
Deep learning introduction

Deep learning introduction
ENSTA 3A - Parcours Robotique & IA

Gianni Franchi

01/12/2023

1 / 174

Deep learning introduction

Plan
1 Linear Regression
2 Unlearned feature space-Kernel
3 Typical recognition Algorithm
4 Neural Network

Perceptron
Multilayer Perceptron (MLP)

5 Convolutional Neural Network
1D convolution
2D convolution
Different layers of convolutional neural network

6 Transformer architecture
Attention in NLP + the bases
Attention in Computer Vision (VIT)

7 Training a neural network
Gradient descent
Stochastic optimization
Initialization

8 Regularization
9 Examples of applications of classical CNN
10 Conclusions

2 / 174

Deep learning introduction
Introduction

1 Linear Regression

2 Unlearned feature space-Kernel

3 Typical recognition Algorithm

4 Neural Network

5 Convolutional Neural Network

6 Transformer architecture

7 Training a neural network

8 Regularization

9 Examples of applications of classical CNN

10 Conclusions

3 / 174

Deep learning introduction
Introduction

Some references

(a) (b) (c)

(a) :Christopher M. Bishop " Pattern Recognition and Machine Learning
" Springer Verlag, 2006
(b) : Kevin P. Murphy, " Machine Learning " MIT Press, 2013
(c) : Ian Goodfellow , Yoshua Bengio, and Aaron Courville. " Deep
Learning (Adaptive Computation and Machine Learning series) ", The
MIT Press (November 18, 2016)

4 / 174

Deep learning introduction
Introduction

Example of applications

classify data (images, music,...)
denoise images
find and localize objects in images
segment objects in images
translate text
synthesize new images
play video games

5 / 174

Deep learning introduction
Linear Regression

1 Linear Regression

2 Unlearned feature space-Kernel

3 Typical recognition Algorithm

4 Neural Network

5 Convolutional Neural Network

6 Transformer architecture

7 Training a neural network

8 Regularization

9 Examples of applications of classical CNN

10 Conclusions

6 / 174

Deep learning introduction
Linear Regression

Notations and problem

First let us consider two kinds of data: the observation denoted x ∈ R
and the prediction denoted t ∈ R.
We want to be able to predict t given the observation x . Example: we
want to predict the salary given the age.
We consider that we have a set called the training set where we have N1
examples of pairs (xi , ti) with i ∈ N1 and we have a second set called the
testing set composed just of the observations (xi , ..) i ∈ N2.

7 / 174

Deep learning introduction
Linear Regression

The linear regression

Let us consider that the observations belong to RD .
So for all i ∈ N1 and i ∈ N2 we have xi ∈ RD

So for simplicity and i ∈ N1 we have xi ∈ RD

A simple model often used in regression is to consider that the prediction
function is given by:

f (ω, xi) = ω0 + ω1xi,1 + . . .+ ωDxi,D = ω0 +
D∑
j=1

ωjxi,j . (1)

Our goal is to learn the parameters ω = {ω0, . . . , ωD} thanks to the
training set. This model is called linear regression, and may have
some limitations.
Let us consider that the target data is given by the previous deterministic
function, corrupted by Gaussian noise ε of zero mean Gaussian and
inverse variance β, such that:

ti = f (ω, xi) + ε,

with ε ∼ N (0, 1/β).
8 / 174

Deep learning introduction
Linear Regression

The linear regression

Hence, we call τi the random variable associated to the target value ti ,
such that we have τ ∼ N (f (ω, xi), β

−1), which depends on two
parameters, ω and β and the observation xi .
We remind that X ∼ N (µ, σ2) then P(X = x) = 1√

2σ2π
e−

1
2σ2 (x−µ)

2

Let us consider that the training set is drawn independently from the
previous law. Then we can write the likelihood function of the
parameters ω and β:

L(t1, . . . , tN1/ω, β) =
N1∏
i=1

N (f (ω, xi), β
−1).

L(t1, . . . , tN1/ω, β) =
N1∏
i=1

√
β√
2π

exp

(
−β(ti − f (ω, xi))

2

2

)
.

Taking the logarithm of the likelihood function, we have:

logL (t1, . . . , tn/ω, β) =
n∑

i=1

(
1/2. log β − 1/2 log 2π − β/2(ti − f (ω, xi))

2) .
9 / 174

Deep learning introduction
Linear Regression

The linear regression

If we want to find the set of parameters that maximize the likelihood, we
have first to derive it according to each of the parameters of the
log-likelihood, and set it to zero. On the previous expression the term
that depends just on ω is:

Ed(ω) =
β

2

N1∑
i=1

(ti − f (ω, xi))
2.

10 / 174

Deep learning introduction
Linear Regression

The linear regression

We can rewrite it in a matrix form. First let us define the following
matrices: t ∈ MN1,1(R) is defined by:

t =

 t1
...

tN1


x ∈ MN1,D+1(R) is defined by:

x =

 1, x1,1 . . . x1,D
...

. . .
...

1, xN1,1 . . . xN1,D


ω ∈ MD+1,1(R) is defined by:

ω =

ω0
...
ωD


11 / 174

Deep learning introduction
Linear Regression

The linear regression

We can rewrite ED in a matrix form

Ed(ω) =
β

2
(t − xω)t(t − xω).

Ed(ω) =
β

2
(tt .t + ωtx txω − tt .xω − ωtx t .t).

However we know that ∂ωtx txω
∂ω = 2 ∗ (x tx)ω and

∂tt .xω
∂ω = ∂ωtx t .t

∂ω = 2 ∗ x t .t

∂

∂ω
Ed(ω) = β((x tx)ω − x t .t).

We can set it to zero, to finally obtain that:

ωML = (x t x)−1 x t t, (2)

12 / 174

Deep learning introduction
Linear Regression

The linear regression

It is also possible to estimate βML as:

βML =
1
N1

N1∑
i=1

(
ti − ωt

MLxi
)2
, (3)

such that βML provides us information on the precision of the regression.

13 / 174

Deep learning introduction
Linear Regression

The linear regression

Instead of solving :

Ed(ω) =
β

2

N1∑
i=1

(ti − f (ω, xi))
2.

In order to control over-fitting, the total error function to be minimized
takes the form:

Ed(ω) =
β

2

N1∑
i=1

(ti − f (ω, xi))
2 +

λ

2
ωtω.

By following the same calculus as previously the solution is:

ωML = (λID+1 + x t x)−1 x t t, (4)

14 / 174

Deep learning introduction
Linear Regression

The linear regression

We are now able to learn a simple function f linking the target t and the
observation x .
if t is continuous it is a regression
if t is discrete it is a classification

15 / 174

Deep learning introduction
Unlearned feature space-Kernel

1 Linear Regression

2 Unlearned feature space-Kernel

3 Typical recognition Algorithm

4 Neural Network

5 Convolutional Neural Network

6 Transformer architecture

7 Training a neural network

8 Regularization

9 Examples of applications of classical CNN

10 Conclusions

16 / 174

Deep learning introduction
Unlearned feature space-Kernel

The non linear regression

In the case where the data do not follow a linear model, the linear
regression might not be the best solution.

A solution: do not use x but another data representing x .

17 / 174

Deep learning introduction
Unlearned feature space-Kernel

The non linear regression

In the case where the data do not follow a linear model, the linear
regression might not be the best solution.
We prefer to consider a more general model:

f (ω, xi) = ω0 +
D2∑
j=1

ωjφj(xi), (5)

where φj(xi) ∈ RD2 a function describing xi with D2 the dimension of the
descriptor. There are a lot of possible descriptors :

φj(xi) = xMi,j , (6)

where the power M is a hyper-parameter.
We can also choose a feature space represented by a kernel1.
One can use the SIFT descriptor of any descriptors one want to use.

1Scholkopf, Bernhard, and Alexander J. Smola. Learning with kernels: support
vector machines, regularization, optimization, and beyond. MIT press, 2001.

18 / 174

Deep learning introduction
Unlearned feature space-Kernel

The non linear regression

What value of M should we choose?

A solution learn the feature space.

19 / 174

Deep learning introduction
Typical recognition Algorithm

Typical recognition Algorithm

Standard procedure
Feature transform: problem-dependent, hand-crafted, transforms
image into a form useful for classification
Classification: generic, trained, takes feature vector and produces
decision

20 / 174

Deep learning introduction
Typical recognition Algorithm

Support Vector Machines

Large margin classifier
Binary classification
Finds the boundary that ’best’ separates two classes
Implemented as an optimization problem :

Find w for maximizing m
With constraints that all points are well classified

21 / 174

Deep learning introduction
Typical recognition Algorithm

Support Vector Machines

Application for non linear problems
Project input in a space where they are linearly separable

We can use the ’Kernel trick’ : only the dot product of two feature is
needed, no need to create feature map φ.

22 / 174

Deep learning introduction
Neural Network

1 Linear Regression

2 Unlearned feature space-Kernel

3 Typical recognition Algorithm

4 Neural Network

5 Convolutional Neural Network

6 Transformer architecture

7 Training a neural network

8 Regularization

9 Examples of applications of classical CNN

10 Conclusions

23 / 174

Deep learning introduction
Neural Network
Perceptron

History of Deep learning

Deep Learning is a long story. It all started with the Perceptron:

24 / 174

Deep learning introduction
Neural Network
Perceptron

Perceptron algorithm

Deep Learning is a long story. It all started with perceptron:

25 / 174

Deep learning introduction
Neural Network
Perceptron

Perceptron algorithm

The issue is the XOR. How to solve it?

26 / 174

Deep learning introduction
Neural Network
Multilayer Perceptron (MLP)

neural network

(Artificial) neural networks are approaches which attempt to find a
mathematical representation of how our biological system processes
information.
Let us start with the following simple neural network:

27 / 174

Deep learning introduction
Neural Network
Multilayer Perceptron (MLP)

The Neural Network

In regression, the optimization problem was modeled by:

f (ω, xi) = ω0 +
D∑
j=1

ωjxi,j . (7)

Here we will build a first neuron denoted ck with k ∈ [1,K1] (in this
example K1 = 4 and D = 3) :

ck = ω
(1)
0,k +

D∑
j=1

ω
(1)
j,k vi,j . (8)

each ck is a neuron of the first layer. The superscript (1) indicates that
these parameters are the parameters of the first hidden layer. Then, a
nonlinear activation function a is applied on these quantities ck :

zk = a(1)(ck). (9)

with k ∈ [1,K1].
28 / 174

Deep learning introduction
Neural Network
Multilayer Perceptron (MLP)

The Neural Network

We can choose different kinds of activation functions, typically:
A sigmoid function a(x) = 1

1+e−x ;
a(x) = tanh(x);

Rectified Linear Unit (ReLU): a(x) =
{

0 if x < 0
x if x ≥ 0 .

We have now the K1 first neurons c1, c2, . . . , cK1 (according to the
exampleK1 = 4).
Thanks to activation functions the neural network acts like human
neurons. Moreover, the activation functions allow the neural network to
approximate any functions.

29 / 174

Deep learning introduction
Neural Network
Multilayer Perceptron (MLP)

The Neural Network

On the output of the first layer, a second linear combination is applied:

dk = ω
(2)
0,k +

K1∑
k1=1

ω
(2)
k1,k

zk1 . (10)

with k ∈ [1,K2] (on this example K2 = 2).
In this example, d1 and d2 are the outputs of the CNN.
To summarize, the output is equal to :

dk = ω
(2)
0,k +

K1∑
k1=1

ω
(2)
k1,k

a(1)(ω
(1)
0,k1 +

D∑
j=1

ω
(1)
j,k1

vi,j). (11)

In addition we can add multiple layers. So the function represented by
the neural network can be really complicated.

30 / 174

Deep learning introduction
Neural Network
Multilayer Perceptron (MLP)

Neural network deeper

31 / 174

Deep learning introduction
Neural Network
Multilayer Perceptron (MLP)

Story of Neural network

32 / 174

Deep learning introduction
Convolutional Neural Network

1 Linear Regression

2 Unlearned feature space-Kernel

3 Typical recognition Algorithm

4 Neural Network

5 Convolutional Neural Network

6 Transformer architecture

7 Training a neural network

8 Regularization

9 Examples of applications of classical CNN

10 Conclusions

33 / 174

Deep learning introduction
Convolutional Neural Network
1D convolution

1D convolution

For real functions f , g defined on the set Z of integers, the discrete
convolution of f and g is given by:

(f ∗ g)[n] =
∞∑

m=−∞
f [m]g [n −m] (12)

or equivalently (see commutativity) by:

(f ∗ g)[n] =
∞∑

m=−∞
f [n −m]g [m]. (13)

when g and f have finite supports; g in the set
{−M,−M + 1, . . . ,M − 1,M} and f in {0, 1, . . . ,N − 1,N} a finite
summation is used:

(f ∗ g)[n] =
M∑

m=−M

f [n −m]g [m] ∀n ∈ [M,N −M] (14)

with M ≤ N
34 / 174

Deep learning introduction
Convolutional Neural Network
1D convolution

Example 1D convolution for deep learning2

Be careful, this is the cross-correlation.

2Credits: Francois Fleuret
35 / 174

Deep learning introduction
Convolutional Neural Network
1D convolution

Example 1D convolution for deep learning3

3Credits: Francois Fleuret
36 / 174

Deep learning introduction
Convolutional Neural Network
1D convolution

Example 1D convolution for deep learning4

4Credits: Francois Fleuret
37 / 174

Deep learning introduction
Convolutional Neural Network
1D convolution

Example 1D convolution for deep learning5

5Credits: Francois Fleuret
38 / 174

Deep learning introduction
Convolutional Neural Network
1D convolution

Example 1D convolution for deep learning6

6Credits: Francois Fleuret
39 / 174

Deep learning introduction
Convolutional Neural Network
1D convolution

Example 1D convolution for deep learning7

7Credits: Francois Fleuret
40 / 174

Deep learning introduction
Convolutional Neural Network
1D convolution

Example 1D convolution for deep learning8

8Credits: Francois Fleuret
41 / 174

Deep learning introduction
Convolutional Neural Network
1D convolution

Example 1D convolution for deep learning9

9Credits: Francois Fleuret
42 / 174

Deep learning introduction
Convolutional Neural Network
2D convolution

2D convolution

Similarly to the 1D case, let us define two functions f , g . g is a function
of two variables defined in the set {−M,−M + 1, . . . ,M − 1,M}2 and f
in {0, 1, . . . ,N − 1,N}2 We can define the 2D convolution for all
(n1, n2) ∈ [M,N −M]2

(f ∗ g)[n1, n2] =
M∑

m1=−M

M∑
m2=−M

f [n1 −m1, n2 −m2]g [m1,m2] (15)

However, color images are discrete functions of two variables with values
in R3.

(f ∗ g)[n1, n2] =
3∑

k=0

M∑
m1=−M

M∑
m2=−M

f [n1 −m1, n2 −m2, k]g [m1,m2, k] (16)

43 / 174

Deep learning introduction
Convolutional Neural Network
2D convolution

2D convolution

We note that in deep learning, we do not use the convolution but the
cross-correlation, and we call it the convolution.
Here is the definition of the convolution used in most of the deep learning
libraries:

(f ∗ g)[n1, n2] =
3∑

k=0

M∑
m1=−M

M∑
m2=−M

f [n1 +m1, n2 +m2, k]g [m1,m2, k]. (17)

44 / 174

Deep learning introduction
Convolutional Neural Network
2D convolution

Example 2D convolution10

10Credits: Francois Fleuret 45 / 174

Deep learning introduction
Convolutional Neural Network
2D convolution

Example 2D convolution11

11Credits: Francois Fleuret 46 / 174

Deep learning introduction
Convolutional Neural Network
2D convolution

Example 2D convolution12

12Credits: Francois Fleuret 47 / 174

Deep learning introduction
Convolutional Neural Network
2D convolution

Example 2D convolution13

13Credits: Francois Fleuret 48 / 174

Deep learning introduction
Convolutional Neural Network
2D convolution

Example 2D convolution14

14Credits: Francois Fleuret 49 / 174

Deep learning introduction
Convolutional Neural Network
2D convolution

Example 2D convolution15

15Credits: Francois Fleuret 50 / 174

Deep learning introduction
Convolutional Neural Network
2D convolution

Example 2D convolution16

16Credits: Francois Fleuret 51 / 174

Deep learning introduction
Convolutional Neural Network
2D convolution

2D convolution

Let f ∈ RCin×H×W be an image. it is a 3D tensor called the input
feature map.

Let u ∈ RCout×Cin×h×w be a kernel across the input feature map,
along its height and width. The size h × w is the size of the
receptive field.
The final output o is a 3D tensor of size Cout × (Hout)× (Wout)
called the output feature map

o[Cout,j] = bias[Cout,j] +

Cin∑
k=0

h−1∑
n=0

w−1∑
m=0

f[k, n + j ,m + i]u[Cout,j , k, n,m] (18)

Cout × (H − h + 1)× (W − w + 1)

52 / 174

Deep learning introduction
Convolutional Neural Network
2D convolution

2D convolution

The output feature map size Cout × (Hout)× (Wout) depends on :
The padding which specifies number of zeros concatenated at the
beginning and at the end of an axis
The stride which specifies a step size when moving the kernel across
the signal.
The dilation which modulates the expansion of the filter without
adding weights.

Hout =

⌊
Hin + 2× padding[0]− dilation[0]× (h − 1)− 1

stride[0]
+ 1
⌋

Wout =

⌊
Win + 2× padding[1]− dilation[1]× (w − 1)− 1

stride[1]
+ 1
⌋

53 / 174

Deep learning introduction
Convolutional Neural Network
2D convolution

2D convolution17

Padding is useful to control the spatial dimension of the feature map, for
example to keep it constant across layers.

17Credits: https://arxiv.org/pdf/1603.07285.pdf
54 / 174

Deep learning introduction
Convolutional Neural Network
2D convolution

2D convolution18

Stride is useful to reduce the spatial dimension of the feature map by a
constant factor.

18Credits: https://arxiv.org/pdf/1603.07285.pdf
55 / 174

Deep learning introduction
Convolutional Neural Network
2D convolution

2D convolution19

The dilation modulates the expansion of the kernel. Having a dilation
coefficient greater than one increases the units receptive field size
without increasing the number of parameters.

19Credits: https://arxiv.org/pdf/1603.07285.pdf
56 / 174

Deep learning introduction
Convolutional Neural Network
2D convolution

Convolutions as matrix multiplications

As a guiding example, let us consider the convolution of single-channel
tensors x ∈ R4×4 and u ∈ R3×3:

x~ u =


4 5 8 7
1 8 8 8
3 6 6 4
6 5 7 8

~

1 4 1
1 4 3
3 3 1

 =

(
122 148
126 134

)

57 / 174

Deep learning introduction
Convolutional Neural Network
2D convolution

Convolutions as matrix multiplications

The convolution operation can be equivalently re-expressed as a single
matrix multiplication:
the convolutional kernel u is rearranged as a sparse Toeplitz circulant
matrix, called the convolution matrix:

U =


1 4 1 0 1 4 3 0 3 3 1 0 0 0 0 0
0 1 4 1 0 1 4 3 0 3 3 1 0 0 0 0
0 0 0 0 1 4 1 0 1 4 3 0 3 3 1 0
0 0 0 0 0 1 4 1 0 1 4 3 0 3 3 1


the input x is flattened row by row, from top to bottom:
x =

(
4 5 8 7 1 8 8 8 3 6 6 4 6 5 7 8

)T
Then, v(x) =

(
122 148 126 134

)T which we can reshape to a 2× 2
matrix to obtain x~ u.

58 / 174

Deep learning introduction
Convolutional Neural Network
2D convolution

Transposed convolution 20

The need for transposed convolutions generally arises from the desire
to use atransformation going in the opposite direction of a normal
convolution, This operationis known as deconvolution.

20Credits: https://arxiv.org/pdf/1603.07285.pdf
59 / 174

Deep learning introduction
Convolutional Neural Network
2D convolution

Transposed convolution 21

21Credits: Francois Fleuret 60 / 174

Deep learning introduction
Convolutional Neural Network
2D convolution

Transposed convolution 22

22Credits: Francois Fleuret
61 / 174

Deep learning introduction
Convolutional Neural Network
2D convolution

Transposed convolution 23

23Credits: Francois Fleuret 62 / 174

Deep learning introduction
Convolutional Neural Network
2D convolution

Transposed convolution 24

24Credits: Francois Fleuret
63 / 174

Deep learning introduction
Convolutional Neural Network
2D convolution

Transposed convolution 25

25Credits: Francois Fleuret
64 / 174

Deep learning introduction
Convolutional Neural Network
2D convolution

Transposed convolution 26

26Credits: http://d2l.ai/ and https://distill.pub/2016/deconv-checkerboard/
65 / 174

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

initialization of the 2D convolution

A convolutional neural network (CNN) uses different types of layers:
Convolution layer
Activation layer
Pooling layer
Fully connected layer

We already saw the Convolution and Fully connected layers.

66 / 174

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Activation function layer

Every activation function (or non-linearity) takes a single number and
performs a certain fixed mathematical operation on it. There are several
activation functions you may encounter. In practice, the most used is the
RELU.

f (x) = max(0, x) (19)

67 / 174

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Pooling layer

Consider a pooling area of size h × w and a 3D input tensor
x ∈ RC×(rh)×(sw).
Max-pooling produces a tensor o ∈ RC×r×s such that

oc,j,i = max
n<h,m<w

x[c , j + n, i +m]

Average pooling produces a tensor o ∈ RC×r×ssuch that

oc,j,i =
1
hw

h−1∑
n=0

w−1∑
m=0

x[c , j + n, i +m]

Pooling is very similar in its formulation to convolution.

68 / 174

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Pooling layer

A common pooling layer : the max pooling (or the average pooling).
Max pooling is a discretization process. The goal of the pooling is to
concentrate the information in a down-sampled input representation.

69 / 174

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Example 2D pooling27

27Credits: Francois Fleuret 70 / 174

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Example 2D pooling28

28Credits: Francois Fleuret
71 / 174

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Example 2D pooling29

29Credits: Francois Fleuret 72 / 174

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Example 2D pooling30

30Credits: Francois Fleuret 73 / 174

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Example 2D pooling31

31Credits: Francois Fleuret 74 / 174

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Example 2D pooling32

32Credits: Francois Fleuret 75 / 174

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Example 2D pooling33

33Credits: Francois Fleuret
76 / 174

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

CNN : architecture

77 / 174

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Example of CNN : AlexNet

78 / 174

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Example of CNN : VGG

79 / 174

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Example of CNN : GoogLeNet 34

Each inception block is itself defined as a convolutional network with 4
parallel paths.

34Credits: Dive Into Deep Learning, 2020.
80 / 174

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Example of CNN : GoogLeNet 35

35Credits: Dive Into Deep Learning, 2020.
81 / 174

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Example of CNN : resnet 34

82 / 174

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Example of CNN : resnet 36

Training networks of this depth is made possible because of the skip
connections in the residual blocks. They allow the gradients to shortcut
the layers and pass through without vanishing.

36Credits: Dive Into Deep Learning, 2020.
83 / 174

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Example of CNN : resnet 37

37Credits: Dive Into Deep Learning, 2020.
84 / 174

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Evolution of CNN 38

38Credits: Gilles Louppe
85 / 174

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Inside a CNN 39

AlexNet’s first convolutional layer, first 20 filters.

39Credits: Gilles Louppe
86 / 174

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Inside a CNN 40

VGG-16, convolutional layer 1-1, a few of the 64 filters

40Credits: Gilles Louppe
87 / 174

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Inside a CNN 41

VGG-16, convolutional layer 2-1, a few of the 128 filters

41Credits: Gilles Louppe
88 / 174

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Inside a CNN 42

VGG-16, convolutional layer 3-1, a few of the 256 filters

42Credits: Gilles Louppe
89 / 174

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Inside a CNN 43

VGG-16, convolutional layer 4-1, a few of the 512 filters

43Credits: Gilles Louppe
90 / 174

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Inside a CNN 44

VGG-16, convolutional layer 5-1, a few of the 512 filters

44Credits: Gilles Louppe
91 / 174

Deep learning introduction
Convolutional Neural Network
Different layers of convolutional neural network

Inside a CNN 45

45Credits: Gilles Louppe
92 / 174

Deep learning introduction
Transformer architecture
Attention in NLP + the bases

Attention layer 46

Transformer layers were invented for Natural Language Processing. Yet,
it is more and more use in computer vision.

46Credits: Jay Alammar
93 / 174

Deep learning introduction
Transformer architecture
Attention in NLP + the bases

Attention layer 47

First, you need to represent each word by a representation. There are
nice tools to do that. You can use the word2vec embedding.

47Credits: Jay Alammar
94 / 174

Deep learning introduction
Transformer architecture
Attention in NLP + the bases

Attention Layer

95 / 174

Deep learning introduction
Transformer architecture
Attention in NLP + the bases

Attention layer 48

Let us consider that we have a querry q, a set of keys {ki}i , and a set
of values {vi}i . To compute the output, we first assume there is a score
function α which measure the similarity between the query and a key.
Then we compute all n scores a1, . . . , an defined by

ai = α(q, ki).

Next we use softmax to obtain the attention weights

b1, . . . , bn = softmax(a1, . . . , an).

The final output is a weighted sum of the values

o =
∑
i

bivi .

48Credits: d2l.ai
96 / 174

Deep learning introduction
Transformer architecture
Attention in NLP + the bases

Additive attention 49

When queries and keys are vectors of different lengths, we can use an
additive attention as the scoring function. Given q ∈ Rq and k ∈ Rk ,the
additive attention scoring function is:

α(q, k) = wv tanh(W
t
q × q +W t

k × k)

where Wq ∈ Mq,h(R) and Wk ∈ Mk,h(R) , and wv ∈ Rh are learnable
parameters
(We can also use a projection to correct the size)

49Credits: Gilles Louppe
97 / 174

Deep learning introduction
Transformer architecture
Attention in NLP + the bases

Scaled dot-product attention50

When queries and keys are vectors of the same length d , we can use a
scaled dot product attention as the scoring function. Given q ∈ Rq and
k ∈ Rk ,the additive attention scoring function is:

α(q, k) =
qtk√
d
.

Recall that the dot product is simply a un-normalised cosine similarity,
which tells us about the alignment of two vectors.

50Credits: Gilles Louppe
98 / 174

Deep learning introduction
Transformer architecture
Attention in NLP + the bases

Scaled dot-product attention51

For n queries qi ∈ Rd , m keys ki ∈ Rd and vi ∈ Rv values are vectors,
we can stack those vectors in matrices : Q ∈ Mn,d(R) and K ∈ Mm,d(R)
and V ∈ Mm,v (R)

51Credits: Gilles Louppe
99 / 174

Deep learning introduction
Transformer architecture
Attention in NLP + the bases

Attention layer 52

The core component in the transformer architecture is the attention
layer, or called attention for simplicity. An input of the attention layer is
called a query. For a query, the attention layer returns the output based
on its memory, which is a set of key-value pairs.

52Credits: Jay Alammar
100 / 174

Deep learning introduction
Transformer architecture
Attention in NLP + the bases

Attention layer 53

53Credits: Jay Alammar
101 / 174

Deep learning introduction
Transformer architecture
Attention in NLP + the bases

Attention layer 54

54Credits: Jay Alammar
102 / 174

Deep learning introduction
Transformer architecture
Attention in NLP + the bases

Attention Layer55

55Credits: Gilles Louppe
103 / 174

Deep learning introduction
Transformer architecture
Attention in NLP + the bases

Attention layer 56

In NLP we do not apply just one attention layer, but mutliple one.

56Credits: Jay Alammar
104 / 174

Deep learning introduction
Transformer architecture
Attention in NLP + the bases

multi-headed Self-Attention layer 57

57Credits: Jay Alammar
105 / 174

Deep learning introduction
Transformer architecture
Attention in NLP + the bases

multi-headed Self-Attention layer 58

58Credits: Jay Alammar
106 / 174

Deep learning introduction
Transformer architecture
Attention in NLP + the bases

multi-headed Self-Attention layer 59

59Credits: Jay Alammar

107 / 174

Deep learning introduction
Transformer architecture
Attention in NLP + the bases

multi-headed Self-Attention layer

One problem is that the position and the order of words is essential for
many languages. It defines the grammar and thus the actual semantics of
a sentence.
A solution: use a positional encoding which is a piece of information to
each word about its position in the sentence.

108 / 174

Deep learning introduction
Transformer architecture
Attention in NLP + the bases

Positional encoding

The first bad idea is to assign a number to each time-step within the [0,
1] range. 0 = ’the first word’ and 1 = ’the last word’.
Problem: it will introduce is that you can’t figure out how many words
are present within a specific range.
A second bad idea is to put the valued 1 to the first word, 2 to the
second, and so on.
Problems: the values can get quite large, bringing training issues. Also,
our model can face test sentences longer than the ones in training.

109 / 174

Deep learning introduction
Transformer architecture
Attention in NLP + the bases

Positional encoding

Let t be the desired position in an input sentence. We denote −→pt ∈ Rd

its corresponding encoding, and d be the encoding dimension (where
d = 20) Then we have:

−→pt =


sin (ω1t)
cos (ω1t)

...
sin (ωd/2t)
cos (ωd/2t)


d×1

(20)

where ωk = 1
100002k/d

110 / 174

Deep learning introduction
Transformer architecture
Attention in NLP + the bases

Positional encoding 60

Most of the time, the position encoding is summed with the word’s
embedding to build a new word’s representation.

60Credits: Amirhossein Kazemnejad
111 / 174

Deep learning introduction
Transformer architecture
Attention in Computer Vision (VIT)

VIT 61

61https://arxiv.org/pdf/2010.11929.pdf
112 / 174

Deep learning introduction
Transformer architecture
Attention in Computer Vision (VIT)

VIT 62

Please try the tutorial about VIT:
https://www.tensorflow.org/text/tutorials/transformer

62https://arxiv.org/pdf/2010.11929.pdf
113 / 174

https://www.tensorflow.org/text/tutorials/transformer

Deep learning introduction
Training a neural network

1 Linear Regression

2 Unlearned feature space-Kernel

3 Typical recognition Algorithm

4 Neural Network

5 Convolutional Neural Network

6 Transformer architecture

7 Training a neural network

8 Regularization

9 Examples of applications of classical CNN

10 Conclusions

114 / 174

Deep learning introduction
Training a neural network
Gradient descent

Optimization

We have a set of data {xi , ti}N1
i=1 :

F(ω) = β

2

N1∑
i=1

‖f (ω, xi)− ti‖2. (21)

Now ω stands for all the weights and biases of the CNN and f (ω, xi) is
the result of the CNN with the weights and biases ω applied on xi .
Finding the optimal ω that minimizes F is complicated. There are
different techniques:

genetic optimization (Neuro evolution, markov chain,...)
stochastic gradient descent

115 / 174

Deep learning introduction
Training a neural network
Gradient descent

Basic of deep learning optimization

Let us start with the previous problem:

minωF(ω) , with F(ω) =
N1∑
i=1

‖f (ω, xi)− ti‖2 (22)

How can we proceed? A simple algorithm called gradient descent consists
in the following, after having checked that F is convex (F ′′(ω) > 0) and
is of class C1.
First we initialize ω0.
Then, at each iteration we calculate:

ωt+1 = ωt − λ
∂F
∂ω

(23)

λ > 0 is a parameter that modulates the correction (when λ is too low,
slow convergence, when λ is too high, there are oscillations)

116 / 174

Deep learning introduction
Training a neural network
Gradient descent

Basic of deep learning optimization

Why does it work?
We remind the derivative of a function:

∂g

∂x
= limh→0

g(x + h)− g(x)

h
(24)

For simplicity, we consider for h really small :

∂g

∂x
' g(x + h)− g(x)

h
(25)

Now let us consider that h = −λ∂g∂x .
Then have

g(x + h)− g(x) ' −λ× (
∂g

∂x
)2 (26)

Since λ > 0, then
g(x + h) < g(x) (27)

117 / 174

Deep learning introduction
Training a neural network
Gradient descent

Basic of deep learning optimization

118 / 174

Deep learning introduction
Training a neural network
Gradient descent

Basic of deep learning optimization

Now let us focus on ∂F
∂ω . This term is

∂F
∂ω

=
∂

∂ω

N1∑
i=1

(f (ω, xi)− yi)
t(f (ω, xi)− yi) (28)

∂F
∂ω

=
∂

∂ω

N1∑
i=1

(
f (ω, xi)

t f (ω, xi)− 2y t
i f (ω, xi) + y t

i yi
)

(29)

∂F
∂ω

=
N1∑
i=1

(
∂

∂ω
f (ω, xi)

t f (ω, xi)−
∂

∂ω
2y t

i f (ω, xi)

)
(30)

Now let us consider that N1 is really big (about a billion), this might take
ages to sum all the gradients over N1 and over all the parameters w and
to iterate it one million times.

119 / 174

Deep learning introduction
Training a neural network
Stochastic optimization

Stochastic gradient descent

Now let us focus on ∂F
∂ω . This term is

∂F
∂ω
' ∂

∂ω

∑
i∈Bj

‖f (ω, xi)− yi‖2 (31)

With Bj a sample of the dataset.
One dataset Bj might not be representative of the full dataset so we take
all the possible Bj

Hence at each iteration we calculate

ωt+1 = ωt − λ
∂Fj

∂ω
(32)

with
∂Fj

∂ω
=

∂

∂ω

∑
i∈Bj

‖f (ω, xi)− yi‖2 (33)

120 / 174

Deep learning introduction
Training a neural network
Stochastic optimization

Stochastic gradient descent

121 / 174

Deep learning introduction
Training a neural network
Stochastic optimization

Stochastic gradient descent algorithm

The stochastic gradient descent

First, we initialized the parameters ω0.
Then, at each iteration we calculate

ωt+1 = ωt − λ
∂Fj

∂w
(34)

The stochastic gradient descent with momentum

First, we initialized the parameters ω0.
Then, at each iteration we calculate

ut+1 = γut + λ
∂Fj

∂ω
(35)

ωt+1 = ωt − ut+1 (36)

the term ut+1 allow us to stabilize the gradient descent. γ ≥ 0 is the
momentum parameter. This parameter add inertia in the choice of the
step direction.

122 / 174

Deep learning introduction
Training a neural network
Stochastic optimization

Stochastic gradient descent

Stochastic Gradient Descent (SGD) consists in visiting the samples in
mini-batches and updating the parameters each time like a classical
Gradient Descent. There are two parameters : the size of the batch B
and the learning rate λ
Increasing the batch size B reduces the variance of the gradient estimates
and enables the speed-up of batch processing. The interplay between B
and λ is still a bit unclear.

123 / 174

Deep learning introduction
Training a neural network
Stochastic optimization

The tradeoffs of large-scale learning

A fundamental result due to Bottou and Bousquet (2011)63 states that
stochastic optimization algorithms (e.g., SGD) yield the best
generalization performance (in terms of excess error) when compared to
GD and 2GD despite having the worst optimization performance on the
empirical cost.

63Bottou, Leon, and Olivier Bousquet. "13 the tradeoffs of large-scale learning."
Optimization for machine learning (2011): 351.

124 / 174

Deep learning introduction
Training a neural network
Stochastic optimization

Stochastic gradient descent with momentum

An improvement to Stochastic gradient descent is to use momentum to
add inertia in the choice of the step direction.

The stochastic gradient descent with momentum

First, we initialized the parameters ω0.
Then, at each iteration we calculate

ut+1 = γut + λ
∂Fj

∂ω
(37)

ωt+1 = ωt − ut+1 (38)

the term ut+1 allow us to stabilize the gradient descent. γ ≥ 0 is the
momentum parameter. This parameter add inertia in the choice of the
step direction.

Gradient descent with momentum has three nice properties:
it can go through local barriers,
it accelerates if the gradient does not change much,
it reduces oscillations in narrow valleys.

125 / 174

Deep learning introduction
Training a neural network
Stochastic optimization

Adaptive learning rate64

One problem is that SGD and SGD with momentum relie too much on
the learning rate and assume the isotropy of the loss of the DNN.

A solution use second order gradient descent. But it is too heavy.

64Credits: Gilles Louppe
126 / 174

Deep learning introduction
Training a neural network
Stochastic optimization

AdaGrad

The AdaGrad algorithm

rt = rt−1 +

(
∂Fj

∂ω

)2

(39)

ωt+1 = ωt −
λ√
r̂t + ε

ˆmt+1 (40)

AdaGrad eliminates the need to manually tune the learning rate. Most
implementation use λ = 0.01 as default. Attention rt is an increasing
sequence.

127 / 174

Deep learning introduction
Training a neural network
Stochastic optimization

RMSProp

Same as AdaGrad but accumulate an exponentially decaying average of
the gradient.

The RMSProp algorithm

rt = ρrt−1 + (1− ρ)
(
∂Fj

∂ω

)2

(41)

ωt+1 = ωt −
λ√
r̂t + ε

ˆmt+1 (42)

128 / 174

Deep learning introduction
Training a neural network
Stochastic optimization

Adam algorithm

The Adam algorithm uses moving averages of each coordinate.The
update rule is:

The Adam algorithm

mt+1 = β1mt + (1− β1)
∂Fj

∂ω
(43)

ˆmt+1 =
mt+1

1− β1
(44)

vt+1 = β2vt + (1− β2)

(
∂Fj

∂ω

)2

(45)

ˆvt+1 =
vt+1

1− β2
(46)

ωt+1 = ωt −
λ√
ˆvt+1 + ε

ˆmt+1 (47)

This is a mix with momentum and having a special learning rate for each
parameter w . There are 3 parameters: λ, β1, β2.

129 / 174

Deep learning introduction
Training a neural network
Stochastic optimization

Chain rule

The chain rule states that (f ◦ g)′ = (f ′ ◦ g)g ′. Let us have a look at
functions of two variables.

let f : Rn → R be a differentiable function,
let g : Rp → Rn be a differentiable function,
let h = (f ◦ g) be a differentiable function,

h is differentiable and h′ = (f ′ ◦ g)g ′

h′ =
(
∂h
∂x1

∂h
∂x2

. . . ∂h
∂xp

)

130 / 174

Deep learning introduction
Training a neural network
Stochastic optimization

Chain rule

h is differentiable and h′ = (f ′ ◦ g)g ′

h′ =
(
∂h
∂x1

∂h
∂x2

. . . ∂h
∂xp

)

g ′ =


∂g1
∂x1

∂g1
∂x2

. . . ∂g1
∂xp

∂g2
∂x1

∂g1
∂x2

. . . ∂g2
∂xp

...
...

∂gn
∂x1

∂gn
∂x2

. . . ∂gn
∂xp


f ′(g) =

(
∂f
∂g1

∂h
∂g2

. . . ∂f
∂gn

)

131 / 174

Deep learning introduction
Training a neural network
Stochastic optimization

Chain rule

h is differentiable and h′ = (f ′ ◦ g)g ′

h′ =
(
∂h
∂x1

∂h
∂x2

. . . ∂h
∂xp

)

h′ =
(
∂f
∂g1

∂h
∂g2

. . . ∂f
∂gn

)
×


∂g1
∂x1

∂g1
∂x2

. . . ∂g1
∂xp

∂g2
∂x1

∂g1
∂x2

. . . ∂g2
∂xp

...
...

∂gn
∂x1

∂gn
∂x2

. . . ∂gn
∂xp


Hence, the chain rule results is:

∂h

∂xi
=

n∑
k=1

∂f

∂gk

∂gk
∂xi︸︷︷︸

recursive case

132 / 174

Deep learning introduction
Training a neural network
Stochastic optimization

Chain rule

Let us consider a simplified 2-layer MLP and the following loss function:
f (x;W1,W2) = σ

(
WT

2 σ
(
WT

1 x
))

`(y , ŷ ;W1,W2) = cross_ent(y , ŷ)

133 / 174

Deep learning introduction
Training a neural network
Stochastic optimization

Chain rule65

Let us zoom in on the computation of the network output ŷ and of its
derivative with respect to W1.

65Credits: Gilles Louppe
134 / 174

Deep learning introduction
Training a neural network
Stochastic optimization

Chain rule66

Forward pass: values u1, u2, u3 and ŷ are computed by traversing the
graph from inputs to outputs given x, W1 and W2.

66Credits: Gilles Louppe
135 / 174

Deep learning introduction
Training a neural network
Stochastic optimization

Chain rule67

For simplicity let us consider that W1, W2, x and ŷ are scalar.
We replace W1, W2 by w1 and w2.

Backward pass: by the chain rule we have

∂ŷ

∂w1
=

∂ŷ

∂u3

∂u3

∂u2

∂u2

∂u1

∂u1

∂w1

=
∂σ(u3)

∂u3

∂w2.u2

∂u2

∂σ(u1)

∂u1

∂w1.x
∂w1

67Credits: Gilles Louppe
136 / 174

Deep learning introduction
Training a neural network
Stochastic optimization

Chain rule68

Let us develop the chain rule of f (x ;w1,w2,w3) = σ (w3σ (w2σ (w1x))).
Let us rewrite the intermediate functions

u1 = w1x

u2 = σ(u1)

u3 = w2u2

u4 = σ(u3)

u5 = w3u4

ŷ = σ(u5)

Now,we can write ∂ŷ
∂w1

as :

∂ŷ

∂w1
=

∂ŷ

∂u5

∂u5

∂u4

∂u4

∂u3

∂u3

∂u2

∂u2

∂u1

∂u1

∂w1

=
∂σ(u5)

∂u5
w3
∂σ(u3)

∂u3
w2
∂σ(u1)

∂u1
x

68Credits: Gilles Louppe
137 / 174

Deep learning introduction
Training a neural network
Stochastic optimization

Forward/backward

138 / 174

Deep learning introduction
Training a neural network
Stochastic optimization

Which one of these learning rates is best to use?

139 / 174

Deep learning introduction
Training a neural network
Stochastic optimization

Which one of these learning rates is best to use?

Solution : Learning rate decay over time.
step decay: a decay learning rate by half every few epochs.
exponential decay: λ(t) = λ0 × e−kt

1/t decay: λ(t) = λ0/(1+ kt)

140 / 174

Deep learning introduction
Training a neural network
Stochastic optimization

Vanishing gradients

Now let us have a look at the sigmoid function :

σ(x) =
1

1+ e−x
=

ex

ex + 1
.

Can you evaluate the derivative?

141 / 174

Deep learning introduction
Training a neural network
Stochastic optimization

Vanishing gradients

Now let us have a look at the sigmoid function :

σ(x) =
1

1+ e−x
=

ex

ex + 1
.

Can you evaluate the derivative?

σ(x)′ = σ(x)(1− σ(x)).

142 / 174

Deep learning introduction
Training a neural network
Stochastic optimization

Vanishing gradients

Now let assume that the weights are initialized randomly from a Gaussian
with zero-mean and small variance, such that wi ∈ [−1, 1] for i ∈ 1, 2, 3.
Then we have:

dŷ
dw1

=
∂σ(u5)

∂u5︸ ︷︷ ︸
≤1/4

w3︸︷︷︸
≤1

∂σ(u3)

∂u3︸ ︷︷ ︸
≤1/4

w2︸︷︷︸
≤1

∂σ(u1)

∂u1︸ ︷︷ ︸
≤1/4

x

This implies that the gradient dŷ
dw1

shrinks . A solution use Relu, then
fore,

dŷ
dw1

=
∂σ(u5)

∂u5︸ ︷︷ ︸
=1

w3
∂σ(u3)

∂u3︸ ︷︷ ︸
=1

w2
∂σ(u1)

∂u1︸ ︷︷ ︸
=1

x

143 / 174

Deep learning introduction
Training a neural network
Initialization

initialization of neural networks

In convex problems, provided a good learning rate γ, convergence is
guaranteed regardless of the initial parameter values. In the non-convex
regime, initialization is more important!

144 / 174

Deep learning introduction
Training a neural network
Initialization

initialization of neural networks

A lot of weights have to be initialized. What value can we put? The
same value for all the convolution layer is a bad idea because of the
weight sharing.
The solution is to use a random initialization, not too small and not too
big.
Xavier69 initialisation and He 70 are the most used in practice since the
weights depend on the size of the output/input. They have good
properties.

69Xavier Glorot and Yoshua Bengio (2010): Understanding the difficulty of training
deep feedforward neural networks. International conference on artificial intelligence
and statistics.

70Kaiming He, etal (2015): Delving Deep into Rectifiers:Surpassing Human-Level
Performance on ImageNet Classification

145 / 174

Deep learning introduction
Training a neural network
Initialization

He initialization

Let us consider a deep neural network modelled by:

g
(1)
k = b

(1)
k +

Din∑
j=1

ω
(1)
k,j xi,j ∀k ∈ [1,M2]

a
(1)
k = a(g

(1)
k) ∀k ∈ [1,M2]

a() is a Rectified Linear Unit (ReLU) function:

a(x) =

{
0 if x < 0
x if x ≥ 0

Then we have:

g
(2)
k1 = b

(2)
k1 +

M2∑
k=1

ω
(2)
k1,k .a

(1)
k ∀k1 ∈ [1,M3]

a
(2)
k1 = a(g

(2)
k1) ∀k1 ∈ [1,M3]

146 / 174

Deep learning introduction
Training a neural network
Initialization

He initialization

g(xi , ω)k2 = b
(3)
k2 +

M3∑
k1=1

ω
(3)
k2,k1.a

(2)
k1 ∀k2 ∈ [1,Dout]

These equations are can be synthesize:

g(xi , ω)k2 = b
(3)
k2 +

M3∑
k1=1

ω
(3)
k2,k1.a

(2)

b
(2)
k1 +

M2∑
k=1

ω
(2)
k1,k .a

(1)

b
(1)
k +

Din∑
j=1

ω
(1)
k,j xi,j


with k2 ∈ [1,Dout].
g(xi , , ω) is a vector that belongs to RDout, for now we will just focus on
the element k2 of this vector.
The variance of the deep neural network is :

varW (g(x ,W)k2) = EW

(
g2(x ,W)k2

)
− (EW g(x ,W)k2)

2 (48)

147 / 174

Deep learning introduction
Training a neural network
Initialization

He initialization

By assuming that the elements i in a
(l−1)
i are also mutually independent

and share the same distribution, and that a(l−1)
i and ω(l)

i1,i , we have:

var
(
g(x ,W)(l)

)
= Mlvar

(
ω(l)a(l−1)

)
(49)

Using :
- the variance of the product of independent variables
- ω(l) have zero mean
Then:

var
(
g(x ,W)(l)

)
= Mlvar

(
ω(l)
)
E
(
(a(l−1))2

)
(50)

148 / 174

Deep learning introduction
Training a neural network
Initialization

He initialization

we use the fact that ω(l−1) has a symmetric distribution around zero
So

E
(
(a(l−1))2

)
= 1/2var

(
g(x ,W)(l−1)

)
(51)

Then we have:

var
(
g(x ,W)(l)

)
= Ml/2var

(
ω(l)
)
var
(
g(x ,W)(l−1)

)
(52)

With L layers put together, we have

var
(
g(x ,W)(L)

)
= var (x)

L∏
l=2

(
Ml/2var

(
ω(l)
))

(53)

149 / 174

Deep learning introduction
Training a neural network
Initialization

He initialization

A good initialization method should avoid reducing or magnifying the
magnitudes of input signals exponentially.
So we want : ∀l ∈ [1, L] Ml/2var

(
ω(l)
)
= 1

∀l ∈ [1, L] var
(
ω(l)
)
=

2
Ml

and E
(
ω(l)
)
= 0 (54)

150 / 174

Deep learning introduction
Regularization

1 Linear Regression

2 Unlearned feature space-Kernel

3 Typical recognition Algorithm

4 Neural Network

5 Convolutional Neural Network

6 Transformer architecture

7 Training a neural network

8 Regularization

9 Examples of applications of classical CNN

10 Conclusions

151 / 174

Deep learning introduction
Regularization

Regularization

We remind you that you have two sets: a training set {(xi , ti)}N1
i=1 and

the validation set {(xi , ti)}N2
i=1 .

What is the utility of these two sets?
What can we deduce from these curbs?

152 / 174

Deep learning introduction
Regularization

Regularization

153 / 174

Deep learning introduction
Regularization

Regularization

Overfitting
Training too much on training set limits generalization
Important to keep an eye on validation error
Stop learning if validation error increase

154 / 174

Deep learning introduction
Regularization

Solution : regularization

You can use weight decay :

L(ω) = Fdata(ω) +
λ2

2
‖ω‖2 (55)

Then during the gradient descent we have

∂F
∂w

(ω) =
∂Fdata
∂w

(ω) + λ2w (56)

155 / 174

Deep learning introduction
Regularization

Solution: regularization with dropout

156 / 174

Deep learning introduction
Regularization

Solution: regularization with Batch Normalization

157 / 174

Deep learning introduction
Regularization

Solution: regularization with Batch normalization

For every channel c we estimate

µc =
1

NHW

N∑
i=1

H∑
j=1

W∑
K=1

xicjk and σc =
1

NHW

N∑
i=1

H∑
j=1

W∑
K=1

(xicjk − µc)
2 (57)

x̂ =
x − µc√
σ2
c + ε

(58)

158 / 174

Deep learning introduction
Regularization

Solution: regularization Instance Normalization

For every channel c we estimate

µnc =
1

HW

H∑
j=1

W∑
K=1

xncjk and σnc =
1

HW

H∑
j=1

W∑
K=1

(xncjk − µnc)
2 (59)

x̂ =
x − µnc√
σ2
nc + ε

(60)

159 / 174

Deep learning introduction
Regularization

Solution: regularization Layer Normalization

For every channel c we estimate

µn =
1

CHW

C∑
i=1

H∑
j=1

W∑
K=1

xnijk and σn =
1

CHW

C∑
i=1

H∑
j=1

W∑
K=1

(xnijk − µn)
2 (61)

x̂ =
x − µn√
σ2
n + ε

(62)

160 / 174

Deep learning introduction
Regularization

Solution: Cross validation

Data sets
If possible, make 3 sets : training, validation, test
Use Training for training ...
Use Validation to check training quality, tune algorithm params
Use test only to report final performance (hidden in ML
competitions)

K-fold Cross validation
When little data : split dataset in k sets
Train on k-1, validate on remaning one
Repeat k times
Report mean performances

161 / 174

Deep learning introduction
Regularization

Solution: Reporting performances

Detection performance
precision,recall
F1 score : harmonic mean of precision/recall
mAP

Classification performance
Accuracy
Confusion matrix

162 / 174

Deep learning introduction
Examples of applications of classical CNN

1 Linear Regression

2 Unlearned feature space-Kernel

3 Typical recognition Algorithm

4 Neural Network

5 Convolutional Neural Network

6 Transformer architecture

7 Training a neural network

8 Regularization

9 Examples of applications of classical CNN

10 Conclusions

163 / 174

Deep learning introduction
Examples of applications of classical CNN

object detection

164 / 174

Deep learning introduction
Examples of applications of classical CNN

Style transfer

165 / 174

Deep learning introduction
Examples of applications of classical CNN

Segmentation

166 / 174

Deep learning introduction
Examples of applications of classical CNN

Deep dream

167 / 174

Deep learning introduction
Examples of applications of classical CNN

Style transfer

168 / 174

Deep learning introduction
Examples of applications of classical CNN

Image captioning

169 / 174

Deep learning introduction
Examples of applications of classical CNN

Ganimation

170 / 174

Deep learning introduction
Conclusions

1 Linear Regression

2 Unlearned feature space-Kernel

3 Typical recognition Algorithm

4 Neural Network

5 Convolutional Neural Network

6 Transformer architecture

7 Training a neural network

8 Regularization

9 Examples of applications of classical CNN

10 Conclusions

171 / 174

Deep learning introduction
Conclusions

What is deep learning?

172 / 174

Deep learning introduction
Conclusions

Conclusions on what we saw

We presented:
the linear regression and examples of more evolved regressions,
perceptron algorithm,
deep learning principle,
how to train it (optimize it and generalize it),
A bit about GAN,

173 / 174

Deep learning introduction
Conclusions

The important points we did not see

More advanced topics :
deep learning code samples,
recurrent neural networks,
object detection
loss functions
more evolved optimization

174 / 174

Transformers DNN

Gianni FRANCHI
ENSTA-Paris

Gianni FRANCHI Transformers DNN 1 / 30

ViT [web1]

Figure: Representation structure of ViT

Gianni FRANCHI Transformers DNN 2 / 30

ViT [web1]

Figure: Detailed structure of ViT
Gianni FRANCHI Transformers DNN 3 / 30

ViT [web1]

ViT B corresponds to ViT base, ViT L corresponds to ViT large,
and ViT H corresponds to ViT huge. patch size is the size of the
image slice (there are also in the source code) 32 × 32); layers is
the number of times the encoder block is stacked; Hidden size is
the length of the token vector; The MLP size is four times the
hidden size, that is, the number of nodes in the first full connection
layer of the MLP block in the encoder block; Heads is the number
of heads in multi head attention.

Gianni FRANCHI Transformers DNN 4 / 30

Analyzing layer representations of CNNs vs VIT
[Raghu2021]

Analyzing (hidden) layer representations of neural networks is
challenging because their features are distributed across a large
number of neurons. So they propose to study a kind of correlation
between on layer X and one layer Y .

Gianni FRANCHI Transformers DNN 5 / 30

Analyzing layer representations of CNNs vs VIT
[Raghu2021]

Figure: Representation structure of ViTs and convolutional networks show
significant differences, with ViTs having highly similar representations
throughout the model, while the ResNet models show much lower
similarity between lower and higher layers

Gianni FRANCHI Transformers DNN 6 / 30

Analyzing layer representations of CNNs vs ViT
[Raghu2021]

Figure: Representation structure of ViTs vs ResNet illustrate that a
larger number of lower layers in the ResNet are similar to a smaller
set of the lowest ViT layers

Gianni FRANCHI Transformers DNN 7 / 30

Local and Global Information in Layer Representations
[Raghu2021]

How much global information is aggregated by early self-attention
layers in ViT?
Analyzing Attention Distances:
Each self-attention layer comprises multiple self-attention heads,
and for each head we can compute the average distance between
the query patch position and the locations it attends to. This
reveals how much local vs global information each self-attention
layer is aggregating for the representation. Specifically, they weight
the pixel distances by the attention weights for each attention
head and average over 5000 datapoints.

Gianni FRANCHI Transformers DNN 8 / 30

Local and Global Information in Layer Representations
[Raghu2021]

Figure: Plotting attention head mean distances shows lower ViT layers
attend both locally and globally, while higher layers primarily incorporate
global information.

Gianni FRANCHI Transformers DNN 9 / 30

Local and Global Information in Layer Representations
[Raghu2021]

Figure: With less training data, lower attention layers do not learn to
attend locally.

Gianni FRANCHI Transformers DNN 10 / 30

Local and Global Information in Layer Representations
[Raghu2021]

We observe that even in the lowest layers of ViT, self-attention
layers have a mix of local heads (small distances) and global heads
(large distances). This is in contrast to CNNs, which are hardcoded
to attend only locally in the lower layers.

Gianni FRANCHI Transformers DNN 11 / 30

Effective Receptive Fields [Raghu2021]

Figure: ResNet effective receptive fields are highly local and grow
gradually; ViT effective receptive fields shift from local to global.

Gianni FRANCHI Transformers DNN 12 / 30

ViT vs CNN [Ghiasi2022]

They show that :
patch-wise image activation patterns for ViT features
essentially behave like saliency maps
the behavior of ViTs and CNNs, finding that ViTs make better
use of background information and rely less on high-frequency,
textural attributes.
investigate the effect of natural language supervision with
CLIP on the types of features extracted by ViTs. They find
CLIP-trained models include various features clearly catered to
detecting components of images corresponding to caption text,
such as prepositions, adjectives, and conceptual categories.

Gianni FRANCHI Transformers DNN 13 / 30

What is CLIP [Radford2021]

Figure: Summary of our approach. While standard image models jointly
train an image feature extractor and a linear classifier to predict some
label, CLIP jointly trains an image encoder and a text encoder to predict
the correct pairings of a batch of (image, text) training examples. At test
time the learned text encoder synthesizes a zero-shot linear classifier by
embedding the names or descriptions of the target dataset’s classes.

Gianni FRANCHI Transformers DNN 14 / 30

What is CLIP [Radford2021]

Figure: Numpy-like pseudocode for the core of an implementation of
CLIP.

Gianni FRANCHI Transformers DNN 15 / 30

What is CLIP [Radford2021]

Figure: Zero-shot CLIP is competitive with a fully supervised
baseline. Across a 27 dataset eval suite, a zero-shot CLIP classifier
outperforms a fully supervised linear classifier fitted on ResNet-50
features on 16 datasets, including ImageNet

Gianni FRANCHI Transformers DNN 16 / 30

ViT representation [Ghiasi2022]

Figure: Visualization of ViT-base-patch16

Gianni FRANCHI Transformers DNN 17 / 30

ViT representation [Ghiasi2022]

Figure: Visualization of a CLIP model with ViT-base-patch16 as its visual
part.

Gianni FRANCHI Transformers DNN 18 / 30

Introduction to Swin Transformer

Swin Transformer is a vision transformer for dense prediction
tasks.
It produces hierarchical feature maps like convolutional
networks.
Key innovation: Shifted window-based self-attention for
efficiency and scalability.

Gianni FRANCHI Transformers DNN 19 / 30

Introduction to Swin Transformer

Figure: (a) The proposed Swin Transformer builds hierarchical feature
maps by merging image patches (shown in gray) in deeper layers and has
linear computation complexity to input image size due to computation of
self-attention only within each local window (shown in red). It can thus
serve as a general-purpose backbone for both image classification and
dense recognition tasks. (b) In contrast, previous ViT produce feature
maps of a single low resolution and have quadratic computation
complexity to input image size due to computation of self-attention
globally.

Gianni FRANCHI Transformers DNN 20 / 30

Architecture Overview

Input is divided into non-overlapping 4 × 4 patches treated as
tokens.
Linear embedding projects raw RGB features to a higher
dimension (C).
Hierarchical representation with four stages:

Stage 1: H
4 × W

4
Stage 2: H

8 × W
8

Stage 3: H
16 × W

16
Stage 4: H

32 × W
32

Gianni FRANCHI Transformers DNN 21 / 30

Swin Transformer Block

Replaces standard multi-head self-attention (MSA) with
window-based MSA.
Includes:

Window-based self-attention (W-MSA or SW-MSA).
2-layer MLP with GELU activation.
Layer normalization and residual connections.

(a) Architecture

MLP

LN

LN

W-MSA

(b) Two Successive Swin Transformer Blocks

MLP

LN

LN

SW-MSAImages
Swin

Transformer
Block

Li
ne

ar
 E

m
be

dd
in

g

Swin
Transformer

Block

Pa
tc

h
M

er
gi

ng

Swin
Transformer

Block

Pa
tc

h
M

er
gi

ng

Swin
Transformer

Block

Pa
tc

h
M

er
gi

ng

Stage 1 Stage 2 Stage 3 Stage 4

2 2 6 2

Pa
tc

h
Pa

rt
it

io
n

Gianni FRANCHI Transformers DNN 22 / 30

Shifted Window Self-Attention

Standard self-attention is computationally expensive for large
images.
Solution: Divide input into local windows of size M ×M.
Shifted windows alternate between regular and shifted
configurations.

CC

cyclic shift

A

AC

B

window partition
reverse cyclic shift

A

AC

B

C
...

masked
MSA

A

B

AA

B

masked
MSA

Gianni FRANCHI Transformers DNN 23 / 30

Efficiency of Shifted Windows

Standard MSA complexity: O((hw)2).
Window-based MSA complexity: O(hw) (linear with M fixed).
Efficient batch computation maintains the number of windows
while using cyclic shifts.

Gianni FRANCHI Transformers DNN 24 / 30

Relative Position Bias

Relative position bias is added in self-attention computation:

Attention(Q,K ,V) = SoftMax(QKT/
√
d + B)V

Improves performance over absolute position embeddings.
Pre-trained bias transferable to different window sizes via
interpolation.

Gianni FRANCHI Transformers DNN 25 / 30

Patch Merging

Reduces token numbers while increasing feature dimensions.
Merges 2 × 2 neighboring patches with a linear layer.
Example: Stage 1 → Stage 2 reduces resolution from H

4 × W
4

to H
8 × W

8 .

Gianni FRANCHI Transformers DNN 26 / 30

Architecture Variants

Swin Transformer comes in four variants:
Swin-T: C = 96, {2, 2, 6, 2} layers.
Swin-S: C = 96, {2, 2, 18, 2} layers.
Swin-B: C = 128, {2, 2, 18, 2} layers.
Swin-L: C = 192, {2, 2, 18, 2} layers.

Complexity and size comparable to ResNet and DeiT variants.

Gianni FRANCHI Transformers DNN 27 / 30

Applications

Swin Transformer is versatile for:
Image classification.
Object detection.
Semantic segmentation.

Compatible with existing methods due to hierarchical feature
maps.

Gianni FRANCHI Transformers DNN 28 / 30

Conclusion

Swin Transformer achieves efficiency and scalability for vision
tasks.
Shifted window self-attention bridges local and global features.
Variants provide flexibility for different computational budgets.

Gianni FRANCHI Transformers DNN 29 / 30

Bibliography

[web1] https://programmer.group/613ada5f581ff.html

[Raghu2021] Raghu, M., Unterthiner, T., Kornblith, S., Zhang,
C., & Dosovitskiy, A. (2021). Do vision transformers see like
convolutional neural networks?. Advances in Neural Information
Processing Systems, 34, 12116-12128.

[Ghiasi2022] Ghiasi, A., Kazemi, H., Borgnia, E., Reich, S., Shu,
M., Goldblum, M., ... & Goldstein, T. (2022). What do Vision
Transformers Learn? A Visual Exploration. arXiv preprint
arXiv:2212.06727.

[Radford2021] Radford, A., Kim, J. W., Hallacy, C., Ramesh, A.,
Goh, G., Agarwal, S., ... & Sutskever, I. (2021, July). Learning
transferable visual models from natural language supervision. In
International conference on machine learning (pp. 8748-8763).
PMLR.

Gianni FRANCHI Transformers DNN 30 / 30

	Introduction
	Linear Regression
	Unlearned feature space-Kernel
	Typical recognition Algorithm
	Neural Network
	Perceptron
	Multilayer Perceptron (MLP)

	Convolutional Neural Network
	1D convolution
	2D convolution
	Different layers of convolutional neural network

	Transformer architecture
	Attention in NLP + the bases
	Attention in Computer Vision (VIT)

	Training a neural network
	Gradient descent
	Stochastic optimization
	Initialization

	Regularization
	Examples of applications of classical CNN
	Conclusions

	pbs@ARFix@1:
	pbs@ARFix@2:
	pbs@ARFix@3:
	pbs@ARFix@4:
	pbs@ARFix@5:
	pbs@ARFix@6:
	pbs@ARFix@7:
	pbs@ARFix@8:
	pbs@ARFix@9:
	pbs@ARFix@10:
	pbs@ARFix@11:
	pbs@ARFix@12:
	pbs@ARFix@13:
	pbs@ARFix@14:
	pbs@ARFix@15:
	pbs@ARFix@16:
	pbs@ARFix@17:
	pbs@ARFix@18:
	pbs@ARFix@19:
	pbs@ARFix@20:
	pbs@ARFix@21:
	pbs@ARFix@22:
	pbs@ARFix@23:
	pbs@ARFix@24:
	pbs@ARFix@25:
	pbs@ARFix@26:
	pbs@ARFix@27:
	pbs@ARFix@28:
	pbs@ARFix@29:
	pbs@ARFix@30:
	pbs@ARFix@31:
	pbs@ARFix@32:
	pbs@ARFix@33:
	pbs@ARFix@34:
	pbs@ARFix@35:
	pbs@ARFix@36:
	pbs@ARFix@37:
	pbs@ARFix@38:
	pbs@ARFix@39:
	pbs@ARFix@40:
	pbs@ARFix@41:
	pbs@ARFix@42:
	pbs@ARFix@43:
	pbs@ARFix@44:
	pbs@ARFix@45:
	pbs@ARFix@46:
	pbs@ARFix@47:
	pbs@ARFix@48:
	pbs@ARFix@49:
	pbs@ARFix@50:
	pbs@ARFix@51:
	pbs@ARFix@52:
	pbs@ARFix@53:
	pbs@ARFix@54:
	pbs@ARFix@55:
	pbs@ARFix@56:
	pbs@ARFix@57:
	pbs@ARFix@58:
	pbs@ARFix@59:
	pbs@ARFix@60:
	pbs@ARFix@61:
	pbs@ARFix@62:
	pbs@ARFix@63:
	pbs@ARFix@64:
	pbs@ARFix@65:
	pbs@ARFix@66:
	pbs@ARFix@67:
	pbs@ARFix@68:
	pbs@ARFix@69:
	pbs@ARFix@70:
	pbs@ARFix@71:
	pbs@ARFix@72:
	pbs@ARFix@73:
	pbs@ARFix@74:
	pbs@ARFix@75:
	pbs@ARFix@76:
	pbs@ARFix@77:
	pbs@ARFix@78:
	pbs@ARFix@79:
	pbs@ARFix@80:
	pbs@ARFix@81:
	pbs@ARFix@82:
	pbs@ARFix@83:
	pbs@ARFix@84:
	pbs@ARFix@85:
	pbs@ARFix@86:
	pbs@ARFix@87:
	pbs@ARFix@88:
	pbs@ARFix@89:
	pbs@ARFix@90:
	pbs@ARFix@91:
	pbs@ARFix@92:
	pbs@ARFix@93:
	pbs@ARFix@94:
	pbs@ARFix@95:
	pbs@ARFix@96:
	pbs@ARFix@97:
	pbs@ARFix@98:
	pbs@ARFix@99:
	pbs@ARFix@100:
	pbs@ARFix@101:
	pbs@ARFix@102:
	pbs@ARFix@103:
	pbs@ARFix@104:
	pbs@ARFix@105:
	pbs@ARFix@106:
	pbs@ARFix@107:
	pbs@ARFix@108:
	pbs@ARFix@109:
	pbs@ARFix@110:
	pbs@ARFix@111:
	pbs@ARFix@112:
	pbs@ARFix@113:
	pbs@ARFix@114:
	pbs@ARFix@115:
	pbs@ARFix@116:
	pbs@ARFix@117:
	pbs@ARFix@118:
	pbs@ARFix@119:
	pbs@ARFix@120:
	pbs@ARFix@121:
	pbs@ARFix@122:
	pbs@ARFix@123:
	pbs@ARFix@124:
	pbs@ARFix@125:
	pbs@ARFix@126:
	pbs@ARFix@127:
	pbs@ARFix@128:
	pbs@ARFix@129:
	pbs@ARFix@130:
	pbs@ARFix@131:
	pbs@ARFix@132:
	pbs@ARFix@133:
	pbs@ARFix@134:
	pbs@ARFix@135:
	pbs@ARFix@136:
	pbs@ARFix@137:
	pbs@ARFix@138:
	pbs@ARFix@139:
	pbs@ARFix@140:
	pbs@ARFix@141:
	pbs@ARFix@142:
	pbs@ARFix@143:
	pbs@ARFix@144:
	pbs@ARFix@145:
	pbs@ARFix@146:
	pbs@ARFix@147:
	pbs@ARFix@148:
	pbs@ARFix@149:
	pbs@ARFix@150:
	pbs@ARFix@151:
	pbs@ARFix@152:
	pbs@ARFix@153:
	pbs@ARFix@154:
	pbs@ARFix@155:
	pbs@ARFix@156:
	pbs@ARFix@157:
	pbs@ARFix@158:
	pbs@ARFix@159:
	pbs@ARFix@160:
	pbs@ARFix@161:
	pbs@ARFix@162:
	pbs@ARFix@163:
	pbs@ARFix@164:
	pbs@ARFix@165:
	pbs@ARFix@166:
	pbs@ARFix@167:
	pbs@ARFix@168:
	pbs@ARFix@169:
	pbs@ARFix@170:
	pbs@ARFix@171:
	pbs@ARFix@172:
	pbs@ARFix@173:
	pbs@ARFix@174:

