ENSTA 3e année - ROB313 Vision pour la Robotique Object Tracking in videos

Antoine Manzanera ENSTA-Paris

Context and Objectives Problematic Fundamental Components

Object Tracking and Video Analysis

Three kinds of image processing primitives in Video analysis:

Detection Separate mobile pixels from the static background

Estimation Calculate the apparent velocity of each pixel

Tracking Match spatial structures from frame to frame

Context and Objectives Problematic Fundamental Components

Content and Goals of the lecture

- Present the characteristics, challenges and difficulties of object tracking in image sequences.
- Present the components of a tracking algorithm, and the main categories of object tracking methods.
- Explain the principles of *observation* and *prediction* that found the different approaches.

Introduction

Observations and detection Tracking a distribution Predictive Filtering Context and Objectives Problematic Fundamental Components

Lecture outline

Introduction

- Context and Objectives
- Problematic
- Fundamental Components
- Observations and detection
 - Matching measures
 - Similarity between Distributions
 - Hough Transforms
- Tracking a distribution
 - Mean-Shift Algorithm
- Predictive Filtering
 - Kalman Filter
 - Particle Filtering

Context and Objectives Problematic Fundamental Components

Application fields

Smart videosurveillance

- Geofencing / Abnormal activity
- Aggression / distress detection / crowd surveillance
- Dynamic (e.g. gait) biometry

Human-Machine Interfaces

- Visual command
- Avatar control
- Language sign

Bio-medical applications

- Gait analysis
- Elderly monitoring
- Sport analysis

Context and Objectives Problematic Fundamental Components

Object Tracking

Context

Mobile camera

• Mobile / deformable objects

Localisation vs Segmentation

The goal of object tracking is to localise an object initially defined (how?) by calculating in each video frame the spatial support (which one?) circumscribing the object.

Context and Objectives Problematic Fundamental Components

Spatial support of the object

The representation support of the object is determining in terms of: Flexibility / Precision / Complexity / Invariance...

On the right, some typical examples: (a) One point, (b) Several points, (c) Bounding box, (d) Ellipse, (e) Silhouette, (f) Contour, (g) Parts, (h) Skeleton.

From [Jalal12]

Context and Objectives Problematic Fundamental Components

Tracking: difficulties and challenges

Examples taken from the dataset of the [VOT14] competition.

- Rotations, scale changes
- 3d and deformable Objects
- Similar Objects
- Complex and varying Background

- Occlusions
- Illumination changes
- Poor contrast
- Motion blur
- Sudden movements

Context and Objectives Problematic Fundamental Components

Tracking: difficulties and challenges

Examples taken from the dataset of the [VOT14] competition.

- Rotations, scale changes
- 3d and deformable Objects
- Similar Objects
- Complex and varying Background

- Occlusions
- Illumination changes
- Poor contrast
- Motion blur
- Sudden movements

Context and Objectives Problematic Fundamental Components

Fundamental Components of Object Tracking

An object tracking algorithm is made of two fundamental elements:

- **Prediction**: provides, for each video frame, an initial location *hypothesis* of the tracked object. This hypothesis is usually based on a *dynamical model* (e.g.: kinematics) of the object and the background (camera).
- **Detection**: refines the localisation of the object using *observations* extracted from the image. This refinement is usually based on an *appearance model*.

Context and Objectives Problematic Fundamental Components

General Formalism

Tracking can usually be expressed through the general framework: $\arg \max_{\theta \in S} P(\Theta_t = \theta / \Theta_{t-1} = \theta', X_t = x)$

where S represent the state space; θ is a multi-dimensional state configuration, which can include (explicitly or implicitly) position, velocity, object category, etc, of the tracked objects; X_t represents the observation from the image space.

Context and Objectives Problematic Fundamental Components

Prediction vs Detection

The actual balance between prediction and detection is very depending on the type of algorithms, and can even be dramatically broken in favour of either of the two:

- **Tracking by detection:** The tracking is entirely made by the detector: no location hypothesis required.
- Track before detect: The tracking is essentially provided by the prediction and can work even in case of extremely degraded visibility conditions (occlusion, noise, small size...).

Matching measures Similarity between Distributions Hough Transforms

Global (di)similarity measures

Global (di)similarity measures are applied between two vectors T and X of the same dimension n, one of which being the model (template) of the object, (usually) represented by a rectangular patch, and the other a patch extracted from the current image, that corresponds to a location hypothesis.

Matching measures Similarity between Distributions Hough Transforms

Dissimilarity measures

Minkowski Distances

$$\mathcal{D}_k(T,X) = \sum_{i < n} |T_i - X_i|^k$$

Distances SAD D_1 or SSD D_2 are very popular for matching patches. These are dissimilarity measures whose value hardly depends on the size n and on the content of images.

The detection algorithm then consists in searching within a location hypotheses space $\{X^h\}_{h\in\mathcal{H}}$ to find the one that minimises the dissimilarity:

$$\lambda = \arg\min_{h \in \mathcal{H}} \mathcal{D}_k(T, X^h)$$

- Sensitive to deformations

+ Model temporally adaptive

- Sensitive to illumination variations

Matching measures Similarity between Distributions Hough Transforms

Tracking by SSD Minimisation

イロト イボト イヨト イヨト

Matching measures Similarity between Distributions Hough Transforms

Image: A matrix and a matrix

Tracking by SSD Minimisation

Matching measures Similarity between Distributions Hough Transforms

Similarity measures

Correlation (Pearson) coefficient

The normalised dot product between two centred patches varies between -1 (total dissimilarity) and +1 (perfect match). Let \tilde{X} be the average value of X in its support.

$$\chi(T,X) = \frac{\sum_{i < n} (T_i - \tilde{T})(X_i - \tilde{X})}{\sqrt{\sum_{i < n} (T_i - \tilde{T})^2} \sqrt{\sum_{i < n} (X_i - \tilde{X})^2}}$$

The detection algorithm then consists in searching within a location hypotheses space $\{X^h\}_{h\in\mathcal{H}}$ to find the one that maximises the correlation:

$$\lambda = rg\max_{h \in \mathcal{H}} \chi(\mathcal{T}, X^h)$$

Robust to illumination variations

- Sensitive to deformations

イロト 不得下 イヨト イヨト 二日

17/60

Matching measures Similarity between Distributions Hough Transforms

Tracking by ZNCC Maximisation

イロト イボト イヨト イヨト

Matching measures Similarity between Distributions Hough Transforms

Tracking by ZNCC Maximisation

(日)

Matching measures Similarity between Distributions Hough Transforms

Correlation Filters

- Centering and normalising the patch and image beforehand allows to use simple correlation filters (i.e. translation invariant dot-products).
- Correlation filters can be calculated very fastly by point-wise multiplication in the Fourier domain (with $O(n \log n)$ complexity using the FFT).
- Correlation filters can be applied to any component or feature space calculated from the image.
- Custom / adapted Correlation Filters can be learned from training examples to produce ideal peak in the object position.

< ∃ →

Matching measures Similarity between Distributions Hough Transforms

Learning Correlation Filters

Correlation filters can be learned from a collection of training images $\{f_i\}$ with their expected outputs $\{g_i\}$ (e.g. a 2d Gaussian with $\sigma = 2.0$ centred at the desired position). The problem is then to find the correlation kernel h such that $f_i \star h = g_i$, which in the Fourier domain becomes $F_i \times H^* = G_i$.

Matching measures Similarity between Distributions Hough Transforms

Learning Correlation Filters

[Bolme10] formulates the problem as the optimisation:

$$\arg\min_{H}\sum_{i\in B}|F_i imes H^*-G_i|^2$$

which has the closed solution:

$$H^* = \frac{\sum_{i \in B} G_i \times F_i^*}{\sum_{i \in B} F_i \times F_i^*}$$

Matching measures Similarity between Distributions Hough Transforms

Online Learning Correlation Filters

$$H^* = \frac{\sum_{i \in B} G_i \times F_i^*}{\sum_{i \in B} F_i \times F_i^*}$$

- The correlation filter h is learned online, from the first images of the sequence, or from some custom deformations of the input image (patch) f_i and output peak g_i.
- Note that using one single image and a trivial (Kronecker) peak, this is equivalent to "naive" normalised correlation.

[Bolme10]

Matching measures Similarity between Distributions Hough Transforms

Online Learning Correlation Filters

To continuously adapt to deformable target, the correlation filter is updated at each frame t, according to some learning rate α :

$$H^* = \frac{A_t}{B_t}$$

with:

$$A_t = \alpha G_t \times F_t^* + (1 - \alpha)A_{t-1}$$
$$B_t = \alpha F_t \times F_t^* + (1 - \alpha)B_{t-1}$$
[Bolme10]

Matching measures Similarity between Distributions Hough Transforms

End-to-end Learning to Track using Siamese Networks

[Bertinetto-Valmadre16]

- The correlation can be applied to a latent space that has been learned *offline*.
- A fully convolutional network φ can be applied to images of any dimension.

Matching measures Similarity between Distributions Hough Transforms

End-to-end Learning to Track using Siamese Networks

[Bertinetto-Valmadre16]

- The output is the correlation map: $y\simeq arphi(x)\star \phi(z)$
- Training examples {x_i, z_i, v_i} come from videos or object detection datasets, where v is the ground truth map valued in {-1, +1}.
- The loss is: $\mathcal{L}(y, v) = \log(1 + exp(-yv))$.

Matching measures Similarity between Distributions Hough Transforms

More Siamese Networks

- Simpler Siamese networks without correlation have also been used.
- Training is made offline, on the \mathcal{L}_1 loss between ground truth and predicted bounding boxes.

∃⇒

Matching measures Similarity between Distributions Hough Transforms

More Siamese Networks

- Prediction is very fast (100 fps on GPU), but its accuracy and robustness is more dependent on the objects in the training set.
- Since it is not Fully Convolutional, it is no longer translation invariant, and the sizes of the track target and search region must be fixed.

Matching measures Similarity between Distributions Hough Transforms

More Siamese Networks

[Li18]

Siamese networks can also behave like customed object detectors, e.g. using Region Proposal Network (backbone of Faster-RCNN) combining Classification (here binary) and Regression of Candidate boxes.

Matching measures Similarity between Distributions Hough Transforms

Using Apparent Displacement Fields

An algorithm of optical flow or point tracking can estimate the apparent displacements of all (or many) points $\{\mathbf{t}_j\}_j \in T$ of the model in the current image, by locally matching each point \mathbf{t}_j to its counterpart \mathbf{y}_j in the next image. The detection can then be performed by a statistics on the matched points $Y = \{\mathbf{y}_j\}$, for example the (2d) median:

$$\lambda = \arg\min_{\mathbf{m}\in Y}\sum_{\mathbf{y}\in Y}||\mathbf{m}-\mathbf{y}||$$

Matching measures Similarity between Distributions Hough Transforms

Similarity between distributions

Bhattacharyya Index

This index, whose value is between 0 and 1 (perfect match) measures the similarity between two distributions. Let H_T and H_X be the normalised histograms respectively associated to the model and to a location hypothesis:

$$\mathcal{B}(H_T, H_X) = \sum_{v} \sqrt{H_T(v)H_X(v)}$$

+ Robust to any deformation

- Sensitive to illumination variations
- Poorly discriminant geometrically

Matching measures Similarity between Distributions Hough Transforms

Tracking by distribution

Matching measures Similarity between Distributions Hough Transforms

Tracking by distribution

- ∢ ≣ ▶

(日)

Matching measures Similarity between Distributions Hough Transforms

Generalised Hough Transforms

Generalised Hough Transforms (AKA "Implicit Shape Models") are object representations based on *co-occurrence of local elements*.

Modelling

- The model (template) T is sampled to a set of points $\{t_i\}_i$.
- For each point t_i, is computed:
 - an appearance index λ(t_i) (e.g.: colour, orientation, curvature...).
 - a vector $\mathbf{v}(\mathbf{t}_i)$ corresponding to the relative position of \mathbf{t}_i with respect to the centre of template T.
 - (possibly) a confidence index $\omega(\mathbf{t}_i)$.
- The previous set of triplets is structured (array, search tree, random tree...) using the appearance index λ .

Matching measures Similarity between Distributions Hough Transforms

Construction of the R-Table

The R-Table is a shape model, constructed from a prototype. Let Ω be an arbitrary centre of the prototype. Every point M of the prototype is indexed by a geometrical feature i, corresponding to the row indices of the R-table. The R-table is constructed by adding the displacement vector $\overrightarrow{M\Omega}$ in the line of index i. For example consider the following contour points as a prototype, indexed by the normal direction to the contour, quantised to 8 values:

Matching measures Similarity between Distributions Hough Transforms

Construction of the R-Table

Index	List of vectors	
0	$\begin{pmatrix} -2 \\ -3 \end{pmatrix} \begin{vmatrix} -1 \\ -3 \end{pmatrix} \begin{vmatrix} 0 \\ -3 \end{pmatrix} \begin{vmatrix} 0 \\ -3 \end{pmatrix} \begin{vmatrix} 1 \\ -3 \end{pmatrix} \begin{vmatrix} 2 \\ -3 \end{pmatrix} \end{vmatrix}$ end	Ŀ

∃⇒
Matching measures Similarity between Distributions Hough Transforms

3

Construction of the R-Table

Index	List of vectors							
0	$\begin{pmatrix} -2 \\ -3 \end{pmatrix}$	$\begin{pmatrix} -1 \\ -3 \end{pmatrix}$	$\begin{pmatrix} 0\\ -3 \end{pmatrix}$	$\begin{pmatrix} 1\\ -3 \end{pmatrix}$	$\begin{pmatrix} 2\\ -3 \end{pmatrix}$	end		
1	$\begin{pmatrix} 2\\ -3 \end{pmatrix}$	$\begin{pmatrix} 3\\ -2 \end{pmatrix}$	$\begin{pmatrix} 1\\ 0 \end{pmatrix}$	$\begin{pmatrix} 2\\1 \end{pmatrix}$	$\begin{pmatrix} 3\\2 \end{pmatrix}$	end		

Matching measures Similarity between Distributions Hough Transforms

3

Construction of the R-Table

Index	List of vectors							
0	$\begin{pmatrix} -2 \\ -3 \end{pmatrix}$	$\begin{pmatrix} -1 \\ -3 \end{pmatrix}$	$\begin{pmatrix} 0\\ -3 \end{pmatrix}$	$\begin{pmatrix} 1\\ -3 \end{pmatrix}$	$\begin{pmatrix} 2\\ -3 \end{pmatrix}$	end		
1	$\begin{pmatrix} 2\\ -3 \end{pmatrix}$	$\begin{pmatrix} 3\\ -2 \end{pmatrix}$	$\begin{pmatrix} 1\\ 0 \end{pmatrix}$	$\begin{pmatrix} 2\\1 \end{pmatrix}$	$\begin{pmatrix} 3\\2 \end{pmatrix}$	end		
2	$\begin{pmatrix} 3\\ -2 \end{pmatrix}$	$\begin{pmatrix} 3\\ -1 \end{pmatrix}$	$\begin{pmatrix} 3\\0 \end{pmatrix}$		end			

and so on...

∃⇒

Matching measures Similarity between Distributions Hough Transforms

Generalised Hough Transforms: variants

The R-Table can be constructed using different supports, and different appearance indexes:

∃⇒

Matching measures Similarity between Distributions Hough Transforms

Generalised Hough Transforms: Detection

In a Generalised Hough Transforms, each point, according to its appearance, indicates, by a list of *votes*, a set of location hypotheses of the object centre. The centres that got maximal number of votes are considered as the most probable positions.

Detection

- For each point **x** of the image, calculate its appearance index $\lambda(\mathbf{x})$.
- For all points \mathbf{t}_j of the model such that $\lambda(\mathbf{t}_j) = \lambda(\mathbf{x})$, increment the vote map $H(\mathbf{x} + \mathbf{v}(\mathbf{t}_j)) + = \omega(\mathbf{t}_j)$.
- The most probable object position is $\arg \max H(\mathbf{x})$.

Matching measures Similarity between Distributions Hough Transforms

Generalised Hough Transform: Object Detection

Initial: $H(\mathbf{x}) = 0$ everywhere. For all image point \mathbf{x} , let $\lambda(\mathbf{x})$ the quantised derivative. For all occurence j of the R-Table associated to $\lambda(\mathbf{x})$, do:

$$H(\mathbf{x} + \delta^j_{\lambda(\mathbf{x})}) += \omega^j_{\lambda(\mathbf{x})}$$

The best object candidates are then located at the maxima of *H* (Right: Hough transform and the 10 best candidate cars).

Mean-Shift Algorithm

Introduction to the Mean-Shift

Mean-Shift 1/2

The Mean-Shift is an *iterative* algorithm for estimating the *mode* of a distribution. For each iteration:

- $S = {x_i}_i \subset \mathcal{E}$ a set of points in a Euclidian space.
- $\mathcal{K}: \mathcal{E} \longrightarrow \mathbb{R}_+$ a kernel function, that determines the contribution of each point.
- $m(\mathbf{x}) = \frac{\sum_{S} K(\mathbf{x} \mathbf{x}_i) \mathbf{x}_i}{\sum_{S} K(\mathbf{x} \mathbf{x}_i)}$ the current average around \mathbf{x} .
- $v(\mathbf{x}) = m(\mathbf{x}) \mathbf{x}$ the mean-shift vector.

Mean-Shift Algorithm

Introduction to the Mean-Shift

Mean-Shift 2/2

The Mean-Shift algorithm iteratively displaces the point \mathbf{x} toward the local average. For each iteration (contd) :

- $\mathbf{x} \leftarrow m(\mathbf{x})$
- The algorithm converges when $\mathbf{x} = m(\mathbf{x})$
- The Mean-Shift trajectory is $\{\mathbf{x}, m(\mathbf{x}), m(m(\mathbf{x})), \ldots\}$

Mean-Shift Algorithm

Kernel Function

The kernel K, that determines the contribution weight of the different points in the average, is usually isotrope in the Euclidian space, i.e.:

$$K(\mathbf{y}) = k(||\mathbf{y}||).$$

k is usually non increasing and derivable; the Gaussian kernel is often used:

$$k(y) = e^{-y^2}$$
, i.e. $K(y) = e^{-||\mathbf{y}||^2}$. (1)

The kernel function K is related to a regularisation criterion used in the estimation of a distribution (Parzen's kernel technique).

Mean-Shift Algorithm

Estimating the local distribution

Let f be a (quantized) value of the image in one point (Gray level, colour, or any scalar feature calculable in each pixel). Estimating the distribution associated to f in the neighbourhood of the current point x defined by the support S can be made as follows:

$$h_{\mathbf{x}}(u) = \frac{\sum_{S} k(||\mathbf{x} - \mathbf{x}_{i}||) \delta_{u}^{f(\mathbf{x}_{i})}}{\sum_{S} k(||\mathbf{x} - \mathbf{x}_{i}||}$$
(2)

with $\delta_u^v = 1$ if u = v and $\delta_u^v = 0$ if $u \neq v$.

Mean-Shift Algorithm

Similarity and Batthacharyya's index

If $h_R(u)$ corresponds to a reference distribution (i.e. the model), its similarity with the current local distribution can be estimated using Batthacharyya' index:

$$\mathcal{B}_{\mathbf{x}} = \sum_{u} \sqrt{h_{\mathbf{x}}(u)h_{R}(u)}.$$

The principle of Mean-Shift consists in using *smooth* distributions, in order to make the similarity function regular enough so that its behaviour can be predicted from its spatial derivatives (Taylor's Formula).

Mean-Shift Algorithm

Similarity and Batthacharyya's index

A first order approximation of Batthacharyya's index around the first estimation point \mathbf{x}_0 provides:

$$\begin{aligned} \mathcal{B}_{\mathbf{x}} &\simeq \quad \frac{1}{2} \sum_{u} \sqrt{h_{\mathbf{x}_0}(u)h_R(u)} + \frac{1}{2} \sum_{u} h_{\mathbf{x}}(u) \sqrt{\frac{h_R(u)}{h_{\mathbf{x}_0}(u)}} \\ &\simeq \quad \frac{1}{2} \mathcal{B}_{\mathbf{x}_0} + \frac{1}{2} \frac{\sum_{s} \omega_i k(||\mathbf{x} - \mathbf{x}_i||)}{\sum_{s} k(||\mathbf{x} - \mathbf{x}_i||)}. \end{aligned}$$

The 1st term being independent of x, maximising \mathcal{B}_x is equivalent to maximising the 2nd term, with:

$$\omega_i = \sum_{u} \sqrt{\frac{h_R(u)}{h_{\mathbf{x}_0}(u)}} \delta_u^{f(\mathbf{x}_i)} = \sqrt{\frac{h_R(f(\mathbf{x}_i))}{h_{\mathbf{x}_0}(f(\mathbf{x}_i))}}$$
(3)

Mean-Shift Algorithm

Mean-Shift Tracking Algorithm

Mean-Shift Tracking

input: $\{\mathbf{y}, h_R(u)\}$ (previous frame).

- Calculate the histogram $h_y(u)$ in current frame (Eq. 2).
- 2 Calculate the weights ω_i in each point of the support (Eq. 3).
- Image: mean-shift: Calculate the new position x:

$$\mathbf{x} = \frac{\sum_{S} \omega_i g(||\mathbf{y} - \mathbf{x}_i||) \mathbf{x}_i}{\sum_{S} \omega_i g(||\mathbf{y} - \mathbf{x}_i||)}$$
(4)

avec g(x) = -k'(x) (Eq. 1).

If $||\mathbf{x} - \mathbf{y}|| < \varepsilon$, stop. Else $\mathbf{y} \leftarrow \mathbf{x}$, and go back to step (1). output: Final position \mathbf{x} and a new reference histogram (model) $h_R(u) = h_{\mathbf{x}}(u)$.

Mean-Shift Algorithm

Object Tracking using Mean-Shift

- Support: interior of an ellipse.
- Value space: quantized RGB $16 \times 16 \times 16$.
- Average number of Mean-Shift iterations: 4 (See graph on the right).
- Works of Comaniciu, Ramesh et Meer [Comaniciu03].

iterations per frame.

Kalman Filter Particle Filtering

Predictive Filtering

Kalman Filter

State estimation technique based on prediction and correction steps through linear stochastic equation, optimal under the assumption of Gaussian distribution of the state space.

Condensation algorithm

State estimation technique based on sampling the state space posterior distribution from the visual observation, and iteratively propagating new samples from successive images.

Kalman Filter Particle Filtering

Kalman Filter

The principle of the Kalman is to estimate the state $\Theta \in \mathbb{R}^n$ of the discrete time process governed by the linear stochastic equation:

$$\Theta_t = A\Theta_{t-1} + BU_t + W_{t-1}$$

using a measurement $X_t \in \mathbb{R}^m$ that relates to Θ as follows:

$$X_t = H\Theta_t + V_t$$

A is a $n \times n$ matrix relating two states at consecutive times. B is an (opt.) $n \times I$ matrix related to a control input $U \in \mathbb{R}^{I}$. H is a $m \times n$ matrix relating the state to the measurement. V and W are ind., white Gaussian centered random vectors: $p(V) \simeq \mathcal{N}(O, R); p(W) \simeq \mathcal{N}(O, Q)$

Kalman Filter Particle Filtering

Kalman Filter algorithm - from [Welsh01]

Init. Start with initial estimates of $\hat{\Theta}_0$ and P_0 . Then for t > 0:

Kalman Filter (1) Prediction phase

Project the state ahead

$$\hat{\Theta}_t^- = A\hat{\Theta}_{t-1} + BU_t$$

Project the error covariance ahead

$$P_t^- = AP_{t-1} {}^tA + Q$$

Kalman Filter (2) Correction phase

Compute the Kalman gain

$$K_t = P_t^{-t} H(HP_t^{-t} H + R)^{-1}$$

2 Update estimate with new measurement

$$\hat{\Theta}_t = \hat{\Theta}_t^- + K_t (X_t - H \hat{\Theta}_t^-)$$

Opdate the error covariance

$$P_t = (I - K_t H) P_t^-$$

Kalman Filter

Kalman Filtering, Implementations

Order 0 Model

• State
$$\Theta_t = (x_t, y_t)$$
, Observation $X_t = (x_t, y_t)$.

• Transition Matrix $A = I_2$; Observation Matrix $H = I_2$.

Order 1 Model

• State $\Theta_t = (x_t, y_t, v_t^X, v_t^Y)$, Observation $X_t = (x_t, y_t)$. 11

• Transition Matrix
$$A = \begin{pmatrix} 1 & 0 & \delta_t & 0 \\ 0 & 1 & 0 & \delta_t \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
.
• Observation Matrix $H = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$.

(0 2 0)

⊒ →

Kalman Filter Particle Filtering

Condensation algorithm

Condensation algorithm [Isard98]

lterate:

input: $\{s_{t-1}^{(n)}, \pi_{t-1}^{(n)}, c_{t-1}^{(n)}\}_{n \le N}$ the set of N old samples output $\{s_t^{(n)}, \pi_t^{(n)}, c_t^{(n)}\}_{n \le N}$ the set of N new samples

1 Select a sample $\hat{s}_t^{(n)}$ as follows:

- select (uniformly) a random number $r \in [0,1]$
- find the smallest j for which $c_{t-1}^{(j)} \leq r$ • set $\hat{s}_{t}^{(n)} = s_{t}^{(j)}$

Predict the new sample
$$s^{(n)}$$

$$s_t^{(n)} = \operatorname{arg\,max} P(\hat{\Theta}_t = s/\Theta_{t-1} = \hat{s}_t^{(n)})$$

3 Correct from the measure and update the current weight: $\pi_t^{(n)} = P(X_t / \Theta_t = s_t^{(n)})$, normalizing so that $\sum_{i \leq N} \pi_t^{(i)} = 1$

then recompute the cumulative distribution:

$$c_t^{(0)} = 0; c_t^{(n)} = c_t^{(n-1)} + \pi_t^{(n)} (1 \le n \le N)$$

Kalman Filter Particle Filtering

Condensation algorithm, cont.

Kalman Filter Particle Filtering

Object Tracking - Conclusion

Prediction

- Allows to estimate the initial state (position, size,...).
- Dynamical model: likelihood, kinematics,...
- Sets a trade-off between innovation (data) and prediction (model).

Observation

- Appearance model: colour, orientation, features...
- Global description: vector, distribution, co-occurence,...
- Discrimination *vs* Invariance.
- Evaluates the possible states around the initial (predicted) state.

Kalman Filter Particle Filtering

Object Tracking - Conclusion

Learning Visual Tracking

State-of-the-art learning based trackers are mostly *Tracking-by-Detection* approaches that combine different methods:

- Offline learning of objects representation (Deep features).
- Online learning of correlation filters.
- Asymmetric Siamese Networks.

Prediction is generally not learned, but managed using classic techniques.

Kalman Filter Particle Filtering

Bibliography - Tracking

- [Jalal12] A.S. JALAL and V. SINGH The State-of-the-Art in Visual Object Tracking Informatica 36 (2012) 227-248
- [VOT14] M. KRISTAN et al. The Visual Object Tracking VOT2014 challenge results Visual Object Tracking Workshop 2014 at ECCV2014, 2014
- [Comaniciu03] D. COMANICIU, V. RAMESH and P.MEER Kernel-based object tracking Pattern Analysis and Machine Intelligence, 25(5), 564-575 (2003)
- [Held16] D.HELD, S. THRUN and S. SARAVESE Learning to Track at 100 FPS with Deep Regression Networks ECCV 2016. LNCS vol. 9905

Kalman Filter Particle Filtering

Bibliography - Tracking

Bolme10] D.S. BOLME, J.R. BEVERIDGE, B.A. DRAPER and Y.M. LUI,

Visual object tracking using adaptive correlation filters CVPR (2010) 2544-2550

[Bertinetto-Valmadre16] L. BERTINETTO, J. VALMADRE, J.F. HENRIQUES, A. VEDALDI and P.H.S. TORR Fully-Convolutional Siamese Networks for Object Tracking ECCV 2016 Workshops, LNCS vol. 9914

[Li18] B. LI, J. YAN, W. WU, Z. ZHU and X. HU High Performance Visual Tracking with Siamese Region Proposal Network

CVPR 2018, pp. 8971-8980

< ∃ →

Kalman Filter Particle Filtering

Bibliography - Predictive filtering

[Isard98] M. ISARD and M. BLAKE CONDENSATION - CONditional DENSity propagATION for visual tracking

Int. Journal of Computer Vision (1998) 29(1), 5-28 (1998)

[Welsh01] G. WELSH and G. BISHOP An Introduction to the Kalman Filter Tutorial of ACM SIGGRAPH (2001)