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Abstract In this work we consider the solution of the time harmonic wave equation in a one di-
mensional periodic medium with weak random perturbations. More precisely, we study two types
of weak perturbations: (1) the case of stationary, ergodic and oscillating coefficients, the typical size
of the oscillations being small compared to the wavelength and (2) the case of rare random pertur-
bations of the medium, where each period has a small probability to have its coefficients modified,
independently of the other periods. Our goal is to derive an asymptotic approximation of the solu-
tion with respect to the small parameter. This can be used in order to construct absorbing boundary
conditions for such media.

Keywords Wave equation - Random media - Periodic media

1 Introduction and model problem

The propagation of waves in periodic media has seen a regain of interest for many important applica-
tions, particularly in optics for micro and nano-technology. However, in real applications, the media
are often not perfectly periodic and the perturbations can be partially known. The use of randomness
to model this partial knowledge is particularly well suited.

We want to propose a numerical method for computing the propagation of waves in such media.
More precisely, we want to reduce the pure numerical computation to a bounded region, typically
a region where the medium is well-known (i.e. not random). It is then necessary to construct trans-
parent or absorbing boundary conditions to impose at the boundary of the computational domain.
These conditions should reflect the best possible the wave propagation in the exterior medium. They
could then be used, for instance, to obtain the statistics or to quantify the uncertainty of the field in
the computational domain (via the simulation of numerous realizations of the field). This paper is a
first contribution to the construction of such boundary conditions in particular situations.

We are interested in this paper in the one-dimensional time harmonic wave equation in infinite media
which are periodic with weak random perturbations. More precisely, let ((), F,P) be a probability
space. We consider a random medium occupying R, characterised by the following coefficients

Ke(X, W) =Kper(X) + Re(x, w),

forae. (x,w) € R x Q, B
( Pe(x, W) :Pper(x) + pe(x, w),

)
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where

- K¢ and p; are uniformly bounded from above and below, that is, that there exist strictly non nega-
tive constants x4, x_, o4, p— such that almost everywhere (a.e.) and almost surely (a.s.)

0<x <Ke <Ky, 0<p- <p:<ps. )
— Kper and pper are L-periodic functions with L > 0 such that
O<K—§KPQI‘§K+/ 0<p—§pper§p+.

- & and p, are random coefficients, depending on a small parameter . We consider in this paper
two types of weak random perturbations that are specified later. We suppose that there exists
a > 0 such that a.s.
Supp e N Suppps C R\ [—a,4]

We consider the time harmonic scalar wave equation (deduced from the wave equation assuming
a time-dependence ¢~ at a given frequency k), also known as the Helmholtz equation, in this
medium,

— Ox[Ke(+, w)0xtte (-, w)] — pe(+, w) k2u5(~,w) =f inR, foraew € Q, 3)

where f € L?(R) has a compact support. We can suppose without loss of generality that the support
of f is included in (—a, a). Of course, if the coefficients are random, the solution, if any, will also be
random.

It is well-known that the Helmholtz equation with real frequency is in general not well-posed in
the classical L? setting. This is linked to the fact that the physical solution is in general not of finite
energy (i.e. with a finite L> norm) since a propagation without attenuation is possible at infinity. On
the other hand, in the leO . framework, an infinity of solutions can be found. Usually, radiation condi-
tions which characterize the behaviour at infinity of the physical solution, have to be determined and
added to the problem in order to recover a well-posed problem. When the medium is perfectly peri-
odic or if it is a local perturbation of a periodic medium, the authors in [15[11] have derived radiation
conditions and shown that the problem is well-posed. For random media and even for weakly ran-
dom perturbations of periodic media, this question is still open. The classical framework to answer
to this question is to use the limiting absorption principle. More precisely, we introduce a damping
parameter 77 and we define the physical solution of (3) as the limit (in a sense to be determined), as 7
goes to 0, of the unique H' solution of the Helmholtz equation with damping

— O [ (-, )0l (-, w)] —pe(~,a))(k2 + zry)uZ(-,w) = finR, forae.w € Q. 4)

The proof of the limiting absorption principle requires a good knowledge of the solution of the
Helmholtz equation with damping. This is what we investigate here. The subject of the limiting
absorption principle will be the subject of a forthcoming paper. In the whole paper, we fix the damp-
ing parameter, so we suppress the subscript 7. In other words, we consider (@) with Im(k?)>0 so that
there exists a.s. a unique H' solution u,.

In order to restrict the computation to the bounded region (—a,4), one would like to characterize
the restriction of u, to (—a,a) by the solution of (3) in (—a,a) that satisfies boundary conditions of
the form

+ [Keg](-,w) + A5 (w)ue(-,w) =0on +a, foraeweQ (5)

where AF (w) are the Dirichlet-to-Neumann (DtN) coefficients defined by

A (w) = :F[KS%](:ECI,(U), forae.w € O

and uF (-, w) is the unique H! solution of the half-line problem,

{—ax[;cg(.,w)axu}(.,w)} — 0e(-, w) K2uE (-, w) = 0 on (+a, o), for a.e.w € O ©

uF(+a,w) =1, forae w e Q.
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For the periodic case, the construction of such DtN coefficients was proposed in [15/11]. A similar
construction is not achievable in the present case, because of the partial knowledge of the exterior
medium. Our goal here is to propose approximations of A (w) at different orders in e and quantify
how these approximations approach the exact DtN coefficient. As you shall see, the zero-order ap-
proximation of A (w) is a DtN coefficient associated to a periodic medium. We want to understand
if and in which sense the higher order terms could correct this first deterministic order term theoret-
ically. Moreover, we do not want to only give a theoretical definition of these terms, we also want to
be able to compute them and use them from a numerical point of view.

Finally, let us describe now the two types of weak random perturbations that we study in this paper.

1. the homogenization regime. We suppose that for a.e. x € (+a,+t00), w € Q, k; and p, can be
written as

X

X
-, =
€ €

e (1) = Kper () (1 + 15 (S, @) 1, pe(, @) = pper(0) (1 +18 (5, w)),

where v and vf are stationary and ergodic processes that are supposed to be with mean zero
without loss of generality. When xper and pper are constant (denoted resp. by xo and pp), this is
the classical setting to apply stochastic homogenization theory (see for instance [1822]). In that
case, it is well known that when e goes to 0, the family (1) converges almost surely weakly in
H*(#a, +-00) to the solution of the Helmholtz equation with effective constant coefficients xo and
po. Under additional assumptions on the coefficients (strongly mixing properties, short range of
correlation,...) it is possible to provide error estimates in terms of e. This is called the quantitative
homogenization. This was investigated in lots of papers for any dimension (see for instance [14,
3)/6]]). A precise definition of the first corrector (i.e. the second term of the asymptotics in terms of
) was given in 1D in [5,[13] provided that the coefficients satisfy some mixing properties. Under
the same properties for v and vf (stationarity and strongly mixing property), we propose here
an extension of these results when the coefficient «per Or pper are general periodic functions. Let
us emphasize that to derive an asymptotic expansion of the DtN coefficient, we need a precise
description on the flux k.1 and not only the solution. See Section

2. Rare random perturbations case. We suppose here that for a.e. x € a4, +00), w € ), the pertur-
bations &, and g, defined in (1) can be written as

Re(x, w) =be(x, w)Rper(x),
Pe(x, w) =be(x, w)ﬁper(x)/
where Rper and fper are L-periodic functions and the random perturbation b is given by

be(x,w) = Y 1y (x)Bl(w), I = [L, (j+1)L]. @)
jEZ

Here (B}) jen are independent Bernouilli random variables with parameter e € [0, 1]. Intuitively,
each period with parameters {xper, Oper} is perturbed with probability ¢, independently of the
other periods, to have its coefficients modified to { Kper + Kper, Pper + ﬁper}. The idea of this prob-
lem originates from a paper [1]] by C. Le Bris and A. Anantharaman who worked on this particular
problem but in the context of homogenization to model composite materials with defects. [2] and
[20] extend the framework to other random perturbations but are still considering the homog-
enized problem. We want here to investigate this case for the Helmholtz equation and in the
general regime where homogenization techniques cannot necessarily be applied. See Section [4}

2 Preliminary results
In the whole paper, for any Banach space V, we define

L2(Q, V) :={u, forae.w e Q, u(,w) €V, E[||lu(-,w)|}] <+ }
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equipped with the norm
i € LA(O,V), |lullzqv) = VE[[u( @)lIF]-

The approximations of the DtN coefficients A at different orders in ¢ are obtained from similar
approximations of the half-line solutions u;. The half-line problems (6) are similar but independent
one from the other. We can then concentrate on one half-line problem to obtain approximations of
the corresponding solution and the corresponding DtN coefficient. Without loss of generality, we
suppose that a = 0. In the sequel, we thus study the solution u} € L?(Q, H!((0, +0)) of

—0dy [Keaxuj] — D¢ kzug+ =0on (0, +oo), ®)
ut(0,-) =1.
and the corresponding DtN coefficient defined a.s. as
ouy
Ad = =l -1(0,1). ©)

The well-posedness of the half-line problem (8) is recalled in the following proposition.
Proposition 1 There exists a unique solution in L>(Q, H((0, +0)) of (8).

Proof The proof is really classical for deterministic problem, we only extend it for our random set-
ting. It is sufficient to show that for any f € L?(Q, H~1((0, +c0)), there exists a unique solution in
L?(Q, H}((0, 4+0))) of

— 0y [Ke0,0] — pe k*v = f on (0, +0c0).
Let ac : L2(Q), H}((0, +00))) x L*(Q, H{((0, +00))) — C be the sesquilinear form defined by

Yo, w € L*(Q, H} (0, +0))), ae(v,w) =E [<Kggz,?;j> —k2<psv,w>] ,

where (-, -) denotes the scalar product in L2((0, +-00)). To apply Lax-Milgram theorem, the only dif-
ficulty comes from the proof of coercivity of a.. For all v € L%(Q, H}((0, +c0)))

%(%a(v,v)) =g (}(lE {<K£gz,gz> —k2<pqv,v>)] ,

1 dv Jv
= —S(k)E [|k|2 <K‘fax’ 8x> + <p,70,v>] .

Thus, using that for all z € C, |z| > 3z, we obtain

Since we are working in presence of dissipation &(k?)>0, we know that the solution’s amplitude

decreases exponentially to 0. The first step in our study is to take advantage of this decaying property

and approximate the solution u, by the solution of the Helmholtz equation in a finite interval. So for

any N € N, let us define u} the unique solution in L2(Q), H'((0, NL))) of the following problem

—dx[KedxulN] — pe KPulN = 00nQ x (0,NL),

N B N B (10)
up (0,-) =1, uy(NL,-)=0.

This problem is well-posed in L2(Q), H'((0,NL))) as a direct consequence of the following proposi-
tion.
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Proposition 2 Forany f € L?(Q, H~1((0,NL))), there exists a unique solution o™ in L*>(Q, H}((0, NL)))
of
—0y [Kgava] — Pe K2oN = fon (0,NL),
and
N
[0 2, o)) < Cllfl2g0,m-1(00,n0)))-

where C = {%(k)\k| min (";ﬁ,p,)} _1.

The proof is the same than the one of Proposition|i}

Remark 1 The condition on x = NL is a Dirichlet condition but it could be of course Neumann or any
combination of the two.

We have the following estimate of the approximation of u. by uX.
Proposition 3 There exists a constant C > 0 depending on k, k. and p_ such that for all & < S(k*)p_ /x4

N —aNL

g —ue 2o m (onny)) < Cem ™M (11)

We can then choose N to obtain an error as small as we want to. Let us finally define the DtN
coefficient associated to

oul

AN = —[ke—==1(0,). 12

Y=~k 5E10,) 12)

In the following sections, we propose an asymptotic expansion of u and AN in terms of ¢ for the

two cases described at the end of the Introduction. In both cases, we expect that the limit behaviour

of ul or in other words, the first term in the asymptotic expansion, is the solution of the problem

with the periodic coefficients (err, pper). Let us define u{;gr the solution of the wave equation in the
unperturbed domain (0, NL). ”;I;]er is the unique solution in H'((0, NL)) of
{ — Oy [erraxu{,\gr] - kzp]peru}];]er =0 in(0,NL), 13
Uper(0) =1, uher(NL) = 0.
and /\{;Ier is the associated DtN coefficient defined by
Aber = —[Kperdxitper] (0). (14)

3 Homogenization regime

We consider in this section the solution ul of when the coefficients x. and p. are such that for
ae.xe Rtandw € O

we(x) = per (V) (L0 () 7, pel @) = pper () (14 4(Z, ),

where we recall that per and pper are L-periodic functions and v¥and vf are jointly strictly stationary
processes on (Q), F,P) that satisfy strongly mixing properties. Without loss of generality, we suppose
that v* and £ have mean zero.

If v¥ and vf are jointly strictly stationary ergodic processes and Kper and pper are constant (resp.
ko and pg), we know from the stochastic homogenization theory that u) converges weakly a.s. in
H'((0,NL)) to u} unique solution in H!((0, NL)) of the following homogenized problem

— kod2ud —K*poul =0 in(0,NL),

ud (0)=1,  u)(NL)=0.

We want to establish a similar result in the case of a perturbed periodic medium, quantify the rate
of convergence and compute a corrector, i.e. the second term in the asymptotic expansion of ué\] in
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terms of e. As for the classical quantitative homogenization result, the mixing properties of v¥ and v{
are important to quantify the rate of convergence of uY and to exhibit a corrector. More precisely, we
assume that 1§ and v{ verify jointly a specific type of strongly mixing assumption: they are jointly
p-mixing processes with an integrable and decreasing coefficient ¢. In the case of constant xper and

Pper, extensive work has been done to quantify the convergence of ul to ué\’ (see for example [10]).
To extend the setting to periodic xper and pper we choose to follow the specific approach of [5].

Before doing so, we recall elementary definitions and properties of the stationary and strongly mix-
ing processes.

3.1 Stationary, ergodic and strongly mixing processes : definitions and properties

Definition 1 A process f : Q3 x R — RP is strictly stationary on (Q, F,P) if foralln € IN*, x1,...x, €
R, I, I, I, € B(RP)andally € R

P(f(x1+y) €h,...f(xn+y) € L) =P(f(x1) € I, ... f(xy) € L)
In other words, the distribution of f(x1 +y), f(x2+y),..., f(xn +y) under P is independent of y.

Let X denote the set of bounded measurable functions g from (R, B(R)) to (R”, B(IR?)) that verify
a.e.
il < C <min(p—, py 50—, x+), Vi € [[1, p].

B(IR?) denotes here the Borel o-algebra of RP. We endow X with the associated cylindrical o-algebra
Fx.

For y € R, we introduce the shift operator on X defined by
0,8 =8y +), Vg € X.
If f is a strictly stationary process, we have that forally € R, A € Fx
P¢(A) =Ps(6,A),

where [P is the law of f defined by

Pr(A) :=P(f € A).
We say that the shifts 6, determine a measure-preserving flow in (X, Fx, Py).
Definition 2 A set A € Fx is called invariant if for all y € R, we have A = Gy’lA.
Definition 3 We say that the process f is ergodic if for all A € Fx invariant, P¢(A) € {0,1}.

We recall now the following fundamental result on stationary ergodic processes, on which is based
the demonstration of the stochastic homogenization result for one dimensional problems. The proof
of this result can be found in [24}/19].

Theorem 1 (Ergodic theorem) We suppose that f is a strictly stationary ergodic process. Let g : X — IRP
be a measurable function in L' (IPf). We have P-a.s. and in LY(IP)

1 /T
o7 | W+ )y —— Elg()].

A sufficient condition for a stationary process to be ergodic is to be strongly mixing.

Definition 4 A stationary process f is strongly mixing if forall A,B € Fx

Ps(AN6,"'B) v IPf(A)P(B).

Proposition 4 A stationary strongly mixing process is ergodic.
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Proof Let A be an invariant set of Fx. We take B = A in the definition of the strongly mixing process.
Since forally € R, Gy’lA = A we obtain Pf(A) = IPf(A)Z. Thus P¢(A) € {0,1}.

Definition 5 The process f := (f1,...,fp) is p-mixing with an integrable and decreasing coefficient ¢ if
there exists a function ¢ € L'((0, +00)) such that for all Borel sets A,B € B(R) and alli,j € {1,...p} the
following inequality holds for all g4 ; € L*(Q), Fa;,1P), 8B, € L2 (0, Fp,j,IP),

E|(34; — Elga,])(gs; — Elgn,])]
E(g% |Elg,]

|Corr(ga,i gs))| = < ¢(d(A,B)), (15)

where F 4 ; (resp. Fp,j) denotes the sub-o-algebra of F generated by fi(x, -) for x € A (resp. f;(x,-) for x € B).
In this paper, we will also suppose that the corresponding function @ is such that ¢'/* € L1((0, +00)).

Let us define the cross-correlation functions associated to a stationary process f : (O x R — RP
defined by

Ry 5 (x) = E[fi(y) fily + x)], Vi, je{l,... p},

where f = (fi,...,fp) and foralli, f; : Q x R = R.

Note that since f is strictly stationary, (R firf,')i,j as defined above are independent on y. Note also
that if f is a strictly stationary and strongly mixing process then if f is p-mixing, its cross correlation
functions are integrable on R (take A = {y} and B = {x + y}).

Finally we say that two processes v* and v* are jointly strictly stationary and strongly mixing if
(v*,vP) is strictly stationary and strongly mixing.

Let us now state two technical results that will be useful for our study.

Lemma1 Leta',i € {1,...,4} be bounded zero-mean stationary jointly p-mixing processes with coefficient
@ € L((0, +-00)) such that ¢'/? € L1((0, +c0)). Let al := a’ (g) For a fixed D > 0, we have the following

estimates

/ / 2(t2)] | dtidts < Ce, 16)
/OD/OD/OD/O [E[al (t1)a2 (t2)a2 (t3)a2 ()] | dtrdtadtsdty < Ce. 17)

Proof Let 0 < x1,xp < D. By definition of the correlation function, we can express the left hand side

of (16) as follows
/ / tl tz ‘ dl’ldtz = / /

By a change of variables and integrability of R, 4,, we get

7 [ [Blakte)ants < |,

al u2 ) ’ dtldtz

X
Royas (3)| 4 < e DIRayas 12y
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Let X be the set of permutations of {1,...,4}. From [5, Lemma 2.1] (which gives us the first inequal-
ity) and thanks to a change of variables, we can show that

D D ;D /D
////‘IE[a}:(fl)ﬂg(fz)ﬂg(fs)ﬂg(blﬂ‘dhdtzdfsdtzp
t t —t
<cy / / / / <|"<1 (2)>¢% (' L "(4)|>dt1dt2dt3dt4,

ceL

< 24C Dz/ / (t1|> o <|t2|> dtydty,
2¢
2

< 24Ce2D? </0°° (p%(|s|)ds) .

Lemma2 Let D >0, H!,i € {1,2} be operators on L?(0, D) defined by

. D .
Hf() = [ H (xy)f)dy

such that H',i € {1, 2} are bounded functions on {0 < x,y < D}. Let a',i € {1,2} be bounded zero-mean
statzonary jointly p-mixing processes with coefficient ¢ € Ll((O +00)) such that ¢'/% € L1((0,+00)). Let

a, = a' (s) Then there exists a positive constant C such that for all f € L*([0,D]),

E[|[#' [a:f1l172] < CellfllE~, (18)
E (|1 a¢ H?[a? f1]II72] < Ce*|IfIF= (19)
Proof We have for all f € L*([0, D])

B(I#0 et A1) = [
- /D /D/D H' (x, ) A (x, t')E[a} (t)al (t')] () f (¢ )dtdt dx,

<clfis [ [ [ ekl )] arara

The first inequality in Lemma (T allows finally to show that
E[|[#'a: f1117.] < eCIIf||%-

We proceed in the same manner to obtain the last estimate. Indeed, for all f € L®([0, D])
17,1 4/21,2 1712 PLPon 1 P 2
B[l w22 f)IE] = B[ [ [ H cal(y) [ B2y, 2)e2 () f()dzdy
=L i e 2 )
o Jo Jo Jo Jo ' ’ ’ ’
E(ac (y)ac (y)ai (z)az (2')] f(2) f (') dydy'dzdz'dx,
D /D (D /D
<clflz [ [ [ [ Bl wal(y)ad(2)a2()] [dydy dzaz
o Jo Jo Jo

The second inequality in Lemma () gives us
E[|[#"[a; #?[az f1]II72] < € ClIfII%-

D 2
[ oy pay| ax),

2
dx] ,
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Remark 1 These estimates are central in the analysis of the following section. Similar results hold if f
isin L2(0,D):

E (1# ac H?[a2f1]II72] < Cell £172 (20)
orif H',i € {1,2} are supposed to be in L2+ (0, D) for some 7 > 0 (as it is done in [5]).
In the following, we suppose that v¥ and £ are zero-mean stationary jointly p-mixing processes
with coefficient ¢ € L((0, +-00)) such that ¢'/% € L((0, +-0)).
3.2 The limit behaviour

We expect that the solution u} of tends, in a certain sense to be determined, to the solution u
of the problem with the periodic coefficients (kper, Oper)-

N
per

Let us introduce the Green function G associated to the periodic problem as follows: for all y €
(0,NL), G(-,y) is the unique solution in H!((0, NL)) of

— Ox [erraxc('fy)} - kzpperG('/y) = 5( —]/) in (O, NL),
G(0,y) =0, G(NL,y)=0.

u}Z;]er and uN can then be expressed for all y € [0, NL] as
u}I)\{sr(y) = #per(0)0xG(0, ),
N NL - N o [NE <~ N N
u @) == [ Gy Rawd| @+ [ Gl y)pend| (0 + ufln (),

where we recall that R := k¢ — Kper and e := pe — Pper-

Let us introduce the volume integral operators G and G on L?((0, NL)) defined by

NL

Uf € 2(0,NL), ¥ € (ONL), 670) = [ Gl and Guf) = [ 9:G(x) f(x)d,

ul reads then

K ~
ul = —gl[K—gvi\]] + K2G[peulN] + uII;Lr, (21)
€
where we have introduced v := x.9,ul. Since u} is solution of (I0), it is easy to see that v,

corresponding to a flux quantity, is solution of the following equation

1. v K N .
—0x[=0xv, | — —vy =0 in(0,NL),
e e ) (22)
— [=0:0N](0) = K* and =00} ](NL) = 0.
Pe Pe
We expect that vN tends to vgfer '= KperOx uger, where Ug]er is solution of the same problem as vY but

replacing ke (resp. pe) by Kper (resp. pper). The associated Green function, denoted by G*, is defined
as follows: for all y € (0, NL), G*(-,y) is the unique solution in H'((0, NL)) of

1 k2

0.G*(-,y)] —
Pper <G y)] Kper

! 0xG*](0,y) =0 and [ L
Pper Pper

— 0]

[

G*(y) =4(-—y) in(0,NL),

9:G*](NL,y) = 0.
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and vY can then be written for ally € (0, NL) as
Vper(¥) = K°G*(0,),

* Pe N Z/NL . Re
9:G*( 9,0 (x)dx — k G*(x, dx + oY,
0= [ 06 [P a6 (o) [l 0+ ()

By introducing the associated volume integral operators G* and G defined by

Correspondingly, Ug]er

NL
Vf e L2(0,NL), Wy € (0,NL), G*f(y) :/0 G*(x,y)f(x)dx and Gi f(y / 9:G* (x,y) f(x)dx,

oN reads then

2.k Pe 20%7 Ke N N
-k g1 [pper ] kg [errKs v ] * Oper (@3)

N
xvs .

where we have used that u = — >

k?pe
Thanks to the two expressions and (2I), we can show the expected convergence result with a
quantification of the convergence. The result is the same as the classical one of the stochastic homog-
enization theory, obtained in [5] and [13].

Theorem 2 There exists a constant C such that

[ urIJ\r]erHLZ(Q,LZ((ONL < CVe, o — rIJirHLZ O2((ONL)) < CVe

(24)
and AN = Apiyllp2(qy < Ce.

Proof First note that G, 9:G, G* and 0,G* are uniformly bounded in {0 < x,y < NL}.

Indeed, G is in H!((0, NL)) and thus continuous on (0, NL) with traces at 0 and NL. This ensures
that G is bounded on [0, N L]Z. Similarly, one can write the equation verified by the flux x.0xG as
we did for v¢. kr0xG is H! in both intervals {0 < x <y < NL} and {0 < y < x < NL} and thus
uniformly bounded on [0, NL]. Since xper € L®(IR), 0xG is also bounded on [0, N L)?. We can prove
with similar arguments that G* and 9, G™* verify the same property.

Moreover, for a.e. x € (0, NL),

and

S

kg(x,') _ K(E ) ﬁs(x/') P(
Ke(x, -) ’
We have assumed that v and 1£ are zero-mean stationary jointly p-mixing processes with coefficient
¢ € L'((0,+00)) such that ¢!/2 € L1((0, +-0)). From the proof of proposition [2| we know that u
and v are bounded in H'((0, NL)) uniformly in w and e. The continuous embedding of H!((0, NL))
in L°([0, NL]) implies that uY and vV are bounded in L ([0, NL]) uniformly in w and e. Moreover,
Kper and pper are bounded from below by a strictly positive constant.
We can therefore apply the estimate [I§ of Lemma (2) and get the existence of a constant C > 0
such that

IE[ugl[,’i—jvéVnF] +E[||[K%G[pul]|?] < Ce.

This allow us to get the estimate on E[||ul — u{Y[|?]. Similar arguments hold to estimate E [||oN —
BIF]
Finally, by definition (12) and (T4), A and A, are nothing else but
AN =9N(0) and /\{;Ier = vf;]er(o).
Then using (23), we have

N _ 3N 2 (NEL s Pe N 2 (N Ke N
Ag = Aper = —k /0 0:G (xlo)[PperuS | (x)dx — k /0 G (x,O)[errstE | (x)dx.
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By using that G*(-,0), 0xG*(-,0), uN and v are uniformly bounded in [0, NL] and that Kper is bounded
from below by a strictly positive constant, we show easily that there exists a constant C > 0 such that

NL NL /NL
E[|AN - /\}1;’er <CIE/ / vs dxdy—i—/ / )dxdy}

It is sufficient to use the estimate (16) of Lemmalto conclude. ]

3.3 Study of the first order corrector

We need now to identify the term of order /¢ in the error terms. By looking at and (23), since

ul! ~ uby, and o ~ vf),,, a natural intuition is that
N _ Ke N 2 N N _ 2057 Pe 20%7 Ke N
U, per ~ _gl[ per] +k g[P per] and Ue per ~ —k gl [P per] —k°G [K K vper]‘
per perire

We prove and quantify this approximation in the following proposition.

Proposition 5 The following estimate holds

N =, (—Gi XN ] 4+ K26 [, < Ce,
3 pe ( 1 [ pe ] [P pe ]) 2(012((0NL))
* K
ZJ?] - v;\ér - (_kzgl [ per] - kzg [;vé\ér}) < Ce.
per Kperke L2(Q,L2((O,NL)))

Proof Let us denote
i
Ue = ui\] per ( gl[ . }I;{er] +k2g[p€ perD

Using (21), we can show that
K
ue = gl [é(vs Z)perﬂ - kzg [P ( g,\] - ”g{ar)]'

We know that ul, u f;{er, v, and vper are in L*([0, NL]), so one could use (18). However, we would

have in that case only [|Ue||12(,12((0,n1))) ~ Ve Instead, in order to have a better estimate, we have

to use the same trick as in [5] and replace in the expression uY of (21), the expression of N and
reuse the expression of ulN. We obtain

= e — 1[0l + PG i) + 261 [£GT LM 101 (g7 [ o]
Ke per € pere

K6 g[%vg]w*g[pgg[peum], (25)

which yields directly

Ke

o] —kzg[psgl["g o] + k4G [5G peul]].

U = R, (£GP ut)) + 26, 07|

per Ke KperKe

Since ul is bounded on (0, NL) uniformly with respect to w and ¢, as in the proof of Theorem 2, the
estimate (19) gives us

kE k ~€
E [Hgl [;Sgl [PF::er ”g\]

Ke

o] H2+1EHQ[Pe91[ s

+E|\Q[Peg[pg MII? < ce

This ends our proof for u . The estimate for v can be demonstrated in the same manner. [ |

112)+ El6 [£56"]

errK
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Let us introduce the so-called correctors

1 2 N Lo Pe N | 20| Ke N
e \[( 9 [ per] g [P perb and e \/‘;—( o [Pper per o KperKe vpe(r26)).
and the associated DtN map

Ae = 01,(0). (27)

These correctors depend on w, and thus they would be impossible to compute, if we have only a
partial knowledge on the medium. The following theorem describes however the distribution of
these terms.

Theorem 3 uy, and vy, converge in distribution in the space of continuous functions C([0, NL]) to the
Gaussian processes specified below

NL

lE — Ull(x/ t)th,
e—0 Jo
r NL
U1, — O'U(x, t)th.
e—0 Jo

where Wy is a standard Brownian motion and for all £ € {u,v}

xt—Z/ (Fp(x,t,0)Fp(x,t,2))dz,

with

Fu(x,t,2) = Kps(2) G (x, ) ppertihy, (x) + 15(2)x G (x, £) 0l (%),

1
Fo(,,2) = —Kps(2)0:G" (x, ity (3) + K (2)G (3 1) L~ (x).
N _ N
Moreover, % admits the same limit as uy . in distribution in the space of square integrable functions
€

L%((0,NL)).

Proof We follow the result from [7] that we give here for completeness.

Theorem 4 Let (Yy,) e+ be a random process with values into C([0, D]). (Yy)nen+ converges in law to 'Y,
a random variable with values in C([0, D)) iff

1) (YH)HG]N* is tlg]’lt

2) the finite-dimensional distribution (Yy,(y1),- - -, Yu(yp)) converges to the joint distribution (Y (y1),-- -,

forany p € N*,yy,--- ,yp € [0,D].

We show in the sequel that Y,, = 1, and similarly Z, = v, satisfy 1) and 2) for any (e,), such
thate, — 0.

Tightness First tightness is showed by proving that the following Kolmogorov criterion holds.

Lemma 1 Let (Yy),eN+ be a random process with values into C([0, D]). If (Yn)neN+ verifies

1) there exists yo € [0, D],y > 0 such that sup,, -1 E[|Yx(y0)|"] < +o9,

and

2) there exists a, f > 0 such that Vy,y' € [0, D], E[|Yu(y) — Yu(y')|*] < Cly — y/|'*P, where C does
not depend on n,

then (Yy)neN- is tight.

Y(yp))
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u1(x) and v1¢(x) are uniformly bounded in ¢ in L?(Q) for any x € [0, NL]. Therefore, the first
assumption is verified for v = 2 and any yo € [0, NL]. Next we show that for all y,/ € (0,NL)
uniformly in &

E[fu1,e(y) — u1,e(y)|*] + E[Jore(y) — v1,(y)[*] < Cly — /|
Lety,y’ € [0, NL]. E[|u1¢(y) — u1(y')|*] is a sum of terms of the form
NL /NL ,NL NL 4
€2 / / / / *(t2)a OITTIH (ti,y) — H (1, dhdtydisdty,

i=1

where (a', H') € {{(ps,G), (rs,9xG), (ps, G), (ks,0xG)}}. We use once again Lemma (2.1) in [5] to
bound the expectation and obtain

4

NL NL /NL NL
82/ / / / 2(t2)a H (ty) — H'(t,y))dtdbydtsdty,

- 82 /NL/NL/NL/NL 1 ( o1 a(2)|>q); <t0(3);t0(4)|>

=

geX

H |H'(t;,y) — H'(t;,y)| dtidtrdtsdty,

where X is the set of permutations of {1, ...,4}. This can be bounded in turn by terms of the from

NL /NL .
/ / 1 <|51 52|>H|Hz 51,y Hl(Si,y,)|d51d52

If H = G, G, we know directly that |H'(s;, ) — H'(s;, )| < Cly —y/|, since G is Lipschitz continuous
in y uniformly in s. Therefore if at least one H' in the product is G or G, we use that 9, G is bounded

2
(28)

on [0, NL] and that (p% | - | is integrable to get the result for the term.

We are thus left to deal with term of the form where H!, H? € {9xG, 9xG}. In order to use
that 0,G is piecewise Lipschitz continuous and bounded, we divide our integration interval into 3
parts. We suppose without loss of generality that y < y’. On (0,y) and (3, NL), 9xG is Lipschitz
continuous uniformly in s and we can bound |H!(s;,y) — H'(s;,y’)| by Cly — v/'|. Those terms can
then be dealt as the previous ones. We are left with the term on (y,y’), on which 9,G is not Lipschitz
continuous. However we can use that 9,G is bounded on [0, NL] and that ¢'/?| - | is integrable.

) / e 52|> 9:G51,) — 0:G 51,1 1:G (52,y) — 3G (52, ¥/ dsids
—y 1 e g
@2 ( )dr <CWy -y / @2|r|dr.

This concludes the proof of the tightness.

Finite-dimensional distribution Secondly, we need to prove that the finite-dimensional distribu-
tions converge to the finite-dimensional distributions of the wanted limit.

Letn € IN*. Lety,...,yn € (0,NL).

The finite-dimensional distribution (17 (1, w), . .., 11¢(y1, w)) has the following characteristic func-
tion for all t € R”

_ E[ﬁeitjuu(y]w
i=1
= E[exp (\;E </ONL 0s (g) fo(x,y,t)dx + /ONL Ks (g) fr(x,y, t)dx))},
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n
where f,(x,y,t) Z tik? Pper (X (x,yj)uger(x) and fe(x,y,t) = ) tjaxG(x,yj)v}I;]er.
j=1
The demonstratlon relies therefore on the convergence in distribution of oscillatory integrals of

the type — / f(=)m(t)dt where m is a continuous function and f a stationary p-mixing process

with an 1ntegrable coeff1c1er1t. Those integrals have been thoroughly studied, see for example [21}[16}
D )

5] and are proved to converge in distribution to / m(x)ocdWy, where 02 = 2 / R (r)dr. In partic-

0

ular, in Theorem (2.8) of [5]], one can find a clear idea of the demonstration of this result.

N N
— Uper

=

The convergence of comes consequently from the estimate in Proposition |

3.4 Numerical simulations

We present in this section the results of the numerical simulations that we conducted in the homoge-
nization regime. Our goal is to illustrate and verify the theoretical results that we proved above and
to show how our approach can be used to build approximated transparent boundary conditions.

3.4.1 Randomly perturbed periodic media in the homogenization regime

Our first step is to construct numerically the two zero-mean jointly stationary strongly mixing pro-
cesses v¥ and vf. Following [3], to obtain a stationary finite-range dependent or strongly mixing
process, a scalar white noise W, i.e. a sequence of independent standard normal random variables, is
generated and convolved with a bump function f. The desired process is then a smooth function of
this convolution. We choose in our simulations to take the sin of the convolution to preserve the zero-
mean property. The width and decreasing rate of the bump function gives the correlation length of
the generated process and the strongly mixing coefficient ¢. On Figure|l} we plotted an example of a
1

scalar white noise, a bump function f : x — e 1?1, and the zero-mean stationary strongly mix-
ing process obtained through the sin of the convolution of the two former. Note that with this specific
example of bump function, the process has a finite range of dependence of 2. The two processes v
and vf are generated in the same way but from different white noises. This gives two independent
processes that therefore verify the jointly mixing and stationary hypothesis.

Equipped with the two processes v and 1£, we can now simulate periodic media perturbed by
oscillating stationary processes. We choose a 1-periodic background medium characterized by the
two parameters

pgr =11+sin(27r-) and ppe = 1.1+4cos(27),

that we perturb to obtain ;' = # (1 +v5 (3)) and pe = pper(1+1£ (). We represented on Figure
R|two realisations of the randomly perturbed periodic coefficient p, for two different e. On the left in
green € = 0.01 and on the left in blue ¢ = 0.2. As ¢ goes to 0, the medium oscillates faster and faster.
This oscillatory behavior hints at the difficulties of computing exact solutions in this type of media.
Indeed, the faster the oscillation, the smaller the needed space discretization.

Different realizations of the medium lead to different solutions of (I0). To give you an idea of
the variety of solutions that we deal with, we plotted on Figure |3| three different solutions of
associated to three different media generated as described above for two different . On the left,
£ = 0.05 and on the right, ¢ = 0.2.

3.4.2 Asymptotic behavior of ulN

The first result that we want to corroborate is the convergence result of Therorem [2 We choose a
frequency of 0.1 and a damping coefficient 7 = 0.2. Before solving the equation, we compute thanks
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Fig. 1: White noise W, bump function f and zero-mean stationary strongly mixing process v,
obtained by convolution of W and f
\

Lf w lI
UL L

T

lmr “ “ | u w

Fig. 2: p, with respect to x for two different w and two different : ¢ = 0.01 (left) and ¢ = 0.2 (right)

Fig. 3: ul for different w and e = 0.05 (left) and & = 0.2 (right).

to Proposition[3|the number of periods N, that we need to consider our problem on, in order to obtain
a good-enough approx1mat10n of our solution on the half-line, say for example an error of 107°. We
then solve the equation (I0) on (0, NL), using a finite difference scheme with a discretization step
h = 0.001, for 300 different randomly generated media over a range of ¢ from 0.05 to 0.2. By the
Monte-Carlo method, we deduce, for each ¢, the norm in L2(Q, L?((0,NL))) of ulN — uPNe, and the

norm in L2(Q) of the associated DtN coefficient error AN — AN . In Figure@ are represented in blue

per-

log ||ulN — pe,||Lz a,12((0o,NL))) and in green log AN — pe,||Lz(Q) with respect to log(e). We recover
the theoretical rate of convergence of /¢ in the slope of 0.5.

Next, we want to exhibit the convergence in law of the corrector stated in Theorem [3} We display

this result for the DtN coefficient but note that we could have printed the exact same plots for the

corrector of ul or the flux vN at any point x € (0, NL). We represented in Figure El, on the left, the

N_ N
probability density of A1, = he \/2 I, for different e ranging from 0.05 to 0.2, approximated over

300 simulations per €. One can see that, as ¢ goes to 0, the probability density of A; . converges to
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A u;\' - llgle, (slope: 0.51)
1 [©-AY = A%, (slope: 0.5)

log(|| - 1)

31 L L L L L L L L L L L L L
-3 -29 -28 -27 -26 -25 -24 -23 -22 -21 -2 19 -18 -17 -16

log(¢)

Fig. 4: Rate of convergence of uY in L?(Q, L?((0,NL))) and AY in L2(Q) to resp. u;\ér and AN

per:

(a)

N N
Af _)\per

Fig. 5: (a) Probability density of ¢ asegoes to 0, (b) Normal quantile-quantile plot of the

€

AN_AN
corrector \/g”” for e = 0.05.

the density of a centered normal random variable. To quantify more accurately this limit behavior,
we plotted on the right the normal quantile-quantile plot of the same quantity. On the x-axis are
represented the quantiles of a normal random variable and on the y-axis the quantiles of our data. If
the corrector follows as € goes to 0 a normal distribution, its quantiles should accumulate on the red
line. We can see that it is here the case for ¢ = 0.05.

3.4.3 Transparent boundary conditions

In this last section, we expose how our approach can be of use in the construction of transparent
boundary conditions for randomly perturbed periodic media. We want to solve the wave equation
on the half-line [—1, +c0), where [—1, 0] is a known homogeneous medium with Khjn = Opom = land
[0, +c0) is a randomly perturbed periodic medium modeled as above. i is thus the unique solution
in H'((—1, +0)) of

— OxKeOyxlle — kzpsug =0 in(—1,+00),

ug(—1) =0.

We know that the above problem is equivalent as solving

— OxKpnomOxte — Ppomkite =0 in(—1,0),
ug(_l) - 1, axug(o) - /\z_ug(o),

where A is the DN coefficient associated to the problem of [0, +o0). We approximate A" by A%r

and construct an approximation of u, on [—1,0] that is cheap to compute. We solve on [0,1] the
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Fig. 6: Solution u in [—1, 0] with exact and approximated DtN conditions for ¢ = 0.05 (left) and
e = 0.1 (right).

®)

_0'5)_\%7””(_0'5) as ¢ goes to 0, (b) Normal quantile-quantile plot

of the corrector ug! (70.5)7\,4/?;””(,0.5) for e = 0.05.

Fig. 7: (a) Probability density of g (

homogeneous problem

— OxKpom Oy U PPOY — o0 KPuPPOY = 0 in (—1,0),
uapprox(_l) =1, axuapprox(o) — /\;\Lruapprox(o).
In Figure E] are represented in blue different solutions u corresponding to exact DtN boundary
conditions associated to different random media occupying (0, NL) and in red the approximated
solution u*PP"* corresponding to the approximated DtN boundary condition. On the left, ¢ = 0.05
and on the right, ¢ = 0.1. We can notice that as ¢ goes to 0 the width of the different realizations of
ul diminishes.
As proven in Theorem (3} we know nonetheless the limit distribution of the corrector u;, :=
N _, approx
g —u

as € goes to 0. To verify this result, we plotted in Figure on the left, the probability

density of 11 .(—0.5) for different € ranging from 0.05 to 0.2 approximated over 300 simulations per
e. The distribution of u; . seems to converge to a Gaussian as & goes to 0. This is confirmed by the
normal quantile-quantile plot of the same quantity on the right for ¢ = 0.05. The quantiles of the
data samples are well aligned on the red line representing the quantile of a normal law. We have thus
access to an approximation of order /¢ in law of the exact solution u.. This gives us among others
all its statistics and its cumulative distribution function at an order of /¢ for small «.

3.5 Conclusions and extensions

We provided in this section quantitative estimates of the convergence of the solution of the perturbed
equation to the solution of the non-perturbed problem and exhibited how we can build a better
approximation with a faster rate of convergence by considering the first-order corrector. Moreover,
we displayed an analytical expression for the limit in distribution of this rescaled corrector.

A natural question concerns the possible extensions of this study to higher dimension problems.
This is not straightforward since our proofs really use 1D arguments (for instance the definition (22)
of o).
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In higher dimensions extensive work has been done to establish quantitative estimates of the con-
vergence of the solution of elliptic equations with random oscillating coefficients. This corresponds
to the case where xper and pper are constant functions. A. Gloria and F. Otto in [14] and S. Armstrong,
T. Kuusi and J.-C. Mourrat in [3] proved optimal error estimates with close-to-optimal stochastic inte-
grability in the case of coefficients with a finite-range of dependance. In the latter, the convergence in
law of the corrector to a variant of a Gaussian free field is demonstrated. In [6], P. Bella, B. Fehrman,
J. Fischer and F. Otto obtained higher order approximations in weak spatial norms also in higher
dimensions and for coefficients with finite-range of dependance.

In the case where &, is unperturbed (that is v} = 0), similar results as ours are established in [5].

4 Rare perturbations case

In this section, let (B});cn be independent Bernouilli random variables with parameter ¢ € [0,1], we
consider a random medium occupying R, characterized by the following coefficients
forae.(v,w) € RY xQ, xe(x,w) =kper(x) + be(x, w)Rper (),
Pe(xX, w) =pper(x) + be(x, W)Pper(x),

where Kper, Rper, Pper, Oper are L-periodic functions with L > 0 and the random perturbation b, is
given by

be(x,w) = Y 15,(x)Bl(w), Ij=[iL, (j+1)L]. (29)
jEN

We recall that we investigate for this case the asymptotic expansion of the solution uY of in terms
of e and deduce an expansion for the associated DtN coefficient defined in (12).

4.1 The limit behaviour

As the probability ¢ for each period to be altered goes to 0, it is natural to think that the solution

N . . . N . .
ug converges, in a sense to be determined, to the solution upe, of the problem with the peri-

odic coefficients (Kper, Pper). We prove in this section that indeed ulN converges to u{}ér ase — Oin

L?(Q, H'((0,NL))) but only at a rate of /¢ as in the homogenization case. The weak convergence
rate in L2(Q x (0, NL)) is slightly better.

Theorem 5 (i) There exists a constant C > 0 such that
[ = per |20, m (o)) < C VE ltper i on ) (30)

and
A = Al < C Ve, 31)

where C = max(x, - [K12) [S(k) k| min (5,0 )] 7"
(ii) Weakly in L?(Q x (0, NL)), ul admits the 0-order asymptotic expansion

W =, +o(B)

Proof (i) Let 0 = ulN — u}]:]er‘ It is easy to see that ¥ is the unique solution in L2(Q), H!((0, NL))) of

(32)

— Ox[1eedx Y] — K2per? = Ox[beRperdxtiper] + bePperk tthy, in (0, NL),
r2(0) =0, r)(NL) = 0.

Using Proposition 2} we can show that

1721l 2, 0Ny < C (”bﬁaxug{er”LZ(Q,LZ((O,NL))) + ||b£”113\£erHLZ(Q,LZ((O,NL)))) , (33)
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where C = max(x, o4 |[k|?) [S(k) |k| min (‘k‘zfp >} -1

We can compute similarly each term appearing in the right hand side of the previous inequality. For
instance,

(j+1)L .
ettperF2(0,12 00y = E 2 J, Bl (P
N GHIL N 2 N |12
= L Elel() /],L e ()P = el e 22 -
]:

which, combined with (33), enables to obtain (30).
0
(ii) Let w? := Te 0 is bounded in L2 O, H'((0,NL))) thanks to (i). Thus w? and 0w? are bounded
€ \/g € € €

in L2(Q x (0, NL)). As x, is uniformly bounded, we know that x.d, ' is also bounded in L?(Q) x
(0,NL)). Up to extraction, w? and x.dy w'e converge weakly in L?(Q x (0, NL)). Moreover, since
10e [l 12(ax (o,n1)) = VENL, be/ /e converges weakly in L?(Q x (0,NL)), up to extraction, to a limit

by. Since it converges to 0 in probability, we know that by = 0. We divide (32 . ) by /¢, take the limit of
the variational formulation as ¢ to 0 and obtain that 7Y = o(1/e). |

4.2 First-order corrections

We want to refine the approximation obtained in the previous section. We know that at a fixed period
I; = (jL, (j + 1)L), the periodic coefficients are perturbed with a probability e. A natural intuition is
that a more accurate approximation of u, could be obtained by considering the solutions of the prob-
lem where the periodic coefficients are perturbed in one and only one period. Let us then introduce
forallj € {0,...,N—1}, u]N the unique solution in H!((0, NL)) of

—0x {(err + Illjkper)axu]N} - kz(Pper + ]lljm ﬁper)%N =0
in (0,NL), (34)
ulN(0) =1,  u](NL)=0.

and /\}V the associated DtN coefficient

/\JN = —[(err +]11j)axu]N] (O)

More generally, let p be an integer in {1,...,N} and j; < ... < j, be p indicesin {0,...,N — 1}, we
consider the periodic medium where exactly only the perlods j1s-- -, 1j, are perturbed. This medium
is characterized by the coefficients

P P
Kper 1 Z 1I/-m Kper and Pper + Z ﬂljm Pper
m=1 m=1

We denote u}:] iy the unique solution in H'((0, NL)) of

a |: Kper —+ Z ]l] err)axuh ] — k2 Pper + Z Il ]m per) ]N wrjp =0

in (0,NL), (35)

_ N _
0)=1 u) . (NL)=0.
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and /\JN the associated DtN coefficient

4
Aﬁ"“lfﬁ = —[(err + Zl Illjm err)axu]]‘;],u.,jp](o)-
m=
For a.e. w € ), we denote P, the set defined by

Poi={j€{0,...,N—1}, Bl(w) =1}

It is easy to see that u}N can be written for a.e. (x,w) € (0, NL) x Q)

ué\](x,w) =1lp,—z per )+ Z Z lpw:{jl,-..,jp}(w) ujl\ll,.‘.,jp (x). (36)

p=1 ]]<...<jp
The expectation of ) has therefore the following expression
E(ul) = (1—¢&)Nuper + ¢ (1 — )N~ ’”Z Y ou 1, o (37)
p=1 j1<..<jp
which yields directly the following result.

Theorem 6 In mean, u, and A¢ verify the following first-order asymptotic expansions
NN NN N 2
HIE[us ] — Uper — € Z (u] - uper)HHl((O,NL)) =0(e )/

[E[AN] — A;fer—ez (AN = Apen)| = O(e?).

Remark 2 Higher order approximations can also be derived from (37). For example, the second order corrector
reads

”]E[u?]] - u%r — £ 2 (uj per - ZZMN 2” +uperHH1((O,NL)) = 0(53)'

However, from a numerical point of view, we did not feel the need of taking into account higher order approxi-
mations.

The first-order correction for IE(uY) is indeed linked to the solutions in a medium with one and
only one one defect. The advantage of such expansion is that each term is solution of a determin-
istic problem set on a locally perturbed periodic medium. Using [15], these problems can be solved
considering only cell problems with (kper, Oper) OF (Kper + Kper, Pper + Pper). Computationally, the res-
olution is then really cheap.

Unfortunately, adding this corrector to uY does not change the rate of convergence found in The-

oremlm L2(Q, H'((0,NL)), as stated in the following proposition. Flgurelllustrates the different
rates of convergence that we exhibited so far.

Proposition 6 There exists a constant C such that

Jud — per —¢€ Z per )2 (QH((ONL))) = Cve, (38)

and

AN — A;,\]er—ez (AN =A< C Ve (39)
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Proof Forallj € {0,...,N —1}, let consider Z)]N = u]N per It is the unique solution in H!((0, NL))

of
— ax |:(er1- + ﬂljﬁper):| axv]z\] — kz(pper + ]lljﬁper)'()]l\l

= 0 [ Rperdxper] + k11 Ppertiper, in (0, NL),

N(Q) — N _
v; (0) =0, o;'(NL)=0.

Forallj € {0,...,N — 1}, we have the estimate

10N en onn)) < Clluperll (i +1)0))

for a positive constant C.

Let us introduce r! = uN — per —¢ Z UN It is the unique solution in L2(Q, H>((0, NL))) of
j=

— Oy [Ke0y7l] — K2pert = 0, [Rper (be — )axuper] + K2 Pper (b er
Ox [Rperbedy Z +k Pperbe Z v; 1
[ errZ]IIBU ]+k2pper2]l ]

n(0,NL),

rt(0) =0, r}Y(NL)=0.

As in the proof of Theorem f|and using Proposition [2]and we have that
\|73||L2(Q,H1((0,NL))) <C [H(be - E)axuger||L2(Q,L2((O,NL))) + | (be — f)uger||L2(Q,L2((o,NL)))
N-1
+£[||b€axUJN||L2(Q,L2((O,NL))) + Hbsvf\]||L2(Q,L2((0,NL)))] +¢f Z(:) ﬂIjUJI'VHHl] ,
]:
and then

721l 20, 0Ny < C

N-1 N-1
e(1— &) |luperllgn+ 2| Y- oY ln+ell Y ﬂzp}’llm] :
j=0 j=0

However, similarly as (37), one can obtain from asymptotic expansions for the expectation of
any smooth function of u,"'. Higher order approximations can also be derived.

Theorem 7 Forany ¢ € C®(R)

||]E[(P(u£\])] per —¢£ Z p(u per)HHl((O,NL)):O(SZ)' (40)

|]E[(P(”.]s\]))] per —¢€ Z CP /\N per)| =0(e ) (41)

This can be seen as an approximation in law in the first order in ¢ of uXN. Indeed, let P, be the
distribution of uXN. Let P(R) be the set of probability measures with compact support on R. In P(R),
the following asymptotic expansion holds weakly-*

N-1
Py =d,n +e 20 Sy =, + O(e?).
]:
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Fig. 8: x; ! with respect to x for two different w and two different e: ¢ = 0.05 (top) and ¢ = 0.2
(bottom)

Fig. 9: ul for different w and & = 0.05 (left) and & = 0.2 (right).

4.3 Numerical simulations

We present, in this section, a few simulation results to illustrate our theorems and exhibit how our
approach can provide a tool to build transparent boundary conditions for the studied randomly
perturbed periodic media.

We start off by exposing in Figure[§|two random realizations of the perturbed periodic media that
we consider for two different e. We take our two parameters er, and pper of the periodic medium to
be

cos(2m-) + 2,

and perturb each period with a probability e by & and gper such that
Kper + kper = Pper + ﬁpgr =0.2.

The parameters of the medium stay this way bounded above and below. The top row represents
two different random realizations of x; ! for ¢ = 0.05, that is a medium where each period has a
probability of 1/20 to be altered, and the bottom row represents two different random realizations of
x; ! for e = 0.2, that is a medium where each period has a probability of 1/5 to be altered.

For the two same ¢, we plot in Figure|§| three different solutions u!N obtained by solving the equa-
tion in three random media generated as described above. We chose a frequency of 1 and a damping
coefficient of 0.2. Before solving the system, we compute, using Proposition 3} the appropriate num-
ber N of periods to write our equation on, such that the error between the truncated problem and the
problem on the positive half-line is as small as desired, for example 10~°.
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A E () — Uper (slope: 0.8)
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Fig. 10: Rates of convergence of E(uN) and u) and their first-order corrections

4.3.1 Different modes of convergence and their orders

The first results that we verify numerically are the rates of convergence proved in the two previous
sections. We chose 8 values of ¢ between 0.05 and 0.4 and solved the equations for 2000 different
realizations of the medium for each value of e. Note that we need more simulations than in the
homogenization regime since we are working here with rare perturbations.

We computed by the Monte-Carlo method E[u)] and plotted the log of the norm of the error in
H'((0,NL)) of the 0-, 1st- and 2nd- order asymptotic expansion, with respect to the log of e. One can
see in Figure[10that the green lines with triangle markers have a slope of respectively 0.8,1.7 and 2.5,
for the 0-, 1st- and 2nd- order approximations, close to what we expected from Theorem |6} i.e. resp.
1,2 and 3.

Similarly, as Theorem and Proposition@predicted, when we plot the log of the errorin L2(Q), H((0, NL)))
of the 0-, 1st- and 2nd- order asymptotic expansion of ulY, with respect to the log of ¢, we find that
the slopes do not change and stay around 0.5. On Figure[I0} those lines correspond to the blue, cyan
and magenta lines with diamond markers. We find slopes of 0.5, 0.7 and 0.8 respectively. Once again,
to compute the expectation that appear in the norm, we used the Monte-Carlo method.

Note that we computed for this figure the 2nd order approximation. Here v; ; = uf\; —2ulN + e

foralli # j € [|1, N|]. Recall that uf\; denotes the solution of the equation in a medium where only
the ith and jth periods are perturbed.

Finally, we want to illustrate the last convergence result stated Theorem [7] i.e. the convergence in
law of the 1st order asymptotic expansion on ulY with a rate of 2. Since a similar result holds for the
Dirichlet-to-Neumann coefficient, we chose to represent this result on it. We thus computed the DtN
coefficients associated to the solutions in the 2000 realizations of our medium over the range of e.
We approximated over this sample the probability density of g2 (AS — Aper — €L A — /\per) for each
€. We then plotted those density functions in Figure [11} You can see that as € goes to 0 the density
function converges to a dirac as expected.

4.3.2 Homogenization regime

A second verification that we pursued is to compare our results with those of A. Anantharaman
and C. Le Bris. They obtain in [2] an asymptotic expansion for the homogenized coefficient of the
elliptic pde in the same media that we studied but in any dimension d > 1 and of course in the
homogenization regime. For d = 1, they derive an exact expression for the first order expression of
the homogenized coefficient a.. We used this expression to compute an approximation of the solution
u in the low frequency regime (frequency of 0.1) and compared it to our first order approximation.
In Figures (12} we represented in green with diamond markers our approximation and in blue with
triangle markers their approximations for two different ¢, ¢ = 0.05 on the left and & = 0.2 on the right.
One can see that they match in both cases.
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Fig. 11: Probability density of &> (Ae — Aper — € Z)\j — Aper) as € goes to 0
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Fig. 12: Comparison between our asymptotic expansion and [A. Anantharaman and C. Le Bris]’s
expansion for ¢ = 0.05 (left) and ¢ = 0.2 (right).

4.3.3 Transparent conditions and DtN

We consider a homogeneous medium on [—1, 0], where «j,,,;, = ppom = 1, and we want to solve the
wave equation with a Dirichlet condition at —1

— OyxKeOylle — kngug =0 in(—1,+0),
ug(—1) =1.
The randomly perturbed periodic medium lies in (0, +00) as before. As explained in the introduction,

the restriction of this solution to (—1,0) is the unique solution of the following equation with a
boundary condition of the form (B) at 0

— OxKpomOxlle — Phomk>ite = 0 in(—1,0),
ue(—=1) =1, 9yu:(0) = A ue(0).

We use Theorem [7]to approximate at a first order in law A, and construct an approximation of .
on [—1,0] that is cheap to compute. We solve

approx
- athomaxuepp -

N-1
WP(-1) =1, 9l (0) = (M;er fe Y AN - @;) ull"(0),
j=0

Onomk?ue?’°* =0 in(—1,0),

N-1
which is equivalent to imposing ug"" " = u%r +e) v]N on (0, NL). ug"""" provides therefore a
j=0
first order approximation in law of 1, in our bounded know domain (—1,0) bordering the unknown
random medium.
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Fig. 13: Solution u, in [—1, 0] with exact and approximated DtN conditions for ¢ = 0.05 (left) and
e = 0.1 (right).

30 25 20 -15  -10

Fig. 14: Probability density of ¢ > (ug(—O.S) — uZ’“’"""(—o.5)) as € goes to 0

We plotted in Figure[13|a few random realisations of the true solution u, on [—1,0] for two dif-
ferent ¢, on the left ¢ = 0.05 and on the right ¢ = 0.1. We represented as well the two approximated
solutions obtained by taking the Oth order (in green) and 1st order (in red) approximation of the DtN
coefficient in our boundary condition. Here the frequency is high and taken to be 20. Even though
our approximated solutions seem to provide a good estimate for u,, it seems that the 1st order ap-
proximation does not make at first sight a significant difference in bettering the estimate compared
to the Oth order. This is not surprising however, because we know that the convergence of ug'’ " to
ue does not hold almost surely but in law.

We thus exhibited the convergence in law of ug/ /™"

to u by representing the probability density
of ¢~ ( ue(—0.5) — ug’? rox(—O.S)) in Figure [14] for different ¢. Like before, the probability density
is computed over 2000 simulations per e. A similar figure could be constructed for each point x €

[—1,0]. This result might be a justification for using the 1st order approximation against the Oth-order
since the convergence in law to a dirac is faster for the former.

4.4 Other randomly perturbed periodic media

We consider a more general setting, where the random term b, in the perturbation follows on each
period, independently of the others, a distribution IPp,, which is not a Bernouilli distribution anymore
but any distribution that is rare in the sense that it verifies the properties enounced below. We express
thus b, as follows
V(x,w) €RY xQ, be(x,w) =) 1p(x )Bl(w
jEN

where (Bé) jeN are ii.d. random variables in L%(Q). We suppose that B; is uniformly bounded in w
and e by a constant K < M and that its second moment [E((B;)?) converges to 0 as ¢ — 0. M is chosen
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such that
Kper £ MR&per and pper = Mpper

still verify (2). This allows us to write the equivalent of theorem 5]in this setting
Theorem 8 uY converges to ul) at the following converging rate

ud — urla\irHLz(Q,Hl((O,NL))) <C ||E£HL2(Q) Hu{?\ér”Hl((O,NL))' (42)

To obtain the first order asymptotic expansion in law, we need to impose an asymptotic assump-
tion on Py . Note that the Bernouilli law of parameter ¢ verifies

Pg, = &g +€(61 — &o) + O(€%), weakly-*inP((0,1)).
We follow then the first section and assume that
Pg = o+ ePl + O(e?), weakly-* inP((—M, M)),
ie forall ¢ € C((—M, M))

E(g(8) - p(0) ¢ [ gar|=0(&).

In order to exhibit the first order term in our asymptotic expansion, we introduce ug\g sn_qv for

s1,- -+ ,SN € (—M, M), the solution of the equation in a medium where the jth period is perturbed at
alevel s;, i.e. bl(w) = sj for j € [|1,n]].

N
u50,~~ SN

_, is the solution in H'((0, NL)) of the following equation

N-1 N-1
~ N 2 ~ N
—0x (err + 2 5j ]leKPer> axus(]r"'rSN—l_ k (Pper + Z 5j ]11]' Pper) Usp, o sno1 = 0
j=0 j=0

in (0,NL),
ul o (0 =1, ull o (NL)=0.
We can show by induction that
F: (-M,MN — HY((0,NL))
(so, - -SN—1) > uﬁofr,,,,stl
is in C*°((—M, M)N)).
We can then express E(¢(u])) for any ¢ € C°(R)
N-1
Yo € CR), Blp()) = [ 00 ) TT Pacldsy) )

We use our asymptotic expansion on Pp_ to obtain the expansion for the product. Weakly-* in
P ( -M,M )

N-1 N-1 N-1
l_g Pb€ (dS]) = 1—([) 50(615]) + & ZO Pl (ds])ll;[50(dsl) + 0(82).
= = = )

We plug this expansion into (43) and obtain the following theorem.
Theorem 9 In H'((0, NL)), the following expansion holds for all ¢ € CZ(R)

N-1 M
E(p(d)) = () +e ¥ [ gl )P (ds)) + O(),
j=0 "7
i.e. weakly-* in P(R), P,y wverifies

N=l M 1 2
Py =g te L [ Gy P (ds) + O(2).
=
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4.5 Conclusions and extensions

In this section we proved in the case of rare random perturbations of a periodic medium the conver-
gence of the solution of the perturbed problem to the solution of the periodic equation. We exhibited
asymptotic expansions at any order in L?(Q, H'((0,NL))) for the mean of the perturbed solution
with respect to the rarity of the perturbation and a first order corrector in law for the perturbed
solution. This study can be easily extended to higher dimensions problems.

5 Conclusion

We have proposed approximations of the DtN coefficient for two types of weakly randomly per-
turbed periodic media. This analysis is for now based on the exponential decay of the solution in
presence of dissipation. Indeed this allows us to approximate the solution by the solution of a prob-
lem set on a truncated domain. We think that this analysis could be extended in absence of dissipation
when the frequency lies in the so-called spectral gaps of the underlying periodic operator. This will be
the subject of a forthcoming paper. Another extension that we are also looking at, is to consider other
weakly random perturbations of periodic media where the wavelength is still large with respect to
the correlation length of the random processes but is small compared to the distance propagation of
the wave.
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