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https://abursuc.github.io/slides/ensta/transfer-learning-2025.html

About me

PhD at Mines ParisTech

PostDoc at Inria Rennes and Inria Paris

Research Scientist at Safran, Valeo

Working on computer vision and machine learning for autunomous systems, i.e.
any robot that moves/flies

Contact:

e email: andrei.bursuc@gmail.com
» web page: https://abursuc.github.io/

o twitter: @abursuc
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Valeo's history in ADAS

Lane-Departure Semi-automatic Remote SCALA 2 for ADAS Domain
Warning Park Assist Park Assist Ist consumer L3 Controller
1991 2006 2013 2020 2023
T 2004 2007 2016 T 2022 T 2025
Ultrasonic Multi-beam Object detection Vision-only Complete L2
Parking Aid Radar in Rear Camera L2 System ADAS System
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1.5+ Billion sensors shipped in 30 years

Another 1.5+ billion sensors to be shipped in the next 5 years
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Valeo sensor suite

Ultrasonic Near field % Mid range ' Surround m Long range g Near field ' SCALA .

sensors radars radars view cameras cameras lidars
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Scalable system architecture
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From ADAS to AD - spectrum of vehicle automatization
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*ADAS = Advanced Driving Assistance Systems | **AD = Autonomous Driving
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From ADAS to AD - spectrum of vehicle automatization

Driving Limited Full
Assistance Self-Driving Self-Driving
n Blind spot detection n Parking valet n Robot taxis

m  Cruise control [ Highway pilot [ Delivery vehicle

Towards safer, more efficient and more available mobility

*ADAS = Advanced Driving Assistance Systems | **AD = Autonomous Driving
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valeo.ai

e ~25researchers & PhDs

e Dedicated to open research

e 10s of academic collabs across
France and Europe

e Offices: Paris, Prague

e Topics: perception, data
efficiency, forecasting,
reliability, explainability
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Deep Learning + Supervised Learning is a really cool and
strong combo.

bananas

What is the mustache
made of?

(a) Mobile phone query (b) Retrieved image of same place

NetVlad: place recognition, Arandjelovié et al. 16 Human pose estimation, Newel et al. 17

Visual Question Answering, Antal et al 15
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Deep Learning: how it works?
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e Predefine the set of visual concepts to be learned
e Collect diverse and large number of examples for each of them

e Train a deep model for several GPU hours or days
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Deep Learning requires large amounts of carefully
labeled data which is difficult to acquire and expensive
to annotate.
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Meanwhile, in the real world ...
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Difficult to acquire and curate large human-annotated
datasets

¢ Requires intense human
labor

o annotating + cleaning raw
data

Annotating such image: ~1.5h

e Time consuming and
expensive

e Error prone (human
mistakes)
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Difficult to keep the pace with an ever changing world

)

1980-1989

= > O B &
1982 1983 1984 1985 1986 1987 1988 1989

Men's fashion trends 1980-1989

C

e Data distributions shift all the time, e.g., fashion trends, new Instagram filters

* Infeasible to launch large annotation campaigns each time

Credit image: La Polo
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https://www.lapolo.in/blog/100-years-mens-fashion/

Difficult to keep the pace with an ever changing world

Super Mario from 1981 to 2017

e Sensors specs are frequently upgraded

e Infeasible to launch large annotation campaigns each time
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Difficult to keep the pace with an ever changing world

MATRIX
LED
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Europe

Cadillac

Halogen vs. LED

e Sensors specs are frequently upgraded

e Headlamps change the appearance of the scenes and of the vehicles to detect
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Outline

Transfer learning
Off-the shelf networks
Fine-tuning
(Task) transfer learning
Multi-task learning
Domain adaptation

Self-supervised learning
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Transfer Learning
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Transfer learning

e Assume two datasetsSand T

e Dataset S is fully annotated, plenty of images and we can train a model CN Ng
on it

e Dataset T is not as much annotated and/or with fewer images

o annotations of T do not necessarily overlap with S

e We can use the model CN Ng to learn a better CN Ny

e This is transfer learning
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Why using a pre-trained CNN (off-the-
shelf) would be a good idea?
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Image ranking by CNN features

e 3-chanel RGB input, 224 x 224

e AlexNet pre-trained on ImageNet for classification

A. Krizhevksy et al., Imagenet Classification with Deep Convolutional Neural Networks, NIPS 2012
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Image ranking by CNN features

e 3-chanel RGB input, 224 x 224

e AlexNet pre-trained on ImageNet for classification

« last fully connected layer (fcg): global descriptor dimension k = 4096

A. Krizhevksy et al., Imagenet Classification with Deep Convolutional Neural Networks, NIPS 2012
Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc
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VGG-16

224 X224 x3 224x224x64

@ convolution+ReLU
max pooling
@ fully connected+ReLU

@ softmax

K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, NIPS 2014
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VGG-16

Activation maps Parameters

INPUT: [224x224x3] = 150K 0

CONV3-64: [224x224x64] = 3.2M (3x3x3) x64 = 1,728
CONV3-64: [224x224x64] = 3.2M (3x3x64)x64 = 36,864
POOL2: [112x112x64] = 800K 0

CONV3-128: [112x112x128] = 1.6M (3x3x64)x128 = 73,728
CONV3-128: [112x112x128] = 1.6M (3x3x128)x128 = 147,456
POOL2: [56x56x128] = 400K 0

CONV3-256: [56x56x256] = 800K (3x3x128)x256 = 294,912
CONV3-256: [56x56x256] = 800K (3x3x256)x256 = 589,824
CONV3-256: [56x56x256] = 800K (3x3x256)x256 = 589,824
POOL2: [28x28x256] = 200K 0

CONV3-512: [28x28x512] = 400K (3x3x256)x512 = 1,179,648
CONV3-512: [28x28x512] = 400K (3x3x512)x512 = 2,359,296
CONV3-512: [28x28x512] = 400K (3x3x512)x512 = 2,359,296
POOL2: [14x14x512] = 100K 0

CONV3-512: [14x14x512] = 100K (3x3x512)x512 = 2,359,296
CONV3-512: [14x14x512] = 100K (3x3x512)x512 = 2,359,296
CONV3-512: [14x14x512] = 100K (3x3x512)x512 = 2,359,296
POOL2: [7x7x512] 25K 0

FC: [1x1x4096] = 4096 7x7x512x4096 = 102,760,448
FC: [1x1x4096] = 4096 4096x4096 = 16,777,216
FC: [1x1x1000] = 1000 4096x1000 = 4,096,000
TOTAL activations: 24M x 4 bytes ~= 93MB / image (x2 for backward)

TOTAL parameters: 138M x 4 bytes ~= 552MB (x2 for plain SGD, x4 for Adam)

K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, NIPS 2014
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Image ranking by CNN features

e query images

A. Krizhevksy et al., Imagenet Classification with Deep Convolutional Neural Networks, NIPS 2012
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Image ranking by CNN features

e query images : nearest neighbors in ImageNet according to Euclidean distance,
aka k-NN classifier

A. Krizhevksy et al., Imagenet Classification with Deep Convolutional Neural Networks, NIPS 2012
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Sampling information from feature
maps

CNN  p

e VGG-16 last convolutional layer, k = 512

G. Tolias et al., Particular object retrieval with integral max-pooling, ICLR 2016
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Sampling information from feature
maps

CNN h max 1 @

e VGG-16 last convolutional layer, k = 512

» global spatial max-pooling/sum

G. Tolias et al., Particular object retrieval with integral max-pooling, ICLR 2016
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Sampling information from feature

maps

VGG-16 last convolutional layer, k = 512

global spatial max-pooling/sum

£> normalization, PCA-whitening, £> normalization

MAC: maximum activation from convolutions

G. Tolias et al., Particular object retrieval with integral max-pooling, ICLR 2016
Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc
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CNN h max 1 ? whiten 1 @
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Global max-pooling: matching

e receptive fields of 5 components of MAC vectors that contribute most to image
similarity

G. Tolias et al., Particular object retrieval with integral max-pooling, ICLR 2016
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Global max-pooling: matching

e receptive fields of 5 components of MAC vectors that contribute most to image
similarity

G. Tolias et al., Particular object retrieval with integral max-pooling, ICLR 2016
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Global max-pooling: matching

e receptive fields of 5 components of MAC vectors that contribute most to image
similarity

G. Tolias et al., Particular object retrieval with integral max-pooling, ICLR 2016
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Regional max-pooling (R-MAC)

_)
H CNN p,

e VGG-16 last convolutional layer, k = 512

e fixed mulitscale overlapping regions

G. Tolias et al., Particular object retrieval with integral max-pooling, ICLR 2016
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Regional max-pooling (R-MAC)
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pool
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e VGG-16 last convolutional layer, k = 512

e fixed mulitscale overlapping regions, spatial max-pooling

G. Tolias et al., Particular object retrieval with integral max-pooling, ICLR 2016
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Regional max-pooling (R-MAC)
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3

e VGG-16 last convolutional layer, k = 512
e fixed mulitscale overlapping regions, spatial max-pooling

e £> normalization, PCA-whitening, £, normalization

G. Tolias et al., Particular object retrieval with integral max-pooling, ICLR 2016
Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc
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Regional max-pooling (R-MAC)
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VGG-16 last convolutional layer, k = 512

G. Tolias et al., Particular object retrieval with integral max-pooling, ICLR 2016
Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc
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£> normalization, PCA-whitening, £> normalization

sum-pooling over all descriptors, £, normalization

<

_>

fixed mulitscale overlapping regions, spatial max-pooling

wm 1D
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Similar strategies can be used for ViT architectures where the [cls]
token or [avg] of patch tokens can be used as image representations.
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Zero-shot classification with CLIP

(1) Contrastive pre-training

Pepper the Text
aussie pup Encoder i l i i

m || m || ™ | oy
L LT, | LT [ 4T | . LTy

i LTy | LTy | LTy | . | LTy

Image I LT, | 3T [T I T
Encoder 3 3741 312 3713 3 N
—» Ix InTy | IvTy | InT3 | . |InTIn

Training an image network and a text network together from 400M pairs of images
and captions crawled from Internet

A. Radford et al., Learning Transferable Visual Models From Natural Language Supervision, arXiv 2021
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Zero-shot classification with CLIP

(2) Create dataset classifier from label text

plane
car
. A photo of Text

a {object]. Encoder
(3) Use for zero-shot prediction Vol !
T, T, Ts Tn
Elrr;rtl:?)%eer 2! LTy [Ty | T | L | ITy
A photo of
a dog.

Use networks and embeddings in zero-shot (or open-vocabulary) classification

A. Radford et al., Learning Transferable Visual Models From Natural Language Supervision, arXiv 2021
Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc
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Implementation - numpy-like pseudocode

# image encoder - ResNet or Vision Transformer

# text encoder - CBOW or Text Transformer

# I[n, h, w, c] - minibatch of aligned images

# T[n, 1] - minibatch of aligned texts

# W i[d i, d e] - learned proj of image to embed

# W t[d t, d e] - learned proj of text to embed

# t - learned temperature parameter

# extract feature representations of each modality
I f = image encoder(I) #[n, d i]

T_f = text_encoder(T) #[n, d t]

# joint multimodal embedding [n, d e]

Ie 12 normalize(np.dot(I f, W i), axis=1)

Te 12 normalize(np.dot(T f, W t), axis=1)

# scaled pairwise cosine similarities [n, n]

logits = np.dot(I e, T e.T) * np.exp(t)

# symmetric loss function

labels = np.arange(n)

loss i = cross_entropy loss(logits, labels, axis=0)
loss t = cross_entropy loss(logits, labels, axis=1)
loss = (loss_ i + loss t)/2

A. Radford et al., Learning Transferable Visual Models From Natural Language Supervision, arXiv 2021
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Training CLIP is very expensive:

e ResNet (RN50x64): 18 days on 592 V100 GPUS
e ViT (Vision Transformer): 12 days on 256 V100 GPUs
e batch-size: 32.768

Such models that are expensive to train but can be repurposed for other tasks, are
referred to as foundation models.

R. Bommasani et al., On the Opportunities and Risks of Foundation Models, arXiv 2021
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Works very well in practice

StanfordCars +28.9
Country211
Foodl101
Kinetics700
SST2

SUN397
UCF101
HatefulMemes

STL10 [§+3.0
FER2013 i}+2.8
Caltech101 j§+2.0
ImageNet j|+1.9
OxfordPets ||+ 1.1
PascalvOC2007 |+0.5
-3. 28 Birdsnap
MNIST
FGVCAircraft
RESISC45
Flowers102
DTD
CLEVRCounts
GTSRB

PatchCamelyon

KITTI Distance

EuroSAT

-40 —-30 -20 -10 O 10 20 30 40

A Score (%)
Zero-Shot CLIP vs. Linear Probe on ResNet50

Zero-shot CLIP is competitive with a fully supervised baseline

A. Radford et al., Learning Transferable Visual Models From Natural Language Supervision, arXiv 2021
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CLIP zero-shot segmentation without human
annotations

MaskCLIP

CLIP-DINOiser

rusted van french pastries Marie Curie
green trees wooden table Sklodowska
clouds mountains plate laboratory flask

white horse leather bag
dark horse vintage bike

Irrelevant prompt predicted: aeroplane, cat, " , sofa, motorbike, dog

» leverage objectness information from another foundation model (DINO) to guide
CLIP local pooling

M. Wysoczanska et al., CLIP-DINOiser: Teaching CLIP a few DINO tricks for open-vocabulary semantic segmentation, ECCV 2024
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CLIP zero-shot segmentation without human
annotations

Training Inference

prompts:
{‘Eiffel Tower’,
‘toy’, ‘ground’,
‘sky’, ‘tr

’ |
; MaskCLIP conv3x3 i
v projection i
Dot i i
product e . o =
' | pense cLIP o X
2 i X|  features Ol
8 e = i
| g product : i = F :
5 " i
' v Guided Pooling 1
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' matrix A& affinity matrix A® 1} DINOlSlng i CLIP-DINOIser

» leverage objectness information from another foundation model (DINO) to guide
CLIP local pooling

M. Wysoczanska et al., CLIP-DINOiser: Teaching CLIP a few DINO tricks for open-vocabulary semantic segmentation, ECCV 2024
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CLIP can be extended to pixel-level representations

A
- Tr Feature 7}/ Zero Shot —>
- Extractor D —/ Pixel Fusion/”

"'

[ Global 1 ‘ Region-level

L Pixel-Aligned
Embedding ¢ Embedding f;

Embedding f; P

Image (X) ] [ Masks (r;) ] { Crops (b;) ]

» by default CLIP extract global image features (1 veector for the whole image)

e some methods fine-tune CLIP to get pixel-level features but they drift away
from text representations

e Concept-Fusion proposes a trick to get pixel-level features without any fine-
tuning (compatibility with text CLIP is preserved)

K.M. Jatavallabhula et al., ConceptFusion: Open-set Multimodal 3D Mapping, arXiv 2023 20/204
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CLIP can be extended to pixel-level representations

A
- Tr Feature 7}/ Zero Shot —>
- Extractor D —/ Pixel Fusion/”
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[ Global 1 ‘ Region-level

L Pixel-Aligned
Embedding ¢ Embedding f;

Embedding f; P

Image (X) ] [ Masks (r;) ] { Crops (b;) ]

» by default CLIP extract global image features (1 veector for the whole image)

e some methods fine-tune CLIP to get pixel-level features but they drift away
from text representations

e Concept-Fusion proposes a trick to get pixel-level features without any fine-
tuning (compatibility with text CLIP is preserved)

K.M. Jatavallabhula et al., ConceptFusion: Open-set Multimodal 3D Mapping, arXiv 2023 40/204
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Multi-modal CLIP querying on 3D meshes

Open-set
Multimodal
3D Maps

B

e the room layout is construction from a sequence of images from a camera
walking around the room (computed with Dense SLAM)

K.M. Jatavallabhula et al., ConceptFusion: Open-set Multimodal 3D Mapping, arXiv 2023
Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc
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Open-Vocabulary 3D Occupancy Prediction from
Images

" OUTPUT:
INPUT: "> 3D voxel field with:
surround
. - occupancy
-view ! _ open-vocabulary
images “  features

"

TASK #2: text-driven 3D retrieval from cameras

{'simila rity

" »[Qg@® “Black hatchback” |- =~

+ class names Qs ’ﬂ%%:'
[QIEJ road, car, terrain,

vegetation, building, ...

A. Vobecky et al., POP-3D: Open-Vocabulary 3D Occupancy Prediction from Images, NeurlPS 2023
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POP-3D architecture
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r (a) Architecture for open vocabulary 3D occupancy prediction I
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A. Vobecky et al., POP-3D: Open-Vocabulary 3D Occupancy Prediction from Images, NeurlPS 2023

Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc
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POP-3D qualitative results: zero-shot semantic
segmentation

BACK LEFT BACK RIGHT

BACK
M driveable surface [l car bus WM truck [ terrain [l vegetation [l sidewalk Ml otherflat M pedestrian bicycle
B manmade [ motorcycle [ barrier [ construction vehicle B trailer traffic cone

A. Vobecky et al., POP-3D: Open-Vocabulary 3D Occupancy Prediction from Images, NeurlPS 2023
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POP-3D qualitative results: retrieval

BACK LEFT

A. Vobecky et al., POP-3D: Open-Vocabulary 3D Occupancy Prediction from Images, NeurlPS 2023
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A. Vobecky et al., POP-3D: Open-Vocabulary 3D Occupancy Prediction from Images, NeurlPS 2023
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Can we do more with a bit of training?

Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc



Training a task-specific linear classifier on top of CNN features led to
SoTA or nearly-SoTA results

T
CNN
|_Representation |
Learn Extract Features
tron
Annstaartﬁons SDSMQ Normalized RGB, gradient, | SVM
Pose LBP
‘Du Best state of the art 00 ONN off-the-shelf 18 CNN off-the-shelf + augmentation 00 Specialized CNN
100
80
60
40

A. Razavian et al., CNN Features off-the-shelf: an Astounding Baseline for Recognition, arXiv 2014
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Mikael Huss
2 ) Follow v
& @mikaelhuss

Stefan Carlsson, head of Computer Vision
Group, KTH in Sthim. "computer vision is
now essentially solved" #sthimDL

6:46 PM - 10 Mar 2015
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Mikael Huss
Y. ) Follow v
& @mikaelhuss

Stefan Carlsson, head of Computer Vision
Group, KTH in Sthim. "computer vision is
now essentially solved" #sthimDL

6:46 PM - 10 Mar 2015

2025 edit: Not quite there yet
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Fine-tuning

52/204
Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc /



Fine-tuning

e Assume the parameters of CN Ny are already a good start near our final local
optimum

e Use them as the initial parameters for our new CNN for the target dataset

e This is a good solution when the dataset T is relatively big

o e.g. for Imagenet S with 1M images, T with a few thousand images

53/204
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Fine-tuning

( | Lots of data

[ | Some data

{—‘—\ Few data

> co Pl s ca™ s fs w fr w fs >  bike

aEEEEEE

Wi W2 W3 W4 Ws Wsg W7 Wg

Depending on the size of T decide which layer to freeze and which to
finetune/replace

Use lower learning rate when fine-tuning: about % of original learning rate

o for new layers use agressive learning rate

If S and T are very similar,fine-tune only fully-connected layers

If datasets are different and you have enough data, fine-tune all layers
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Pre-train <

Source
model

Output layer

t

Layer L - 1

Layer 1

t

Source data

Target
model

Random
initialization ~ > Output layer
t
---- copy ----» lLayerL-1
f
""" copy ---->
{
---- copy ---- > Layer 1
t
Target data

Train from
scratch

> Fine-tune

Figure credit: A. Zhang et al., Dive Into DAsydreiBIdRSUM| Transfer learning and self-supervised learning | @abursuc



For models pre-trained on ImageNet, transferred/fine-tuned networks usually work
even when the input images for the new task are not photographs of objects or
animals, such as biomedical images, satellite images or paintings.

0.94 T T T
- || === Xception
| ~-- ResNets0
--== InceptionV3 [7|
VGGI19
= Scratch-V3

092+

09

Accuracy

0.88 -

0.86

0.84 L v

Epochs

Fig. 2: Comparison between the fine tuning approach versus the off the shelf one when
classifying the material of the heritage objects of the Rijksmuseum dataset. We observe
how the first approach (as reported by the the dashed lines) leads to significant improve-
ments when compared to the latter one (reported by the dash-dotted lines) for three out
of four neural architectures. Furthermore, we can also observe how training a DCNN
from scratch leads to worse results when compared to fine-tuned architectures which
have been pre-trained on ImageNet (solid orange line).

M. Sabatelli et al, Deep Transfer Learning for Art Classification Problems, ECCV Workshops 2018
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Fine-tuning a ResNet?
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Fine-tuning a ResNet?

e e N

E Mo M

b= i [wld i |l il [

F: =IO VY S (EIME e L T (It e [l 1 (T IR ) (N
Shg IR U N UG G NG U NG LN U N U N U N R N1 LN szl sl R L LS sl 8 g
v nggggggéaaaaa§§éaaaaa A e e e e M
7 = AL (=] 1R 1R R R R R] R ] R R] R R R a8 31312 (=] 1R R |3 A |R

;

=t

m

Preferably select layers to freeze main block

layer name | output size 18-layer ‘ 34-layer \ 50-layer 101-layer 152-layer
convl | 112x112 7x7, 64, stride 2
3x3 max pool, stride 2
[ 1x1,64 ] [ 1x1,64 ] [ 1x1,64
comv2x | 5636 [ oM ]xz { gig: ]x3 3x3,64 | x3 3x3,64 | x3 3x3,64 | x3
" " | 1x1,256 | | 1x1,256 | | 1x1,256
[ 1x1,128 ] [ 1x1,128 ] 1x1,128
conv3x | 28x28 [gig 32 ]x [g:g gg} 4| | 3x3,128 | x4 | | 3x3,128 | x4 3x3,128 | x8
' " | 1x1,512 | | 1x1,512 | | 1x1,512
1x1,256 [ 1x1,256 ] [ 1x1,256
convdx | 14x14 [ gxggzg ] [ gxi Zgg } 3x3,256 | x6 || 3x3.256 |x23 || 3x3.256 |x36
x> x> L 1x1, 1024 1x1,1024 | 1x1, 1024
[ 1x1,512 1x1,512 [ 1x1,512
convsx | 77 [ e ] [ 3. } 3x3,512 |x3 | | 3x3.512 |x3 | | 3x3.512 |x3
’ " | 1x1,2048 1x1,2048 | 1x1,2048 |
Ix1 average pool, 1000-d fc, softmax
FLOPs 18x10° [ 36x10° | 38x10° I 7.6x10° [ 113x10°

Table 1. Architectures for ImageNet. Building blocks are shown in brackets (see also Fig. 5), with the numbers of blocks stacked. Down-
sampling is performed by conv3_1, conv4_1, and conv5_1 with a stride of 2.
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Selecting which layer to freeze is less of a problem nowadays.
Common practice is to either freeze entire network or freeze only first
two blocks (object detection) or fine-tune entire network.
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Pre-trained networks are the bread and butter in computer vision (at
large) solutions, both academic and industrial.

Other communities are starting to follow this practice.
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Pre-trained networks are the bread and butter of
computer vision:
semantic segmentation

Convolutional Encoder-Decoder Output
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oder ﬁ N
== I.I I I_I’Iﬁ = conv 3x3, RelLU
- = %ﬁm _bm copy and crop
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|

—— f U-Net
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(a) Input Tmage (b) Feature Map (¢) Pyramid Pooling Module (d) Final Prediction

DeepLabV3

PSPNet

Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc
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Parameter-efficient finetuning
methods (PEFT)

Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc



PEFTs
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Main strategies to adapt models

Full-finetuning
target Model é%
data

Limited-finetuning (e.g. linear probing)

F
target [ Model ]_. C > «—target labels
data (&)

No-finetuning (e.g. used for retrieving similar instances)

A J
r 3

target labels

embedding_1

target ( Model = ] ) — e.g retrieval, clustering
data ‘

embedding_n
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Main strategies to adapt models

tadrget l I m I ' & «——target labels
ata H

N

Adapters

« all kinds of ways, e.g:

« learning a mask, 1x1 convs, Residual-MLPs,
only BN or bias params, etc.

Prompt/prefix learning

( tz;%zt ‘ )=)[ Model %+ ]—»gq—target labels

N

learnable, additional inputs « similar to prompt manual engineering
[like “step-by-step” or “trending on artstation”]

Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc
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Prompt Learning

T g e O e, Optmzaton (T e G S OPimIA_
[C%S] Amazing movie ! l ; [MSK] E ______ I ______ [ C];S] Ame:zing movie | !
e([C*LS]) e(Amfziﬂg) e(mc:ive) eg!) }}0 fi,, . f([fl\’l&S_K].) . E E - - . ie([C‘LS]) e(AmfZiﬂg) e(mfive) e&!) i
- < = Y "7 Layerl Prompts ' |
[QEMETSTE - -~ E Layer2 Prompts - E I E
| N Layerl\f b'rompts L . i | E
Verbalizer (with Li\_/[_h_e:’u_i)_i Class Label (w?th linear head) i

(a) Lester et al. & P-tuning (Frozen, 10-billion-scale, simple tasks) (b) P-tuning v2 (Frozen, most scales, most tasks)

o prefixes are just learnable vectors
e extension to "deep prompt tuning”

e increases memory because of attention

X.L. Li et al., Prefix-Tuning: Optimizing Continuous Prompts for Generation, ACL 2021
X. Liu et al., P-Tuning vZ2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks, ACL 2022
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Prompt Learning

ﬁ Tuned Frozen

) Tuned
Frozen E J(l

514 3

N e
)
% . Ours

e explore various way of prompting for visual inputs

N, :
Prepend (default) Add Prepend-pixel Concat-channel

e also train a linear layer on top

M. Jia et al., Visual Prompt Tuning, ECCV 2022
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Prompt Learning

ﬁ Tuned Frozen

) Tuned
Frozen E J(l

514 3

N e
)
% . Ours

e explore various way of prompting for visual inputs

N, :
Prepend (default) Add Prepend-pixel Concat-channel

e also train a linear layer on top

M. Jia et al., Visual Prompt Tuning, ECCV 2022
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Prompt Learning

]
! |
1
V| Ve || vk || fcwass) . text encoder
1
N e e e e e e o - !
airplane butterfly |--- pizza
A Y
text
features
image encoder sn::::er:y

image k‘
features maximize the score for the
ground-truth class

e CoOP: Context optimization

e learnable, vector-version of "this is an
[image/photograph/illustration] of {}"

K. Zhou et al., Learning to Prompt for Vision-Language Models, IICV 2022
Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc
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Adapters: changes in the middle of the DNN

.

N

{ “l ,/ Adapter O <3 0] rp—————
| Transformer | | B : g
i | 2
! Layer ' i 00000 : 8 3]
' ]
| Ll T |
1 1 H
| 1 i up-project 1 ; -15
1 I ' o}
! ' i ' <
' : : : —204 «— Adapters (ours)
! : I Nonlinearity 1l =—a Fine-tune top layers)
I '
1 i I =25 T T
! ! 1 : 10° 10° 107 10° 10°
I 1 : : Num trainable parameters / task
(a) universal parametric family \ | ! '
i | '
: ! i Feedforward i
' L = :
. — 1 eed-forward layer '
g(z;a) =z+axz , - P :
! Multi-headed ! . 000000 1
\ attention | \ J
- ‘\ 1' __________________ z
Residual adapters JRCTOT -

a can be convix1, BN
Transformer adapters

scaling

e (2): complex computation graph; inference time

e (L): limited memory to store, expressive, fast to learn

S. A. Rebuffi et al., Learning multiple visual domains with residual adapters, NeurlPS 2017
N. Houlsby et al., Parameter-Efficient Transfer Learning for NLP, ICML 2019
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Side-tuning

Fixed Features

Fine-Tune

e Learn new network for missing knowledge

e Keep original network frozen

Side-Tune

i

A. Sax et al., Side-Tuning: A Baseline for Network Adaptation via Additive Side Networks, ECCV 2020
Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc



LoRA: Low-Rank Adaptation

e Adapting matrix multiplies in efficiently -> dimoy,
generalization of full fine-tuning

e Normal fully connected layer: h = Wyx

e LoRA adapted: h = Wyx + AWx = Wyx +
BAx

e (©):linear operations, new weights can be
fused with original weights

e (©):limited parameters trained, < 1% of
parameters

2): less-expressive than adapters

E. Hu et al.,.LoRA: Low-Rank Adaptation of Large Language Models, ICLR 2021
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Many, many LoRA follow-ups out-there

dimgy,
!

shared
Pretrained Weights Pretrained Weights across layers

shared
across layers

[ - frozen
[ - trainable

D.W. Kopiczko et al., VeRA: Vector-based Random Matrix Adaptation, ICLR 2024
Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc
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(Task) Transfer learning
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Taskonomy: Disentangling Task
Transfer Learning

A. Zamir et al., Taskonomy: Disentangling Task Transfer Learning, CVPR 2018
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Question

¢ Some vision tasks are more inter-related than others:

o depth estimation could help surface normals estimation?

o scene layout could help object detection?
o for some task annotation data can be more easily obtainable than others

e could we find fully computational approach for modeling the structure of the
space of visual tasks?

A. Zamir et al., Taskonomy: Disentangling Task Transfer Learning, CVPR 2018
Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc
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Task bank/dictionary

Surface Normals  Eucl. Distance Object Class. Scene Class.

Query Image

Top § prediction: Top 2 prediction:

Jigsaw puzzle Colorization 2D Segm.

e Task Bank =EF§|

Vanishing Points 3D Edges 2D Keypoints 3D Keypoints.
o 26 semantic, 2d, 3d and other
tasks
3D Curvature  Image Reshadmg In-painting Denoising Autoencoding
o 4 M rea I i ma g es Cam. Pose pommen  Cam. Puse‘ - TnpletCam Pose Roam Layout  Point Matching

Ly Pe————————
,‘ — |

5 ¥

o each image has the GT label for all L
taSKS A g R tagaa *

Figure 3: Task Dictionary. Outputs of 24 (of 26) task-specific networks
for a query (top left). See results of applying frame-wise on a video here.

e Task specific networks

o 26X
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Task bank/dictionary

Taskonomy's TASK BANK results

A. Zamir et al., Taskonomy: Disentangling Task Transfer Learning, CVPR 2018
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https://www.youtube.com/watch?v=SUq1CiX-KzM

Common architecture

Eg 31’{' ai-dar ..._é D.S'—r

& A
Representatidn Eg(D Transfer Punction
Source Task Encoder Target Task Output
LlFrozen (e.g., curvature) (e.g., surface normal)

Figure 4: Transfer Function. A small readout function is trained to map
representations of source task’s frozen encoder to target task’s labels. If
order> 1, transfer function receives representations from multiple sources.

e encoder: ResNet50

e transfer function: 2 conv layers

e decoder: 15 fully convolutional layers / 2-3 fully connected layers

A. Zamir et al., Taskonomy: Disentangling Task Transfer Learning, CVPR 2018
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Common architecture

E; 3t order - D;.

Representatidn EgT)  Transfer Function

Source Task Encoder Target Task Output
(e.g., curvature) (e.g., surface normal)

LlFrozen

Figure 4: Transfer Function. A small readout function is trained to map
representations of source task’s frozen encoder to target task’s labels. If
order> 1, transfer function receives representations from multiple sources.

e full training (gold standard): 120k training, 16k validation, 17k testing
e fine-tuning: 1 — 16k

A. Zamir et al., Taskonomy: Disentangling Task Transfer Learning, CVPR 2018
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Computational model

(I) Task-specific Modeling : (IT) Transfer Modeling : (IIT) Task Affinity (IV) Compute Taxonomy
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Figure 2: Computational modeling of task relations and creating the taxonomy. From left to right: I. Train task-specific networks. II. Train (first
order and higher) transfer functions among tasks in a latent space. III. Get normalized transfer affinities using AHP (Analytic Hierarchy Process). IV. Find
global transfer taxonomy using BIP (Binary Integer Program).

A. Zamir et al., Taskonomy: Disentangling Task Transfer Learning, CVPR 2018

80/204
Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc /



Computed taxonomies
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Figure 8: Computed taxonomies for solving 22 tasks given various supervision budgets (x-axes), and maximum allowed transfer orders (y-axes). One
is magnified for better visibility. Nodes with incoming edges are target tasks, and the number of their incoming edges is the order of their chosen transfer
function. Still transferring to some targets when tge budget is 26 (full budget) means certain transfers started performing better than their fully supervised
task-specific counterpart. See the interactive solver website for color coding of the nodes by Gain and Quality metrics. Dimmed nodes are the source-only
tasks, and thus, only participate in the taxonomy if found worthwhile by the BIP optimization to be one of the sources.

A. Zamir et al., Taskonomy: Disentangling Task Transfer Learning, CVPR 2018
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Multi-Task Learning (MTL)
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Image credit: A. Karpathy Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc



environment tags

<— crosswalks

road markings

static objects

Image credit: A. Karpathy Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc



In an autonomous vehicle there are plenty of perception tasks that
need to be simultaneously adddressed.
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In an autonomous vehicle there are plenty of perception tasks that
need to be simultaneously adddressed.

We have two options:
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Multi-Task Learning

Semantic
Decoder

| Instance

Encoder Decoder

Depth
Decoder

In MTL we usually have a shared backbone (encoder) and multiple
"heads", 1+ for each task.

The encoder learns useful features for all tasks, while the "heads"” are
specialized.
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Multi-Task Learning

_| Semantic
Decoder

Input Image
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Instance |,.
Encoder H -
Decoder
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Multi-Task
Loss

|| Depth
Decoder

2wi=1
i
Each task has its own loss and the total loss is a weighted

combination.

87/204
Image credit: A. Kendall Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc /



Multi-Task Learning in PyTorch

class MTLNet(nn.Module):

def

def

__init__ (self):

super(MTLNet, self). init ()

self.encoder = nn.Sequential(
nn.Linear(input_size, encoder_size),
nn.RelLU()

)

self.headl = nn.Sequential(
nn.Linear(encoder size, hl size),
nn.RelLU(),
nn.Linear(hl size, outputl size)
)

self.head2 = nn.Sequential(
nn.Linear(encoder size, h2 size),
nn.RelLU(),
nn.Linear(h2_size, output2 size)
)

forward(self, x):
shared features = self.encoder(x)
outl = self.headl(shared features)
out2 = self.head2(shared features)
return outl, out2

Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc
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for i, (x, y taskl, y task2) in enumerate(train loadet

y predl, y pred2 = mtl net(x)

lossl = criterion(y predl, y taskl)
loss2 = criterion(y pred2, y task2)
loss = weightl * lossl + weight2 * loss2

optimizer.zero grad()
loss.backward()

optimizer.step()
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RINmENE

objects traffic lights markings

shared backbone

e Usually there are 2 — 5 tasks
per network

e In some cases, on autonomous
vehicles you can have up to 50
tasks per network.
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Pros

» highly practical solution
e shared encoder can be shared among many tasks

e MTL can lead to better regularization [Caruana (1993)]

R. Caruana, Multitask learning: A knowledge-based source of inductive bias, ICML 1993
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Pros

e highly practical solution
e shared encoder can be shared among many tasks

 MTL can lead to better regularization [Caruana (1993)]

Cons

e balancing difficulties and impact of each task is non-trivial:
o normalize gradients from all heads [Chen et al. (2018)]
o learn per task weights [Kendall et al. (2018), Leang et al. (2020)]
o learn a scheduling for training heads [Leang et al. (2020)]

o no weighting at all, but more regularization [Kurin et al. (2022)]

R. Caruana, Multitask learning: A knowledge-based source of inductive bias, ICML 1993
Z. Chen et al., Gradnorm: Gradient normalization for adaptive loss balancing in deep multitask networks, ICML 2018.
A. Kendall et al., Multi-task learning using uncertainty to weigh losses for scene geometry and semantics, CVPR 2018

I. Leang et al., Dynamic Task Weighting Methods for Multi-task Networks in Autonomous Driving Systems, ITSC 2020
V. Kurin et al., In Defense of the Unitary Scalarization for Deep Multi-Task Learning, arXiv 2022
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Domain Adaptation
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Example: Internet images —
webcam
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Example: (semi-)synthetic — real
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Domain-adversarial networks
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feature extractor G¢(-;0y)

Y. Ganin et al., Domain-Adversarial Training of Neural Networks, JMLR 2016
Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc
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Domain-adversarial networks
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build a network

train feature extractor + class predictor on source data

train feature extractor + domain classifier on source+target data

use feature extractor + class predictor at test time

Y. Ganin et al., Domain-Adversarial Training of Neural Networks, JMLR 2016 95/204
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Domain-adversarial networks

) (R mar E - S (SRR
E—t—

build a network

train feature extractor + class predictor on source data

train feature extractor + domain classifier on source+target data

use feature extractor + class predictor at test time

Y. Ganin et al., Domain-Adversarial Training of Neural Networks, JMLR 2016
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Large-gap domain adaptation

Using video games to generate training data

GTAV

S. Richter et al., Playing for Data: Ground Truth from Computer Games, ECCV 2016
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Unsupervised domain adaptation
(UDA)

Without adaptation
Source

Target

Target

-_—— e =,
Our

Directly testing on the target data is not quite optimal

Predictions on target domain have higher entropy — what if we just minimize
entropy during training?

T. Vu et al., ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation, CVPR 2019
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Unsupervised domain adaptation
(UDA)
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ADVENT - Adversarial Entropy Minimization for Domain Adaptation

If you squint a bit you might recognize a form of multi-task learning here.

T. Vu et al., ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation, CVPR 2019 99/204
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Unsupervised domain adaptation
(UDA)

(a) GTAS — Cityscapes

Method UDA Model Oracle mloU Gap (%)
FCNs in the Wild [15] 27.1 64.6 -37.5
CyCADA [14] 28.9 60.3 -31.4
Adapt-SegNet [41] 35.0 61.8 -25.2
Ours (single model) 35.6 61.8 -24.6
Adapt-SegNet [41] 424 65.1 -22.7
Ours (single model) 43.6 65.1 -21.5
Ours (two models) 44.8 65.1 -20.3

GAP w.r.t. oracle, i.e. when training on the target data.
Top: VGG-16 encoder; bottom ResNet-101 encoder.

T. Vu et al., ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation, CVPR 2019

100/204
Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc /



Unsupervised domain adaptation
(UDA)

Semantic segmentation: from GTA V — Cityscapes

T. Vu et al., ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation, CVPR 2019
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Unsupervised domain adaptation
(UDA)

Object detection: from Cityscapes — Foggy Cityscapes (synthetic fog)

T. Vu et al., ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation, CVPR 2019
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A small detour

Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc



A common trick used in UDA and semi-supervised learning is self-
training.
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A common trick used in UDA and semi-supervised learning is self-
training.

In self-training a network is trained using as ground-truth its own
predictions or predictions from another network. Such labels are
called pseudo-labels.
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In semi-supervised learning we assume we have a dataset with
labeled samples and
a (bigger) dataset with unlabeled images.
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FixMatch

Weakly-
augmented

Unlabeled
example

Strongly-
augmented

el

Prediction

Pseudcilabel

i B

Prediction

iy

e apply data augmentation to unlabeled and labeled images

e use pseudo-labels as ground-truth for unlabeled images

» for labeled images use classification loss

K. Sohn et al., FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence, NeurlPS 2020
Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc
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Teacher-student approaches

Pseudo-label
— 7 > I <
stop gradient \
" \ Consistency
x E momentum \l LOSS
! ( update ) I GT label
! Prediction (if available)
7
el | 1
€ = e e e m = =
Classification

Loss

o teacher: generate target classification predictions from an image

e student: trained to predict this target given a different random view of the same
images

» the teacheris a moving average of the student weights in time

A. Tarvainen and H. Valpola, Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results,
NeurlPS 2017
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Teacher-student approaches

Pseudo-label
— 7 > I <
stop gradient \
" \ Consistency
x E momentum \l LOSS
! ( update ) I GT label
] Prediction (if available)

Classification
Loss

E_
4
%

o teacher: generate target classification predictions from an image

e student: trained to predict this target given a different random view of the same
images

» the teacher is a moving average of the student weights in time

e previuos methods averaged teacher ensemble predictions

A. Tarvainen and H. Valpola, Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results,
NeurlPS 2017
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Back to our regular program
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UDA + self-training

Labels
excluded in
ESL

Pixel softmax
output

Not-selected pixel

Entropy-based pseudo-labels

e principle: find confident pixels in target images, select them and use as ground

truth

e selection criteria: entropy of predictions

A. Saporta et al., ESL: Entropy-guided Self-supervised Learning for Domain Adaptation in Semantic Segmentation, CVPRW 2020
Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc
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UDA + self-training

(a) Ground-truth labels (b) Softmax-based pseudo-labels (c) Entropy-based pseudo-labels (d) Excluded by entropy criterion

Table 4: Comparison of incorrect predictions (in %) selected in the pseudo-labels extracted (ADVENT [23])

A. Saporta et al., ESL: Entropy-guided Self-supervised Learning for Domain Adaptation in Semantic Segmentation, CVPRW 2020
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Multi-target UDA

~——single-target UDA 2 multi-target UDA ——

source-domain training data target-domain training data target-domain training data

it L o0 |8

train

test

target T’

A. Saporta et al., Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation, ICCV 2021
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Domain Adaptation by BatchNorm

- ConviFC -
03 03

Activation
N o 1z 3 Ee————
M | Output | I '

Nudge network towards test distribution via the BatchNorm statistics.

Y. Li et al., Revisiting Batch Normalization For Practical Domain Adaptation, arXiv 2016
V. Besnier et al., This dataset does not exist, ICASSP 2020
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Domain Adaptation by BatchNorm

(1) Compute mean and variance for the new

o)
test set: - (e .
(t+1) _ (1) _ . N
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Y. Li et al., Revisiting Batch Normalization For Practical Domain Adaptation, arXiv 2016
V. Besnier et al., This dataset does not exist, ICASSP 2020
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Domain Adaptation by BatchNorm

(1) Compute mean and variance for the new

e )
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ConviFG
(t+1) _ (1) B . .
Hiest = QHpese + (1 a)pbatch A .—latchmmh S
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Y. Li et al., Revisiting Batch Normalization For Practical Domain Adaptation, arXiv 2016
V. Besnier et al., This dataset does not exist, ICASSP 2020

113/204
Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc /



Prompt-driven Zero-shot Domain
Adaptation

Training Domain Latent Augmentation using Domain descriptionS Extended Domain

“Stop Sign” similarity
Training Domain Unseen Domain

— .
“Snowy Tree” = B

S “Sunny” similarity “Snowy” similarity |
I have photos of sunny road A mix of traini
signs, but I want to anticipate . mix of training +
snowy road signs. Joint Vision & Language Embedding Space ' unseen domain samples

Use textual information to generate features for domains we have seen yet

Dunlap et al., Using Language to Extend to Unseen Domains, ICLR 2023
Fahes et al., PODA: Prompt-driven Zero-shot Domain Adaptation, ICCV 2023
Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc
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Prompt-driven Zero-shot Domain
Adaptation
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User Supplied Inputs

Use textual information to generate features for domains we have seen yet

Dunlap et al., Using Language to Extend to Unseen Domains, ICLR 2023

Fahes et al., PODA: Prompt-driven Zero-shot Domain Adaptation, ICCV 2023
Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc
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Prompt-driven Zero-shot Domain

Adaptation
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Use textual information to generate features for domains we have seen yet

Dunlap et al., Using Language to Extend to Unseen Domains, ICLR 2023
Fahes et al., PODA: Prompt-driven Zero-shot Domain Adaptation, ICCV 2023

Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc
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P@DA qualitative results

Input Source-only PADA
TrgPrompt = “driving through fire”

Fahes et al., PODA: Prompt-driven Zero-shot Domain Adaptation, ICCV 2023
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Another approach for domain adaptation is to focus on the content of
the images instead of the learned representations themselves.
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Another approach for domain adaptation is to focus on the content of
the images instead of the learned representations themselves.

To this end, researchers take inspiration from generative methods.
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Image translation

Instead of learning domain invariant features, we can modify the synthetic data to

"look" more realistic.

Unlabeled Real Images

]

Synthetic Refined

A. Srivastava et al., Learning from Simulated and Unsupervised Images through Adversarial Training, CVPR 2017
Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc
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Image translation
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Unlabeled Real Images Simulated images

A. Srivastava et al., Learning from Simulated and Unsupervised Images through Adversarial Training, CVPR 2017
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Image translation

Synthetic

Refined

-

Unlabeled Real Images Simulated images

1ERERY -y
LA ldd]ad

A. Srivastava et al., Learning from Simulated and Unsupervised Images through Adversarial Training, CVPR 2017
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Image translation

Residual
Blocks

Content Encoder T

+ L ContentEncoder . copient :
Code . AdalN H
ey ' ' Parameters :

Down- Residual
sampling Blocks

Up-
sampling

Down- Global E E E Reconstructed
sampling Pooling % : MLP Image
' : Style . :
H Style Encoder '\ Code Decoder !
MUNIT

e In MUNIT we assume that the difference between domains is in style, while the
content is similar

e We learn to extract separately content and style features

e In the decoding part we can inject the style from other domains.

X. Huang et al., MUNIT: Multimodal UNsupervised Image-to-image Translation, ECCV 2018
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Image translation

(d) winter — summer

Qualitative examples from MUNIT

X. Huang et al., MUNIT: Multimodal UNsupervised Image-to-image Translation, ECCV 2018
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Image translation

L2 Loss

GAB

fW%%W%E
) 2 2
LN Y |
Real Image in domain A Fake Image in domain B \ Reconstructed Image
/ Gea generates a reconstructed image of domain A.
This makes the shape to be maintained
real or fake ! <— Ds when Gag generates a horse image from the zebra.

Discriminator for domain B

Real Image in domain B

e Landmark work allowing to translate from one domain to another without
having paired samples

e Drawback: images are not always realistic and the ground truth is not preserved

J.Y. Zhu et al., Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, ICCV 2017
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Image translation

Translations along dimensions (red) and style (dotted). For a
given @ (sun elevation angle), the styles vary slightly (notice
hue and brightness), proving disentanglement of ¢ and
style.

Translations (dark circle) of a source day image (center)
exhibit both high variability and similarities with target
data (outer circle).

t1l;dr: CoMoGAN = CycleGAN + MUNIT + physical priors

F. Pizzati et al., CoMoGAN: continuous model-guided image-to-image translation, CVPR 2021
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Image translation

Qualitative results

t1l;dr: CoMoGAN = CycleGAN + MUNIT + physical priors

F. Pizzati et al., CoMoGAN: continuous model-guided image-to-image translation, CVPR 2021
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Transfer learning

Many flavors of transfer learning

MULTIPLE Multi-Task
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Covariate Shift [ '
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\ mls-speafled model
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Elephants -
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(Tommasi, PhD thesis, 2012)

Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc
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Self-supervised learning
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Can we exploit anything from raw data?
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Exploiting raw unlabeled data

e Acquiring raw unlabeled data is usually easy

e However, typical supervised methods cannot exploit them
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Inspiring success from self-supervision in NLP, e.g.,
word2vec

Input: The man went to the [MASK]l . He bought a [D/IJ?-\SK]2 of milk .
Labels: [MASK], = store; [MASK], = gallon

Missing word prediction task.
Sentence A = The man went to the store.
Sentence B = He bought a gallon of milk.

Sentence A = The man went to the store.
Label = IsNextSentence

Sentence B = Penguins are flightless.
Label = NotNextSentence

Next sentence prediction task.

T. Mikolov et al., Efficient estimation of word representations in vector space, ArXiv 2013
T. Mikolov et al., Distributed representations of words and phrases and their compositionality, NeurlPS 2013
J. Devlin, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, ArXiv 2018
Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc
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What is self-supervision?

« A form of unsupervised learning where the data (not the human)
provides the supervision signal
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What is self-supervision?

« A form of unsupervised learning where the data (not the human)
provides the supervision signal

« Usually, define a pretext task for which the network is forced to
learn what we really care about
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What is self-supervision?

« A form of unsupervised learning where the data (not the human)
provides the supervision signal

« Usually, define a pretext task for which the network is forced to
learn what we really care about

« For most pretext tasks, a part of the data is withheld and the
network has to predict it
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What is self-supervision?

« A form of unsupervised learning where the data (not the human)
provides the supervision signal

« Usually, define a pretext task for which the network is forced to
learn what we really care about

« For most pretext tasks, a part of the data is withheld and the
network has to predict it

« The features/representations learned on the pretext task are
subsequently used for a different downstream task, usually where

some annotations are available.

131/204
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Example: Rotation prediction

E)bje;ves:i ]
ConvNet Maximize prob. |
—» g(X,y=0) model F() F'(x") |
Rotate 0 degrees | Predict O degrees rotation (y=
¢ Rotated image: X° | ¢ o= |
_ ConvNet | Maximize prob.
= g(X,y=1) model () P |
Rotate 90 degrees

Predict 90 degrees rotation (y=1) |

Rotated image:

ConvNet Maximize prob. |
model F(.) Fi(x%)

| Predict 180 degrees rotation (y=2) |

ConvNet Maximize prob. |
model F(.) Fl( X]) |
Predict 270 degrees rotation (y=3) J

- g(X,y=2)

Image X' Rotate 180 degrees

Rotated image:

—» g(X,y=3)

Rotate 270 degrees
Rotated image:

Predict the orientation of the image

S. Gidaris et al., Unsupervised Representation Learning by Predicting Image Rotations, ICLR 2018
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Self-supervised learning pipeline

Stage 1: Train network on pretext task (without human labels)

Self-supervised

rotation classification| E

re(*)
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Self-supervised learning pipeline

Stage 1: Train network on pretext task (without human labels)

Self-supervised
rotation classification|

re(*)

Stage 2: Train classifier on learned features for new task with fewer

labels
NPT
= —— —»:_'-_ba
- 7z
' e RP
Fixed Linear
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Self-supervised learning pipeline

Stage 1: Train network on pretext task (without human labels)

Self-supervised
rotation classification|

re(*)

NT{N"\")?U“’)J i
WS . — —

RD
Fine-tuned Object Detection,
Semantic Segmentation, etc.

Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc
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Karate Kid and Self-Supervised Learning

The Karate Kid (1984)

Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc



Stage 1: Train muscle memory on pretext tasks

Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc



Stage 1: Train muscle memory on pretext tasks

. -al ' ¥ R.

MakeAGIF.com

Mr. Miyagi = Deep Learning Practitioner daily chores = pretext tasks

Daniel LaRusso = ConvINet learning karate = downstream task

Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc



Stage 2: Fine-tune skills rapidly

Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc



Is this actually useful in practice?

Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc



Transfer learning - object detection

58 - oBeW
SimCLR . .

. BowNet O Swav « Rapid progress in self-
c MoZo BYOL : | :
5 ® ) supervised learning
g 54 e
S " |supervised T o  Self-supervised methods are
@ .
S 52 startlng to outperform

supervised methods
20 o e This is a key milestone for
2 . . . . self-supervised methods as
ICCV19 CVPR20 ICML20 NeulPs20 CVPR21

_ o they are finally showing their
Object detection with Faster R-CNN fine-tuned on VOC .
trainval07+12 and evaluated on testQ7. Networks are pre-trained effectiveness to complex
with self-supervision on ImageNet. downstream tasks.
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SSL methods are often more efficient than supervised

374

36

351

344

331

COCO Instance Segmentation

’-_-_.-_'—..
@
Ax less computation
o€
]
./.7"
]
]
- -@®- Supervised
/ =®= SimCLR
® =®= DetCon

200 400 600 800 1,000

751

744

methods

Cityscapes Semantic seg.

[
_._____.____..__-—--‘.
10x less com putati@/

‘././

.\.

T~

=@= Supervised )

® =®= SimCLR

=@®= DetCon

73

200 400 600 800 1,000

Efficiency in terms of number of epochs for ImageNet pretraining (SimCLR
and DetCon do no use human annotated labels)

—
./z/u
0.9 T -—
/. / 50% fewer
%? ® s labels
§ 08 /
s 80% fewer @
k=] labels
= 0.7
k]
E
w
©
© 0.6
wn
a
=l
0.5 .
-8~ ResNet trained on CPC
L] -e- ResNet trained on pixels
0.4 T T T T T T T
1 2 5 10 20 50 100

Percentage of labeled data

Data-efficiency of SSL and supervised
learning methods

Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc
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A tour of pretext tasks for Self-
Supervised Learning

Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc



Pretext tasks:

e Inferring structure

Transformation prediction

Input reconstruction

Exploiting time

Multimodal
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Pretext tasks:

e Inferring structure
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Context prediction

Can you guess the spatial configuration for the two pairs of patches?

Question 1:

a"

B
- Ny 2
1@ ]
BT R

=

C. Doersch et al., Unsupervised Visual Representation Learning by Context Prediction, ICCV 2015 143/204
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Context prediction

Can you guess the spatial configuration for the two pairs of patches?
Much easier if you recognize the object!

Question 1:

a"

B
- Ny 2
1@ ]
BT R

=

C. Doersch et al., Unsupervised Visual Representation Learning by Context Prediction, ICCV 2015 143/204
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Context prediction

Can you guess the spatial configuration for the two pairs of patches?

Much easier if you recognize the object!

Question 1:

Intuition:

e The network should
learn to recognize
object parts and their
spatial relations

a"

B
- Ny 2
1@ ]
BT R

=

C. Doersch et al., Unsupervised Visual Representation Learning by Context Prediction, ICCV 2015

Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc
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Context prediction

Example:

<
===
1 1
1 1
[ yp— |

Question 1: Question 2:

g

CNN

pany

Predict the location of one patch relative to the center patch

C. Doersch et al., Unsupervised Visual Representation Learning by Context Prediction, ICCV 2015
Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc
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Context prediction

Pros

e The first self-supervised method

e Intuitive task that should enable learning about object

A parts
CNN Cons
A e Assumes training images are photographed with canonical

orientations (and canonical orientations exist)
e Networks can “cheat” so special care is needed

e Training on patches, but trying to learn image
representations

* Not fine-grained enough due to no negatives from other
images

» Small output space - 8 cases (positions) to distinguish?

C. Doersch et al., Unsupervised Visual Representation Learning by Context Prediction, ICCV 2015
Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc

145/204



Jigsaw puzzles

.

LR (8

4408 _ /4096 _wg./ 64

fc7  fcB soffmax

o~

Permutation Set

index permutation Reorder patches according to
the selected permutation

~

(o]

64 9.4.6,8,3.2,5.1.7

~0

TIx11x96  5x5x256  3x3x384 3x3x384 3x3x256

M. Noroozi and P. Favaro, Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles, ECCV 2016
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Pretext tasks:

e Inferring structure

e Transformation prediction
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Rotation prediction

Can you guess how much rotated is applied?

S. Gidaris et al., Unsupervised representation learning by predicting image rotations, ICLR 2018
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Rotation prediction

Can you guess how much rotated is applied?
Much easier if you recognize the object!

90° rotation 270° rotation 180° rotation 0° rotation

S. Gidaris et al., Unsupervised representation learning by predicting image rotations, ICLR 2018
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Rotation prediction

Label: 180 degrees rotation

o
., Y
0 90° 270° Classification
Loss

Rotation prediction
(confidence scores)

Rotate by a
multiple of
90 degrees

Pros

e Very simple to implement and use, while being quite effective

Cons

e Assumes training images are photographed with canonical orientations (and
canonical orientations exist)

e Train-eval gap: no rotated images at eval
e Not fine-grained enough due to no negatives from other images

e Small output space - 4 cases (rotations) to distinguish

S. Gidaris et al., Unsupervised representation learning by predicting image rotations, ICLR 2018
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Pretext tasks:

e Inferring structure
e Transformation prediction

e Input reconstruction
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Context encoders

What goes in the middle?

D. Pathak et al., Context Encoders: Feature Learning by Inpainting, CVPR 2016
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Context encoders

What goes in the middle?
Much easier if you recognize the objects!

D. Pathak et al., Context Encoders: Feature Learning by Inpainting, CVPR 2016
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—

—

—————
Channel-wise

Fully
Connected

Decoder » C . \

[ Decoder Features ]

[ Encoder Features J

I

Pros

e Requires preservation of fine-grained information

Cons

e Train-eval gap: no masking at eval
e |Input reconstruction is too hard and ambiguous

e Lots of effort spent on “useless” details: exact colour, good boundary, etc.

D. Pathak, Context Encoders: Feature Learning by Inpainting, CVPR 2016 149/204
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Context encoders

D. Pathak, Context Encoders: Feature Learning by Inpainting, CVPR 2016
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Colorization

What is the colour of every pixel?

R. Zhang et al., Colorful image colorization, ECCV 2016
Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc



Colorization

What is the colour of every pixel?
Hard if you don't recognize the object!

R. Zhang et al., Colorful image colorization, ECCV 2016
Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc



Lightness L Color ab Lab Image

convl conv2 conv3 conv4 convs convg conv? conv8
atrous / dilated & frous / dilated

256
256 512 512 512
/ 4 . 512 il
n J| i f f J
64 32 N 64
'}

32 32 32 32

128
(a,b) probability S
distribution

313 64 2

Pros
e Requires preservation of fine-grained information
Cons

e |nput reconstruction is too hard and ambiguous
e Lots of effort spent on “useless” details: exact colour, good boundary, etc

» Forced to evaluate on greyscale images, losing information

R. Zhang et al., Colorful image colorization, ECCV 2016
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Pretext tasks:

e Inferring structure
e Transformation prediction

e Input reconstruction
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Pretext tasks:

e Inferring structure
e Transformation prediction
e Input reconstruction

e Exploiting time
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Tracking by colorization

Given an earlier frame, colourize the new one?

C. Vondrick et al., Tracking emerges by colorizing videos, ECCV 2018
Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc



Tracking by colorization

Given an earlier frame, colourize the new one?
Easy if everything can be tracked!

C. Vondrick et al., Tracking emerges by colorizing videos, ECCV 2018
Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc



Tracking by colorization

Reference Frame Input Frame

Pros

e Emerging behaviour: tracking,
matching, optical flow, segmentation

Cons

Reference Colors Target Colors e Low level cues are effective - less
emphasis on semantics

e Forced to evaluate on greyscale
frames, losing information

C. Vondrick et al., Tracking emerges by colorizing videos, ECCV 2018
Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc
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Predicting the correct order of time

Temporally Correct order

Original video

Temporally Incorrect order

I. Misra et al., Shuffle and Learn: Unsupervised Learning using Temporal Order Verification, ECCV 2016
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Predicting the correct order of time

<& AlexNet architecture

81 384
fe7 fe8

concatenation
classification

e-----» Shared parameters

I. Misra et al., Shuffle and Learn: Unsupervised Learning using Temporal Order Verification, ECCV 2016
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Sorting video sequences

Shuffled Sequence
(b) i (c) i (a) ii (d)

o0
=
‘g 3 #36 "\ #39
@
bt
g
= Orlglnal Vldeo
=
ot
N

hhhh

Ordered Sequence

H.Y. Lee et al., Unsupervised Representation Learning by Sorting Sequences, ICCV 2017 157/204
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Sorting video sequences

(a) Data Sampling (b) Order Prediction Network

Feature Extraction Pairwise Feature Extraction Order Prediction
fee-1 {a,b,c,d}
/T H_ e
fei2 L fer(1,2) @
R gl %7 —
fee-3 L fer(13)

t
L {a)b,d,c}
S |/ wave
° t
E N [ . 2 {a,d,c,b}
fo2 ; —] {b,a,c,d}
Z o PR {badc}
t = —
; ot ; {b,c.a,d}
& L fer(24)
{b’d’a”c}
_ fe-3 —
/ ford ik {c.a,b,d}
{c,b,a,d}

T
| Shared parameters

H.Y. Lee et al., Unsupervised Representation Learning by Sorting Sequences, ICCV 2017
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Pretext tasks:

e Inferring structure

Transformation prediction

Input reconstruction

Exploiting time

Multimodal

158/204
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Audio-visual correspondence

Can audio and video learn from each other?

R. Arandjelovic, Look, Listen and Learn, ICCV 2017
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Audio-visual correspondence

R. Arandjelovic, Look, Listen and Learn, ICCV 2017
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Audio-visual correspondence

R. Arandjelovic, Look, Listen and Learn, ICCV 2017
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Audio-visual correspondence

R. Arandjelovic, Look, Listen and Learn, ICCV 2017
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Audio-visual correspondence

R. Arandjelovic, Look, Listen and Learn, ICCV 2017
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Audio-visual correspondence

R. Arandjelovic, Look, Listen and Learn, ICCV 2017
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Audio-visual correspondence

R. Arandjelovic, Look, Listen and Learn, ICCV 2017
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The first generation of self-supervised approaches achieve interesting results.
However performance is still far from the performance of their supervised
counterparts.

166/204
Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc /



The recent line of approaches, contrastive and feature reconstruction, achieved
remarkable results outperforming supervised variants on several benchmarks.

Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc



Contrastive methods
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Exemplar networks

The image on the left is a distorted crop extracted from an image,
which of these crops has the same source image?

A. Dosovitskiy et al., Discriminative Unsupervised Feature Learning with Exemplar Convolutional Neural Networks, PAMI 2015
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Exemplar networks

The image on the left is a distorted crop extracted from an image,
which of these crops has the same source image?
Easy if robust to the desired transformations (geometry and colour)

A. Dosovitskiy et al., Discriminative Unsupervised Feature Learning with Exemplar Convolutional Neural Networks, PAMI 2015
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Exemplar networks

Classification into K Pros
“classes”
(source images)

e Representations are invariant to desired
transformations

Network e Requires preservation of fine-grained information

Cons

Augmentation

e Choosing the augmentations is important

Input image o Exemplar based: images of the same class or
instance are negatives

o Nothing prevents it from focusing on the
background

e Original formulation is not scalable (humber of
“classes” = dataset size)

A. Dosovitskiy et al., Discriminative Unsupervised Feature Learning with Exemplar Convolutional Neural Networks, PAMI 2015
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Some notations

Letx € X beinputdataandy € {1,...,L}andfs(*) : X — R anetwork
generating an embedding vector fp(x).

We denote:

* q = fo(x) (query)
e {x'} a set of samples from X.

o ki = fo(x') the embeddings of {x'} as keys (representations)

171/204
Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc /



Exemplar networks

o e ey Exemplar ConvNets are not scalable (number of “classes” =

w ? ? number of training images)

e Using w; as class prototype prevents explicit comparison
Hesie aming between instances, i.e. individual samples

e We can use instead a non-parametric variant that replaces
q'w; withq " k;

Network Network Network

exp(q " Weg))
Y e exp(q T we)

Lsofimax(q, €(q)) = —log

!
-
exp(q ' kq)
Lnon—pararn-softrnax(CI) = —log q—|—
ZiEN eXp(q ki)
e N is the number of training samples; C is the number of

classes

A. Dosovitskiy et al., Discriminative Unsupervis®d FGe(tqa Li&rth@mﬁll;&ﬁﬁﬂﬁd&*o@:ficﬁa/ Neural Networks, PAMI 2015

Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc
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Non-Parametric Classifier

CNN backbone [ | . 1-th image
low dim L2 norm / - 2-th image

Non-param
—— H_}D_’ ;:ﬂmax e . i-th image
128D 128D \‘ E n-1 th image

B v image
2048D W

————

falx)

Self-supervised learning as image instance-level discrimination

exp(q ' kq)
ZiEN EXp(qT ki)

Lnon-param-softmax (@) = — log

The learning objective focuses now entirely on feature representation, instead of
class-specific representations.

This loss if commonly named InfoNCE loss.

Z. Wu et al., Unsupervised Feature Learning via Non-Parametric Instance Discrimination, CVPR 2018
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In recent literature InfoNCE is among the most popular and, best
performing loss for contrastive self-supervised learning.

We will outline the main approaches that revolve around how to better
use negatives.
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Dealing with negative samples
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Multiple works have observed the influence of negative samples and
proposed different heuristics to increase their number.

© © O

> 0 o

Accuracy on ImageNet-100 (%)
& v o ow ﬂ v o

Y. Tian et al., Contrastive Multiview Coding, ArXiv 2019

CMC [Tian et al. (2019)]

—@— CMC

-3
>

128 256 512 1024 2048 4096 8192
Number of Negatives in NCE

accuracy (%)

MoCo [He et al. (2020)]

—>*—end-to-end
—®-memory bank
—* MoCo

L I L
512 1024 4096 16384 65536
K (log-scale)

K. He et al., Momentum Contrast for Unsupervised Visual Representation Learning, CVPR 2020
I. Misra and L. van der Maaten, Self-Supervised Learning of Pretext-Invariant Representations, CVPR 2020
Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc

PiRL [Misra and van der Maaten (2020)]

64
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© 63
3
Q
Q
<
& gof
2
~@- ImageNet
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Number of negatives N in Equation 3

64,00(
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End-to-End training

 Contrastive loss o Derived from siamese networks in metric
t learning
® .
| | e Shared encoder for queries and keys
q I I ktor k™
t t
L
t t
+ —_
x4 2" or oF

R. Hadsell et al., Dimensionality reduction by learning an invariant mapping, CVPR 2006; F. Schroff et al., FaceNet: A unified embedding for face recognition

and clustering, CVPR 2015 177/204
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End-to-End training

 Contrastive loss \ e Derived from siamese networks in metric

gradient 1 gradient Iearning

(—’ ® .

e Shared encoder for queries and keys

q I I kTor k~

t t

o
t t
+ —_

x4 2" or ¥

R. Hadsell et al., Dimensionality reduction by learning an invariant mapping, CVPR 2006; F. Schroff et al., FaceNet: A unified embedding for face recognition

and clustering, CVPR 2015 177/204
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End-to-End training

\u Contrastive loss \ e Derived from siamese networks in metric
% learning
&® )
| | e Shared encoder for queries and keys
1 W

R. Hadsell et al., Dimensionality reduction by learning an invariant mapping, CVPR 2006; F. Schroff et al., FaceNet: A unified embedding for face recognition

and clustering, CVPR 2015 78/204
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End-to-End training

\‘ Coplestiveloss \ » Derived from siamese networks in metric
gradient 1 gradient Iearning
(—> ® ~—] .
e Shared encoder for queries and keys
q I I HI {ki} e The encoder is updated by backpropagation

through all samples

R. Hadsell et al., Dimensionality reduction by learning an invariant mapping, CVPR 2006; F. Schroff et al., FaceNet: A unified embedding for face recognition

and clustering, CVPR 2015 78/204
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End-to-End training

\‘ Coplestiveloss \ » Derived from siamese networks in metric
gradient 1 gradient Iearning
(—> ® ~—] .
e Shared encoder for queries and keys
q I I HI {ki} e The encoder is updated by backpropagation

through all samples

t t
[ [, oo

t t

:Ck

« Consistent g and {k;}

R. Hadsell et al., Dimensionality reduction by learning an invariant mapping, CVPR 2006; F. Schroff et al., FaceNet: A unified embedding for face recognition

and clustering, CVPR 2015 78/204
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End-to-End training

 Contrastive loss \ e Derived from siamese networks in metric
gradient 1 gradient Iearning
(—> ® .
| e Shared encoder for queries and keys
q I I HI {ki} e The encoder is updated by backpropagation

through all samples

Pros

« Consistent g and {k;}

Cons

e The amount of negatives limited by GPU
memory

R. Hadsell et al., Dimensionality reduction by learning an invariant mapping, CVPR 2006; F. Schroff et al., FaceNet: A unified embedding for face recognition

and clustering, CVPR 2015 78/204
Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc



End-to-End training - SimCLR

‘ Contrastive loss ‘

gradient 1 gradient

 Rely on large mini-batches (2k — 8k
samples) to ensure plenty of negatives, e.g..
16, 382 negatives from a batch of 8, 192,
i.e., 2(N — 1) negatives

e The loss is computed across all positive pairs
in a mini-batch

T. Chen et al., A Simple Framework for Contrastive Learning of Visual Representations, ICML 2020
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End-to-End training - SimCLR

‘ Contrastive loss ‘

gradient 1 gradient

 Rely on large mini-batches (2k — 8k
samples) to ensure plenty of negatives, e.g..
16, 382 negatives from a batch of 8, 192,
i.e., 2(N — 1) negatives

e The loss is computed across all positive pairs
in a mini-batch

Pros

e Lots of negatives

T. Chen et al., A Simple Framework for Contrastive Learning of Visual Representations, ICML 2020
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End-to-End training - SimCLR

‘ Contrastive loss ‘

gradient 1 gradient

 Rely on large mini-batches (2k — 8k
samples) to ensure plenty of negatives, e.g..
16, 382 negatives from a batch of 8, 192,
i.e., 2(N — 1) negatives

e The loss is computed across all positive pairs
in a mini-batch

Pros

e Lots of negatives

Cons

e Lots of GPUs/TPUs

T. Chen et al., A Simple Framework for Contrastive Learning of Visual Representations, ICML 2020
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Memory bank

‘ Contrastive loss ‘

gradient 1

— 7
-

6(9 t
7z sampling

t

t Memory bank

Keys are randomly sampled from a memory
bank of cached features

The memory bank contains features or all
images in the dataset

There is no backpropagation through the
memory bank

Keys are updated via exponential moving
average

Z. Wu et al., Unsupervised Feature Learning via Non-Parametric Instance Disc., CVPR 2018; I. Misra et al., Self-Sup. Learning of Pretext-Invariant

Representations, CVPR 2020

Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc
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Memory bank

‘ Contrastive loss ‘

gradient 1

— 7
-

6(9 t
7z sampling

t

t Memory bank

Keys are randomly sampled from a memory
bank of cached features

The memory bank contains features or all
images in the dataset

There is no backpropagation through the
memory bank

Keys are updated via exponential moving
average

Pros

e Many negatives (K = 65, 536) while GPU

memory efficient

Z. Wu et al., Unsupervised Feature Learning via Non-Parametric Instance Disc., CVPR 2018; I. Misra et al., Self-Sup. Learning of Pretext-Invariant

Representations, CVPR 2020

Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc
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Memory bank

‘ Contrastive loss ‘

gradient 1

— 7
-

6(9 t
7z sampling

t

t Memory bank

Keys are randomly sampled from a memory
bank of cached features

The memory bank contains features or all
images in the dataset

There is no backpropagation through the
memory bank

Keys are updated via exponential moving
average

Pros

e Many negatives (K = 65, 536) while GPU

memory efficient

Z. Wu et al., Unsupervised Feature Learning via Non-Parametric Instance Disc., CVPR 2018; I. Misra et al., Self-Sup. Learning of Pretext-Invariant

Representations, CVPR 2020

Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc
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Momentum encoder (MoCo)

 Contrastive loss e Momentum encoder relies on a memory-
gradient bank with a different update scheme

t
®
| | e The encoder fy(*) is updated instead of the

. I ki) I I HH keys themselves
t g e New samples are continuously added to the
1 ) « The momentum encoder f, (") is slowly
pursuing fg(*) via exponential moving
‘ average, i.e. momentum, update:
x4 2" Y~ my+(1-m)o

K. He et al., Momentum Contrast for Unsupervised Visual Representation Learning, CVPR 2020
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Momentum encoder (MoCo)

 Contrastive loss e Momentum encoder relies on a memory-
gradient bank with a different update scheme

t
®
| | e The encoder fy(*) is updated instead of the

. I ki) I I HH keys themselves
t g e New samples are continuously added to the
1 1 « The momentum encoder f, (") is slowly
pursuing fg(*) via exponential moving
average, i.e. momentum, update:
k
a! x Y~ my+(1-m)o
q = f q.forward(x_q) # queries: NxC
k = f_k.forward(x k) # keys: NxC

k = k.detach() # no gradient to keys
# SGD update: query network
loss.backward()

update(f_qg.params)

# momentum update: key network

K. He et al., Momentum Contrast for Unsupervised Visual Representq:tiqp 65‘?@’?1{@9'=C}ﬁ5$ qg%?a rams+(1-m)*f q.params

Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc
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Momentum encoder (MoCo)

 Contrastive loss e Momentum encoder relies on a memory-
gradient bank with a different update scheme

t
®
| | e The encoder fy(*) is updated instead of the

. I ki) I I HH keys themselves
t g e New samples are continuously added to the
1 1 « The momentum encoder f, (") is slowly
pursuing fg(*) via exponential moving
average, i.e. momentum, update:
k
a! x Y~ my+(1-m)o
q = f q.forward(x_q) # queries: NxC
k = f_k.forward(x k) # keys: NxC

k = k.detach() # no gradient to keys
# SGD update: query network
loss.backward()

update(f_qg.params)

# momentum update: key network

K. He et al., Momentum Contrast for Unsupervised Visual Representq:tiqp bg?rarh{rggtcmlﬂi? %Q%% rams+(1-m)*f q.params

Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc
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Momentum encoder (MoCo)

‘ Contrastive loss ‘

gradient

t
(_’ ¥ ‘_1 Pros

q I {ki} I IHH e Elegant and effective solution for large
$ T dictionaries
------- LB con
t t
e Momentum requires tuning: m €
‘ , [0.99, 0.9999] works well, while form < 0.9
4 K accuracy drops considerably.

e No backprop through the memory bank

K. He et al., Momentum Contrast for Unsupervised Visual Representation Learning, CVPR 2020
Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc
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Feature "reconstruction” methods
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Input reconstruction is a very hard and ambiguous task.

Effort spent on “useless”details: exact colour, good boundary, etc., does not
necessarily lead to good features.

D. Pathak, Context Encoders: Feature Learning by Inpainting, CVPR 2016
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Reconstructing the image features at the output of a teacher network
could enable representations, as many details are removed via feature
abstraction.

Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc 18asz0



Teacher-student feature
"reconstruction”

Teacher Target feature
=
|
— [&==
E'— s
\
\| Reconstruction
Student Prediction ,' loss

DEI /
4
> [
[
a

o Teacher: generate a target feature from a given image.

o Student: predict this target, given as input a different random view of the same
image.
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Predicting bag-of-words (BoWNet)

Visual
Vocabulary

Feature map D:.:-
Target Bow
| yr(x)

=
==
BoW generator | — E._

\
y Cross-entropy

Predicted BoW 1 loss
ys\x /

] /

<

BoW prediction | =

DD[[DD w

Feature reconstruction method defined over high-level discrete visual words:

» Teacher: extract feature maps + convert them to Bag-of-Words (BoW) vectors

o Student: must predict the BoW of an image, given as input a perturbed version

S. Gidaris et al., Learning Representations by Predicting Bags of Visual Words, CVPR 2020
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Limitation of BoWNet

Visual
fI‘OZGIl Voc;;%ﬁary

Feature map \
frOZGH D:.:- Target Bow
| yr(x)

=
==
BoW generator | — E._

\
y Cross-entropy

Predicted BoW 1 loss
ys\x /

] /

<

BoW prediction | =

DD[[DD w

Uses a pre-trained and frozen teacher network

e Requires pre-training with another self-supervised method

e Frozen teacher — suboptimal supervisory signal for the student training

S. Gidaris et al., Learning Representations by Predicting Bags of Visual Words, CVPR 2020
Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc
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Dynamic teacher-student feature “reconstruction”
methods
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Bootstrap Your Own Latent (BYOL)

Target Feature
2T

=
Projection L, R —
— 77 » g \
MLP Gp stop gradient - \ _ _
: Cosine distance

\
i '\ <Qs(s) 21 >
! < Qs(Zs) 2 >

1

nt nt icti -
(Mipdate ) (Mipdate ) Prediction 1Qs(Zs)ll - =7
: ' Qs(zs) /
~ o
— — - Y
Projection | #S | Prediction |, Dﬁ -
MLP Gs || MLP Qg | HE

Feature reconstruction method:

o Teacher: extract a target feature vector from a random view of an image

» Student: predict this target, given as input a different random view of the same
image

J.B. Grill et al., Bootstrap your own latent: A new approach to self-supervised Learning, NeurlPS 2020
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Target Feature

=T
=
Projection L, . HE=—~
MLP Gp stop gradient T A
s \
- L] l . .
(shared) (shared) PredicNtion ,| Cosine distance
i ' ) QSSZDS) ,
Projection | S | Prediction | HE= « /
—_ —_— C—
MLP Gg MLP Qg HE

SimSiam: BYOL without the momentum teacher (the teacher is identical to the
student)

X. Chen et al., Exploring Simple Siamese Representation Learning, CVPR 2021
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Target Feature

<8
=
Projection L . HE=—~
MLP Gg stop gradient - \
: \
= L] l . .
(shared) (shared) PredicNtion ,| Cosine distance
i ' ) QSSZDS) ,
Projection | S | Prediction | HE= « /
—_ —_— C—
MLP Gg MLP Qg HE

SimSiam: BYOL without the momentum teacher (the teacher is identical to the
student)

X. Chen et al., Exploring Simple Siamese Representation Learning, CVPR 2020

191/204
Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc /



SSL in the age of Transformers
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In the last years, the emergence of Vision Transformers (ViT), has led
to a new line of SSL approaches strongly related with practices from
NLP.

Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc



The Vision Transformer (ViT)

e patch trick: generate a sequence
from images by cropping non-
overlapping patches

e spatial information given by position
embeddings

e Transformer layers are identical with
one from NLP

e QOutperforms ResNet-50 only above
20M training samples

A. Dosovitskiy et al., An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, ICLR 2021
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The Vision Transformer (ViT)

Vision Transformer (ViT) Transformer Encoder

Class

Bird MLP

e patch trick: generate a sequence
from images by cropping non-

M > @fl @:J “ @15 E e overlapping patches

Transformer Encoder

[1 ]:mbcdl ng [ Lmearl’ro]ecnonofFlaltenedPalches
| | . : . -
m.—»lllﬂlﬁﬂ e spatial information given by position
W-E Embedded .
embeddings

e Transformer layers are identical with
one from NLP

e QOutperforms ResNet-50 only above
20M training samples

A. Dosovitskiy et al., An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, ICLR 2021
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DINO

gradient

(_' smiariyfos ’j Main idea: No prediction head; post-processing
H H of teacher outputs to avoid feature collapse
t
[ e Centering by subtracting the mean feature:
e prevents collapsing to constant 1-hot
b el targets
"""""" ’ ' e Sharpening by using low softmax
. i, temperature: prevents collapsing to a

uniform target vector

e Cross-entropy loss
fo. fy: encoder (ViT, ResNet-50);

hg. hy: projection (MLP).

Caron et al., Emerging Properties in Self-Supervised Vision Transformers, ICCV 2021
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Remember BERT?

Input: The man went to the [MASK],
Labels: [MASK],

He bought a [MASK]2 of milk .

= store; [MASK]2 = gallon

Missing word prediction task.
Sentence A = The man went to the store.

Sentence B = He bought a gallon of milk.

Sentence A = The man went to the store.
Label = IsNextSentence

Sentence B = Penguins are flightless.
Label = NotNextSentence

Next sentence prediction task.

T. Mikolov et al., Efficient estimation of word representations in vector space, ArXiv 2013
T. Mikolov et al., Distributed representations of words and phrases and their compositionality, NeurlPS 2013
J. Devlin, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, ArXiv 2018
Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc
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Masked Image Modelling: BEIT

gradient

(—v Similarity loss ‘ ‘j

DOOO0000000000000 0 EE @ @ = =

t t

—

o o o o [ o [ 0 Y ) [

IS
8

Bao et al., BEIT: BERT Pre-Training of Image Transformers, ICLR 2022

Main idea: pre-train ViTs by learning to predict
tokens of masked patches

Mimicking practices from large language
models (BERT)

Learn to produce discrete visual tokens from
masked input images

Use learnable mask-token for masked
patches

Trained with cross-entropy loss over masked
tokens

fo: encoder (ViT);

tokenizer: pretrained autoencoder (DALL-E).

Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc
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Masked Image Modelling: MAE

gradient

(—'\ SR ) Main idea: learn to reconstruct masked pixels
OOO0O0O0000O00000000 o o o o o o o o
t . . . . . .
W ! e Simplified MIM pipeline without pre-trained
mmsECCECECEECEES tokenizer nor data augmentation

- ' . e Encoder operates only on visible patches
without mask tokens

IE = H E IE EE

e Lightweight ViT decoder (removed after pre-
E training)

e Aggressive masking (up to 75% of patches)

¢ Shines when fine-tuned on the downstream
task

fo: encoder (ViT);

hg: decoder (ViT).

He et al., Masked Autoencoders Are Scalable Vision Learners, CVPR 2022
Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc
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Masked Image Modelling: MAE

Example results on ImageNet validation images. For each triplet, we show the masked image (left), our MAE
reconstruction(middle), and the ground-truth (right). The masking ratio is 80%, leaving only 39 out of 196 patches

He et al., Masked Autoencoders Are Scalable Vision Learners, CVPR 2022
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Foundation models such as DINOv2 have significantly changed the
way we use pretrained models and they types of "stage 2"
applications

201/204
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Stage 2: Can also be distillation, data mining, active
learning, model init. ...

reuse pretrained backbones on other modalitie unsupervised semantic segmentation
Pre-training . o
text-driven 3D retrieval from cameras
Image classification
— (B e |[§] = e rnn . - :
Self-supervised leaming
RGB Images !
Fine-tuning | Copying 3 . g
v
] | similarity
teA vr |8 | -
AW:’, E Encoder L2 J b h[Qﬁ “Black hatchback” ]— -
Point Clouds RangeViT LIDAR Segmenlallw:
RangeViT [CVDR'23] POP-3D [NeurIPS'23]

Drive&Segment [ECCV'22]

image to lidar distillation

— kickstart active learning
E ! . -+~ random KMcentroid == KMfurthest == ScedAL
nuScenes Velodyne};\ .
rand . CoreSet SegFnt

& -
Y
—
‘oo m

Pandaset - Pandar 64 & GT

cosine-sim
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saa 12 3 4 12 3 4 T 2 3 1
an

R — SeedAL [ICCV'23]

ScalR [CVPR'24]
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DINOv2 is the default image encoder in computer vision

nowadays

Backbone Fine-tune | Trainable mloU
Method | Params* |Citys BDD Map Avg. -
Full 304.15M | 51.3 476 543 51.1 L
CLIP [63
(ViTl_[:;;e) Freeze 0.00M | 537 487 550 52.4 highty precise
Rein 2.99M | 57.1 54.7 60.5 574 distribution shift ®
Full 330.94M | 53.7 50.8 58.1 54.2 limited diversity ®
(ML:_EE[)Z-’] Freeze 0.00M | 43.3 37.8 48.0 43.0
E Rein 200M | 550 493 58.6 543 ,a,ges,,eache,
Full 632.18M | 57.6 51.7 61.5 56.9
(S}?Megm] Freeze 0.00M | 57.0 47.1 584 54.2
g Rein 451M | 59.6 52.0 62.1 579
Full 304.24M | 62.1 562 64.6 609
](EIYAOZ)“S’ 191 Freeze 0.00M | 56.5 53.6 58.6 56.2
arge Rein 299M | 653 60.5 64.9 63.6
Full 304.20M | 63.7 574 642 61.7
([iI:IOe‘)/Z B8l Freeze 0.00M | 63.3 56.1 639 61.1
e Rein 299M | 66.4 604 66.1 64.3
RelN
Method Ref. BRAVOT Semantict OODT
DINOv2-00D Sec. 22 TT.9 69.8  88.1
PixQOD w/ ResNet-101 DeepLabv3 [26] Sec. 23 61.2 5R.7 64.0
Ensemble Sec. 2.4 61.1 64.3 58.2
PhyFea [ll Sec. 2.5 33.6 66.3 22.5
Baseline: SegFormer-B3 [30] - 471 153 492
Baseline: ObsNet-ResNet101 [2] - 45.3 515 40.5
Baseline: RbA Swin-B [16] - 30T 2.7 59.2

purely symhenc 1mages

unlabeled real images pseudo-labeled real images

highly diverse & precise €
largest teacher 8HY diverse & precise
fine-grained details g

real-world distribution

[ E' student model

pseudo labels

Figure 7: Depth Anything V2. We first train the most capable teacher on precise synthetic images.

Then, to mitigate the distribution shift and limited diversity of synthetic data, we annotate unlabeled
real images with the teacher. Finally, we train student models on high-quality pseudo-labeled images.

BRAVO Challenge results

DepthAnythingVv2

Z. Wei et al., Stronger, Fewer, & Superior: Harnessing Vision Foundation Models for Domain Generalized Semantic Segmentation, CVPR 2024 [ T. Vu et al., The

BRAVO Semantic Segmentation Challenge Results in UNCV2024, ECCVW 2024 [ L. Yang et al., Depth Anything V2, NeurlPS 2024
Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc
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Today

Transfer learning
Off-the shelf networks
Fine-tuning
(Task) transfer learning
Multi-task learning
Domain adaptation

Self-supervised learning

Andrei BURSUC | Transfer learning and self-supervised learning | @abursuc
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The end.



