular diseases produce substantial patholog-
ical changes, the anisotropic pattern of the muscle is likely to be highly disturbed
[47, 62]. Neuromuscular diseases could lead to a reduction in anisotropy for a range
of frequencies as the muscle fibers are replaced by isotropic tissue.

Let l1  l2 be the eigenvalues of the imaginary part of the membrane polariza-
tion tensor M(w). The function

w 7! l1(w)
l2(w)

can be used as a measure of the anisotropy of the conductivity of a dilute suspension.
Assume e0 = 0. As frequency w increases, the factor bk0 decreases. Therefore, for
large w, using the expansions in (2.8) we obtain that

l1(w)
l2(w)

= 1 + (l1 � l2)
2dsmr

(s2
m + w2#2

m)|G|
+ O(d2), (2.9)

where l1  l2 are the eigenvalues of
R

r�1G nLr�1G[n]ds.
Formula (2.9) shows that as the frequency increases, the conductivity anisotropy

decreases. The anisotropic information can not be captured for

w � 1
#m

((l1 � l2)
2dsmr

|G| � s2
m)

1/2.
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2.2 Spectroscopic imaging of a dilute suspension

2.2.1 Spectroscopic conductivity imaging
We now make use of the asymptotic expansion of the effective admittivity in terms
of the volume fraction f = r2 to image a permittivity inclusion. Consider D to be
a bounded domain in W with admittivity 1 + f M(w), where M(w) is a membrane
polarization tensor and f is the volume fraction of the suspension in D. The inclu-
sion D models a suspension of cells in the background W. For simplicity, we neglect
the permittivity e0 of W and assume that its conductivity s0 = 1. We also assume
that M(w) is isotropic. At the macroscopic scale, if we inject a current g on ∂W, then
the electric potential satisfies:

8
>><

>>:

r · (1 + f M(w)cD)ru = 0 in W,

∂u
∂n

���
∂W

= g,
Z

∂W
g(x)ds(x) = 0,

Z

W
u(x)dx = 0.

(2.10)

The imaging problem is to detect and characterize D from measurements of u on
∂W.

Integrating by parts and using the trace theorem for the double-layer potential
[49, 102], we obtain, 8 x 2 ∂W,

1
2

u(x) +
1

2p

Z

∂W

(x � y) · n(x)
|x � y|2 u(y)ds(y) +

1
2p

Z

∂W
g(y) ln |x � y|ds(y)

=
f

2p
M(w)

Z

D
ru(y) · (x � y)

|x � y|2 dy.
(2.11)

Since f is small,
Z

D
ru(y) · (x � y)

|x � y|2 dy '
Z

D
rU(y) · (x � y)

|x � y|2 dy

holds uniformly for x 2 ∂W, where U is the background solution, that is,
8
>><

>>:

DU = 0 in W,

∂U
∂n

���
∂W

= g,
Z

W
U(x)dx = 0.

Therefore, taking the imaginary part of (2.11) yields

1
2
=u(x) +

1
2p

Z

∂W

(x � y) · n(x)
|x � y|2 =u(y)ds(y) ' f

2p
=M(w)

Z

D
rU(y) · (x � y)

|x � y|2 dy,

(2.12)
uniformly for x 2 ∂W, provided that g is real. Finally, taking the argument of the
maximum of the right-hand side in (2.12) with respect to the frequency w gives the
Debye relaxation time of the suspension in D.
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2.2.2 Selective spectroscopic imaging

A challenging applied problem is to design a selective spectroscopic imaging ap-
proach for suspensions of cells. Using a pulsed imaging approach [71, 78], we pro-
pose a simple way to selectively image dilute suspensions. Again, we assume for
the sake of simplicity that e0 = 0 and s0 = 1.

In the time-dependant regime, the electrical model for the cell (1.1) is replaced
with

u(x, t) =
Z

ĥ(w)û(x, w)eiwtdw,

where û(x, w) is the solution to
8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

Dû(·, w) = 0 in D \ C,

Dû(·, w) = 0 in C,

∂û(·, w)
∂n

���
+
=

∂û(·, w)
∂n

���
�

on G,

û(·, w)|+ � û(·, w)|� � b(w)
∂û(·, w)

∂n
= 0 on G,

∂û(·, w)
∂n

���
∂D

= f ,
Z

∂D
û(·, w)ds = 0,

(2.13)

and
h(t) =

Z
ĥ(w)eiwtdw

is the pulse shape. The support of h is assumed to be compact.
At the macroscopic scale, if we inject a pulsed current, g(x)h(t), on ∂W, then the

electric potential u(x, t) in the presence of a suspension occupying D is given by

u(x, t) =
Z

ĥ(w)û(x, w)eiwtdw,

where 8
>><

>>:

r · (1 + f M(w)cD)rû(·, w) = 0 in W,

∂û(·, w)
∂n

���
∂W

= g,
Z

∂W
û(·, w)ds = 0.

Assume that we are in the presence of two suspensions occupying the domains D1
and D2 inside W. From (2.11) it follows that

1
2

û(x, w) +
1

2p

Z

∂W

(x � y) · n(x)
|x � y|2 û(y, w)ds(y) +

1
2p

Z

∂W
g(y) ln |x � y|ds(y)

' f1
2p

M1(w)
Z

D1
rU(y) · (x � y)

|x � y|2 dy +
f2

2p
M2(w)

Z

D2
rU(y) · (x � y)

|x � y|2 dy,

(2.14)
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and therefore,

1
2

u(x, t) +
1

2p

Z

∂W

(x � y) · n(x)
|x � y|2 u(y, t)ds(y) +

1
2p

h(t)
Z

∂W
g(y) ln |x � y|ds(y)

' f1
2p

M1(t)
Z

D1
rU(y) · (x � y)

|x � y|2 dy +
f2

2p
M2(t)

Z

D2
rU(y) · (x � y)

|x � y|2 dy,

(2.15)
uniformly in x 2 ∂W and t 2 supp h, where

Mi(t) :=
Z

ĥ(w)Mi(w)eiwtdw, i = 1, 2.

As it will be shown in chapter 4, by comparing the Debye relaxation times associated
to M1 and M2, one can design the pulse shape h in order to image selectively D1 or
D2. For example, one can selectively image D1 by taking ĥ(w) close to zero around
the Debye relaxation time of M2 and close to one around the Debye relaxation time
of M1.

2.2.3 Spectroscopic measurement of anisotropy
In this subsection we assume that M is anisotropic and consider the solution u to
(2.10). We want to assess the anisotropy of the inclusion D of admittivity 1+ f M(w)
from measurements of u on the boundary ∂W.

From (2.12) it follows that
Z

∂W
g(x)


1
2
=u(x) +

1
2p

Z

∂W

(x � y) · n(x)
|x � y|2 =u(y)ds(y)

�
ds(x)

' f
2p

Z

D
=M(w)rU(y) ·rU(y)dy,

(2.16)

provided that g is real. Now, taking constant current sources corresponding to g =
a · n, where a 2 R2 is a unit vector, yields

S [a] :=
Z

∂W
g(x)


1
2
=u(x)+

1
2p

Z

∂W

(x � y) · n(x)
|x � y|2 =u(y)ds(y)

�
ds(x) ' f

2p
=M(w)|a|2|D|.

Since
mina S [a]
maxa S [a]

' l1(w)
l2(w)

,

where l1 and l2 (with l1  l2) are the eigenvalues of =M, it follows from subsec-
tion 2.1.5 that

w 7! mina S [a]
maxa S [a]

is a natural measure of conductivity anisotropy. This measure may be used for the
detection and classification of neuromuscular diseases via measurement of muscle
anisotropy [47, 62].
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Chapter 3

Stochastic homogenization of
randomly deformed membranes

The first main result of this section is to show that a rigorous homogenization theory
can be derived when the cells (and hence interfaces) are randomly deformed from
a periodic structure, and the random deformation is ergodic and stationary in the
sense of (1.12).

3.1 Auxiliary problem: proof of Theorem 1.1.4

In this subsection, we prove Theorem 1.1.4 about the existence and uniqueness of
the auxiliary problem. This is the key step in stochastic homogenization. The main
difficulty is due to the fact that one does not have compactness in the general sta-
tionary ergodic setting.

We first make the weak formulation of the system (1.19) precise. To this end, we
introduce the space eH := L2(O, H1

loc(R
+
2 )⇥ H1

loc(R
�
2 )) and the space eHS which is a

subspace of eH where the elements are stationary. Define also the space H := {w =
ew � F�1 | ew 2 eH} and the space HS := {w = ew � F�1 | ew 2 eHS}.

We say that wp = w+
p cF(R+

2 ) + w�
p cF(R�

2 ) 2 H is a weak solution to (1.19) if rwp

is stationary and for all j 2 H with compact support K ⇢ R2, it holds that

E

Z

K\F(R+
2 ,g)

k0(p +rw+
p ) ·rjdx + E

Z

K\F(R�
2 ,g)

k0(p +rw�
p ) ·rjdx

+E

Z

K\F(G,g)

1
b
(w+

p � w�
p � bk0p)(j+ � j�)ds(x) = 0.

(3.1)

Since the integrals above does not control kw±
p kL2(W,L2

loc(F(R±
2 ))) and the space H does

not possess Poincaré inequality, the existence of weak solutions is not immediate.
Our strategy which is standard is as follows: First, an absorption term is added

to regularize the problem. The sequence of regularized solutions, which correspond
to a sequence of vanishing regularization, have a converging gradient. Secondly,
the potential field corresponds to the limiting gradient is shown to be a solution
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to the auxiliary problem. Finally, using regularity results and sub-linear growth of
potential field with stationary gradient, we prove that the gradient of the solution
to the auxiliary problem is unique.

Proof of Theorem 1.1.4. Step 1: The regularized auxiliary problem. Fix p 2 R2. Consider
the following regularized problem where an absorption a > 0 is added.

8
>>>><

>>>>:

�r · k0(rw±
p,a(y) + p) + aw±

p,a = 0 in F(R±
2 , g),

n · k0rw�
p,a(y) = n · k0rw�

p,a(y), in F(G2, g),

w+
p,a � w�

p,a = bk0n · (rw�
p,a + p) in F(G2, g),

w±
p,a(y, g) = ew±

p,a(F
�1(y, g), g), and ew±

p,a are stationary.

(3.2)

We first construct a solution for the above equation in HS in a sense weaker than
(3.1) as follows. It can be verified that HS equipped with the inner product

(u, v)HS = E

✓Z

Y+
rũ ·rṽdx +

Z

Y�
rũ ·rṽdx +

Z

Y
ũṽdx

◆
.

is a Hilbert space. For any fixed a > 0, define the bilinear form Aa : HS ⇥HS ! R

by

Aa(u, v) = E

✓Z

F(Y+)
k0ru+ ·rv+dx +

Z

F(Y�)
k0ru� ·rv�dx

+ a
Z

F(Y)
uvdx +

1
b

Z

F(G0)
(u+ � u�)(v+ � v�)ds

◆
,

and the linear functional bp : HS ! R by

bp(v) = �k0E

✓Z

F(Y+)
p ·rv+dx +

Z

F(Y�)
p ·rv�dx +

Z

F(G0)
(n(x) · p)(v+ � v�)(x)ds(x)

◆
.

We verify that Aa is bounded and coercive, and bp is bounded. By the Lax–Milgram
theorem, there exists a unique element wp,a 2 HS satisfying

Aa(wp,a, j) = bp(j), 8j 2 HS. (3.3)

By choosing j to be wp,a, we obtain the estimates:

E

Z

Y±
|rw̃±

p,a|2  C, E

Z

G0
|w̃+

p,a � w̃�
p,a|2  C, E

Z

Y±
|w̃±

p,a|2  C
a

. (3.4)

Next we argue that for almost all g 2 O, the solution wp,a(·, g) above satisfies
(3.2) in the usual distributional sense. That is, for any j(x) 2 C•(R+

2 ) \ C•(R�
2 ),

whose support is a compact set K ⇢ R2, we have
Z

K\F(R+
2 ,g)

k0(p +rw+
p,a) ·rjdx +

Z

K\F(R�
2 ,g)

k0(p +rw�
p,a) ·rjdx

+a
Z

K
wp,a jdx +

Z

K\F(G2,g)

1
b
(w+

p,a � w�
p,a � bk0p)(j+ � j�)ds(x) = 0.

(3.5)
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Indeed, due to the regularization, the above problem (with a fixed g 2 O) admits
a unique solution in the space H1

loc(F(R+
2 , g)) ⇥ H1

loc(F(R�
2 , g)). It can be veri-

fied that the solution wp,a(·, g) is stationary and satisfies (3.3); therefore, it must
agree with the solution provided by the Lax-Milgram theorem. As a consequence,
wp,a(x, g) is also a weak solution in H to (1.19) in the sense of (3.1).

Applying Corollary A.1.1 and Corollary A.1.2 to the family {w̃p,a}a, we obtain a
family {w̃ext

p,a = Pw̃+
p,a}a ⇢ L2(O, H1

loc(R
2)) and a family {wext

p,a = Pgw+
p,a}a. Further,

{w̃ext
p,a}a are stationary. They satisfy that wext

p,a = w̃ext
p,a � F�1 and that

E

Z

Y
|rw̃ext

p,a|2  C, E

Z

G0
|w̃ext

p,a � w̃�
p,a|2  C, E

Z

Y
|w̃ext

p,a|2  C
a

. (3.6)

Step 2: Extraction of a converging subsequence. The family {w̃ext
p,a}a may be studied

from two view points. Firstly, they form a bounded family in eHS. Secondly, they
belong to eH and for any compact set K ⇢ R2, the estimates (3.6) imply that

E

Z

K
|rw̃ext

p,a|2  C(K), E

Z

G\K
|w̃ext

p,a � w̃�
p,a|2  C(K), aE

Z

K
|w̃ext

p,a|2  C(K).
(3.7)

From the first point of view, there exists a subsequence, still denoted by rw̃ext
p,a,

which converges weakly as a # 0 to a function h̃ext
p 2 [L2

S(O, L2
loc(R

2)]2 where the
subscript S indicates stationary. By a change of variable, we also have that rwext

p,a
converges in [L2(O, L2

loc(R
2)]2 to hext

p and

hext
p (y, g) = ryY(y, g)h̃ext

p (ỹ, g), (3.8)

where Y = F�1 and ỹ = Y(y). Moreover, as gradients, rỹw̃ext
p,a and rywext

p,a are curl
free. This property is preserved by their limits:

∂yi(h
ext
p )j = ∂yj(h

ext
p )i, ∂ỹi(h̃

ext
p )j = ∂ỹj(h̃

ext
p )i, i, j 2 {1, 2}.

That is to say, hext
p and h̃ext

p are also gradient functions. Consequently, there exist wext
p

and w̃ext
p such that hext

p = rywext
p and h̃ext

p = rỹw̃ext
p . The relation (3.8) implies that

wext
p (y) = w̃ext

p (Y(y, g), g) + Cp(g) where Cp(g) is a random constant. We hence
re-define w̃ext

p by adding to it the random variable Cp so that wext
p = w̃ext

p � Y. By
the same token, we have that rw̃�

p,a and rw�
p,a converge (along the above sub-

sequence) to h̃�
p 2 [L2

S(O, L2
loc(R

�
2 ))]

2 and h�
p 2 [L2(O, L2

loc(F(R�
2 )))]

2 respec-
tively. In addition, for some w̃�

p 2 L2(O, H1
loc(R

�
2 )) and w�

p 2 L2(O, H1
loc(R

�
2 ))

satisfying that w�
p = w̃�

p � Y, we have h̃�
p = rw̃�

p and h�
p = rw�

p . Similarly,
due to the second bound in (3.6), one observes that {(w̃ext

p,a � w̃�
p,a)
��
G
}a converges

(through a subsequence) to some z̃p 2 L2
S(O, L2

loc(G)). Again, by a change of vari-
able, {(wext

p,a � w�
p,a)F(G)}a converges to certain zp 2 L2(O, L2

loc(G)) and it holds that
zp = z̃p � Y. Finally, since w̃ext

p,a is stationary, one has E
R

Y rỹw̃ext
p,adỹ = 0. Passing to

the limit, we get

E

Z

Y
rỹw̃ext

p (ỹ)dỹ = 0. (3.9)
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Now, from the second point of view and the estimate (3.7), we can choose a
further subsequence of the converging subsequence obtained from the first view
point, still denoted by {w̃p,a}a and so on, such that the family rw̃ext

p,a converges in
L2(O, [L2

loc(R
2)]2) to h̃ext

p , {rw̃�
p,a}a converges to h̃�

p and {(w̃ext
p,a � w̃�

p,a)
��
G
}a con-

verges in L2(O, L2
loc(G)) to z̃p. We then verify that these functions are stationary,

and by the ergodic theorem they agree with the limits h̃ext
p , h̃�

p and z̃p obtained
from the first point of view. As a result, we take expectation on the weak formu-
lation (3.5), and then pass to the limit and obtain (3.1). In other words, the limit
wext

p cF(R+
2 ,g) + w�

p cF(R�
2 ) 2 H provides a weak solution to (1.19) in the sense of

(3.1).
Step 3: Uniqueness of the auxiliary problem. It remains to show that the auxiliary

equation has unique solution. Suppose otherwise, then there exist v+0 and v�0 satis-
fying (3.1) with p = 0. In addition, there is an extension of ṽ+0 denoted by ṽext

0 , such
that

rṽext
0 is stationary, and E

Z

Y
rṽext

0 dx = 0.

In the weak formulation of the equations satisfied by (v+0 , v�0 ), take this function
itself as the test function and integrate over F(NY) for a large integer N. We get

E

Z

F(NY\R+
2 )

k0|rv+0 |
2dx + E

Z

F(NY\R�
2 )

k0|rv�0 |
2dx

+ b�1E

Z

F(NY\G)
|v+0 � v�0 |

2ds = E

Z

∂F(NY)
k0(n ·rv+0 )v

+
0 ds.

By the elliptic regularity theory adapted to the space H, we know that v+0 and v�0
are in Ls(O, W1,s

loc(F(R+
2 )) and Ls(O, W1,s

loc(R
�
2 )) for some s > 2. This is is true also

for ṽ+0 and ṽ�0 . To summarize, we have rṽext
0 is stationary, E

R
Y rṽext

0 dy = 0 and
Ekrṽext

0 ks
Ls(Y) < • for some s > 2. These properties of ṽext

0 imply that it grows sub-
linearly at infinity; see for instance Lemma A.5 of [34]. As a result, v+0 also grows
sub-linearly at infinity. Consequently, the right-hand side of the previous equality
is of order o(N2). Take the real part of the left-hand side and divided it by N2, we
have

1
N2 Â

n2I(N)

E

Z

F(Y+
n )

s0|rv+0 |
2dx +

Z

F(Y�
n )

s0|rv�0 |
2dx +<b�1

Z

F(Gn)
|v+0 � v�0 |

2ds
�

converges to zero as N ! • where I(N) are the indices of cubes {Yn ⇢ NY}. By a
change of variable with bounds (1.14) and (1.15), the above implies

1
N2 Â

n2I(N)

E

Z

Y+
n

s0|rṽ+0 |
2dx̃ +

Z

Y�
n

s0|rṽ�0 |
2dx̃ + b�1

Z

Gn
|ṽ+0 � ṽ�0 |

2(x̃)ds(x̃)
�
�! 0.

By the stationarity of the integrands, we rewrite the above equation as

E

Z

Y+
|rṽ+0 |

2dx̃ + E

Z

Y�
|rṽ�0 |

2dx̃ + E

Z

G0
|ṽ+0 � ṽ�0 |

2(x̃)ds(x̃) = 0.

This implies that ṽ+0 = ṽ�0 = C(g) for some random constant. Consequently, v+0 =
v�0 = C(g) and the uniqueness is proved.
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3.2 Proof of the homogenization theorem

In this section, we prove the homogenization theorem using the energy method, i.e.,
the method of oscillating test functions [101].

3.2.1 Oscillating test functions

We first build the oscillating test functions. For a fixed vector p 2 R2. Let (w+
p , w�

p ) 2
H be the unique solution (up to the addition of a random constant) of the auxiliary
problem (1.19). In particular, w+

p has an extension wext
p . In the rest of this section, we

assume that E
R

Y w̃ext
p dy = 0. We define
8
><

>:

w#
1p(x, g) = x · p + #wext

p (
x
#

, g), x 2 R2,

w#
2p(x, g) = x · p + #Qw�

p (
x
#

, g), x 2 R2.
(3.10)

Here and in the sequel, Q denotes the trivial extension operator which sets Q f = 0
outside the spatial support of f . By scaling the auxiliary problem, we verify that
(w#+

p , w#�
p ), where w#+

p is the restriction of w#
1p in #F(R+

2 ) and w#�
p is the restriction

of w#
2p in #F(R�

2 ), satisfies
(
r · k0rw#+

p = 0 and r · k0rw#�
p = 0 in #F(R±

2 ),

k0n ·rw#+
p = k0n ·rw#�

p and w#+
p � w#�

p = #bk0n ·rw#�
p on #F(G).

This means that for any test function j = (j+, j�) 2 L2(O, H1
loc(#F(R+

2 )⇥ #F(R�
2 )))

compactly supported on a bounded open set O ⇢ R2, we have that

E

Z

O\#F(R+
2 )

k0rw#+
p ·rj+dx + E

Z

O\#F(R�
2 )

k0rw#�
p ·rj�dx

+ (#b)�1E

Z

O\#F(G)
(w#�

p � w#�
p )(j+ � j�)ds = 0.

(3.11)
Clearly, this is the scaled version of (3.1). We define also the vector fields h#±

p =
k0rw#±

p . They satisfy the following convergence results.

Lemma 3.2.1. Let w#±
p and the vector fields h#±

p be defined as above and let O ⇢ R2 be a
bounded open set. Then as # ! 0, we have the following:

w#
1p ! x · p, uniformly in O a.s. in O; (3.12)

w#
2p ! x · p, in L2(O) a.s. in O. (3.13)

Qh#±
p * $E

Z

F(Y±)
k0

⇣
rw±

p (x, ·) + p
⌘

dx in [L2(O)]2 a.s. in O. (3.14)

Proof. To prove the first result, we recall that (w+
p , w�

p ) solves (3.1) and by the elliptic
regularity theorem adapted to the space H we have

E

Z

F(Y+ ,g)
|rw+

p (x, g)|sdx < •, which implies E

Z

Y
|rw̃ext

p (y, g)|sdy < •
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for some s > 2. In addition, rw̃ext
p is stationary. By a version of Birkhoff’s ergodic

theorem, see e.g. Theorem 9 of [80], we have that

lim
#!0

sup
x2K

|#w̃ext(
x
#

, g)| = 0 P-a.s.

for any compact set K ⇢ R2. The desired convergence result follows from the rela-
tion among wext

p and w̃ext
p .

For second convergence result, we first observe the following decomposition

w#
2p � x · p = #

⇣
w�

p (
x
#
)� wext

p (
x
#
)
⌘

c#F(R�
2 ) + #wext

p (
x
#
)c#F(R�

2 ).

By the proof of the first result, the second item on the right above converges uni-
formly in O to zero and it suffices to show that J# := k#w�

p (#
�1x)� #wext

p (#�1x)kL2(#F(R�
2 )\O)

converges to zero. Given O and #, we can find I#(O) ⇢ Z2 such that O ⇢ [k2I#
#F(Yn)

and |I#| . C(O)#�2. Then a.s. in O we verify that

J#  Â
n2I#

Z

#F(Y�
n )

#2
���wext

p (
x
#
)� w�

p (
x
#
)
���
2

dx = #4 Â
n2I#

Z

F(Y�
n )

���wext
p (x)� w�

p (x)
���
2

dx

 C#4 Â
n2I#

Z

Y�
n

���w̃ext
p (y)� w̃�

p (y)
���
2

dy.

In the last inequality, we used the change of variable y = F�1(x) and the bounds
(1.14) and (1.15). Using the estimate (A.19), we have

J#  C#2

"
1
|I#| Â

n2I#

✓Z

Gn

���w̃+
p (y)� w̃�

p (y)
���
2

ds(y) +
Z

Y�
n

���rw̃ext
p (y)�rw̃�

p (y)
���
2

dy
◆#

.

Note that the integrands above are stationary and the item inside the bracket is
ready for applying ergodic theorem. This item converges to

E

Z

G0
|w̃+

p � w̃�
p |2(y)ds(y) + E

Z

Y
|rw̃ext

p �rw̃�
p |2dy,

which is bounded for example by (3.4) and (3.6). Consequently, J# ! 0, proving
(3.13).

For the third convergence result, we set first

Qh̃±
p = (k0[p + (rF)�1rw̃±

p ])cR±
2

.

These functions are stationary and we have the relation Qh#±
p = (Qh̃±

p )
�
F�1( x

# , g)
�

holds. By an ergodic theorem adapted to the stationary ergodic setting of this chap-
ter given in Lemma 2.2. of [44], we obtain (3.14).
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3.2.2 Proof of the homogenization theorem
In this subsection we prove the homogenization theorem using Tartar’s energy method.
Here is the strategy: In the first step, we recall the energy estimates for the solu-
tion u# to the problem (1.2) and extract a subsequence along which uext

# converges
weakly in H1(W) to some u0, and the trivially extended gradient functions Qru+

#
and Qru�

# has weak limits in [L2(W)]d. Passing to limits in the weak formulation
of (1.2), we obtain equations for these limits and the proper boundary conditions.
It worths mentioning that this step can be done for almost all fixed g 2 O. In step
three we identify u0 as the unique solution to a homogenized equation. This is done
by choosing the oscillating test functions (jw#

1p, jw#
2p) for the u#-equation and the

oscillating test functions (ju+
# , ju�

# ) for the w#
p-equation. After some cancellation

one can pass to the limits in these weak formulations of these equations and obtain
the weak formulation satisfied by u0. In this step, we treat the functions as defined
in the product space O ⇥ R2. The uniqueness of the solution to the weak formu-
lation of u0 relies on the fact that the trivial extension of u�

# converges weakly in
L2(W) to qu0 for some constant q < 1. This fact is proved in step two.

Proof of Theorem 1.1.5. Step 1: Extraction of converging subsequences. In this and the
next step, the arguments work for any fixed g 2 O1 where P(O) = 1 and the esti-
mates in (1.13)(1.14)(1.15)(1.16) hold for g 2 O1. We henceforth ignore the depen-
dence on g. Let (u+

# , u�
# ) be the solution to (1.2). In particular, u+

# has an extension
uext 2 H1(W). Let the vector fields x±# be k0ru±

# . Then the estimates (1.32) and
(1.29) show that

kuext
# kH1(W) + kQx+# k[L2(W)]2 + kQx�# k[L2(W)]2  C.

Consequently, there exists a subsequence and functions u0 2 H1(W) and x1, x2 2
[L2(W)]2, such that

uext
# * u0 weakly in H1(W), uext

# ! u0 strongly in L2(W);

Qx+# * x1 weakly in [L2(W)]2, Qx�# * x2 weakly in [L2(W)]2.
(3.15)

In the proof of Proposition 1.2.4, we also proved that

uext
# c�

# � Qu�
# ! 0 strongly in L2(W). (3.16)

Now fix an arbitrary test function j 2 C•
0 (W). Take (jc+

# , jc�
# ) as a test function

in (1.25). Then the interface term disappears and we get
Z

W
k0(Qx+# ) ·rjdx +

Z

W
k0(Qx�# ) ·rjdx = 0.

Passing to the limit # ! 0 along the subsequence above, one finds
Z

W
(x1 + x2) ·rjdx = 0, 8j 2 C•

0 (W). (3.17)

Therefore, the limiting vector field x1 + x2 satisfies that

r · (x1 + x2) = 0, in D0(W), (3.18)
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where D0(W) denotes the space of tempered distributions on W. Now for any f 2
C•(∂W), we may lift it to a smooth function j 2 C•(W) such that j = f on ∂W.
Take (jc+

# , jc�
# ) as the test function in (1.25) and pass to the limit; we get

Z

W
(x1 + x2) ·rjdx =

Z

∂W
gf ds. (3.19)

Since x1 + x2 2 L2(W) and r · (x1 + x2) 2 L2(W), the trace n · (x1 + x2) on the
boundary ∂W is well defined. Applying the divergence theorem and (3.18) we get

Z

∂W
n · (x1 + x2)f ds =

Z

∂W
gf ds, 8f 2 C•(W).

This shows that, n · (x1 + x2) = g at ∂W. Further, since the trace of Qx�# is zero for
all #, the same argument above shows that n · x2 = 0 at ∂W. We hence get

n · x1 = g at ∂W.

Remark 3.2.1. It is easy to verify that the weak formulation (3.17) works also if we replace
the space of test functions by j 2 C•

0 (W, L2(O)) and add an integral in g on the left hand
side.

Step 2: Weak convergence of Qu�
# . We can write Qu�

# as uext
# c�

# + (Qu�
# � uext

# c�
# ).

Due to (3.16) and the fact that uext
# converges strongly to u0, we only need to verify

that c�
# converges weakly to q. To this purpose, fix an arbitrary open set K compactly

supported in W, and observe that for sufficiently small #, K is compactly supported
in E# defined in (1.18). Then we have

Z

K
cW�

#
dx =

Z

K\#F(R�
2 )

dx =
Z

#F�1( K
# )

cR�
2
(

z
#
)detrF(

z
#

, g)dz.

In [44, 43], it is shown that the characteristic function #F�1 �K
#

�
converges strongly in

L1(R2) to that of the set [E
R

Y rF(y, ·)dy]�1K. On the other hand, since the function
cR�

2
detrF is stationary, by ergodic theorem, we have

cR�
2
(

z
#
)detrF(

z
#

, g)
⇤
* E

Z

Y
cR�

2
detrF(z, g)dz = q$�1, in L•(R2).

Here, q is defined as in (1.20). Consequently, we observe that for any open set K
compactly supported in W, we have

Z
cKcW�

#
dx ! q$�1

Z

[E
R

Y rF(y,·)dy]�1K
dx = q$�1 det

✓
E

Z

Y
rF(y, ·)dy

◆�1
|K| = q|K|.

Here, we used the fact that det
�
E
R

Y rF(y, ·)dy
�

= $�1, a fact also proved in
[44, 43]. Since linear combinations of characteristic functions of compact sets in
W are dense in L2(W), we get the desired result. The fact that q < 1 is due to the
assumption on Y� and the assumption (1.16). This completes the proof of item two
of the theorem up to a subsequence.
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Step 3: Identifying the limit. Fix an arbitrary test function j 2 C•
0 (W, L•(O,F , P)).

By the constructions of W�
# , K# and E# defined in (1.17) and (1.18), for sufficiently

small #, the function j is compactly supported in E#.
Choose p = ek, k = 1, 2 where e1 = (1, 0) and e2 = (0, 1). Let w#

1ek
and w#

2ek
be

as in (3.10). In the weak formulation (3.11) of the equations satisfied by them, take
(ju+

# , ju�
# ) as a test function; we get

E

Z

W
(Qh#+

ek
) ·r(ju+

# )dx + E

Z

W
(Qh#�

ek
) ·r(ju�

# )dx

+ E
1
#b

Z

G#

(w#
1ek

� w#
2ek

)j(u+
# � u�

# )ds = 0.

Similarly, in the weak formulation (1.25), take (jw#
1ek

, jw#
2ek

) as the test function; we
get

E

Z

W
(Qx+# ) ·r(jw#

1ek
)dx + E

Z

W
(Qx�# ) ·r(jw#

2ek
)dx

+ E
1
#b

Z

G#

(u+
# � u�

# )j(w#
1ek

� w#
2ek

)ds = 0.

Note that the integrating domains in the first formula can be taken as above because
j is compactly supported in E#, which implies that #F(G) \ supp j = G# \ supp j.
Subtracting the two formulas above and noticing in particular that the interface
terms cancel out, we get

E

Z

W
(Qh#+

ek
) ·rjuext

# dx +
Z

W
(Qh#�

ek
) ·rjuext

# dx +
Z

W
(Qh#�

ek
) ·rj(Qu�

# � uext
# c�

# )dx
�

�E

Z

W
(Qx+# ) ·rjw#

1ek
dx +

Z

W
(Qx�# ) ·rjw#

2ek
dx
�
= 0.

By the convergence results (3.14), (3.12), (3.13), (3.15) and (3.16), we observe that
each integrand above is a product of a strong converging term with a weak con-
verging term. Therefore, we can pass the above to the limit # ! 0 and get

E

Z

W
(h1ek + h2ek)u0 ·rjdx = E

Z

W
(x1 + x2)xk ·rjdx, (3.20)

where h1ek (resp. h2ek) is defined as the right-hand side of (3.14) with the "+" (resp.
"�") sign. The integral on the right can be written as

E

Z

W
(x1 + x2) · [r(jxk)� ek j]dx = �E

Z

W
(x1 + x2) · ek jdx,

where we have used (3.17). For the integral involving h1ek + h2ek , we check that

ei · (h1ek + h2ek) = k0$E

Z

F(Y)

⇣
cF(Y+)ei ·rw+

ek
(x, ·) + cF(Y�)ei ·rw�

ek
(x, ·) + dij

⌘
dx.

This shows that

(h1ek + h2ek)u0 ·rj =
2

Â
j=1

ej · (h1ek + h2ek)u0
∂j

∂xj
= K⇤

kju0
∂j

∂xj
,
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where we have used the definition of the matrix (K⇤
ij) in (1.22). Now (3.20) becomes

E

Z

W

2

Â
j=1

K⇤
kju0

∂j

∂xj
dx = �E

Z

W
(x1 + x2) · ek jdx.

Since j 2 C•
0 (W, L•(O)) is arbitrary and this functional space is dense in L2(W, L2(O)),

we conclude that

(x1 + x2) · ek =
2

Â
j=1

K⇤
kj

∂u0
∂xj

, for all k,

which means precisely that we can substitute this relation in (3.17) and (3.19) with
additional integrations in O and obtain

E

Z

W
K⇤ru0 ·rjdx = E

Z

∂W
gj, for all j 2 H1(W, L2(O)). (3.21)

Finally, we recall that for all g 2 O1,

Z

W
Qu+

# (x, g)dx = 0, and Qu�
# (·, g) * qu0(·, g) weakly in L2(W)

indicate that
Z

W
u0(x, g)dx = lim

#!0

Z

W
(Qu+

# (x, g) + Qu�
# (x, g))dx

= lim
#!0

Z

W
Qu�

# (x, g)dx = q
Z

W
u0(x, g)dx.

Since q < 1, we obtain Z

W
u0(x, g)dx = 0, P-a.s. (3.22)

In summary, the weak limit u0(x, g) provides a solution to the problem (3.21)(3.22).
Thanks to this normalization condition, the solution to this problem is unique. In-
deed, the difference v = u1 � u2 of two solutions to this problem would satisfy

E

Z

W
K⇤rv ·rvdx = 0, and

Z

W
v(x, g)dx = 0 holds P-a.s.

This can be true only if v ⌘ 0.
We check that the unique deterministic solution to the homogenized equation

(1.21) solves the problem (3.21)(3.22). By uniqueness of the latter problem, we con-
clude that u0(x, g) obtained in step one for a.s. g 2 W must agree with the deter-
ministic solution to (1.21). We denote this solution as u0(x). Consequently, all con-
verging subsequences of (u+

# , u�
# ) converge to u0(x) and hence the whole sequence

converges to this limit. This completes the proof.
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3.3 Effective admittivity of a dilute suspension

In this subsection, we consider the case when the cells are dilute. We aim to derive
a formal first order asymptotic expansion of the effective admittivity in terms of the
volume fraction of the dilute cells.

In the formula of the homogenized coefficient (1.22), the integral term has the
form

Jij = E

Z

F(Y+)
ej ·rw+

ei
(y, ·) dy + E

Z

F(Y�)
ej ·rw�

ei
(y, ·) dy.

Thanks to the ergodic theorem, Jij also takes the form

Jij = lim
N!•

1
N2 Â

n2I(N)

✓Z

F(Y+
n )

ej ·rw+
ei
(y, ·) dy +

Z

F(Y�
n )

ej ·rw�
ei
(y, ·) dy

◆
.

Here, I(N) is the indices for the cubes {Yn} inside the big cube NY. Now using
integration by parts, we simplify the above expression to

Jij = lim
N!•

1
N2

0

@
Z

∂F(NY)
njw+

ei
(y, ·) ds(y)� Â

n2I(N)

Z

Gn
(w+

ei
� w�

ei
)(y, ·)nj ds(y)

1

A .

Here, n denotes the outer normal vector along the boundary of F(NY) and F(Y�
n ),

n 2 I(N); nj = n · ej denotes its j-th component. Note that the boundary terms at
{∂F(Yn)}n2I(N) \ F(NY) are cancelled because two adjacent cubes share the same
outer normal vector at their common boundary except for reversed signs.

Finally, we have seen that w+
ei

has sub-linear growth. Since the surface F(NY)
has volume of order O(N), the sub-linear growth indicates that the boundary inte-
gral at ∂F(NY) is of order o(N2). Consequently, when divided by N2 this term goes
to zero. By applying the ergodic theorem again, we obtain that

Jij = lim
N!•

1
N2 Â

n2I(N)

Z

Gn
(w�

ei
�w+

ei
)(y, ·)nj ds(y) = E

Z

∂F(Y�)
(w�

ei
�w+

ei
)(y, ·)nj ds(y).

(3.23)
In the following, we investigate this integral further by deriving a formal represen-
tation for the jump w+

ei
� w�

ei
in the case when the inclusions are dilute, i.e., small

and far away from each other.
To model the dilute suspension, we assume that the reference cell Y� is of the

form of rB, where B is a domain of unit length scale and unit volume, and r :=p
|Y�| ⌧ 1 denotes the small length scale of the dilute inclusions. Due to the as-

sumptions (1.14) and (1.15), the length scale of the cell F(Y�) is still of order r. Fur-
ther, due to the assumption (1.16), the distance of the cell F(Y�) from the “bound-
ary” ∂F(Y) is of order one, which is much larger than the size of the inclusion.

Since the distances between the inclusions are much larger than their sizes, we
may use the single inclusion approximation. That is, w±

ei
can be approximated by
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the solutions to the following interface problem:
8
>>><

>>>:

r · k0rw±
ei
= 0 in F(Y�) and R2 \ F(Y�),

∂w+
ei

∂n
=

∂w�
ei

∂n
, and w+

ei
� w�

ei
= rbk0(

∂w�
ei

∂n
+ n · ei) on F(G),

w+
ei
! 0 at •.

Here, F(G) denotes the boundary of the inclusion. Note that the extra r in the jump
condition is due to the fact that the length scale of the inclusion F(Y�) is of order
r. Using double layer potentials, we represent w+

ei
and w�

ei
as DF(G)[fi] restricted

to F(Y�) and R2 \ F(Y�) respectively. Due to the trace formula of DF(G) and the
jump conditions above, the function fi is determined by

�fi = rbk0(
∂DF(G)[fi]

∂n
+ ni). (3.24)

Let us define the operator LF(G) by
∂DF(G)

∂n , then we have that

w+
ei
� w�

ei
= �fi = rbk0(I + rbk0LF(G))

�1[ni], on F(G).

As a consequence, we have also that

Jij ' �rbk0E

Z

F(G)
(I + rbk0LF(G))

�1[ni]njds.

Let us define yi to be �(I + rbk0LF(G))
�1[ni], that is yi + rbk0n ·rDF(G)[yi](x) =

�ni. Define the scaled function ỹi(x̃) = yi(rx̃) on the scaled curve r�1F(G). Using
the homogeneity of the gradient of the Newtonian potential, we verify that

DF(G)[yi](x) = Dr�1F(G)[ỹi](x̃), and rn ·rDF(G)[yi](x) = n ·rDr�1F(G)[ỹi](x̃),

where x̃ = r�1x. This shows that ỹi = �(I + bk0Lr�1F(G))
�1[ni]. Using the change

of variable y ! rỹ in the previous integral representation of Jij, we rewrite it as

Jij ' rbk0E

Z

r�1F(G)
yi(rỹ)njds(rỹ) = r2bk0E

Z

r�1F(G)
ỹinjds(ỹ).

Finally, the approximation (1.23) of the effective permittivity for the dilute suspen-
sion holds, where f = $r2 is the volume fraction where $ accounts for the averaged
change of volume due to the random diffeomorphism; the polarization matrix M
is defined by (1.24) and is associated to the deformed inclusion scaled to the unit
length scale. Note that the imaging approach developed in subsection 2.11 can be
applied here as well.



Chapter 4

Numerical simulations

We present in this section some numerical simulations to illustrate the fact that the
Debye relaxation times are characteristics of the microstructure of the tissue.

We use for the different parameters the following realistic values:

• the typical size of eukaryotes cells: r ' 10 � 100 µm;

• the ratio between the membrane thickness and the size of the cell: d/r = 0.7 ·
10�3;

• the conductivity of the medium and the cell: s0 = 0.5 S.m�1;

• the membrane conductivity: sm = 10�8 S.m�1;

• the permittivity of the medium and the cell: e0 = 90 ⇥ 8.85 · 10�12 F.m�1;

• the membrane permittivity: #m = 3.5 ⇥ 8.85 · 10�12 F.m�1;

• the frequency: w 2 [104, 109] Hz.

Note that the assumptions of our model d ⌧ r and sm ⌧ s0 are verified.
We first want to retrieve the invariant properties of the Debye relaxation times.

We consider (Figure 4.1) an elliptic cell (in green) that we translate (to obtain the
red one), rotate (to obtain the purple one) and scale (to obtain the dark blue one).
We compute the membrane polarization tensor, its imaginary part, and the associ-
ated eigenvalues which are plotted as a function of the frequency (Figure 4.2). The
frequency is here represented on a logarithmic scale. One can see that for the two
eigenvalues the maximum of the curves occurs at the same frequency, and hence
that the Debye relaxation times are identical for the four elliptic cells. Note that
the red and green curves are even superposed; this comes from the fact that M is
invariant by translation.

Next, we are interested in the effect of the shape of the cell on the Debye relax-
ation times. We consider for this purpose, (Figure 4.3) a circular cell (in green), an
elliptic cell (in red) and a very elongated elliptic cell (in blue). We compute similarly
as in the preceding case, the polarization tensors associated to the three cells, take
their imaginary part and plot the two eigenvalues of these imaginary parts with
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0 1
0

1

Figure 4.1: An ellipse translated, rotated and scaled.

respect to the frequency. As shown in Figure 4.4, the maxima occur at different fre-
quencies for the first and second eigenvalues. Hence, we can distinguish with the
Debye relaxation times between these three shapes.

Finally, we study groups of one (in green), two (in blue) and three cells (in red)
in the unit period (Figure 4.5) and the corresponding polarization tensors for the
homogenized media. The associated relaxation times are different in the three con-
figurations (Figure 4.6) and hence can be used to differentiate tissues with different
cell density or organization.

These simulations prove that the Debye relaxation times are characteristics of
the shape and organization of the cells. For a given tissue, the idea is to obtain by
spectroscopy the frequency dependence spectrum of its effective admittivity. One
then has access to the membrane polarization tensor and the spectra of the eigen-
values of its imaginary part. One compares the associated Debye relaxation times
to the known ones of healthy and cancerous tissues at different levels. Then one
would be able to know using statical tools with which probability the imaged tissue
is cancerous and at which level.

In the following examples, we consider the general case of nondilute suspension
of cells. We illustrate numerically that the spectral properties of the imaginary part
of the effective admittivity tensor are similar to those in the dilute case. In particu-
lar, there is a unique maximum with respect to the frequency for the absolute value
of each eigenvalue of the imaginary part of the effective admittivity tensor. This
maximum is attained again at the inverse of a Debye relaxation time. As for the
dilute case, Debye relaxation times are invariant with respect to rigid transforma-
tions. Hence, if we consider an elliptic cell, which we tranlate and rotate (Figure 4.7)
to obtain three different periodic media, the spectra of their effective admittivity is
identical : the red, cyan and green curves are superposed in Figure 4.8. However,
they depend in the general case of the volume fraction, the blue curve correspond-
ing to the scaled cell admits its maximum at a different time.Therefore, our classi-
fication approach proposed in this part is expected to be applicable for nondilute
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Figure 4.2: Frequency dependence of the eigenvalues of =M for the 4 ellipses in Figure 4.1.
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Figure 4.3: A circle, an ellipse and a very elongated ellipse.
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Figure 4.4: Frequency dependence of the eigenvalues of =M for the 3 different cell shapes
in Figure 4.3.
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Figure 4.5: Groups of one, two and three cells.
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Figure 4.6: Frequency dependence of the eigenvalues of =M in the 3 different cases.



63

0 1
0

1

Figure 4.7: An ellipse translated, rotated and scaled.
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Figure 4.8: Frequency dependence of the eigenvalues of =M for the 4 ellipses in Figure 4.7.

suspensions but at given volume fraction. We hence consider three elliptic cells of
different shape but with the same volume (Figure 4.9), calculate the imaginary part
of their effective admittivity tensor and plot the absolute value of the two associated
eigenvalues (Figure 4.10). They attain their maximum for different frequencies. It is
worth emphasizing that the numerical results in the general case are obtained using
a finite element code with periodic boundary conditions.
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Figure 4.9: A circle, an ellipse and a very elongated ellipse with same volume.
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Figure 4.10: Frequency dependence of the eigenvalues of =M for the 3 different cell shapes
in Figure 4.9.
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As shown in Part I, spectroscopic admittivity imaging can provide information
about the microscopic structure of a medium, from which physiological or patho-
logical conditions of tissue can be derived, because the admittivity of biological tis-
sue varies with its composition, membrane characteristics, intra-and extra-cellular
fluids, and other factors.

The aim of Part II is to propose an optimal control optimization algorithm for re-
constructing admittivity distributions (i.e., both conductivity and permittivity) from
multi-frequency micro-electrical impedance tomography. A convergent and stable
optimization scheme is shown to be obtainable from multi-frequency data.

To formulate mathematically the imaging problem, we consider a medium of
conductivity s and permittivity e occupying W, C2-domain of R2. (Hereafter, the
medium is simply called W.) The problem of micro–electrical impedance tomog-
raphy is to reconstruct s and e from the vector of potential uw, w 2 (w, w), the
solution of ⇢

r · (s + iwe)ruw = 0 in W,
uw = j on ∂W, (4.1)

where j = (j1, j2) 2 H1/2(∂W)2. It is proved in this chapter that the above in-
verse problem is stably solvable with a good choice of boundary datum j; that is,
j belongs to what we will refer to as the proper set of boundary measurements; see
[14, 123, 129].

Part II is organized as follows. First, in Chapter 5 we review some useful regu-
larity results for elliptic systems of partial differential equations. we also introduce
the set of proper boundary measurements. Chapter 6 is devoted to the reconstruc-
tion method. We prove that the minimization functional is Fréchet differentiable
and we compute its derivative. Then we construct an initial guess and prove the
convergence of a minimizing sequence. Chapter 7 is devoted to present numerical
illustrations for the convergence and the performance of the proposed optimal con-
trol algorithm. In Appendix B, we prove the convergence of Landweber sequences
with cutoff functions.
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Chapter 5

Regularity results and set of proper
boundary conditions

5.1 Preliminaries on regularities

Let W0 = {x 2 W : dist(x, ∂W) > c0} for a small constant c0 > 0. We assume that s
and e are constant and known in W \ W0. In the following, we let s⇤ and e⇤, the true
conductivity and permittivity of W, belong to the convex subset of H2(W)2 given by

eS = {(s, e) := (s0, e0) + (h1, h2)| (q1, q2) 2 S},

where the positive constants s0 and e0 are respectively the conductivity and permit-
tivity in W \ W0 and

S = {(h1, h2) 2 H2
0(W)2| c1 < h1 + s0 < c2, c1 < h2 + e0 < c2, supp hj ⇢ W0,

khjkH2(W)  c3khjkH1(W), khjkH1(W)  c4 for j = 1, 2 }
(5.1)

with c1, c2, c4 and c4 being positive constants and supp denoting the support. In
other words, we can write eS = (s0, e0) + S . Here, the condition of khjkH2(W) 
c3khjkH1(W) is used to exclude any micro-local oscillation on the admittivity distri-
bution.

Introducing an open subset of C

O :=
⇢

o 2 C|=m o <
c1

2c2

�
, (5.2)

we first establish a useful lemma, which is a direct consequence of standard regu-
larity results.

Lemma 5.1.1. Let (s, e) 2 eS , w 2 O, and f 2 Lp(W) for 2  p < •. If v 2 H1(W)
satisfy

r · (s + iwe)rv = f in W, (5.3)

then v 2 W2,p(W0) and

kvkW2,p(W0)  C (kvkLp(W) + k f kLp(W)), (5.4)
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where C depends only on ci, i = 0, . . . , 4, p, and W. Moreover, if v = 0 on ∂W, then

kvkW2,p(W)  C (kvkLp(W) + k f kLp(W)). (5.5)

Proof. From the standard regularity estimate, we have

kvkH2(W0)  C (k f kL2(W)2 + kvkL2(W)). (5.6)

The first equation in (5.1.1) can be rewritten as

Dv = �rvT r(s + iwe)
s + iwe

+
f

s + iwe
, (5.7)

where T denotes the transpose. Since supp r(s + iwe) ⇢ W0, we have

krvT r(s + iwe)
s + iwe

kLp(W) = krvT r(s + iwe)
s + iwe

kLp(W0)

 CkrvTkL2p(W0)2k
r(s + iwe)

s + iwe
kL2p(W0)2

 CkvkH2(W0)ks + iwekH2(W0)

 C
⇣
kvkL2(W0) + k f kL2(W)

⌘
ks + iwekH2(W0).

Here, Schwartz inequality was used for the second inequality; Sobolev embedding
for the third inequality; and the last inequality comes from (5.6). Hence, the right
side of (5.7) is in Lp(W). Now, we apply the standard W2,p-estimate for Poisson’s
equation (5.7) to get

kvkW2,p(W0)  C
⇣
kvkLp(W)2 + k f kLp(W)

⌘
.

5.2 Sets of proper boundary conditions

The main purpose of this section is to choose “good" boundary datum j in (4.1) so
that the measurements of the corresponding vector potential uw are helpful in our
reconstruction algorithm. Such a set of good functions, henceforth coined as a set of
proper boundary conditions, is defined as follows.

Definition 5.2.1. Let j 2 H1/2(∂W)2. We say that j is a proper set of boundary conditions
if and only if the 2 ⇥ 2 matrix rus is invertible in W for all s 2 s0 + S where the vector
us denotes the solution of the boundary value problem

(
r · sru = 0 in W,

u = j on ∂W.



5.2 Sets of proper boundary conditions 71

The existence of a set of proper boundary conditions was proved in [4, 38, 121].
The following proposition is the main result of this section.

Proposition 5.2.1. For all (s, e) 2 eS , we denote by uw the solution of (4.1) with j being
a proper set of boundary conditions. There exist N > 1 open pairwise disjoint open subsets
B1, B2, · · · , BN of W, and N frequencies w1, · · · , wN 2 (w, w) such that

(i) W0 ⇢ [N
j=1Bj ⇢ W;

(ii) The matrix Awj(x) = ruw is invertible for all x 2 Bj.

In [3], G. Alberti has proved the result when the dependence of coefficients on
the frequency is different from that in our context. The key of his arguments is the
fact that uw is analytic with respect to w. Fortunately, his technique is still applicable
to (4.1). We present the proof here for the completeness’ sake.

Lemma 5.2.1. Let O be defined by (5.2). The map

L : O ! H2
loc(W)2,

w 7! uw ,

where uw is the solution to (4.1), is analytic. Moreover, the derivative of L at w0 is given by
the solution of

⇢
r · (s + iw0e)rw = �r · ierL(w0) in W,

w = 0 on ∂W (5.8)

for all w0 2 O.

Proof. The quotient

z :=
L(w)� L(w0)

w � w0

solves ⇢
r · (s + iwe)rz = �ir · erL(w0) in W,

z = 0 on ∂W. (5.9)

Since r · erL(w0) = 0 in W \ W0 and r · erL(w0) is in L2(W0) (see Lemma 5.1.1),
we can use Lemma 5.1.1 again to get

kzkH2(W)  CkL(w0)kH2(W) (5.10)

for some positive constant C.
On the other hand, the difference between z and w satisfies

⇢
r · (s + iw0e)r(z � w) = �r · i(w � w0)erz in W,

z � w = 0 on ∂W, (5.11)

where w is defined by (5.8). Applying Lemma 5.1.1 one more time allows us to
obtain

kz � wkH2(W)  C|w � w0|krzkH2(W).

This, together with (5.10), completes the proof of this lemma.
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We are now in position to prove Proposition 5.2.1.

Proof of Proposition 5.2.1. Let W00 = {x 2 W : dist(x, ∂W) > c0/2}, so that W0 ⇢⇢
W00 ⇢⇢ W. From Lemma 5.1.1, uw 2 W2,p(W00) for any p > 2. Hence, it follows from
Sobolev embedding that uw 2 C1,a(W00) for some a 2 (0, 1). Thus we can consider
uw and ruw pointwisely. We employ the ideas in [3] to prove the proposition. Since
det : C(W00)2⇥2 ! C(W00) is multilinear and bounded and

O ! C1,a(W00)2

w 7! uw

is analytic thanks to Lemma 5.2.1. Moreover,

O ! C0,a(W00)

w 7! det(ruw)

is also analytic. For x 2 W, if det Aw(x) = 0 for every w 2 [w, w] then for all w 2
O, det Aw(x) = 0 by the analytic continuation theorem. In particular, det A0(x) = 0
which conflicts with the choice of proper boundary conditions. Hence, we can find
wx 2 (w, w) such that |det Awx(x)| > 0. Moreover, since the map |det Awx(·)| is
continuous, it is strictly positive in the ball Brx(x), centered at x and of radius rx >
0. Noting that [x2W0Brx(x) covers W0, we can use the compactness of W0 in R2 to
complete the proof.

From now on, a proper set of boundary conditions j has been chosen. However,
in practice, one might not know the values of frequencies and the set B1, · · · , BN.
We thus suggest to measure the data uw for all w 2 (w, w). The following corollary
of Proposition 5.2.1 will be useful for the sequel.

Corollary 5.2.1. If j is a proper set of boundary conditions then we can find l > 0 such
that Z w

w
|detruw(x)|dx > l,

where uw(x) is the solution of (4.1).
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The reconstruction method

6.1 Optimization scheme

Let the function Uw = F[s⇤, e⇤; w] represent the measurement of the solution vector
with s⇤ and e⇤ being the true distributions.

Consider
F : eS ⇥ (w, w) ! H2(W)2

(s, e; w) 7! uw � Uw ,
where again uw is the solution to (4.1) with a proper set of boundary conditions
j. Here eS is considered as a subset of the Hilbert space H2(W)2. Note that F is
well-defined thanks to Lemma 5.1.1.

To reconstruct s and e, we minimize the discrepancy functional

J[s, e] =
1
2

Z w

w
kF[s, e; w]k2

H1(W)dw

for (s, e) 2 eS .
We first investigate the differentiability of F with respect to the pair of admittivity

(s, e). For doing so, we need one more notation. Let A : B = Âi,j aijbij for two
matrices A = (aij) and B = (bij). Let h , iHs denote the Hs(W)2-scalar product for
s = 1, 2. The following lemma holds.

Lemma 6.1.1. (i) The map F is Fréchet differentiable in (s, e) 2 eS . For all (h, k) 2 S ,
DF[s, e; w](h, k) is given by the solution of

⇢
r · (s + iwe)rvw = �r · (h + iwk)ruw in W,

vw = 0 on ∂W. (6.1)

Moreover, DF is Lipschitz continuous with respect to (s, e).

(ii) J is Fréchet differentiable in (s, e) 2 eS . Moreover, for all (h, k) 2 S ,

DJ[s, e](h, k) = <e
Z w

w
hDF[s, e; w](h, k), F[s, e; w]iH1 ,

= <e
Z w

w
h(h, k), DF[s, e; w]⇤(F[s, e; w])iH2 ,

(6.2)
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where DF[s, e; w]⇤ is the adjoint of DF[s, e; w].

(iii) Furthermore, for all (h, k) 2 S ,

DJ[s, e](h, k) = <e
Z w

w

Z

W
(h + iwk)ruw : rpw dw, (6.3)

where pw 2 H2(W) is the solution to the adjoint problem
⇢

r · (s + iwe)rpw = F(s, e; w)� DF(s, e; w) in W,
pw = 0 on ∂W.

(6.4)

Proof. Take (h, k) 2 S such that (s + h, e + k) still belongs to eS . Define

wh,k = F[s + h, e + k; w]� F[s, e; w] 2 H1
0(W)2.

We have

r · (s + h + iw(e + k))rwh,k = �r · (s + h + iw(e + k))r(F[s, e; w] + Uw)

= r · (h + iwk)r(F[w, s, e] + Uw).

Using Sobolev embedding and Lemma 5.1.1, we have

kwh,kkH2(W)2  Ckr · (h + iwk)r(F[s, e; w] + Uw)kL2(W0)2

 C
⇣
kh + iwkkL•(W0)kF[s, e; w] + UwkH2(W0)2

+kr(h + iwk)kL4(W0)2kr(F[s, e; w] + Uw)kL4(W0)2⇥2

⌘

 C
⇣
khkH2(W) + kkkH2(W)

⌘ ⇣
kF[w, s, e]kH2(W0)2 + kUwkH2(W0)2

⌘
.

(6.5)
The function wh,k � vw 2 H1

0(W) and satisfies

r · (s + iwe)r(wh,k � vw) = �r · (h + iwk)rwh,k.

Thus, again by repeating the estimates as in (6.5), we get

kwh,k � vwkH2(W)2  C
⇣
khkH2(W) + kkkH2(W)

⌘
kwh,kkH2(W0)2

 C
⇣
khkH2(W) + kkkH2(W)

⌘2 ⇣
kF[w, s, e]kH2(W0)2 + kUwkH2(W0)2

⌘
.

Item (i) has been then proved. Moreover, it is easy to see that DF is Lipschitz con-
tinuous with respect to (s, e). In fact, let (s, e) and (s0, e0) be in eS . Let (h, k) be in S .
Then, DF[s, e; w](h, k)� DF[s0, e0; w](h, k) is solution to the following equation:

8
>>>>><

>>>>>:

r · (s + iwe)r (DF[s, e; w](h, k)� DF[s0, e0; w](h, k)) =

�r · (h + iwk)r(F[s, e; w]� F[s0, e0; w])

�r · (s � s0 + iw(e � e0))rDF[s0, e0; w](h, k) in W,

DF[s, e; w](h, k)� DF[s0, e0; w](h, k) = 0 on ∂W.
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Therefore, applying similar estimate as in (6.5), we have

k(DF[s, e; w]� DF[s0, e0; w])(h, k)kH2(W)2

 C
⇣
kh + iwkkH2(W)kF[s, e; w]� F[s0, e0; w])kH2(W0)2

+ks � s0 + iw(e � e0)kH2(W)kDF[s0, e0; w](h, k)kH2(W)2

⌘
.

(6.6)
Since F[s, e; w]� F[s0, e0; w] satisfies

r · (s + iwe)r(F[s, e; w]� F[s0, e0; w]) = �r · (s � s0 + iw(e � e0))r(F[s0, e0; w] + Uw),

we apply a similar estimate as in (6.5) to get Lipschitz continuity of F:

kF[s, e; w]� F[s0, e0; w])kH2(W0)  Cks � s0 + iw(e � e0)kH2(W)

⇥
⇣
kF[s0, e0; w]kH2(W0)2 + kUwkH2(W0)2

⌘
.

(6.7)
Noting that DF[s, e; w](h, k) is the solution of (6.1), we also have

kDF[s0, e0; w](h, k)kH2(W0)  Ckh+ iwkkH2(W)k
⇣

F[s0, e0; w]kH2(W0)2 + kUwkH2(W0)2

⌘
.

(6.8)
Hence, combining estimates (6.6)-(6.8), we have

kDF[s, e; w]� DF[s0, e0; w]kL(H2(W),H2(W))  Cks � s0 + iw(e � e0)kH2(W)

⇥
⇣
kF[s0, e0; w]kH2(W0)2 + kUwkH2(W0)2

⌘
.

Item (ii) can be easily proved by using arguments similar to those used above.
Item (iii) follows by integration by parts.

We can now apply the gradient descent method to minimize the discrepancy
functional J. We compute the iterates

(sn+1, en+1) = T[sn, en]� µDJ[T[sn, en]], (6.9)

where µ > 0 is the step size and T[ f ] is any approximation of the Hilbert projection
from H2(W)2 onto eS with eS being the closure of eS (in the H2-norm). The derivative
DJ[T[sn, en]] is given by

DJ[T[sn, en]] = (�<eruw : rpw , w=mruw : rpw),

where uw and pw are respectively the solutions to (4.1) and (6.4) with (s, e) =
T[sn, en].

The presence of T is necessary because (sn, en) might not be in eS .
Using (iv) we can show that the optimal control algorithm (6.9) is nothing else

than the following Landweber scheme [83, 69] given by

(sn+1, en+1)

= T[sn, en]� µ
Z w

w
DF⇤[T[sn, en]; w](F[T[sn, en]; w]) dw. (6.10)
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6.2 Initial guess

To initialize the previous optimal control algorithm, we need to construct an initial
guess for the electrical property distributions s and e.

Consider the solution uw to (4.1). For all x 2 W,

Duw +
ruT

wr(s + iwe)
s + iwe

= 0.

It follows that

AT
w
r(s + iwe)

s + iwe
= �r · Aw , (6.11)

where
Aw = ruw.

Equation (6.11) gives us several ways to reconstruct both s and e. We suggest to
define the map gw = log(s + iwe), whose imaginary part is chosen in [0, p

2 ), and
solve (

Dgw = r · (�(Aw AT
w)

† Awr · Aw) in W,

gw = log(s0 + iwe0) on ∂W,
(6.12)

where † denotes the pseudo-inverse. The knowledge of gw implies those of s and e.
We denote by sI and eI the obtained functions by averaging gw over w:

sI + i
(w) + w

2
eI =

1
w � w

Z w

w
egw dw,

where gw is given by (6.12). We use sI and eI as the initial guess for our desired
coefficients.

6.3 Convergence of the minimizing sequence

The following theorem holds.

Theorem 6.3.1. For all (h, k) 2 S , we have the following estimate:

Z w

w
kDF[s, e; w](h, k)kH1(W)2dw � Ck(h, k)kH2(W)2 (6.13)

for some positive constant C.

Proof. Assume to the contrary that (6.13) is not true. That means we can find hn and
kn in S such that

khnkH2(W) + kknkH2(W) = 1

and Z w

w
kDF[s, e; w](hn, kn)kH1(W)dw ! 0
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as n ! •. By compactness, up to extracting a subsequence, we can assume that

(hn, kn) * (h, k) in H1
0(W)2. (6.14)

Denote by uw the vector F[s, e; w] and vn
w the vector DF[s, e; w](hn, kn). We have

vn
w ! 0 in H1

0(W)

for all w 2 (w, w).
Recall N, B1, · · · , BN , w1, · · · , wN, as in Proposition 5.2.1. Fixing j 2 {1, · · · , N},

we have

�r · (s + iwje)rvn
wj

= r · (hn + iwjkn)ruwj

= (s + iwje)ruT
wj
r

hn + iwjkn

s + iwje

in Bj. Equivalently,

ruT
wj
r

hn + iwjkn

s + iwje
= �r log(s + iwje) ·rvn

wj
� Dvn

wj
.

Note that the left-hand side of the equation above tends to 0 in H�1(W), so is
r hn+iwjkn

s+iwje
in L2(Bj). By using Poincaré’s inequality and the fact that W0 ⇢ [N

j=1Bj,
we arrive at h = k = 0. Since (hn, kn) 2 S , khnkH2(W) + kknkH2(W) ! 0, which
contradicts the assumption.

Note that as a direct consequence of Theorem 6.3.1, it follows that

✓Z w

w
kDF[s, e; w](h, k)k2

H1(W)2dw

◆ 1
2
� Ck(h, k)kH2(W)2 (6.15)

for some positive constant C. Hence, Theorem 6.3.1 and Proposition B.0.1 yield our
main result in this chapter.

Theorem 6.3.2. The sequence defined in (6.10) converges to the true admittivity (s⇤, e⇤) of
W in the following sense: there is h > 0 such that if kT[sI , eI ]� (s⇤, e⇤)kH2(W)2 < h, then

lim
n!+•

ken � e⇤kH2(W) + ksn � s⇤kH2(W) = 0.
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Chapter 7

Numerical illustrations

In this chapter we present some numerical results to illustrate the performance of the
proposed optimal control algorithm for admittivity imaging from micro-electrical
data.

We consider three regions in the unit square with respective conductivity 2, 3,
and 4. The admittivity of the background medium is 1 + i3w. We produce virtual
internal data through the forward problem with the true admittivities. We choose
two illuminations x + ix, y + iy, and calculate the associated potentials u1 and u2 in
the whole medium with a finite element code. u1 and u2 become our measurements
for the inverse problem. We first refine the uniform mesh according to the gradient
of u1 and u2. The initial guess is computed through solving the partial differential
equation given in the previous chapter.

We observe that the for the initial guess the permittivities inside the inclusions
are different. The reconstruction scheme of the initial guess couples the distributions
of the conductivities with those of the permittivities.

It is worth emphasizing that in our case the matrix data is invertible everywhere
in the domain and therefore, there is no need for taking multi-frequency measure-
ments.

The results of the reconstructions are presented after 20 and 40 iterations. The
difference between the true and reconstructed conductivities are shown. After 20
iterations, the shapes of the inclusions are well reconstructed however the values of
the conductivity inside are still not correct. 40 iterations are enough to well recon-
struct both the shapes, the conductivities, and the permittivities.

In the second set of numerical examples, we consider a different phantom. The
conductivities are between 1 and 2 as shown below while the permittivity is constant
and equal to 3 everywhere. Again, after 40 iterations starting from the initial guess
computed by solving the PDE problem, the reconstructed images are well resolved.
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Figure 7.1: True conductivity s⇤.
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Figure 7.2: Initial guess of the conductivity (on the left) and the permittivity (on the right).
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Figure 7.3: Reconstructed conductivity after 20 (on the left) and 40 (on the right) iterations
of the algorithm.
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Figure 7.4: Absolute value of the difference between the reconstructed and true conductivi-
ties after 20 (on the left) and 40 (on the right) iterations.
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Figure 7.5: Reconstructed permittivity after 20 (on the left) and 40 (on the right) iterations
of the algorithm.
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Figure 7.6: True conductivity s⇤.
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Figure 7.7: Initial guess of the conductivity (on the left) and the permittivity (on the right).
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Figure 7.8: Reconstructed conductivity after 20 (on the left) and 40 (on the right) iterations
of the algorithm.
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Figure 7.9: Absolute value of the difference between the reconstructed and true conductivi-
ties after 20 (on the left) and 40 (on the right) iterations.
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Figure 7.10: Reconstructed permittivity after 20 (on the left) and 40 (on the right) iterations
of the algorithm.
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Part III

Mathematical modeling of
fluorescence diffuse optical imaging of

cell membrane potential changes
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The purpose of Part III is threefold. We first provide and analyze a mathematical
model for optical imaging of changes in membrane electric potentials. Then we
propose, in the linearized case where the shape of the cell is a perturbation of a disk,
an efficient direct imaging technique based on an appropriate choice of the applied
currents. An iterative imaging algorithm for more complex shapes is also suggested.
Finally, we estimate the resolving power of the proposed imaging algorithm in the
presence of measurement noise.

Our main results in Part III can be formulated as follows. Let C be the cell, and
let W be the background domain. Given an optical excitation g, the emitted light flu-
ence is F g

emt, the solution to the diffusion equation (8.3) with F g
exc defined by (8.2)

and cflr being the concentration of fluorophore supported on the cell membrane ∂C.
Equation (8.5) gives the relation between the function cflr and the electric potential
u defined by (8.4). In order to image the cell membrane ∂C, we establish identity
(10.1) and linearize in Theorem 10.2.1 relation (8.5) for ∂C being a perturbation of
a disk. Proposition 10.2.7 gives the least squares estimate of the cell membrane
perturbation. Introducing the signal-to-noise ratio in (10.55), where s models the
measurement noise amplitude and e corresponds to the order of magnitude of the
cell membrane perturbation, we derive in Theorem 10.2.2 the resolving power of the
imaging method. Theorem 10.2.3, which is our main result in this chapter, provides
expressions for the reconstructed modes in the cell membrane perturbation in the
presence of measurement noise under physical assumptions on the size of the cell
and the value of the used frequency. A generalization of the linearization procedure
for arbitrary shaped cell membranes is provided in Proposition 10.3.1, and the re-
construction of perturbations of arbitrary-shaped cell membranes is formulated as a
minimization problem, where the data is appropriately chosen in order to maximize
the resolution of the reconstructed images.

Part III is organized as follows. Chapter 8 is devoted for the governing model
of the hybrid membrane imaging technique. In Chapter 9 the forward problems are
analyzed. Chapter 10 presents the membrane reconstruction technique. Numeri-
cal results to illustrate the viability and the limitations of the proposed membrane
reconstruction technique are given.
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Chapter 8

Governing model for the hybrid
membrane imaging technique

We consider a cell that we want to image. We inject fluorescent indicators that stick
only on the cell membrane [97]. These markers are chosen so that their concentra-
tion responds linearly to the potential jump across the membrane, when the cell is
immersed in an external electric field [68]. We apply such an external electric field
at the boundary of our domain and use fluorescence optical diffuse tomography to
reconstruct the position and shape of the membrane.

8.1 Coupled diffusion equations

A sinusoidally modulated near infrared monochromatic light source g, located at
the boundary ∂W of the examined domain W, launches an excitation light fluence

fexc = Fexc(x, w) eiwt

at the wavelength lexc, into W. At time t and point x, fexc represents the average
photon density, due to excitation by the source oscillating at frequency w. After it
undergoes multiple scattering and absorption, this light wave reaches the fluores-
cent markers that are accumulated on ∂C, the membrane of the cell C. The excited
fluorophores emit a wave

femt = Femt(x, w) eiwt

at the wavelength lemt. The intensity of the emitted wave is proportional to the in-
tensity of the excitation wave when it reaches the fluorescent molecule. The emitted
waves pass through the absorbing and scattering domains and are detected at the
boundary ∂W.

In the near infrared spectral window, the propagation of light in biological tis-
sues can be modeled by the diffusion equation, which is a limit of the radiative
transport equation when the transport mean free path is much smaller than the typ-
ical propagation distance. Our model can therefore be described by the following
coupled diffusion equations completed by Robin boundary conditions [125, 107, 72,
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117]:
8
>><

>>:

�r · (Dexc(x)rFexc(x, w)) +

✓
µexc(x) +

iw
c

◆
Fexc(x, w) = 0 in W,

`exc
∂Fexc

∂n
(x, w) + Fexc(x, w) = g(x) on ∂W,

8
>>>>><

>>>>>:

�r · (Demt(x)rFemt(x, w)) +

✓
µemt(x) +

iw
c

◆
Femt(x, w)

= g(x, w)Fexc(x, w) in W,

`emt
∂Femt

∂n
(x, w) + Femt(x, w) = 0 on ∂W.

Here,

• n denotes the outward normal at the boundary ∂W;

• c denotes the speed of light in the medium;

• Dexc and µexc (respectively Demt and µemt) denote the photon diffusion and
absorption coefficient at wavelength lexc (respectively lemt) over the speed of
light c. Assuming that the scattering is isotropic, they can be expressed, for
i = exc, emt, as follows:

Di(x) =
1

d(µa,i(x) + µflr,i(x) + µ0
s,i(x))

and µi(x) = µa,i(x) + µflr,i(x) ,

where

– µa,i denotes the absorption coefficient, due to natural chromophores of
the medium, at wavelength li;

– µflr,i denotes the absorption coefficient, due to fluorophores, at wave-
length li. This absorption coefficient is proportional to the fluorophore
concentration cflr(x). The proportionality coefficient, #exc, is the fluo-
rophore extinction coefficient at wavelength li;

– µ0
s,i denotes the reduced scattering coefficient at wavelength li; its inverse

is the transport mean free path.
– `i is the extrapolation length. It is computed from the radiative transport

theory [116] and is proportional to the transport mean path. The multi-
plicative function depends on the index mismatch between the scattering
medium in W and the surroundings.

– d is the space dimension;

• g is given by

g(x, w) =
h µflr,exc(x)
1 � iwt(x)

=
h#exc cflr(x)
1 � iwt(x)

, (8.1)

with h and t being respectively the fluorophore’s quantum efficiency and flu-
orescence lifetime.
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8.2 Model assumptions

Let W be the background domain and let C b W denote the cell. From now on, the
space dimension d is equal to 2 or 3 and W and C are bounded C2- domains.

The fluorophores are only located on the cell membrane ∂C; their concentration
cflr(x) is zero, except on ∂C. We neglect their contribution to the absorption and
diffusion coefficient, that is,

Di(x) =
1

d(µa,i(x) + µ0
s,i(x))

and µi(x) = µa,i(x).

In the near infrared spectral window, the absorption coefficient is much smaller
than the reduced scattering coefficient. This is one of the conditions to approximate
the light propagation in the medium by the diffusion equation.

We can approximate the diffusion coefficients at the excitation and emission
wavelength as follows:

Di(x) =
1

dµ0
s,i(x)

.

We consider that the optical parameters are constant in the domain W and do not
depend on the wavelength of the propagating light. Hence, for i = exc, emt,

Di(x) = Di = D =
1

dµ0
s
, µi(x) = µi = µ = µa, and `i(x) = `i = `.

We consider that the fluorophore’s fluorescence lifetime t is constant. From (8.1)
it follows that g depends on the position x only through µflr(x) and, more specifi-
cally, cflr(x). It can then be written as follows:

g(x, w) = g̃(w) cflr(x) with g̃(w) =
h#exc

1 � iwt
.

The coupled diffusion equations and their boundary conditions then become

8
>><

>>:

�DDF g
exc(x, w) +

✓
µ +

iw
c

◆
F g

exc(x, w) = 0 in W,

`
∂F g

exc
∂n

(x, w) + F g
exc(x, w) = g(x) on ∂W,

(8.2)

8
>><

>>:

�DDF g
emt(x, w) +

✓
µ +

iw
c

◆
F g

emt(x, w) = g̃(w) cflr(x)F g
exc(x, w) in W,

`
∂F g

emt
∂n

(x, w) + F g
emt(x, w) = 0 on ∂W,

(8.3)
where the source g is in L2(∂W).
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8.3 Electrical model of a cell

Here we use the same electrical model of a cell as in Section 1.1.2 but under a direct
courant.

We apply at the boundary of our domain an electric field gele 2 L2(∂W). We
consider that W \ C and C are homogeneous and isotropic media with conductivity
1. The thickness e of the cell membrane is supposed to be small. We denote by s the
conductivity of the cell membrane. We assume that s ⌧ 1 and b > 0 to be given by
b = s�1e; see [90].

We can approximate the voltage potential u within our medium by the unique
solution to the following problem [52, 108, 77, 109, 110]:

8
>>>>>>>>>>><

>>>>>>>>>>>:

Du = 0 in C [ W \ C,

∂u
∂n

����
+

� ∂u
∂n

����
�
= 0 on ∂C,

u |+ �u |�= b
∂u
∂n

on ∂C,

∂u
∂n

����
∂W

= gele,
Z

∂W
u = 0.

(8.4)

Since we have chosen the fluorescent indicators of the cell membrane such that
they respond linearly to the potential jump across the membrane [68], we can ex-
press their concentration as

cflr = d [u]
��
∂C, (8.5)

where d is a constant [68].



Chapter 9

Analysis of the forward problem

The forward problem consists of determining Femt|∂W, for a fixed applied electric
field gele, a light excitation g and a given cell C. The optical parameters of the
medium, D and µ, the speed of light c, the extrapolation length ` and g̃ are sup-
posed to be known.

9.1 Expression of F g
exc

Let F g
exc be the excitation light fluence in W, due to an excitation g applied at its

boundary ∂W. The function F g
exc is the solution to the following problem:

8
><

>:

�DF g
exc(y) + k2 F g

exc(y) = 0 in W,

`
∂F g

exc
∂n

(y) + F g
exc(y) = g on ∂W,

(9.1)

where k2 =
µ + iw/c

D
. Note that if ` = 0, then the Robin boundary condition in (9.1)

should be replaced with the Dirichlet boundary condition: F g
exc(y) = g on ∂W. The

following result holds.

Theorem 9.1.1. There exists a unique solution Fexc in H1(W) to (9.1).

Proof. The variational formulation of (9.1) is given by

Find Fexc 2 H1(W) such that for all Y 2 H1(W) :
8
>><

>>:

Z

W
rFexc(x) ·rY(x) dx + k2

Z

W
FexcY(x) dx

+
1
`

Z

∂W
FexcY ds(x) =

1
`

Z

∂W
gY ds(x).

Since Re(k2) =
µ

D
> 0, we can apply Lax-Milgram theorem and prove existence

and uniqueness in H1(W) of a solution for (9.1).
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Let G be the fundamental solution to �D + k2. G is (the exponentially decaying)
solution to

8 y, z 2 Rd, �DyGz(y) + k2 Gz(y) = dz(y), (9.2)

where dz is the Dirac mass at z.
We know the explicit expression of Gz(y) for all y 6= z 2 Rd [29]:

Gz(y) =
i
4

H(1)
0 (ik|y � z|) if d = 2,

Gz(y) =
e�k|y�z|

4p|y � z| if d = 3,

where H(1)
0 is the Hankel function of the first kind of order 0.

We introduce the single and double layer potentials of a function f 2 L2(∂W),
for all z 2 Rd \ ∂W, [29]:

8 z 2 Rd, SW[ f ](z) =
Z

∂W
Gz(y) f (y) ds(y),

8 z 2 Rd \ ∂W, DW[ f ](z) =
Z

∂W

∂Gz(y)
∂n

f (y) ds(y).

Lemma 9.1.1. The double layer potential verifies, for all f 2 L2(∂W),

(�D + k2)DW[ f ] = 0 in Rd \ ∂W,

∂

∂n
DW[ f ]|+ =

∂

∂n
DW[ f ]|� on ∂W,

DW[ f ]|± =
⇣
⌥ 1

2 I +KW

⌘
[ f ] on ∂W,

where KW : L2(∂W) ! L2(∂W) is defined by

8 z 2 ∂W, KW[ f ](z) =
Z

∂W

∂

n(∂y)
Gz(y) f (y) ds(y).

Lemma 9.1.2. Let d = 2, 3. The single layer potential verifies, for all f 2 L2(∂W),

(�D + k2)SW[ f ] = 0 in Rd \ ∂W,

SW[ f ]|+ = SW[ f ]|� on ∂W.

The single layer potential is therefore well defined on ∂W, and hence on Rd. Moreover,

∂

∂n
SW[ f ]|± =

✓
±1

2
I +K⇤

W

◆
[ f ] on ∂W,

where K⇤
W : L2(∂W) ! L2(∂W) is the L2-adjoint of the operator KW, i.e.,

8 z 2 ∂W, K⇤
W[ f ](z) =

Z

∂W

∂

∂n(z)
Gz(y) f (y) ds(y).
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Let G be the Green function of problem (9.1), that is, for all z 2 W, the unique
solution to 8

><

>:

�DyGz(y) + k2 Gz(y) = dz in W,

`
∂Gz
∂n

(y) + Gz(y) = 0 on ∂W.
(9.3)

Lemma 9.1.3. The operator of kernel Gz(y) is the solution operator for problem (9.1):

8z 2 W, F g
exc(z) =

1
`

Z

∂W
Gz(y)g(y) ds(y). (9.4)

Proof. Since Gz and F g
exc are respectively the solutions to problems (9.3) and (9.1),

we have the equation

F g
exc(z) =

Z

W


(�DyGz(y)+ k2 Gz(y))F

g
exc(y)� (�DF g

exc(y)+ k2 F g
exc(y))Gz(y)

�
dy.

Besides, we can apply Green’s formula:

F g
exc(z) =

Z

W


� DyGz(y)F

g
exc(y) + DF g

exc(y)Gz(y)
�

dy

=
Z

∂W


� ∂Gz(y)

∂n
F g

exc(y) +
∂F g

exc(y)
∂n

Gz(y)
�

ds(y).

Using the boundary conditions that Gz and F g
exc verify, we then obtain that

F g
exc(z) =

1
`

Z

∂W
Gz(y)g(y) ds(y).

Thanks to the previous lemma, if we know Gz, we can calculate the excitation
light fluence for any source g. The following result relates Gz, the Green function of
our problem to Gz, for which we have an explicit formula. It generalizes [28, Lemma
2.15] to the Green function Gz.

Proposition 9.1.1. For z 2 W and y 2 ∂W,

✓
� I

2
+KW +

1
`
SW

◆
[Gz](y) = Gz(y). (9.5)

More precisely, for any simply connected smooth domain D compactly contained in W, and
for any h 2 L2(∂D), we have for any y 2 ∂W:

Z

∂D

✓
� I

2
+KW +

1
`
SW

◆
[Gz](y) h(z) ds(z) =

Z

∂D
Gz(y) h(z) ds(z).
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Proof. Let f 2 L2
0(∂W), where L2

0(∂W) is the set of L2 functions in W of mean zero.
For z 2 W and y 2 ∂W, we define

u(z) :=
Z

∂W

✓
� I

2
+KW +

1
`
SW

◆
[Gz](y) f (y) ds(y).

By introducing the adjoint operator, we obtain

u(z) =
Z

∂W
Gz(y)

✓
� I

2
+K⇤

W +
1
`
SW

◆
[ f ](y) ds(y).

By Lemma 9.1.3, u is then a solution to the problem
8
><

>:

�Du(y) + k2 u(y) = 0 in W,
∂u
∂n

(y) +
1
`

u(y) =
✓
� I

2
+K⇤

W +
1
`
SW

◆
[ f ](y) on ∂W. (9.6)

We know that SW[ f ] is a solution to the problem (9.6), thanks to Lemma 9.1.2. The
equation (�D + k2)p = 0 in W with the Robin boundary condition, ∂p/∂n + lp = 0,
admits a unique solution, provided that l > 0. Therefore, we have

8z 2 W, u(z) = SW[ f ](z).

Since f is arbitrary, we have therefore proved the first part of our proposition.
Let h 2 L2(∂D). By multiplying the last equality by h and integrating on ∂D, we

obtain
Z

∂W

Z

∂D

✓
� I

2
+KW +

1
`
SW

◆
[Gz](y)h(z) f (y) ds(z) ds(y) =

Z

∂W

Z

∂D
Gz(y)h(z) f (y) ds(z) ds(y),

which completes the proof.

According to the previous proposition, the knowledge of Gz, and therefore of
F g

exc, requires the inversion of the operator:

� I
2
+KW +

1
`
SW : L2(∂W) ! L2(∂W). (9.7)

In the case of circular domains, we can exhibit an explicit formula of the inverse
operator.

Explicit calculation of Gz for a circular domain: We assume that the dimension is
two and W is the unit disk. In terms of polar coordinates, the fundamental solution
Gz to �D + k2 has the expression:

8y (r, q) 2 W, 8z (R, f) 2 W, Gz(y) =
i
4

H(1)
0 (ik|reiq � Reif|).

Graf’s formula [2, Formula (9.1.79)] gives us the following decomposition of Gz:
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H(1)
0 (ik|reiq � Reif|) = Â

m2Z

H(1)
m (ikr)Jm(ikR)eim(q�f), r > R,

with H(1)
m and Jm being respectively the Hankel and Bessel functions of the first kind

of order m.
For all g 2 L2(]0, 2p[), we introduce the Fourier coefficients:

8m 2 Z, ĝ(m) =
1

2p

Z 2p

0
g(f)e�imfdf,

and have then

g(f) =
•

Â
m=�•

ĝ(m)eimf in L2.

Let D be the disk with radius R and center 0. For y(r, q) 2 W,

SD[g](y) =
iR
4

Z 2p

0
H(1)

0 (ik|reiq � Reif|)g(f)df,

=
iR
4

•

Â
m=�•

H(1)
m (ikr)Jm(ikR)eimq

Z 2p

0
g(f)e�imfdf

=
iRp

2

•

Â
m=�•

H(1)
m (ikr)Jm(ikR)ĝ(m)eimq.

For y (1, q) 2 ∂W, we therefore obtain

SD[g](y) =
•

Â
m=�•

cSD(m)ĝ(m)eimq ,

with
8m 2 Z, cSD(m) =

iRp

2
H(1)

m (ik)Jm(ikR),

and analogously,

SW[g](y) =
•

Â
m=�•

cSW(m)ĝ(m)eimq ,

with
8m 2 Z, cSW(m) =

ip
2

H(1)
m (ik)Jm(ik).

We can prove, in a similar way, that

KW[g](y) =
•

Â
m=�•

dKW(m)ĝ(m)eimq ,

with
8m 2 Z, dKW(m) =

�kp

2
H(1)

m (ik)J0m(ik).
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Using Proposition 9.1.1, we can express the Fourier coefficients of the operator with
kernel Gz(y) for all z(R, q) 2 ∂D defined by

Z

∂W
Gz(y)g(y) ds(y) =

•

Â
m=�•

bG(m)ĝ(m)eimq ,

as follows:

8m 2 Z, bG(m) =
cSD(m)

dKW(m) + 1
`
cSW(m)

,

that is,

8m 2 Z, bG(m) =
Jm(ikR)

ikJ0m(ik) + 1
` Jm(ik)

.

Moreover, the function F g
exc defined by (9.4) can be written as

F g
exc(R, q) =

•

Â
m=�•

Jm(ikR)
ik`J0m(ik) + Jm(ik)

ĝ(m)eimq. (9.8)

When W is approximated by the unit disk, we have shown that we can easily
invert our operator (9.7) and obtain an explicit formula of our Green’s function Gz.
We can then calculate the excitation light fluence, for any source g, in this particular
case. The same result holds for the unit sphere; see Appendix C.

9.2 Expression of cflr

Recall that the concentration of fluorophores cflr can be expressed as

cflr = d [u]
��
∂C,

where d is a constant and u,the voltage potential in our domain, satisfies (8.4).
Let L2

0(∂C) := {Y 2 L2(∂C) :
R

∂C Y = 0}. Let G(0) be the fundamental solution
to D in Rd:

G(0)(x) :=

8
>><

>>:

1
2p

log |x|, d = 2,

� 1
4p|x| , d = 3.

(9.9)

Analogously to Chapter 9, we introduce the layer potentials, S (0)
C , S (0)

W ,D(0)
C ,D(0)

W ,K(0)
C ,

and (K(0)
C )⇤ associated with G(0). The following proposition from [77] gives us a rep-

resentation formula for the voltage potential in W.

Proposition 9.2.1. There exists at most one solution u to the problem (8.4) and it satisfies
the following representation formula:

8x 2 W, u(x) = H(x) +D(0)
C [Y](x), (9.10)

where the harmonic function H is given by
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8x 2 R2 \ ∂W, H(x) = �S (0)
W [gele](x) +D(0)

W [u|∂W](x), (9.11)

and Y 2 L2
0(∂C) satisfies the integral equation:

Y + b
∂D(0)

C [Y]

∂n
= �b

∂H
∂n

on ∂C. (9.12)

The decomposition in (9.10) is unique. Furthermore, the following identity holds:

8x 2 R2 \ W, u(x) = H(x) +D(0)
C [Y](x) = 0.

Since the normal derivative of the layer potential is continuous across its bound-

ary, the representation formula (9.10) gives us an expression for
∂u
∂n

��
∂C, and hence

for cflr thanks to (8.4) and (8.5). For a given applied electric field gele and cell C, one
can therefore compute the fluorophore concentration cflr on ∂C.

9.3 Expression of F g
emt

The emitted light fluence F g
emt due to an excitation g is the solution to the following

problem:
8
>>><

>>>:

�DF g
emt(y) + k2 F g

emt(y) =
g̃

D
cflr(y)F g

exc(y) in W,

`
∂F g

emt
∂n

(y) + F g
emt(y) = 0 on ∂W,

(9.13)

where F g
exc is the excitation light fluence launched by the source g in W.

The following result holds.

Theorem 9.3.1. There exists a unique solution Femt in H1(W) to (9.13).

Proof. We follow a similar proof as for Fexc and prove the theorem using Lax-Milgram
theory.

We illustrate with a few numerical simulations the fluorescence forward prob-
lem. We take an elliptic domain W in which is an elliptic cell C with fluorophores
on its membrane. We choose to virtually illuminate our domain with a source
f = 30 cos(2q). We compute with a finite element method the resulting Fexc and
Femt and plot respectively their real and imaginary parts. We consider here that the
flourophore concentration is constant over the membrane.

The measured quantity on ∂W is

I g
emt = �D

∂F g
emt

∂n

����
∂W

,

which is the outgoing light intensity determined from Fick’s law. It is worth men-
tioning that, in our coupled diffusion equations model, if ` 6= 0, then knowing F g

emt
or ∂F g

emt/∂n on ∂W is mathematically the same.



100 CHAPTER 9. ANALYSIS OF THE FORWARD PROBLEM
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Figure 9.1: (a) Real part of Fexc. (b) Imaginary part of Fexc. (c) Real part of Femt. (d)
Imaginary part of part of Femt.
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Proposition 9.3.1. The emitted light fluence F g
emt can be expressed as a function of Gz and

F g
exc as follows:

8z 2 W, F g
emt(z) =

Z

∂C

g̃

D
Gz(y) cflr(y)F g

exc(y) ds(y),

where ∂C is the cell membrane.

Proof. Since G and F g
emt are the solutions to the problems (9.3) and (9.13), we have

F g
emt(z)�

Z

W

g̃

D
Gz(y) cflr(y)F g

exc(y) dy =
Z

W


(�DyGz(y) + k2 Gz(y))F

g
emt(y)

�Gz(y)(�DF g
emt(y) + k2 F g

emt(y))
�

dy.

Besides, we can apply Green’s formula:

F g
emt(z)�

Z

W

g̃

D
Gz(y) cflr(y)F g

exc(y) dy =
Z

∂W


� ∂Gz(y)

∂n
F g

emt(y) + Gz(y)
∂F g

emt(y)
∂n

�
ds(y).

Using the boundary conditions that Gz and F g
emt verify, we then obtain

F g
emt(z)�

Z

W

g̃

D
Gz(y) cflr(y)F g

exc(y) dy =
Z

∂W


1
`

Gz(y)F
g
emt(y) + Gz(y)

∂F g
emt(y)
∂n

�
ds(y),

= 0.

Since the concentration of the fluorophores is zero except on ∂C, we get finally the
formula:

8z 2 W, F g
emt(z) =

Z

∂C

g̃

D
Gz(y) cflr(y)F g

exc(y) ds(y).

By combining the results of the first section and of this last section, for a given
concentration of fluorophore cflr and an excitation g, we can express F g

emt, at any
point of W, and in particular on ∂W. Moreover, section 3.2 gives us a unique for-
mula for the fluorophore concentration for given gele and C. If we couple these two
formulas, we solve our forward problem.
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Chapter 10

Cell membrane reconstruction

The shape and position of the cell C are now considered to be unknown. We il-
luminate our domain with a light source g and apply an electric field gele at its
boundary. We measure an outgoing light intensity I g

emt. Our goal is to reconstruct
the concentration of fluorophore cflr. We will thus have an image of the membrane
potential changes and hence locate the cell. In this section we consider only the two-
dimensional case. We start with the reconstruction of the cell membrane ∂C in the
case when it is assumed to be a perturbation of a disk. We derive analytical formulas
for the resolving power of the proposed imaging method in two different regimes.
Then we extend our results to arbitrary shapes. In three dimensions, similar results
hold and analytical formulas for the resolving power of the imaging method can be
derived for ∂C being a perturbation of a sphere.

10.1 Problem Formulation

The excitation light fluence, F f
exc, due to a source f 2 L2(∂W), is the solution to

8
>><

>>:

�DF f
exc(y) + k2 F f

exc(y) = 0 in W,

`
∂F f

exc
∂n

(y) + F f
exc(y) = f on ∂W.

We denote by F g
exc the excitation light fluence due to an excitation g 2 L2(∂W). The

emitted light fluence, F g
emt, due to the excitation of the fluorophores by F g

exc, verifies
8
>>><

>>>:

�DF g
emt(y) + k2 F g

emt(y) =
g̃

D
cflr(y)F g

exc(y) in W,

`
∂F g

emt
∂n

(y) + F g
emt(y) = 0 on ∂W.

By multiplying the last equation by F f
exc and integrating on our domain W, we ob-

tain the following formula:
Z

W

g̃

D
cflr(y)F g

exc(y)F
f

exc(y) dy =
Z

W


� DF g

emt(y)F
f

exc(y) + k2 F g
emt(y)F

f
exc(y)

�
dy.
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From the first equation, we know that in W:

k2 F f
excF g

emt = DF f
excF g

emt.

Hence, we have
Z

W

g̃

D
cflr(y)F g

exc(y)F
f

exc(y) dy =
Z

W


� DF g

emt(y)F
f

exc(y) + DF f
exc(y)F

g
emt(y)

�
dy.

Green’s formula gives us

Z

W

g̃

D
cflr(y)F g

exc(y)F
f

exc(y) dy =
Z

∂W


� ∂F g

emt
∂n

(y)F f
exc(y)+

∂F f
exc

∂n
(y)F g

emt(y)
�

ds(y).

We use the boundary conditions of our two equations and obtain that
Z

W

g̃

D
cflr(y)F g

exc(y)F
f

exc(y) dy =
1
`

Z

∂W
f (y)F g

emt(y) ds(y).

The concentration of the fluorophores is zero except on ∂C, so we get finally the
following proposition.

Proposition 10.1.1. Let f and g be in L2(∂W). The outgoing light intensity I g
emt =

�D ∂F g
emt

∂n measured on ∂W, satisfies the formula:
Z

∂C
g̃ cflr(y)F g

exc(y)F
f

exc(y) ds(y) =
Z

∂W
f (y) I g

emt(y) ds(y). (10.1)

This formula also holds for ` = 0.

For two chosen excitations f , g 2 L2(∂W) and a measured outgoing light in-

tensity I g
emt, we can compute the integral

Z

∂W
f (y) I g

emt(y) ds(y), and hence, thanks

to the last formula,
Z

∂C
g̃ cflr(y)F g

exc(y)F
f

exc(y) ds(y). Recall that the constant g̃ is

assumed to be known. Then, if we properly choose f and g, we will be able to
reconstruct cflr 1∂C, and therefore to image the cell membrane ∂C.

10.2 Reconstruction of the cell membrane: case of a per-
turbed disk

We consider a circular cell C with radius R. We choose to excite our medium with a
source given by

fn(f) = En einf,

for n 2 Z, f 2 [0, 2p] and En := ik`J0n(ik) + Jn(ik). It gives us, thanks to formula
(9.8), the excitation light fluence Fn

exc:

8q 2 [0, 2p], Fn
exc(R, q) = Jn(ikR)e�inq.
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Let Fn
emt be the emitted light fluence, and let In

emt = �D ∂Fn
emt

∂n |∂W be the outgoing
light intensity measured at ∂W when the cell occupies C and the source fn is applied
at ∂W. It follows from (10.1) that

Z

∂C
g̃cflr(q)Fn

exc(R, q)Fm
exc(R, q)Rdq = 2p Em dIn

emt(m). (10.2)

Besides, we also have
Z

∂C
g̃cflr(q)Fn

exc(R, q)Fm
exc(R, q)Rdq = 2pg̃R Jn(ikR)Jm(ikR)ccflr(n + m).

Let Ce be an e-perturbation of C, i.e., there is h 2 C2([0, 2p]), such that ∂Ce is
given by

∂Ce = {x̃; x̃(q) = (R + eh(q))er, q 2 [0, 2p]} ,
with (er, eq) being the basis of polar coordinates.

Our goal is to reconstruct the shape deformation h of our cell. Let Fn
emt,e be the

emitted light fluence and let In
emt,e = �D ∂Fn

emt,e
∂n |∂W be the outgoing light intensity

measured at the boundary of our domain W when the cell occupies Ce and the source
fn is applied at ∂W. Again, it follows from (10.1) that

Z

∂Ce

g̃fcflr(x)Fn
exc(x)Fm

exc(x) ds(x) = 2p Em [In
emt,e(m). (10.3)

On the other hand, we have
Z

∂Ce

g̃fcflr(x)Fn
exc(x)Fm

exc(x) ds(x) =
Z

∂C
g̃fcflr(x̃) Jn(ikR̃(q))Jm(ikR̃(q)) e�i(n+m)qdse(x̃),

(10.4)
where R̃(q) = R + eh(q) and fcflr is the concentration of fluorophores on the de-
formed cell membrane ∂Ce.

We want to compute the first order approximation of our integral (10.4). Taylor-
Lagrange’s theorem gives us the following expansions, for all N 2 N:

Jm(ikR̃) =
N

Â
p=0

(ikeh(q))p

p!
J(p)
m (ikR) + o(eN),

Jn(ikR̃) =
N

Â
p=0

(ikeh(q))p

p!
J(p)
n (ikR) + o(eN).

(10.5)

In particular, at first order,

Jm(ikR̃) = Jm(ikR) + e ik h(q)J0m(ikR) + o(e),
Jn(ikR̃) = Jn(ikR) + e ik h(q)J0n(ikR) + o(e).

(10.6)

We can easily get an expansion for the length element dse(ỹ), for ỹ 2 ∂Ce:

dse(ỹ) = |x̃0(q)|dq =
⇣
(R + eh(q))2 + (eh0(q))2

⌘ 1
2 dq =

•

Â
n=0

ens(n)(q)dq, (10.7)

where s(n) are functions bounded independently of n and, at first order, we have

dse(ỹ) = Rdq + eh(q)dq + o(e). (10.8)
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10.2.1 High-order terms in the expansion of fcflr

We denote ue (resp. u) the voltage potential in our medium, when the cell occupies
Ce (resp. C). We assume, thanks to (8.5), that our concentration of fluorophores fcflr
(resp. cflr) on ∂Ce (resp. ∂C) is given by

fcflr = d [ue]
��
∂Ce

resp. cflr = d [u]
��
∂C.

To find the first order term in the expansion of fcflr, we must therefore expand
at first ue. Similar problems have been considered in [40, 41]. Nevertheless, our
derivations, based on a layer potential technique, differ significantly from those in
[40, 41].

We know, from Proposition 9.2.1, that ue (resp. u) admits the following represen-
tation formula:

8x 2 W, ue(x) = He(x) + D(0)
Ce

[Ye](x)

resp. 8x 2 W, u(x) = H(x) + D(0)
C [Y](x),

where the harmonic function He (resp. H) is given by

8x 2 R2 \ ∂W, He(x) = �S (0)
W [gele](x) + D(0)

W [ue|∂W](x)

resp. 8x 2 R2 \ ∂W, H(x) = �S (0)
W [gele](x) + D(0)

W [u|∂W](x),

and Ye 2 L2
0(∂Ce) (resp. Y 2 L2

0(∂C)) satisfies the integral equation:

Ye + b
∂D(0)

Ce
[Ye]

∂ñ
= �b

∂He

∂ñ
on ∂Ce (10.9)

resp. Y + b
∂D(0)

C [Y]

∂n
= �b

∂H
∂n

on ∂C, (10.10)

where ñ(x̃) (resp. n(x)) denotes the outward unit normal to ∂Ce (resp. ∂C) at x̃ (resp.
x).

Therefore we obtain, for all x 2 W,

ue(x)� u(x) = D(0)
W [ue|∂W � u|∂W](x) +D(0)

Ce
[Ye](x)�D(0)

C [Y](x),

and, on ∂W:

ue(x)� u(x) = (
I
2
+K(0)

W )[ue � u](x) +D(0)
Ce

[Ye](x)�D(0)
C [Y](x).

Our first step is to find high-order terms in the expansion of Ye. We define the
operator Le (resp. L) on L2(∂Ce) (resp. L2(∂C)) by

Le[ f ] =
∂D(0)

Ce
[ f ]

∂ñ

resp. L[ f ] =
∂D(0)

C [ f ]
∂n

.

(10.11)
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Proposition 10.2.1. Let D be a bounded C2,h- domain in R2, for 0 < h < 1. We denote
by LD the normal derivative of the double layer potential on D, LD := ∂D(0)

D /∂n. Then,
I + b LD : C2,h ! C1,h is a bounded operator and has a bounded inverse.

Proof. The boundedness of LD : C2,h ! C1,h is proved in [49]. Note that since LD is
not a compact operator, we can not apply the Fredholm alternative. However, LD is
positive [102] and the proposition follows since b > 0.

For f 2 C2,h(∂Ce), x̃ 2 ∂Ce, Le has the following expression [77]:

∂D(0)
Ce

[ f ]
∂n

(x) = � 1
2p

Z

∂D

hñ(x̃), ñ(ỹ)i
|x̃ � ỹ|2 ( f (ỹ)� f (x̃)) dse(ỹ)

+
1
p

Z

∂D

hx̃ � ỹ, ñ(x̃)ihx̃ � ỹ, ñ(ỹ)i
|x̃ � ỹ|4 ( f (ỹ)� f (x̃)) dse(ỹ).

The outward unit normal to ∂C at x, n(x), and the tangential vector, T(x), are, in
terms of polar coordinates:

n(x) = er(x), T(x) = eq(x).

The outward unit normal to ∂Ce at x̃, ñ(x̃), is given by

ñ(x̃) =
R�p

2
(x̃0(q))

|x̃0(q)|
,

where R�p
2

stands for rotation by �p
2 . In our case, we then have

ñ(x̃) =
(R + eh(q))er � eh0(q)eq

((R + eh(q))2 + (eh0(q))2)
1
2

. (10.12)

We can expand ñ(x̃), for x 2 ∂C, as follows:

ñ(x̃) =
•

Â
n=0

enn(n)(q), (10.13)

where the vector-valued functions n(n) are uniformly bounded independently of n.
In particular, at first order, ñ(x̃) for x̃ 2 ∂Ce is given by

ñ(x̃) = er �
h0(q)

R
eq + o(e). (10.14)

Set x̃, ỹ 2 ∂Ce. We have

x̃ � ỹ = R(er(x)� er(y)) + e(h(qx) er(x)� h(qy) er(y)). (10.15)

If we denote
c = cos(qx � qy), s = sin(qx � qy), (10.16)



108 CHAPTER 10. CELL MEMBRANE RECONSTRUCTION

then we obtain

|x̃ � ỹ|2 = 2R2(1 � c)+ 2eR(1 � c)(h(qx) + h(qy))

+e2 �h(qx)2 + h(qy)2 � 2h(qx)h(qy)c
�

.

and

1
|x̃ � ỹ|2 =

1
2R2(1 � c)

1
1 + eF(qx, qy) + e2G(qx, qy)

, (10.17)

where

F(qx, qy) =
(h(qx) + h(qy))

R
, G(qx, qy) =

hh(qx) er(x)� h(qy) er(y)i2

2R2(1 � c)
.

Likewise, we write

1
|x̃ � ỹ|4 =

1
4R4(1 � c)2

1
(1 + eF(qx, qy) + e2G(qx, qy))2 . (10.18)

It follows, from (10.12), (10.7) and (10.17), that

hñ(x̃), ñ(ỹ)i
|x̃ � ỹ|2 dse(ỹ) =

K0 + eK1 + e2K2
2R2(1 � c)

⇥ 1
1 + eF(qx, qy) + e2G(qx, qy)

R

((R + eh(qx))2 + (eh0(qx))2)
1
2

Rdqy,

where
K0 = c,

K1 =
1
R
⇥
(h(qx) + h(qy))c + (h0(qx)� h0(qy))s

⇤
,

K2 =
h0(qx)h0(qy)

R2 c.

One can see, from the previous formulas, that the singularity of
Ki

2R2(1 � c)
for

i 2 [0, 2] is of order O(|qx � qy|�2), since 1 � c = O(|qx � qy|�2).
Likewise, thanks to (10.12), (10.7) and (10.17), we can explicit Mi for i 2 [0, 4]

such that

hx̃ � ỹ, ñ(x̃)ihx̃ � ỹ, ñ(ỹ)i
|x̃ � ỹ|4 dse(ỹ) =

M0 + eM1 + e2M2 + e3M3 + e4M4
4R4(1 � c)2

⇥ 1
(1 + eF(qx, qy) + e2G(qx, qy))2

R

((R + eh(qx))2 + (eh0(qx))2)
1
2

Rdqy,
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and the singularity of
Mi

4R4(1 � c)2 for i 2 [0, 4] is of order O(|qx � qy|�2). Therefore,

we get

Le dse(ỹ) =
N0 + eN1 + e2N2 + e3N3 + e4N4

2R4(1 � c)2

⇥ 1
(1 + eF(qx, qy) + e2G(qx, qy))2

R

((R + eh(qx))2 + (eh0(qx))2)
1
2

Rdqy,

where Le := �hñ(x̃), ñ(ỹ)i
|x̃ � ỹ|2 + 2

hx̃ � ỹ, ñ(x̃)ihx̃ � ỹ, ñ(ỹ)i
|x̃ � ỹ|4 is the kernel of Le and the

singularity of
Ni

2R4(1 � c)2 for i 2 [0, 4] is of order O(|qx � qy|�2). We do not give

here the expressions of N2, N3, N4 due to their length, but N0 and N1 are given by

N0 = �R2(1 � c),

N1 = �2R(1 � c)(h(qx) + h(qy)).

Recall that

F(qx, qy) =
(h(qx) + h(qy))

R
, G(qx, qy) =

(h(qx)� h(qy)2 + 2h(qx)h(qy)(1 � c)
2R2(1 � c)

.

We introduce the following series, which converges absolutely and uniformly,

1
(1 + eF(qx, qy) + e2G(qx, qy))2

R

((R + eh(qx))2 + (eh0(qx))2)
1
2
=

•

Â
p=0

epFp(q
x, qy).

The first order term is given by

F1(q
x, qy) = � (3h(qx) + 2h(qy))

R
. (10.19)

Note that (Fp)p2N, like F and G, have no singularity and are uniformly bounded.
We define the following functions, for all x, y 2 ∂C:

L(0) =
N0

2R4(1 � c)2 , L(1) =
N0F1 + N1

2R4(1 � c)2 ,

L(2) =
N0F2 + N1F1 + N2

2R4(1 � c)2 , L(3) =
N0F3 + N1F2 + N2F1 + N3

2R4(1 � c)2 ,

and, for n � 4,

L(n) =
1

2R4(1 � c)2 (N0Fn + N1Fn�1 + N2Fn�2 + N3Fn�3 + N4Fn�4) . (10.20)
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Thanks to the explicit formulas of (Ni)i2[0,4] and (10.19), we obtain in particular that,
for all x, y 2 ∂C,

L(0) = � 1
2R3(1 � c)

and L(1) =
h(qx)

2R3(1 � c)
, (10.21)

where c is given by (10.16).
By construction, L(n), for all n 2 N, have a singularity of order O(|qx � qy|�2).
The integral operators (L(n))n2N, associated to the kernels (L(n))n2N, are given,

for all f 2 C2,h(∂C), x 2 ∂C, by

L(n)[ f ](x) =
1

2p

Z 2p

0
L(n)(qx, qy)( f (qy)� f (qx))Rdqy.

It follows from (10.21) that, for all C2,h(∂C), x 2 ∂C:

L(0)[ f ](x) = L[ f ](x) and L(1)[ f ](x) = �h(qx)L[ f ](x). (10.22)

We can now write, from our construction, an expansion of Le.

Proposition 10.2.2. Let N 2 N. There exists C depending only on R and ||h||C2 , such
that, for any f̃ 2 C2,h(∂Ce), 0 < h < 1, we have

��|Le[ f̃ ] � te � L[ f ]�
N

Â
n=0

enL(n)[ f ]
��|C1,h(∂C)  CeN+1|| f ||C2,h(∂C),

where te is the diffeomorphism from ∂C onto ∂Ce given by te(x) = x̃ and the function f is
defined by f := f̃ � te.

Proof. Let f 2 C2,h. We know that
Ni

2R4(1 � c)2 , for all i 2 [0, 4], have a singularity of

order O(|qx � qy|�2).

Thanks to the C1-character of f , (qx, qy) ! Ni
2R4(1 � c)2 ( f (qy) � f (qx)) have a

singularity of order O(|qx � qy|�1).
Besides the Hilbert transform is a bounded operator from C0,h to C0,h. From the

boundedness of h and its derivatives, it follows that the operators associated with

the kernels
Ni

2R4(1 � c)2 for i 2 [0, 4] are bounded from C2,h to C1,h.

Since the (Fp)p2N are uniformly bounded, the construction of L(n) (10.20) implies
that there exists a constant K(R, ||h||C2) such that

||L(n)[ f ]||C0,h(∂C)  K|| f 0||C0,h(∂C),

where f 0 is the derivative of f with respect to q. Likewise, since the kernel of

L(n)[ f ]0(x) is of order O
✓

f (y)� f (x)� (x � y) f 0(x)
|x � y|2

◆
, the C2-character of f gives

us a singularity of order O(|qx � qy|�1). We therefore obtain that

||L(n)[ f ]0||C0,h(∂C)  K̃|| f 00||C0,h(∂C),
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where K̃(R, ||h||C2) is a constant and f 00 is the second derivative of f . Therefore,
there exists a constant bK(R, ||h||C2) such that

||L(n)[ f ]||C1,h(∂C)  bK|| f ||C2,h(∂C).

For all n 2 N, the operator L(n) : C2,h ! C1,h is bounded and the constant bK
does not depend on n. Let N 2 N. Let f̃ 2 C2,h(∂Ce). We introduce f := f̃ � te,
f 2 C2,h(∂C). We have

||
•

Â
n=N+1

enL(n)[ f ]||C1,h(∂C) 
eN+1

1 � e
bK || f ||C2,h(∂C),

which ends the proof of the result.

By substituting the result of Proposition 10.2.2 into the integral equation (10.9)
verified by Ye, we obtain for all N 2 N that

8x2∂C, (I + bL+ b
N

Â
n=0

enL(n))[Ye](x̃) + o(eN) = �b
∂He

∂ñ
(x̃). (10.23)

We use Taylor-Lagrange’s theorem and (10.13) to expand
∂He

∂ñ
(x̃):

∂He

∂ñ
(x̃) =

0

@
•

Â
p=0

Â
|a|=p

ep

a!
(∂arHe)(x)(h(q)n(x))a

1

A
 

•

Â
p=0

epn(p)(q)

!
. (10.24)

In particular, at first order, we have

∂He

∂ñ
(x̃) =

∂He

∂r
(x) + e

✓
�h0(q)

R2
∂He

∂q
(x) + h(q)

∂2He

∂r2 (x)
◆

. (10.25)

Our integral equation (10.23) then becomes

8x2∂C, (I + bL+ b
N

Â
p=0

enL(n))[Ye](x̃) + o(eN) = �b
•

Â
n=0

enGn(x), (10.26)

where (Gn)n2N are the coefficients in the expansion (10.24).
Equation (10.26) can therefore be solved recursively in the following way:

Y(0) = �b(I + bL)�1 [G0] ,

8n  N, Y(n) = �b(I + bL)�1

"
Gn +

n�1

Â
p=0

L(n�p)Y(p)

#
.

(10.27)

In particular, thanks to (10.22) and (10.25), we have

Y(0) = �b(I + bL)�1
✓

∂He

∂n

◆
,

Y(1) = �b(I + bL)�1
✓
� h0

R2
∂He

∂q
+ h

∂2He

∂r2 � h
∂

∂n
D(0)

C [Y(0)]

◆
.

(10.28)

We obtain the following proposition.
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Proposition 10.2.3. Let N 2 N. There exists K, depending only on N, R and the C2- norm
of h, such that

||Ye �
N

Â
n=0

en Y(n)||C2,h(∂C)  KeN+1, (10.29)

where (Y(n))nN are defined by the recursive relation (10.27).

In order to prove Proposition 10.2.3, we need the following result [74, Theorem
1.16].

Lemma 10.2.1. Let X and Y be two Banach spaces. Let T and A be two operators from
X to Y, such that D(T) ⇢ D(A), where D(T) and D(A) are the domains of T and A,
respectively. Let T�1 exist and be a bounded operator from Y to X (so that T is closed). We
suppose that two positive constants a, b exist such that

8u 2 D(T), ||Au||  a||u||+ b||Tu||,

a||T�1||+ b < 1.

Then S = T + A is closed and invertible, S�1 is a bounded operator from Y to X and the
following inequalities hold:

||S�1||  ||T�1||
1 � a||T�1||� b

, ||S�1 � T�1||  ||T�1||(a||T�1||+ b)
1 � a||T�1||� b

.

If in addition T�1 is compact, then so is S�1.

Proof of Proposition 10.2.3. By definition, Ye verifies:

(I + bLe)[Ye] = �b
•

Â
n=0

enGn.

Besides, it follows, from our recursive construction of the (Y(i))i2[0,N], that

(I + bL+ b
N

Â
n=1

enL(n))[
N

Â
n=0

epY(p)] = �b
•

Â
n=0

enGn + eN+1AN ,

where AN =
N

Â
n=0

en
N+n

Â
p=0

L(N+1+n�p) [Y(p)] + b
•

Â
n=0

en GN+1+n.

Therefore, we have

Ye �
N

Â
n=0

en Y(n) =

 
(I + bLe)�1 � (I + bL+ b

N

Â
n=1

enL(n))�1

!
[�b

•

Â
n=0

enGn]

�(I + bL+ b
N

Â
n=1

enL(n))�1[eN+1AN ].

(10.30)
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We know from Proposition 10.2.1 that the bounded operator T := I + bLe :
C2,h ! C1,h has a bounded inverse T�1 : C1,h ! C2,h. We define

A := bL+ b
N

Â
n=1

enL(n) � bLe.

From Proposition 10.2.2, it follows that there exists a constant C(R, ||h||C2) such that

||A[u]||C1,h(∂C)  CeN+1||u||C2,h(∂C).

For e small enough, we have

CeN+1||T�1|| < 1.

In the following, we apply Lemma 10.2.1 with a := C eN+1 and b := 0.

The operator S := I + bL+ b
N

Â
n=1

enL(n) has a bounded inverse, which satisfies:

||(I + bL+ b
N

Â
n=1

enL(n))�1||  ||T�1||
1 � CeN+1||T�1|| ,

and ||(I + bL+ b
N

Â
n=1

enL(n))�1 � (I + bLD)
�1||  CeN+1||T�1||2

1 � CeN+1||T�1|| .

We use (10.30) to get
����

����Ye �
N

Â
n=0

en Y(n)
����

����
C2,h

 eN+1||T�1||
1 � CeN+1||T�1||

✓
C||T�1||

����

����b
∂He

∂ñ

����

����
C1,h

+ ||AN ||C1,h

◆
.

Recall that He is C• on ∂C. Hence, for all p 2 N, Gp is bounded. From Proposition
10.2.2, we know that L(n) : C2,h(∂C) ! C1,h(∂C), for all n 2 N, are bounded opera-
tors. We have also, from Proposition 10.2.1, that (I + bL)�1 : C1,h(∂C) ! C2,h(∂C)
is bounded. One can prove recursively, from the construction (10.29), that, for all

p 2 N, Y(p) is C2,h(∂C) - bounded. AN and
∂He

∂ñ
are therefore C1,h(∂C) - bounded.

Finally, we obtain that there exists a constant K(N, R, ||h||C2) such that
����

����Ye �
N

Â
n=0

en Y(n)
����

����
C2,h

 K eN+1,

and the proof of Proposition 10.2.3 is complete.

We now explicit the first order term in the expansion of fcflr as function of the cell
membrane perturbation. For doing so, we introduce, for n 2 N \ {0} and x 2 ∂W:

vn(x) := Â
i+j+k+l=n

Z 2p

0

h(y)i

i!

 
ry
� ∂i

∂ri
y

G(0)(x, y)
�
· n(j)(y)

!
Y(k)(qy)s(l)(qy)dqy.

(10.31)
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It follows from (10.8), (10.14), (10.29) and (10.31), that for all x 2 ∂W:

v1(x) =
Z 2p

0

∂2

∂r2
y

G(0)(x, y)h(qy)Y(0)(qy)Rdqy � 1
R

Z 2p

0

∂

∂qy G(0)(x, y)Y(0)(qy)h0(qy)dqy

+
Z 2p

0

∂

∂ry
G(0)(x, y)Y(1)(qy)Rdqy +

Z 2p

0

∂

∂ry
G(0)(x, y)Y(0)(qy)h(qy)dqy.

In terms of polar coordinates, the Laplacian has the following expression:

D =
∂2

∂r2 +
1
r

∂

∂r
+

1
r2

∂2

∂q2 .

Therefore, we have for all x 2 ∂W:

v1(x) = � 1
R

Z 2p

0

∂2

∂qy2 G(0)(x, y)h(qy)Y(0)(qy)dqy � 1
R

Z 2p

0

∂

∂qy G(0)(x, y)Y(0)(qy)h0(qy)dqy

+
Z 2p

0

∂

∂ry
G(0)(x, y)Y(1)(qy)Rdqy.

Besides, we obtain, thanks to (10.29) and (10.31), that

D(0)
Ce

[Ye](x) = �bD(0)
C (I + bL)�1


∂He

∂n

����
∂C

�
+

N

Â
n=1

envn(x) + o(eN).

The integral equation (10.10) that Y verifies, then gives us

D(0)
Ce

[Ye]�D(0)
C [Y] = �bD(0)

C (I + bL)�1


∂He

∂n

����
∂C

� ∂H
∂n

����
∂C

�
+

N

Â
n=1

envn + o(eN).

By definition, we have on ∂C

He � H = D(0)
W [ue|∂W � u|∂W].

Let E be the operator defined by

E [v](x) := bD(0)
C (I + bL)�1


∂

∂n
(D(0)

W v)
����
∂C

�
(x)� (

I
2
+K(0)

W )[v](x), (10.32)

for all v 2 L2
0(∂W) and x 2 ∂W.

Recall that on ∂W:

ue(x)� u(x) = (
I
2
+K(0)

W )[ue � u](x) +D(0)
Ce

[Ye](x)�D(0)
C [Y](x).

We obtain, for all x 2 ∂W, that

(I + E)[ue � u](x) =
N

Â
n=1

envn(x) + o(eN), (10.33)
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and, at first order,
(I + E)[ue � u](x) = e v1(x) + o(e),

where v1 is given by the formula:

v1(x) = � 1
R

Z 2p

0

∂

∂qy

✓
h(qy)

∂

∂qy G(0)(x, y)
◆

Y(0)(qy)dqy +D(0)
C [Y(1)](x). (10.34)

Proposition 10.2.4. Let E be defined by (10.32). The operator I + E is invertible on
L2

0(∂W).

Proof. The operator E is compact. We can therefore apply the Fredholm alternative.
Let us prove the injectivity of I + E . For doing so, we introduce the function v
defined on W by

v(x) = D(0)
W [v|∂W]� bD(0)

C (I + bL)�1


∂

∂n
(D(0)

W [v])
����
∂C

�
.

It follows from Proposition 9.2.1 that v is solution to (8.4) with H = D(0)
W [v|∂W]. The

decomposition of the representation formula of such a solution is unique so that we

have S (0)
W [

∂v
∂n

|∂W] = 0 and hence
∂v
∂n

����
∂W

= 0. Since v is harmonic, we obtain that v is

constant in W. Recall that
Z

∂W
v = 0. Therefore, we have v = 0 in W. Besides, on ∂W,

v verifies:
8x 2 ∂W, v(x) = �E [v](x).

We have proved the injectivity and hence invertibility of I + E on L2
0(∂W).

Now, combining Proposition 10.2.4 and (10.33) yields

ue(x)� u(x) =
N

Â
n=1

en(I + E)�1[vn](x) + o(eN).

Note that by construction Y(n) and thus vn still depend on e. We can remove
this dependence from our asymptotic formula in the following way. We introduce

(G0
n)n2N the expansion of

∂H
∂ñ

. Let (v0
n)n2N\{0} and (Y(n)

0 )n2N be defined by (10.31)

and (10.27), where (Gn)n2N is replaced respectively by (G0
n)n2N. We then obtain

that
8x 2 ∂C, Ye(x) = Y(0)

0 (x) + o(1),

8x 2 ∂W, ue(x) = u(x) + o(1).

By repeating the same procedure with H + eD(0)
W (I + E)�1[v0

1] instead of H, one
finds (v1

n)n2N⇤ and (Y(n)
1 )n2N such that

8x 2 ∂C, Ye(x) = Y(0)
1 (x) + e Y(1)

1 (x) + o(e),

8x 2 ∂W, ue(x) = u(x) + e(I + E)�1[v1
1] + o(e).

One can prove the following proposition, by repeating the same procedure until
one obtains (vN

n )n2N\{0}.
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Proposition 10.2.5. Let (vN
n )n2[1,N] and (Y(n)

N )n2[0,N] be the functions defined above. The
following asymptotic formulas hold:

8x 2 ∂C, Ye(x) =
N

Â
n=1

en Y(n)
N + o(eN),

8x 2 ∂W, ue(x)� u(x) =
N

Â
n=1

en(I + E)�1 [vN
n ](x) + o(eN).

The remainder o(eN) depends only on N, R and ||h||C2 .

We can now compute the first order term in the expansion of fcflr.
Recall that fcflr = d [ue]

��
∂Ce

. The boundary conditions (8.4), that ue satisfies, give
us

fcflr = db
∂ue

∂n
= �dYe.

Let us find the first order approximation of Ye. We apply the previous procedure
to obtain Y(1)

1 . Hence, one introduces:

Y(0)
0 = �b(I + bL)�1


∂H
∂n

�
,

Y(1)
0 = �b(I + bL)�1


� h0

R2
∂H
∂q

+ h
∂2H
∂r2 � h

∂

∂r
D(0)

C (Y(0)
0 )

�
.

(10.35)

Observe that Y(0)
0 = Y. Thanks to (10.34), one can write v0

1 for all x 2 ∂W:

v0
1(x) = � 1

R

Z 2p

0

∂

∂qy

✓
h(qy)

∂

∂qy G(0)(x, y)
◆

Y(qy)dqy +D(0)
C [Y(1)

0 ](x). (10.36)

Therefore, we get

Y(0)
1 = Y(0)

0 = Y

Y(1)
1 = �b(I + bL)�1

✓
� h0

R2
∂H
∂q

+ h
∂2H
∂r2 +

∂

∂r
D(0)

W (I + E)�1[v0
1]� h

∂

∂r
D(0)

C [Y]

◆
.

(10.37)
We first recall the mapping properties of the operators K(0)

D and (K(0)
D )⇤. It is

known that if D is a C2,h domain, then K(0)
D and (K(0)

D )⇤ map continuously C1,h(∂D)
into C2,h(∂D) (see, for instance, [127]). We also need the following result.

Lemma 10.2.2. Let D be a C2,h domain in R2, for 0 < h < 1. Let Y 2 C1,h(∂D). We have

∂

∂T
D(0)

D [Y]

����
±
= ⌥ 1

2
∂Y
∂T

+
∂

∂T
K(0)

D [Y].
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Proof. Let Y 2 C1,h(∂D). Recall the jump relation of the double layer potential across
the boundary ∂D:

D(0)
D [Y]|± =

✓
⌥ I

2
+K(0)

D

◆
[Y].

The result of the proposition is simply obtained by taking the tangential derivative
of the previous formula and making use of the mapping properties of K(0)

D .

Corollary 10.2.1. Let D be a C2,h domain in R2, for 0 < h < 1. Let h 2 C2(∂D) and let
Y 2 C2,h(∂D). We have

� ∂

∂T
h

∂

∂T
D(0)

D [Y]

����
�
+

✓
� I

2
+ (K(0)

D )⇤
◆

� ∂

∂T
h

∂Y
∂T

�
=

∂

∂T
K(0)

D
⇥
h

∂Y
∂T
⇤
� ∂

∂T
h

∂

∂T
K(0)

D [Y].

(10.38)
In the particular case of the disk C, we obtain that

� 1
R2

∂

∂q
h

∂

∂q
D(0)

C [Y]

����
�
+

✓
� I

2
+ (K(0)

C )⇤
◆

� 1
R2

∂

∂q
h

∂Y
∂q

�
= 0.

Proof. From Lemma 10.2.2, we know that

� ∂

∂T
h

∂

∂T
D(0)

D [Y]

����
�
= �1

2
∂

∂T
h

∂Y
∂T

� ∂

∂T
h

∂

∂T
K(0)

D [Y].

Besides, the tangential derivative of the operator K(0)
D can be expressed as follows

[81, p.144]
∂

∂T
K(0)

D [Y] = �(K(0)
D )⇤[

∂Y
∂T

],

for Y 2 C2,h(∂D). We thus obtain easily the result (10.38).
Recall that, for a disk of radius R, the operator K(0)

C admits the explicit formula

K(0)
C [Y] =

1
4p

Z 2p

0
Y(f)df,

which does not depend on q. Its tangential derivative is therefore zero, and we have
the formula for the disk. Finally, we note that (K(0)

C )⇤ = K(0)
C and hence,

(K(0)
C )⇤


∂

∂q
h

∂Y
∂q

�
= 0.

The next step is to find w such that

(I + E)[w] = v0
1. (10.39)

From Proposition 10.2.4, it follows that there exists a unique function w solution to
(10.39). The following result holds.
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Proposition 10.2.6. The solution to (10.39) verifies the following equation and boundary
conditions:
8
>>>>>>>>>>>><

>>>>>>>>>>>>:

Dw = 0 in C [ W \ C,

∂w
∂n

����
+

� ∂w
∂n

����
�
= � 1

R2
∂

∂q
h

∂Y
∂q

on ∂C,

w |+ �w |� �b
∂w
∂n

����
�
= �b

✓
h
R

∂u
∂r

+
1

R2
∂

∂q
h

∂u
∂q

����
�

◆
on ∂C,

∂w
∂n

����
∂W

= 0 on ∂W.

(10.40)

Proof. The solution w of the problem (10.40) satisfies the representation formula:

8x 2 W, w(x) = D(0)
W [w|∂W](x) + S (0)

C [� 1
R2

∂

∂q
h

∂Y
∂q

](x) +D(0)
C [L](x), (10.41)

where the density L on ∂C is given by

L = �b(I + bL)�1

� h

R
∂u
∂r

� 1
R2

∂

∂q
h

∂u
∂q

����
�
+

∂

∂n
D(0)

W [w|∂W]

+

✓
� I

2
+ (K⇤

C)
(0)
◆ 

� 1
R2

∂

∂q
h

∂Y
∂q

��
.

(10.42)
Thus, for x 2 ∂W,

(I + E)[w](x) = S (0)
C [� 1

R2
∂

∂q
h

∂Y
∂q

](x)

�bD(0)
C (I + bL)�1

"
� h

R
∂u
∂r

� 1
R2

∂

∂q
h

∂u
∂q

����
�
+

✓
� I

2
+ (K(0)

C )⇤
◆ 

� 1
R2

∂

∂q
h

∂Y
∂q

�#
.

(10.43)
By integrating by parts twice, the first term in our equation becomes

S (0)
C [� 1

R2
∂

∂q
h

∂Y
∂q

](x) = � 1
R

Z 2p

0

∂

∂qy

✓
h(qy)

∂

∂qy G(0)(x, y)
◆

Y(qy)dqy. (10.44)

Hence, we obtain that

S (0)
C [� 1

R2
∂

∂q
h

∂Y
∂q

](x) = v1
1(x)�D(0)

C [Y(1)
1 ](x). (10.45)

The representation formula of u and the expression of the Laplacian in terms of
polar coordinates give us

1
R2

∂

∂q
h

∂u
∂q

����
�
=

h0

R2
∂H
∂q

� h
∂2H
∂r2 � h

R
∂H
∂r

+
1

R2
∂

∂q
h

∂

∂q
D(0)

C [Y]

����
�

. (10.46)
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Observe that by definition of Y, we have on ∂W

∂u
∂r

= �b�1Y. (10.47)

One can then derive the integral equation that Y verifies and obtain that

� h
R

∂u
∂r

+
h
R

∂H
∂r

= � h
R

∂

∂r
D(0)

C [Y]. (10.48)

The second term in our equation (10.43) becomes

�bD(0)
C (I + bL)�1


� h0

R2
∂H
∂q

+ h
∂2H
∂r2 � h

R
∂

∂r
D(0)

C (Y)

�
.

It follows from (10.37) and (10.45) that

8x 2 ∂W, (I + E)[w](x) = v0
1(x).

We have obtained an approximation at first order of fcflr:

fcflr = cflr � edY(1)
1 + o(e),

where Y(1)
1 is given by

Y(1)
1 = �b(I + bL)�1


� h0

R2
∂H
∂q

+ h
∂2H
∂r2 +

∂

∂r
D(0)

W w � h
∂

∂r
D(0)

C (Y)

�
,

and w is the solution of (10.40).
We can now derive the first order term in the asymptotic expansion of (10.4) as

e ! 0.

Theorem 10.2.1. The integral (10.4) admits the following asymptotic expansion:
Z

∂Ce

g̃fcflr(x)Fn
exc(x)Fm

exc(x)ds(x) =
Z

∂C
g̃cflr(x)Fn

exc(x)Fm
exc(x)ds(x)

+ e
Z

∂C
g̃
⇣

A cflr(q) h(q)� d B Y(1)
1 (q)

⌘
e�i(n+m)q dq + o(e),

(10.49)

where the constants A and B are given by

A = ikJ0n(ikR)Jm(ikR) R + ikJn(ikR)J0m(ikR) R + Jn(ikR)Jm(ikR),

B = Jn(ikR)Jm(ikR) R.
(10.50)
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10.2.2 Fourier coefficients of Y(1)
1

Recall that W is the unit disk and C is the disk with radius R < 1. In terms of
polar coordinates, the fundamental solution G(0) of D in R2, given by (9.9), has the
expression

8y (r, q) 2 W, 8z (R, f) 2 W, G0
z(y) =

1
4p

log(R2 + r2 � 2rR cos(q � f)).

The decomposition of log into a power series gives us the following formulas:

G0
z(y) =

8
>>><

>>>:

1
2p

log R � 1
4p Â

n2Z⇤

1
|n| (

r
R
)|n| ein(q�f) if r < R,

1
2p

log r � 1
4p Â

n2Z⇤

1
|n| (

R
r
)|n| ein(q�f) if R < r,

(10.51)

where Z⇤ = Z \ {0}. Let f 2 L2(]0, 2p[). By reinjecting (10.51) into the definition of
the following operators, we obtain for y(R, q) 2 ∂C that

S (0)
W [ f ](y) = �1

2 Â
n2Z⇤

1
|n|R

|n| f̂ (n) einq ,

D(0)
W [ f ](y) = f̂ (0) +

1
2 Â

n2Z⇤
R|n| f̂ (n) einq ,

∂D(0)
W

∂r
[ f ](y) =

1
2 Â

n2Z⇤
|n|R|n|�1 f̂ (n) einq ,

∂D(0)
C

∂r
[ f ](y) =

1
2 Â

n2Z⇤
|n| 1

R
f̂ (n) einq.

Recall that H satisfies the following representation formula on ∂C:

H = �S (0)
W [gele] +D(0)

W [ f0],

where gele =
∂u
∂n

����
∂W

and f0 = u|∂W. We therefore get

H(q) = f̂0(0) +
1
2 Â

n2Z⇤

✓
1
|n| ĝele(n) + f̂0(n)

◆
R|n| einq ,

∂H
∂q

(q) = Â
n2Z⇤

in bH(n) einq ,

∂2H
∂r2 (q) =

1
R2 Â

n2Z⇤
|n|(|n|� 1) bH(n) einq.
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Besides, for f 2 C2,h(∂C), we have

(I + bL)�1[ f ](q) = Â
n2Z⇤

✓
1 + b

|n|
2R

◆�1
f̂ (n) einq.

Note that bY(n) = �b

✓
1 + b

|n|
2R

◆�1 |n|
R
bH(n).

We can now write the Fourier coefficients of Y(1)
1 , for n 2 Z⇤ := {m 2 Z, m 6=

0},

d
Y(1)

1 (n) = �b
1
2
|n| R|n|�1

1 + b
|n|
2R

ŵ(n)� b
•

Â
p=�•

ĥ(p) bH(n � p)

⇥
✓
(n � p)p + |n � p|(|n � p|� 1) +

b

R
|n � p|2

2R + b |n � p|

◆✓
1 + b

|n|
2R

◆�1
.

(10.52)

Integral (10.4) becomes at first order:

Im,n
e = Im,n

0 +e 2p A d bg̃
•

Â
p=�•

ĥ(p) bH(m + n � p)
✓

1 + b
|m + n � p|

2R

◆�1

�e 2p B d g̃
d
Y(1)

1 (m + n),

where Im,n
e =

Z

∂Ce

g̃fcflr(x)Fn
exc(x)Fm

exc(x) ds(x) and Im,n
0 =

Z

∂C
g̃cflr(x)Fn

exc(x)Fm
exc(x)ds(x).

10.2.3 Reconstruction of h

We introduce the linear operator Q defined on C2(∂C) by

(Q[ĥ])m,n = e
•

Â
p=�•

Fm,n(p) ĥ(p),

where

Fm,n(p) = 2pdbg̃

2

64
A

1 + b
|m + n � p|

2R

+
B

1 + b
|m + n|

2R

✓
(m + n � p)p

+|m + n � p|(|m + n � p|� 1) +
b

R
|m + n � p|2

2R + b |m + n � p|

◆#
bH(m + n � p).

Recall that Im,n
e and Im,n

0 can be computed from the knowledge of the outgoing light
intensities In

emt,e and In
emt measured at the boundary of our domain (10.2), (10.3):

Im,n
e = 2p Em [In

emt,e(m), Im,n
0 = 2p Em dIn

emt(m).
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We denote â the data of our problem:

8m, n 2 Z, âm,n := 2pEm

⇣
[In
emt,e(m)� dIn

emt(m)
⌘
� e g̃B b p d

|m + n| R|m+n|�1

1 + b
|m + n|

2R

ŵ(m+n),

where ew is the measured difference of the voltage potential on ∂W, when the cell
occupies Ce and when it is the circle C.

The operator Q links the perturbation h of the membrane cell to the data of our
problem:

âm,n = (Q[ĥ])m,n + e2V̂m,n,
with the term e2V̂m,n modeling the linearization error.

We choose to apply at the boundary of our domain W an electric field gele : q !
eizq with z 2 Z. Let us compute the resulting voltage potential at the boundary of
W, f0 and more specifically its Fourier coefficients. From the representation formula
(9.10) of u and the jumps relation of the single and double layer potentials, we obtain
the following equation at the boundary of our domain:

f0 = �S (0)
W [gele] +

1
2

f0 +K(0)
W [ f0] +D(0)

C [Y].

Since
Z

∂W
f0 = 0 from (8.4), we immediately get f̂0(0) = 0 and K(0)

W [ f0] = 0.
We write, like in the previous section, the Fourier coefficients of the various layer
potentials and of Y and get for n 2 Z⇤:

f̂0(n) =
2(1 + b

|n|
2R

) + b|n|R2|n|�2

2(1 + b
|n|
2R

)� b|n|R2|n|�2

1
|n| ĝele(n).

Note that ĝele(n) = dz(n). We can now write the Fourier coefficients of H|∂C in our
case:

bH(0) = 0, and 8n 2 Z⇤, bH(n) =
2(1 + b

|n|
2R

)

2(1 + b
|n|
2R

)� b|n|R2|n|�2

1
|n| dz(n)R|z|.

The operator Q has therefore the following simplified expression:

(Q[ĥ])m,n = e Fm,n(z) ĥ(m + n � z),

where

Fm,n(z) =

2

64
A

1 + b
|z|
2R

+
B

1 + b
|m + n|

2R

✓
(m + n � z)z + |z|(|z|� 1) +

b

R
|z|2

2R + b |z|

◆
3

75

⇥2pdbg̃

|z|
2(1 + b

|z|
2R

)

2(1 + b
|z|
2R

)� b|z|R2|z|�2
R|z|.
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Recall that the constants A and B depend on R and k.
The adjoint of the operator Q is given by

(Q?[â])p = e
•

Â
j=�•

Fj,p+z�j(z) âj,p+z�j.

Then we obtain that

(Q?Q[ĥ])p = e2
•

Â
j=�•

|Fj,p+z�j(z)|2 ĥ(p).

We now consider the presence of measurement or instrument noise in our mea-
sured data. We thus introduce

âmeas
m,n = (Q[ĥ])m,n + e2V̂m,n + sŴm,n,

with the noise term Ŵm,n modeled as independent standard complex circularly sym-
metric Gaussian random variables (such that E[|Ŵm,n|2] = 1; E being the expec-
tation). Here, s corresponds to the noise magnitude. We consider that s verifies
e2 ⌧ s, so that the linearization error is negligible over the measurement error and
we can write:

âmeas
m,n = (Q[ĥ])m,n + sŴm,n.

Following the methodology of [20, 24], we want to asses the resolving power of the
measured data in the presence of this noise.

Since h is C2, |ĥ(p)|  C/p2 for some constant C, for all p 2 Z⇤. Besides, one
can see that for all m, n 2 Z, Fm,n is bounded, for given R and k. Let M be a positive
real such that M ⌧ 1/e2. We can reconstruct the Fourier coefficients of the shape
deformation h only for p such that |p|  M, otherwise the linearization error e2V̂m,n
is too large. We suppose that ĥp = 0 for all |p| � M.

To reconstruct h, one can minimize the following quadratic functional over j:
����

����Q[ĵ]� âmeas
����

����
2

F
,

where âmeas = (âmeas
m,n )m,n, ĵ = (ĵ(p))p, and || ||F is the Frobenius norm. The ob-

tained least squares estimate is given by

8p 2 [�M, M], ĥest(p) = (Q?Q)�1Q?[âmeas](p) = ĥ(p) + s
⇣
(Q?Q)�1Q?[Ŵ]

⌘

p
.

(10.53)
One can prove with the explicit formulas of the operators Q and Q? that the

following result holds.

Proposition 10.2.7. Estimation (10.53) is unbiased and has the following variance:

E
⇣
|ĥest(p)� ĥ(p)|2

⌘
=

s2

e2

 
•

Â
j=�•

|Fj,p+z�j|2
!�1

. (10.54)
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Besides Proposition 10.2.7, Parseval’s identity and Graf’s addition formula yield

•

Â
j=�•

|Fj,p+z�j|2 =
2
p

Z p/2

0
| fp(q)|2dq,

where the function fp is defined by

fp(q) = a 2ikR sin(q) J0p+z(2ikR sin(q)) + (a + Rb) Jp+z(2ikR sin(q)),

with a(R, z) =
2R|z|

2(1 + b
|z|
2R

)� b|z|R2|z|�2

2pdbg̃

|z| ,

b(R, p, z) = a(R, z)
2R + b |p + z|

2R + b |z|

✓
pz + |z|(|z|� 1) +

b

R
|z|2

2R + b |z|

◆
.

We introduce the signal to noise ratio SNR:

SNR = (
e

s
)2. (10.55)

The following result holds thanks to (10.54).

Theorem 10.2.2. Suppose that the pth mode of h, ĥ(p), is of order 1, we can resolve it if the
following condition is satisfied:

SNR�1 <
2
p

Z p/2

0
| fp(q)|2dq.

Let us simplify this stability condition under the respective asymptotic assump-
tions |k|R � 1 and |k|R ⌧ 1.

Since J�n = (�1)n Jn ([2, Formula 9.1.5]), we can consider without any restriction
that p + z � 0.

Assumption 1: |k|R � 1 We assume in this paragraph that |k|R � 1. We use the
asymptotic expansions of the Bessel functions of the first kind and their derivative
([2, Formulas 9.2.5 and 9.2.11]) to find that, in this case, when p + z < 2|k|R, we
have

2
p

Z p/2

0
| fp(q)|2dq ⇠ 4a2

p2 |k|R
•

Â
n=0

(4Im(ik)R)2n

(2n)!
22n(n!)2

(2n + 1)!
.

Then the resolving condition becomes

SNR�1 < C(R, z)|k| with C(R, z) =
4 a(R, z)2

p2 R
•

Â
n=0

(4Im(ik)R)2n

(2n)!
22n(n!)2

(2n + 1)!
.

With large |k|R, we can estimate the coefficients ĥ(p) for all SNR of order 1/|k|,
as long as p + z < 2|k|R.
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When p + z > 2|k|R, from [2, Formulas (9.3.35) and (9.3.43)] it follows that the
following asymptotic behavior of our integrand holds:

| fp(q)|2 ⇠
p
|1 � x|

2(p + z)p

���1 +
p

1 � x
���
�(p+z)

e2(p+z)Re(
p

1�x) x2(p+z�1),

where x =

✓
2ikR sin(q)

p + z

◆2
.

Since |x| < 1, the last term in the preceding expression is the dominant one, and
makes the integral exponentially small. To resolve the pth mode of h in this context,
we therefore need a SNR exponentially large, which is impossible in practice.

We choose for each p < M an electric model with z < 2|k|R � p. The condition
p + z < 2|k|R is in this way always satisfied, and the pth mode can be resolved as
long as SNR�1 < C(R, z)|k|.

For a fixed z, k and SNR, this inequality gives us a constraint on the cell radius.
In order to be able to image the cell with a given SNR, its radius has to be larger
than a minimal value, R? given by

R?(SNR) = F�1(SNR�1),

with

F (t) =
4 a(t, z)2

p2 t|k|
•

Â
n=0

(4 Re(k)t)2n

(2n)!
22n(n!)2

(2n + 1)!
.

The typical size of eukaryotes cell is 10/100 µm. We use for our different param-
eters the following realistic values reported in [54], [50], [56], [68]:

• the absorption coefficient µ = 0.03,

• the reduced scattering coefficient µ0
s = 0.275,

• the fluorophore quantum efficiency h = 0.016,

• the fluorophore fluorescence lifetime t = 0.56 s�1,

• the fluorophore extinction coefficient #exc = 5 ⇤ 104 mm�1mol�1,

• The constant d defined in (8.5) is given by d = 0.91 ⇤ 10�6 mol V�1.

It is worth mentioning that the absorption coefficient µ is low compared to the

reduced scattering coefficient µ0
s. Recall that k =

✓
µ + iw/c

D

◆1/2
. Then, for given

absorption and reduced scattering coefficients, Assumption 1 corresponds to fre-
quencies w such that w � 1016 and therefore, are nonphysical. The minimal radius

R? increases with z, we thus choose z such that |z| = 1. Since M ⇠ 10 with these
values of the parameters, this choice does not impose any restriction, because we
have always M � 1 < 2|k|R.
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Assumption 2: |k|R ⌧ 1 Note that the larger the reduced scattering coefficient is,
the smaller |k| is. The asymptotic expansions of the Bessel functions of the first kind
and their derivative when the argument tends to zero ([2, Formula 9.1.7]), give us
the asymptotic behavior of our integral in the case of a small |k|R:

2
p

Z p/2

0
| fp(q)|2dq ⇠

✓
|k|R

2

◆2(p+z) (2(p + z))!
(p + z)!4

(a(p + z + 1) + Rb)2 .

For fixed z, k and R, the pth mode of h can be resolved under Assumption 2 as
long as the SNR verifies:

SNR�1 <

✓
|k|R

2

◆2(p+z) (2(p + z))!
(p + z)!4

(a(R, z)(p + z + 1) + Rb(R, p, z))2 .

If we consider now that the SNR, k and z are given, we can define, for each mode
p, the minimal resolving radius R?, i.e., the smallest radius that the cell can have if
we want to resolve the pth mode of its membrane deformation.

Theorem 10.2.3. The minimal resolving radius R? has the following expression:

R?(SNR, p) = F�1
p (SNR�1),

where the function Fp in this regime is given by

Fp(t) =
✓
|k|t
2

◆2(p+z) (2(p + z))!
(p + z)!4

(a(t, z) (p + z + 1) + t b(t, p, z))2 .

Note that the higher the reduced scattering coefficient is, the better the resolving
power of the imaging method is. In fact, in order to resolve the mode p, the higher
the reduced scattering coefficient is, the smaller the required SNR is.

We plot in Figure 10.1 this minimal resolving radius as a function of the SNR for
p = 0, 1, 2 and 3. We centered the y-axis on the typical radii of eukaryotes cells,
like in the preceding paragraph. Assumption 2 corresponds to frequencies w such
that w ⌧ 1013. We choose w = 109, which is a typical frequency used in cellular
tomography. For each p, we took z = d0(p)� p, because R? decreases with p + z.
Since we can not take z = 0, the mode 0 is not the easiest to resolve. For the other
parameters, we kept the values of the previous paragraph.

Under Assumption 1, for given z, R and SNR, if the resolving condition was
verified, we could resolve all modes of h up to M. Because the constraint depends
this time on p, a new question arises: "how many modes can we resolve for fixed R
and SNR?". We introduce the maximal mode number p(R, SNR) defined by

p(R, SNR) = sup
⇢

p0 2 N \ {0}| inf
1�p0�p

Fp0(R) > SNR�1
�
+ 1F0(R)>SNR�1 ,

which answers this question.
We plot in Figure 10.2 the maximal mode number as a function of the cell radius

for different values of the SNR. We took the same values of our parameters as in
Figure 10.1.
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Figure 10.1: Minimal resolving radius as function of the SNR when |k|R ⌧ 1.
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Figure 10.2: Maximal Mode Number as function of the cell radius when |k|R ⌧ 1.
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10.3 Reconstruction of the cell membrane in the gen-
eral case

We leave the specific case of a circular domain to go back to the general case in
dimension two. Let a, b 2 R with a < b. Let x : [a, b] ! R2 be a parametrization of
∂C such that x 2 C2,h(R) for an h > 0 and |x0| = 1. The outward unit normal to ∂C
at x(t), n(x) and the tangential vector, T(x), are given by

n(x) = R�p
2

x0(t), T(x) = x0(t),

where R�p
2

is rotation by �p
2 .

We introduce the curvature t defined for all x 2 ∂C by

x00(t) = t(x)n(x).

Let Ce be an e-perturbation of C, i.e., there is h 2 C2([a, b]), such that ∂Ce is given
by

∂Ce = {x̃; x̃(t) = x(t) + e h(t)n(x(t)), t 2 [a, b]} .

Like in the previous section, our goal is to reconstruct the shape deformation h
of our cell. Let I g

emt,e (resp. I g
emt) be the outgoing light intensities measured at the

boundary of our domain when the cell occupies Ce (resp. C) and the optical source
g is applied at ∂W. It follows from Proposition 10.1.1 that

Z

∂Ce

g̃fcflr(x)F f
exc(x)F g

exc(x)ds(x) =
Z

∂W
f I g

emt,e ds(x),

resp.
Z

∂C
g̃cflr(x)F f

exc(x)F g
exc(x) ds(x) =

Z

∂W
f I g

emt ds(x),
(10.56)

where f , g 2 L2(∂W) and fcflr (resp. cflr) is the concentration of fluorophores on the
boundary of the cell ∂Ce (resp. ∂C).

We introduce the voltage potential u such that cflr = d[u]|∂C. We know, from
Proposition 9.2.1, that u admits the following representation formula:

8x 2 W, u(x) = H(x) + D(0)
C [Y](x),

where the harmonic function H is given by

8x 2 R2 \ ∂W, H(x) = �S (0)
W [gele](x) + D(0)

W [u|∂W](x),

and Y 2 C2,h(∂C) satisfies the integral equation:

Y + b
∂D(0)

C [Y]

∂n
= �b

∂H
∂n

on ∂C.

We compute the first order approximation of fcflr using exactly the same method
as in Subsection 10.2. Doing so, we arrive with the help of Corollary 10.2.2 at

fcflr = cflr � e d Y(1)
1 + o(e),
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where the function Y(1)
1 is defined by

Y(1)
1 = �b(I + bL)�1

✓
(�th0

∂H
∂T

+ h
∂2H
∂n2 +

∂

∂n
D(0)

W [w]� h
∂

∂n
D(0)

C [Y]

+
∂

∂T
K(0)

C [h
∂Y
∂T

]� ∂

∂T
h

∂

∂T
K(0)

C [Y]

◆
,

and w is the solution to the problem
8
>>>>>>>>>>>><

>>>>>>>>>>>>:

Dw = 0 in C [ W \ C,

∂w
∂n

����
+

� ∂w
∂n

����
�
= � ∂

∂T
h

∂Y
∂T

on ∂C,

w |+ �w |� �b
∂w
∂n

����
�
= �b

✓
th

∂u
∂n

+
∂

∂T
h

∂u
∂T

����
�

◆
on ∂C,

∂w
∂n

����
∂W

= 0 on ∂W.

(10.57)

We then obtain an expansion of (10.56) as e ! 0.

Proposition 10.3.1. Integral (10.56) admits at first order in e the following expansion:
Z

∂Ce

g̃fcflr(x)F f
exc(x)F g

exc(x) ds(x) =
Z

∂C
g̃cflr(x)F f

exc(x)F g
exc(x) ds(x)

+ e
Z b

a
g̃
⇣

A(t) cflr(t) h(t)� d B(t)Y(1)
1 (t)

⌘
dt + o(e),

(10.58)

where the functions A and B are given by

A =
dF f

exc(t)
dt

F g
exc(t) + F f

exc(t)
dF g

exc(t)
dt

� t(t)F f
exc(t)F

g
exc(t),

B = F f
exc(t)F

g
exc(t).

(10.59)

Let f1, . . . , fL, be a finite number of linearly independent functions in L2(∂W).
We introduce the functional J defined on C2([a, b]) by

J (h) =
L

Â
i,j=1

����
Z

∂W
fi(I

fj
emt,e � I

fj
emt) ds � e

Z b

a
g̃
⇣

Ai,j(t) cflr(t) h(t)� d Bi,j(t)Y(1)
1 (t)

⌘
dt
����
2

,

where the functions Ai,j and Bi,j are given by

Ai,j =
dF fi

exc(t)
dt

F
f j

exc(t) + F fi
exc(t)

dF
f j

exc(t)
dt

� t(t)F fi
exc(t)F

f j
exc(t),

Bi,j = F fi
exc(t)F

f j
exc(t).
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We reconstruct the shape deformation h by minimizing the functional J over
h. In order to maximize the resolution of the reconstructed images, we choose
f1, . . . , fL, such that the functions Ai,j and Bi,j for i, j 2 [1, L] are highly oscillating.
We will then be able to obtain a resolved reconstruction of the boundary changes h.

We introduce the operator L : L2(∂W) ! L2(∂C) defined by

8 f 2 L2(∂W), 8z 2 ∂C, L[ f ](z) = F f
exc|∂C(z) =

Z

∂W
Gz(y) f (y) ds(y).

The adjoint operator L? : L2(∂C) ! L2(∂W) is given by

8q 2 L2(∂C), 8y 2 ∂W, L?[q](y) = p|∂W(y) =
Z

∂C
Gz(y) q(z) ds(z),

where p is the solution to the problem:
8
>>>>>>>>><

>>>>>>>>>:

�Dp + k2p = 0 in W,

∂p
∂n

����
+

� ∂p
∂n

����
�
= � q on ∂C,

p|+ � p|� = 0 on ∂C,

`
∂p
∂n

+ p = 0 on ∂W.

(10.60)

We therefore obtain the following expression for L?L:

8 f 2 L2(∂W), 8y 2 ∂W, L?L[ f ](y) =
Z

∂W
dt f (t)

Z

∂C
Gz(y)Gz(t) ds(z).

Following [12, 21], we choose f1, . . . , fL, to be the first singular vectors of the op-
erator L. The number L, which fixes the resolving power of the approach, is chosen
to maximize the trade-off between resolution and stability. To gain resolution, one
has to choose L as large as possible. But if it is too large, then it follows from the
fact that fi is highly oscillating for large i that the algorithm is unstable in the case
of noisy data [21, 19].



Concluding remarks

In this thesis we have introduced a new mathematical framework for cell membrane
imaging. We have for the first time analytically exhibited the fundamental mecha-
nisms underlying the fact that effective biological tissue electrical properties and
their frequency dependence reflect the tissue composition and physiology. We have
explained how the dependence of the effective electrical admittivity measures the
complexity of the cellular organization of the tissue and developed electrical tissue
property imaging approaches from micro-electrical data in order to improve differ-
entiation of tissue pathologies.

In Part I, we have derived new formulas for the effective admittivity of suspen-
sions of cells and characterized their dependance with respect to the frequency in
terms of membrane polarization tensors. We have applied the formulas in the di-
lute case to image suspensions of cells from electrical boundary measurements. We
have presented numerical results to illustrate the use of the Debye relaxation time
in classifying microstructures. We also developed a selective spectroscopic imaging
approach. We have shown that specifying the pulse shape in terms of the relaxation
times of the dilute suspensions gives rise to selective imaging.

An important problem is to derive effective electrical properties of of dense pe-
riodic arrangements of cells such as skin cells. Another challenging problem is to
extend our results to elasticity models of the cell. In [30, 25], formulas for the effec-
tive shear modulus and effective viscosity of dilute suspensions of elastic inclusions
were derived. On the other hand, it was observed experimentally that the depen-
dance of the viscosity of a biological tissue with respect to the frequency character-
izes the microstructure [37, 51]. A mathematical justification and modeling for this
important finding are one of our future research directions.

In Part II, we have proposed for the first time an optimal control algorithm for
admittivity imaging from multi-frequency micro-electrical data. We have proved
its convergence and its local stability. Our approach in Part II can be extended to
elastography and can be used to image both shear modulus and viscosity tissue
properties from internal displacement measurements. Another interesting problem
is to image tissues with anisotropic impedance distribution from micro-electrical
data.

In Part III, we have introduced and analyzed a mathematical model for optical
imaging of cell membrane potentials changes induced by applied currents. We have
presented a direct imaging algorithm in the linearized case and provided explicit
formulas for its resolving power of the measurements in the presence of measure-
ment noise. We have suggested an iterative algorithm for complex shapes. It would
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be interesting to consider the case of cluttered cells. Another challenging problem is
the tracking of membrane changes in cell mechanisms such as cell division.

Our results in this thesis have potential applicability in cancer imaging, cell cul-
turing and differentiation, food sciences and biotechnology [93, 89], and applied and
environmental geophysics. They can be used to model and improve the Margin-
Probe system for breast cancer [135], which emits an electric field and senses the
returning signal from tissue under evaluation. The greater vascularization, differ-
ently polarized cell membranes, and other anatomical differences of tumors com-
pared with healthy tissue cause them to show different electromagnetic signatures.
The ability of the probe to detect signals characteristic of cancer helps surgeons en-
sure the removal of all unwanted tissue around tumor margins.

Another commercial medical system to which our results can be applied is Zed-
Scan [136]. ZedScan is based on electrical impedance spectroscopy for detecting
neoplasias in cervical disease [1, 45]. Malignant white blood cells can be also de-
tected using induced membrane polarization [112]. In food quality inspection, spec-
troscopic conductivity imaging can be used to detect bacterial cells [33, 133]. In ap-
plied and environmental geophysics, induced membrane polarization can be used
to probe up to subsurface depths of thousands of meters [126, 134].

It would be very interesting to develop a physics-based learning approach, based
on Debye relaxation times, for classifying tissue organizations at the cell scale from
macroscopic spectroscopic admittivity measurements. One can learn from training
examples such as biopsies the underlying microstructures and then, classify unseen
ones from spectroscopic measurements of their admittivities. It is challenging to
construct a distance between spectroscopic measurements which allows to statisti-
cally classify or separate different microstructures into different groups.



Appendix A

Extension lemmas, norm equivalence,
and existence result

A.1 Extension lemmas

Due to the problem settings of this chapter, we need to study convergence properties
of functions that are defined on the multiple connected sets R+

2 , F(R+
2 ) and #F(R�

2 ).
Extension operators becomes useful to treat such functions.

Consider two open sets U, V ⇢ R2 with the relation U ⇢ V, and two Sobolev
spaces W1,p(U) and W1,p(V), p 2 [1, •]. What we call an extension operator is a
bounded linear map P : W1,p(U) ! W1,p(V), such that Pu = u a.e. on U for all
u 2 W1,p(U). In this section, we introduce several extension operators of this kind
that are needed in the chapter. They extend functions that are defined on Y�, R+

2 ,
F(R+

2 ) and #F(R+
2 ) (hence W+

# ) respectively.
Throughout this section, the short hand notion MA( f ) for a measurable set A ⇢

R2 with positive volume and a function f 2 L1(A) denotes the mean value of f in
A, that is

MA( f ) =
1
|A|

Z

A
f (x)dx. (A.1)

We start with an extension operator inside the unit cube Y. Since Y� has smooth
boundary, there exists an extension operator S : W1,p(Y+) ! W1,p(Y) such that for
all f 2 W1,p(Y+) and p 2 [1, •),

kS f kLp(Y)  Ck f kLp(Y+), kS f kW1,p(Y)  Ck f kW1,p(Y+), (A.2)

where C only depends on p and Y�. Such an S is given in [57, section 5.4], where
the second estimate above is given; the first estimate easily follows from their con-
struction as well. Cioranescu and Saint Paulin [48] constructed another extension
operator which refines the second estimate above. For the reader’s convenience, we
state and prove their result in the following. Similar results can be found in [73] as
well.
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Theorem A.1.1. Let Y, Y+ and Y� be as defined in section 1.1; in particular, ∂Y� is
smooth. Then there exists an extension operator P : W1,p(Y+) ! W1,p(Y) satisfying
that for any f 2 W1,p(Y+) and p 2 [1, •),

krP f kLp(Y)  Ckr f kLp(Y+), kP f kLp(Y)  Ck f kLp(Y+), (A.3)

where C only depends on the dimension and the set Y�.

Proof. Recall the mean operator M in (A.1) and the extension operator S in (A.2).
Given f , we define P f by

P f = MY+( f ) + S( f �MY+( f )). (A.4)

Then by setting y = f �MY+( f ), we have that

krP f kLp(Y) = krSykLp(Y)  CkykW1,p(Y+)  CkrykLp(Y+) = Ckr f kLp(Y+).

In the second inequality above, we used the Poincaré–Wirtinger inequality for y and
the fact that y is mean-zero on Y+. The L2 bound of P f follows from the observation

kMY+( f )kLp(Y) 
✓

|Y|
|Y+|

◆ 1
p
k f kLp(Y+)

and the Lp estimate of S f in (A.2). This completes the proof.

Apply the extension operator on each translated cubes in R+
2 , we get the follow-

ing.

Corollary A.1.1. Recall the definition of Yn, Y+
n and Y�

n in section 1.1. Abuse notations
and define

(Pu)|Yn = P(u|Y+
n
), n 2 Z2, u 2 W1,p

loc (R
+
2 ). (A.5)

Then P is an extension operator from W1,p
loc (R

+
2 ) to W1,p

loc (R
2). Further, with the same

positive constant C in (A.3) and for any n 2 Z2, we have

krPukLp(Yn)  CkrukLp(Y�
n ), kPukLp(Yn)  CkukLp(Y�

n ). (A.6)

Given a diffeomorphism, the extension operator P can be transformed as follows.
In the same manner, under the map of scaling, the extension operator is naturally
defined.

Corollary A.1.2. Let F(·, g) be a random diffeomorphism satisfying (1.14) and (1.15).
Denote the inverse function F�1 by Y. Define Pg as

Pgu = [P(u � F)] � Y, u 2 W1,p
loc (F(R+

2 )). (A.7)

Then Pg is an extension operator from W1,p
loc (F(R+

2 )) to W1,p
loc (F(R2)) which satisfies that

krPgukLp(F(Yn))  CkrukLp(F(Y�
n )), kPgukLp(F(Yn))  CkukLp(F(Y�

n )), (A.8)

where the constant C depends further on the constants in (1.14) and (1.15).
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Corollary A.1.3. Let F(·, g) and Y be as above. For each # > 0, define P#
g as follows: for

any u 2 W1,p
loc (#F(R+

2 )), P#
gu is defined on each deformed and scaled cube #F(Yn) by

P#
gu(x) = #Pũ(Y(

x
#
)), (A.9)

where ũ = #�1u � #F and P is as in (A.6). Then P#
g is an extension operator from W1,p

loc (#F(R+
2 ))

to W1,p
loc (#F(R2)) which satisfies that for any n 2 Z2,

krP#
gukLp(#F(Yn))  CkrukLp(#F(Y�

n )), kP#
gukLp(#F(Yn))  CkukLp(#F(Y�

n )), (A.10)

where the constant C depends on the same parameters as stated below (A.8).

Proof. We focus on proving (A.10). Under the change of variable x = #F(y), we
have

rxP#
gu(x) = rY(

x
#
)ryPũ(F�1(

x
#
)) = rY(F(y))ryPũ(y),

On each deformed and scaled cube #F(Yn), we calculate

krP#
gukp

Lp(#F(Yn))
=
Z

#F(Yn)
|rxP#

gu(x)|pdx =
Z

Yn
|rY(F(y))ryPũ(y)|p#2 det(rF(y))dy

 #2
Z

Yn
|rY(F(y))|p|ryPũ(y)|p det(rF(y))dy  C#2

Z

Yn
|ryPũ(y)|pdy.

Here, we have used the Cauchy–Schwarz inequality and the bounds (1.14)-(1.15) on
the Jacobian matrix and its determinant. Upon applying (A.3), we get

krP#
gukp

Lp(#F(Yn))
 C#2kryũkp

Lp(Y+
n )

.

Since ũ(y) = 1
# u(#F(y)), we have ryũ(y) = ryF(y)rxu(#F(y)). Change variables

in the last integral and repeat the analysis above to get

kryũkp
Lp(Y+

n )
 C#�dkrxukp

Lp(#F(Y+
n ))

.

Combining the above estimates, one finds some C independent of # or g such that
(A.10) holds. Moreover, the constant C is uniform for all #F(Yn). The L2 estimate
for P#

gu is simpler and ignored. This completes the proof.

Finally, we define the extension operator from W1,p(W+
# ) to W1,p(W). This is es-

sentially the same operator in Corollary A.1.3. Indeed, recall that W is decomposed
to the cushion K# and the cell containers E#; see (1.18). We only need to apply P#

g in
E#.

Theorem A.1.2. Let the domains W±
# , K# and E# be as defined in section 1.1. Let F(·, g) be

a random diffeomorphism satisfying (1.14)-(1.16). Define the linear operator P#
g as follows:

for u 2 W1,p(W+
# ), let P#

gu be given by (A.9) in E#, and let P#
gu = u in K#. Then P#

g is an
extension operator from W1,p(W+

# ) to W1,p(W) and it satisfies

krP#
gukLp(W)  CkrukLp(W+

# ), kP#
gukLp(W)  CkukLp(W+

# ), (A.11)

where the constants C’s do not depend on # or g.
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Proof. Since P#
g leaves u unchanged in K# and it satisfies the estimates (A.10) uni-

formly in the cubes E# = [n2I# #F(Yn), we have the following:

krP#
gukp

Lp(W) = krukp
Lp(K#)

+ Â
n2I#

krP#
gukp

Lp(#F(Yn))

 krukp
Lp(K#)

+ C Â
n2I#

krukp
Lp(#F(Y+

n ))
 Ckrukp

Lp(W+
# )

.

This completes the proof of the first estimate in (A.11). The second estimate follows
in the same manner, completing the proof.

A.2 Poincaré–Wirtinger inequality

Our next goal is to derive a Poincaré–Wirtinger inequality for functions in H1(W+
# )

with a constant independent of # and g. The following fact of the fluctuation of a
function is useful.

Lemma A.2.1. Let X ⇢ R2 be an open bounded domain with positive volume and f 2
L1(X). Assume that X1 ⇢ X is a subset with positive volume, then we have

k f �MX1( f )kL2(X1)
 k f �MX( f )kL2(X). (A.12)

Proof. To simplify notations, let f1 be the restriction of f on X1, m1 = MX1( f1) and
q1 = |X1|/|X|. Similarly, let f2 be the restriction of f on X2 = X \X1, m2 = MX2( f2).
Let m = MX( f ). Then we have that

f � m =

(
f1 � m1 + (1 � q)(m1 � m2), x 2 X1,
f2 � m2 + q(m2 � m1), x 2 X2.

Then basic computation plus the observation that fi �mi integrates to zero on Xi for
i = 1, 2 yield the following:

k f � mk2
L2(X) = k f1 � m1k2

L2(X1)
+ k f2 � m2k2

L2(X2)
+ (1 � q)q|X|(m2 � m1)

2.

Since the items on the right-hand side are all non-negative, we obtain (A.12).

Corollary A.2.1. Assume the same conditions as in Theorem A.1.2. Then for any u 2
H1

C(W
+
# ), we have that

kukL2(W+
# )  CkrukL2(W+

# ), (A.13)

where the constant C does not depend on # or g.

Proof. Thanks to Theorem A.1.2, we extend u to P#
gu which is in H1(W). Use (A.12)

and the fact that MW+
#
(u) = 0 to get

kukL2(W+
# )  kP#

gu �MW(P#
gu)kL2(W).

Now apply the standard Poincaré–Wirtinger inequality for functions in H1(W), and
then use (A.11). We get

kP#
gu �MW(P#

gu)kL2(W)  CkrP#
gukL2(W)  CkrukL2(W+

# ).

The constant C depends on W and the parameters stated in Theorem A.1.2 but not
on # or g. The proof is now complete.
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Another corollary of the extension lemma is that we have the following uniform
estimate when taking the trace of u 2 W# on the fixed boundary ∂W.

Corollary A.2.2. Assume the same conditions as in Theorem A.1.2. Then there exists a
constant C depending on W and the parameters as stated in Theorem A.1.2 but independent
of # and g such that

kuk
H

1
2 (∂W)

 CkrukL2(W+
# ), (A.14)

for any u 2 H1(W+
# ).

Proof. Thanks to Theorem A.1.2 we extend u to P#
gu which is in H1(W). The trace

inequality on W shows

kP#
guk

H
1
2 (∂W)

 C(W)kP#
gukH1(W). (A.15)

The desired estimate then follows from (A.11) and (A.13).

A.3 Equivalence of the two norms on W#

In this section, we prove Proposition 1.2.2 which establishes the equivalence be-
tween the two norms on W#. We essentially follow [100] where the periodic case
was considered. The random deformation setting requires certain modification. The
details of such modifications are provided here for the reader’s convenience.

The first inequality of the proposition is proved by the following lemma together
with the Poincaré–Wirtinger inequality (A.13):

Lemma A.3.1. There exists a constant C independent of # or g, such that

kv±k2
L2(G#)

 C(#�1kv±k2
L2(W±

# ) + #krv±k2
L2(W±

# )) (A.16)

for any v+ 2 H1(W+
# ) and v� 2 H1(W�

# ).

Proof. According to the set-up, the interface G# consists of #F(Gi) where i = 1, · · · , N(#)
are the labels for the deformed cubes {#F(Yi)} inside W and Gi are the correspond-
ing unit scale interfaces.

Let us consider the case of v+ 2 H1(W+
# ); the other case is proved in the same

manner. Denote by vi the restriction of v+ on the deformed cube #F(Yi). We lift this
function to ṽi(y) = vi(#F(y)) which is now defined on Y+

i . For this function, we
have the trace inequality

kṽik2
L2(Gi)

 C(kṽik2
L2(Y+

i ) + krṽik2
L2(Y+

i )). (A.17)

Note that this constant depends on the reference shape Y� but is uniform in i.
On the other hand, because for any g 2 O, the diffeomorphism F satisfies (1.14)

and (1.15), the Lebesgue measures ds(x) on the curve #F(Gi) and ds(y) on Gi, which
are related by the change of variable x = #F(y), satisfy

C1ds(x)  #ds(y)  C2ds(x)
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for some constant C1,2 which depend only on the constants in the assumptions and
Y� but uniform in # and g.

Consequently, we have

kv+k2
L2(G#)

=
N(#)

Â
i=1

Z

#F(Gi)
|vi(x)|2ds(x)  C#

N(#)

Â
i=1

Z

Gi
|ṽi(y)|2ds(y).

Apply (A.17) and change the variable back; use again dx ⇠ #2dy and ryṽi = #rxvi
to get

kv+k2
L2(G#)

 C#
N(#)

Â
i=1

Z

Y+
i

|ṽi(y)|2 + |ryṽ(y)|2dy

 C#�1
N(#)

Â
i=1

Z

#F(Y+
i )

|vi(x)|2 + #2|rv(x)|2dx

This completes the proof of (A.16).

The other inequality in (1.28) is implied by the following lemma:

Lemma A.3.2. There exists a constant C > 0 independent of # or g such that

kvkL2(W�
# )  C

⇣p
#kvkL2(G#) + #krvkL2(W�

# )

⌘
(A.18)

for all v 2 H1(W�
# ).

Proof. We first observe that on the reference cube Y with reference cell Y�, we have
that

kvk2
L2(Y�)  C

⇣
kvk2

L2(G0)
+ krvk2

L2(Y�)

⌘
, (A.19)

for any v 2 H1(Y�) where C only depends on Y� and the dimension. Indeed, sup-
pose otherwise, we could find a sequence {vn} ⇢ H1(Y�) such that kvnkL2(Y�) ⌘ 1
but

kvnkL2(G0) + krvnkL2(Y�) �! 0, as n ! •.

Then since kvnkH1 is uniformly bounded, there exists a subsequence, still denoted
as {vn}, and a function v 2 H1(Y�) such that

vn * v weakly in H1(Y�), rvn * rv weakly in L2(Y�).

Consequently, krvkL2  lim inf krvnkL2 = 0, which implies that v = C for some
constant. Moreover, since the embedding H1(Y�) ,! L2(G0) is compact, the con-
vergence vn ! v holds strongly in L2(G0) and kvkL2(G)  lim kvnkL2(G0) = 0. Con-
sequently v ⌘ 0. On the other hand, vn ! v holds strongly in L2(Y�) and hence
kvkL2(Y�) = lim kvnkL2(Y�) = 1. This contradicts with the fact that v ⌘ 0.

To prove (A.18), we lift functions in #F(Y�
i ) to functions in Y�

i as in the proof of
the previous lemma, and use the scaling relations of the measures: dx ⇠ #2dy and
ds(x) ⇠ #ds(y). We calculate

kvk2
L2(W�

# ) =
N(#)

Â
i=1

Z

#F(Y�
i )

|v|2dx  C#2
Z

Y�
|ṽ|2dy  C#2

N(#)

Â
i=1

Z

Gi
|ṽ|2ds +

Z

Y�
i

|rṽ|2dy
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where in the last inequality we used (A.19). Change the variables back to get

kvk2
L2(W�

# )  C#2
N(#)

Â
i=1

Z

#F(Gi)
#�d+1|v|2ds +

Z

#F(Y�
i )

#�d+2|rv|2dy.

Note that we used again ryṽ = #rxv. The above inequality is precisely (A.18).

Proof of Proposition 1.2.2. To prove the first inequality, we apply Lemma A.3.1 to get

#ku+ � u�k2
L2(G#)

 2(#ku+k2
L2(G#)

+ #ku�k2
L2(G#)

)

 C(ku+k2
L2(W+

# ) + ku�k2
L2(W�

# ) + #2kru+k2
L2(W+

# ) + #2kru+k2
L2(W+

# )).

Only the first term in (A.13) does not show in k · kH1
C⇥H1 , but it is controlled by

kru+kL2(W+
# ) uniformly in # and g thanks to (A.13).

For the second inequality, we only need to control ku�kL2(W�
# ). We apply Lemma

A.3.2 and the triangle inequality:

ku�k2
L2(W�

# )  C
⇣

#ku+k2
L2(G#)

+ #ku+ � u�k2
L2(G#)

+ #2kru�k2
L2(W�

# )

⌘
.

Only the first term does not appear in k · kW# , but using Lemma A.3.1 and (A.13) we
can bound it by

#ku+k2
L2(G#)

 C(ku+k2
L2(W+

# ) + #2kru+k2
L2(W+

# ))  Ckru+k2
L2(W+

# ).

This completes the proof.

A.4 Technical lemma

Lemma A.4.1. Let j1 be a function in D(W, C•
] (Y

+)) ⇥ D(W, C•
] (Y

�)). There exists
at least one function q in (D(W, H1

] (Y
+)) ⇥ D(W, H1

] (Y
�)))2 solution of the following

problem: 8
>>>>>>>>><

>>>>>>>>>:

�ry · q+(x, y) = 0 in Y+,

�ry · q�(x, y) = 0 in Y�,

q+(x, y) · n = q�(x, y) · n on G,

q+(x, y) · n = j+
1 (x, y)� j�

1 (x, y) on G,

y 7�! q(x, y)Y � periodic.

(A.20)

Proof. We look for a solution under the form q = ryh. We hence introduce the
following variational problem:
8
>>>>>><

>>>>>>:

Find h 2 (H1
] (Y

+)/C)⇥ (H1
] (Y

�)/C) such thatZ

Y+
rh+(y) · y

+
(y)dy +

Z

Y�
rh�(y) · y

�
(y)dy

=
1

bk0

Z

G
(j+

1 � j�
1 )(y

+ � y
�
)(y)ds(y),

for all y 2 (H1
] (Y

+)/C)⇥ (H1
] (Y

�)/C),
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for a fixed x 2 W. Lax-Milgram theorem gives us existence and uniqueness of such
an h. Since j1 2 D(W, C•

] (Y
+))⇥D(W, C•

] (Y
�)), there exists at least one function

q 2 (D(W, H1
] (Y

+))⇥D(W, H1
] (Y

�))2 solution of (A.20). Note that we do not have
uniqueness of such a solution.



Appendix B

The convergence of the Landweber
sequence with a Hilbert projection

This appendix follows from [69]; see also [70]. It proves the convergence of the
Landweber scheme with a Hilbert projection.

Let X and Y be Hilbert spaces and F : K ⇥ (w, w) ! Y be a differentiable map
where K is a convex subset of X. Let h , iX and h , iY denote the scalar products in X
and Y, respectively.

We are interested in solving the equation

F[x⇤; w] = 0 for all w 2 (w, w). (B.1)

It is natural to minimize

J[x] =
1
2

Z w

w
kF[x; w]k2

Ydw, (B.2)

with x 2 K. Assume that F[·; w] is Fréchet differentiable. So is J. The derivative of J
is given by

DJ[x](h) =
Z w

w
hDF[x; w](h), F[x; w]iYdw

=
Z w

w
hh, DF[x; w]⇤(F[x; w])iXdw,

where the superscript ⇤ indicates the dual map. The iteration sequence due to the
descent gradient method is given by

xn+1 = T[xn]� µ
Z w

w
DF[T[xn]; w]⇤(F[T[xn]; w]) dw. (B.3)

Here, µ is a small number and T[x] 2 K is an approximation of the Hilbert projection
of X onto K

P : X 3 x 7! argmin{kx � ak : a 2 K}. (B.4)
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Without loss of generality, we can assume that

kT[xn]� P[xn]kX  2�n, n � 1.

The presence of T in (B.3) is necessary because xn might not be in K and F[xn]
might not be well-defined. The map T above also increases the rate of convergence
of (xn) to x⇤ due to

kT[xn]� x⇤kX  kxn � x⇤kX + 2�n, n � 1. (B.5)

The following proposition holds.

Proposition B.0.1. Assume that DF[x; w] is Lipschitz continuous and that, for all x, h 2
K,

Z w

w
kDF[x; w](h)k2

Ydw � ckhk2
X. (B.6)

Then the sequence defined in (B.3) converges to x⇤ provided that x0 is a "good" initial guess
for x⇤ and µ is sufficiently small.

Proof. Since DF[x; w] is Lipschitz continuous, for all x such that kx � x⇤kX < h with
h being a small positive number, we have

Z w

w
kF[x; w]� F[x⇤; w]� DF[x; w](x � x⇤)k2

Ydw

 Ch2kx � x⇤k2
X

 Ch2
Z w

w
kF[x; w]� F[x⇤; w]k2

Ydw (B.7)

for some positive constant C. Note that we have used here (B.6) and the mean-value
theorem for the second inequality above.

For all n � 1, let

en[w] = F[T[xn]; w].
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We have

kxn+1 � x⇤k2
X � kxn � x⇤k2

X � 2�n

 kxn+1 � x⇤k2
X � kT[xn]� x⇤k2

X
= 2hxn+1 � T[xn], T[xn]� x⇤iX + kxn+1 � T[xn]k2

X

 2µ
Z w

w
h�DF[T[xn]; w]⇤en[w], T[xn]� x⇤iXdw

+
Z w

w
hµen[w], µDF[T[xn]; w]DF[T[xn]; w]⇤(en[w])iYdw

=
Z w

w
hen[w], 2µen[w]� 2µDF[T[xn]; w](T[xn]� x⇤)iYdw � µ

Z w

w
ken[w]k2

Ydw

+
Z w

w
hpµen[w], (�I + µDF[T[xn]; w]DF[T[xn]; w]⇤))(

p
µen[w])iYdw

 2µ

✓Z w

w
ken[w]k2

Ydw

◆ 1
2
✓Z w

w
ken[w]� DF[T[xn]; w](T[xn]� x⇤)k2

Ydw

◆ 1
2

�µ
Z w

w
ken[w]k2

Ydw

+
Z w

w
hpµen[w], (�I + µDF[T[xn]; w]DF[T[xn]; w]⇤))(

p
µen[w])iYdw

 µ(2
p

Ch � 1)
Z w

w
ken[w]k2

Ydw.

Here, we have used (B.7) for the last inequality. It follows that

kxn+1 � x⇤k2
X + µ(1 � 2

p
Ch)

Z w

w
kenk2

Ydw � 2�n  kxn � x⇤k2
X ,

and therefore,

•

Â
n=1

Z w

w
kF[T[xn]; w]k2

Ydw  kx0 � x⇤k2
X

µ(1 � 2
p

Ch)
+ 1.

We now obtain the convergence of (xn) to x⇤ using again the mean-value theorem
and condition (B.6):

ckT[xn]� x⇤k2
X 

Z w

w
kDF[x̃n; w](T[xn]� x⇤)k2

Ydw =
Z w

w
kF[T[xn]; w]� F[x⇤; w]k2

Ydw ! 0

for some x̃n = tT[xn] + (1 � t)x⇤, t 2 (0, 1).
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Appendix C

Explicit calculation of Gz in the case of
a sphere

We consider in this appendix that the dimension is three and that W is the unit
sphere. We expand G, the solution to (9.3), in spherical harmonics (Yl

m):

8z 2 W, 8y(1, q, f) 2 ∂W, Gz(y) =
•

Â
l=0

l

Â
m=�l

gl,z
m Yl

m(q, f).

An addition theorem [2, Formula (10-1-45/46)] gives us the expansion of G:

8z(r0, q0, f0)2W, 8y 2 ∂W, Gz(y) = ik
•

Â
l=0

l

Â
m=�l

jl(ikr0) h(1)l (ik)Yl
m(q

0, f0)Yl
m(q, f),

where jl and h(1)l are respectively the spherical Bessel and Hankel functions of first
kind of order l.

We then express the operators SW and KW in terms of spherical harmonics [102],
in the same way we wrote their Fourier coefficients in the previous section:

8y 2 ∂W, (� I
2
+KW)[q](y) = �

•

Â
l=0

l

Â
m=�l

k2 j
0
l(ik) h(1)l (ik) ql

m Yl
m(q, f),

8y 2 ∂W, SW[q](y) = i
•

Â
l=0

l

Â
m=�l

k jl(ik) h(1)l (ik) ql
m Yl

m(q, f),

for

8y(1, q, f) 2 ∂W, q(y) =
•

Â
l=0

l

Â
m=�l

ql
m Yl

m(q, f).

From (9.5) we obtain

gl,z
m =

ik jl(ikr0) h(1)l (ik)Yl
m(q

0, f0)

�k2 j0l(k) h(1)l (ik) + 1
` ik jl(ik) h(1)l (ik)

=
jl(ikr0)

ik j0l(ik) +
1
` jl(ik)

Yl
m(q

0, f0),
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or else, for all z = (r0, q0, f0) 2 W and y = (1, q, f) 2 ∂W,

Gz(y) =
•

Â
l=0

l

Â
m=�l

jl(ikr0)
ik j0l(ik) +

1
` jl(ik)

Yl
m(q

0, f0)Yl
m(q, f).

Note that we find a very similar formula as the one in 2D. The Bessel function
of first kind is replaced by the spherical function of first kind, and our operator is
decomposed in the spherical harmonics basis instead of the Fourier basis.
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