
Introduction to Generative Adversarial Networks (GAN)

Introduction to Generative Adversarial Networks
(GAN)

IA716 - Perception pour les systemes autonomes

Gianni Franchi

24/04/2023

1 / 70

Introduction to Generative Adversarial Networks (GAN)

Approximate Bayesian Computation

Let us consider that we have a set {Xi} of data that follow a distribution
P(X). Our goal is to generate new data from this distribution but.
Let us assume we have access to a model of distribution P(X/θ) then we
can generate new data X. This distribution is called the likelihood.
However, for particular problems, we may find that we can not express
the likelihood in closed-form, or it is prohibitively costly to compute it.

2 / 70

Introduction to Generative Adversarial Networks (GAN)

Approximate Bayesian Computation

A solution is to approximate the likelihood.
We aim at using a function δ(·) to obtain a practically good enough
approximation to the true likelihood:

limϵ→0δ(X , X̂ , ϵ) = P(X/θ)

We introduce a tolerance parameter ϵ because the chance of generating a
synthetic data-set X̂ being equal to the observed data X is virtually null
for most problems

3 / 70

Introduction to Generative Adversarial Networks (GAN)

GAN principle: Why Generative learning

We’ve only seen discriminative models in the past
Given an image X , predict a label Y ;
Estimate P(Y |X).

Discriminative models have several key limitations
Can’t model P(X) , i.e. the probability of seeing a certain image;
Thus, can’t sample from P(X), i.e. can’t generate new images;
Fixed loss.

Generative models (in general) cope with all of above
Can model P(X)

Can generate new images.
Learned loss link with perception (perceptual loss)

4 / 70

Introduction to Generative Adversarial Networks (GAN)

GAN principle

In generative adversarial networks (GANs), the task of learning a
generative model is expressed as a two-player zero-sum game between
two networks.

Figure: Principle of the GAN [Goodfellow2014]

With a random noise.

5 / 70

Introduction to Generative Adversarial Networks (GAN)

GAN principle1

Figure: Principle of the GAN [Goodfellow2014]

We need two DNNs.

1Gilles Louppe
6 / 70

Introduction to Generative Adversarial Networks (GAN)

GAN principle : training [Goodfellow2014]

The first network is called a generator g(·; θ) : Z → X , mapping a latent
space equipped with a prior distribution p(z) to the data space, thereby
inducing a distribution

x ∼ q(x; θ) ⇔ z ∼ p(z), x = g(z; θ)

The second network d(·;ϕ) : X → [0, 1] is a classifier called discriminator
trained to distinguish between true samples x ∼ p(x) and generated
samples x ∼ q(x; θ).

7 / 70

Introduction to Generative Adversarial Networks (GAN)

GAN principle : training [Goodfellow2014]

For a fixed generator g , the discriminator d can be trained by generating
a two-class training set
d = {(x1, y = 1), ..., (xN , y = 1), (g(z1; θ), y = 0), ..., (g(zN ; θ), y = 0)},
and minimizing the cross-entropy loss

L(ϕ) = − 1
2N

N∑
i=1

[log d(xi ;ϕ) + log (1 − d(g(zi ; θ);ϕ))]

≈ −Ex∼p(x) [log d(x;ϕ)]− Ez∼p(z) [log(1 − d(g(z; θ);ϕ))] .

However, the situation is slightly more complicated since we also want to
train g to fool the discriminator, which is equivalent to maximize d ’s loss.

8 / 70

Introduction to Generative Adversarial Networks (GAN)

GAN principle : training [Goodfellow2014]

Let us consider the value function

V (ϕ, θ) = Ex∼p(x) [log d(x;ϕ)] + Ez∼p(z) [log(1 − d(g(z; θ);ϕ))] .

For a fixed g , V (ϕ, θ) is high if d is good at recognizing true from
generated samples.
d is the best classifier given g , and if V is high, then this implies that the
generator is bad at reproducing the data distribution.
Conversely, g will be a good generative model if V is low when d is a
perfect opponent.

9 / 70

Introduction to Generative Adversarial Networks (GAN)

GAN principle : training [Goodfellow2014]

Therefore, the ultimate goal is optmized this minimax loss:

θ∗ = argmin
θ

max
ϕ

V (ϕ, θ).

10 / 70

Introduction to Generative Adversarial Networks (GAN)

GAN principle : training [Goodfellow2014]
Here I change d(x ;ϕ) by D(x) and also g(x ; θ) by G (x)

V (ϕ, θ) = Ex∼p(x) [log d(x;ϕ)] + Ez∼p(z) [log(1 − d(g(z; θ);ϕ))]

V (G ,D) = Ex∼p(x) [logD(x)] + Ez∼p(z) [log(1 − D(G (z)))]

Remember : If we have
I a real interval;
φ : [a, b] → I a derivable function and whose derivative has an
integral;
I a real interval;
f : I → R a continuous function.

then : ∫ b

a

f (φ(t))φ′(t) dt =
∫ φ(b)

φ(a)

f (x) dx .

11 / 70

Introduction to Generative Adversarial Networks (GAN)

GAN principle : training [Goodfellow2014]

So
Ez∼p(z) [log(1 − D(G (z)))] = Ex∼pg (x) [log(1 − D(x)))]

So we have

V (G ,D) =

∫
x

(p(x) log(D(x)) + pg (x) log(1 − D(x)))dx

Let us fix the generator and look for the best discriminator D∗

∂V (G ,D)

∂D
=

∂

∂D

∫
x

(p(x) log(D(x)) + pg (x) log(1 − D(x)))dx

12 / 70

Introduction to Generative Adversarial Networks (GAN)

GAN principle : training [Goodfellow2014]

We want to find

∂

∂D
p log(D) + pg log(1 − D) = 0

p

D
− pg

(1 − D)
= 0

D

(1 − D)
=

pg
p

D =
pg

p + pg

When the generator is perfectly driven p = pg then D = 1/2

13 / 70

Introduction to Generative Adversarial Networks (GAN)

GAN principle : training [Goodfellow2014]

Optimal solution to the adversarial game:
Generator distribution = data distribution
D = 1/2

14 / 70

Introduction to Generative Adversarial Networks (GAN)

GAN results

15 / 70

Introduction to Generative Adversarial Networks (GAN)

GAN issues:

Disadvantages of Generative Adversarial Networks (GANs):
Training Instability: GANs can be difficult to train, with the risk of
instability, mode collapse, or failure to converge.
Computational Cost: GANs can require a lot of computational
resources and can be slow to train, especially for high-resolution
images or large datasets.
Overfitting: GANs can overfit the training data, producing synthetic
data that is too similar to the training data and lacking diversity.
Bias and Fairness: GANs can reflect the biases and unfairness
present in the training data, leading to discriminatory or biased
synthetic data.
Interpretability and Accountability: GANs can be opaque and
difficult to interpret or explain, making it challenging to ensure
accountability, transparency, or fairness in their applications.

16 / 70

Introduction to Generative Adversarial Networks (GAN)

GAN issues: Mode collapse [Srivastava2017]
Training a standard GAN often results in pathological behaviors:

Oscillations without convergence: contrary to standard loss
minimization, alternating stochastic gradient descent has no
guarantee of convergence.
Vanishing gradients: when the classifier d is too good, the value
function saturates and we end up with no gradient to update the
generator.
Mode collapse: the generator g models very well a small
sub-population, concentrating on a few modes of the data
distribution.
Performance is also difficult to assess in practice.

17 / 70

Introduction to Generative Adversarial Networks (GAN)

GAN issues: Mode collapse [jonathan-hui]

Real-life data distributions are multimodal. For example, in MNIST,
there are 10 major modes from digit ’0’ to digit ’9’. The samples below
are generated by two different GANs. The top row produces all 10 modes
while the second row creates a single mode only (the digit ’6’). This
problem is called mode collapse when only a few modes of data are
generated.

18 / 70

Introduction to Generative Adversarial Networks (GAN)

GAN issues: Mode collapse [jonathan-hui]

The objective of the GAN generator is to create images that can fool the
discriminator D the most.

19 / 70

Introduction to Generative Adversarial Networks (GAN)

GAN issues: Mode collapse [jonathan-hui]

But let’s consider one extreme case where G is trained extensively
without updates to D. The generated images will converge to find the
optimal image x∗ that fool D the most, the most realistic image from the
discriminator perspective. In this extreme, x∗ will be independent of z .

20 / 70

Introduction to Generative Adversarial Networks (GAN)

GAN issues: Mode collapse [jonathan-hui]

When we restart the training in the discriminator, the most effective way
to detect generated images is to detect this single mode. Since the
generator desensitizes the impact of z already, the gradient from the
discriminator will likely push the single point around for the next most
vulnerable mode. This is not hard to find. The generator produces such
an imbalance of modes in training that it deteriorates its capability to
detect others. Now, both networks are overfitted to exploit short-term
opponent weakness.

21 / 70

Introduction to Generative Adversarial Networks (GAN)

GAN issues: Vanishing Gradient [jonathan-hui]

Recall that when the discriminator is optimal, the objective function for
the generator is:

V (G ,D∗) = 2DJS [p||pg] + cst

22 / 70

Introduction to Generative Adversarial Networks (GAN)

GAN issues: Vanishing Gradient [jonathan-hui]

Let’s consider an example in which p and pg are Gaussian distributed and
the mean of p is zero. Let’s consider pg with different means to study the

gradient of DJS [p||pg]. We denote these distribution q1, q2, q3

23 / 70

Introduction to Generative Adversarial Networks (GAN)

GAN issues: Vanishing Gradient [jonathan-hui]

As shown below, the gradient for the JS-divergence vanishes from q1 to
q3. The GAN generator will learn extremely slow to nothing when the
cost is saturated in those regions.

24 / 70

Introduction to Generative Adversarial Networks (GAN)

DCGAN [Radford2015]

Replace FC hidden layers with Convolutions/deconvolutional layers.

25 / 70

Introduction to Generative Adversarial Networks (GAN)

DCGAN [Radford2015]

Generations of realistic bedrooms pictures, from randomly generated
latent variables

26 / 70

Introduction to Generative Adversarial Networks (GAN)

DCGAN [Radford2015]

Interpolation in between points in latent space.

27 / 70

Introduction to Generative Adversarial Networks (GAN)

DCGAN [Radford2015]

Convolutional GAN - Arithmetic

28 / 70

Introduction to Generative Adversarial Networks (GAN)

DCGAN [Radford2015]

Convolutional GAN - Arithmetic

29 / 70

Introduction to Generative Adversarial Networks (GAN)

Conditional GAN [Mirza2014]

Conditional generative adversarial network, or cGAN, is a type of GAN
that involves the conditional generation of images by a generator model.

Hence you can control the kind of output you want

30 / 70

Introduction to Generative Adversarial Networks (GAN)

Optimal transport [alexhwilliams]

A fundamental problem in statistics and machine learning is to come up
with useful measures of ’distance’ between pairs of probability
distributions. One can compute the Kullback-Lieibler (KL) divergence
from Q to P is defined by :

DKL(P ∥ Q) =
∑
x∈X

P(x) log

(
P(x)

Q(x)

)
While the KL divergence is incredibly useful and fundamental in
information theory, it also has its shortcomings.
For instance, one of the first things we learn about the KL divergence is
that it is not symmetric A bigger problem is that the divergence may be
infinite if the support of P and Q are not equal.

31 / 70

Introduction to Generative Adversarial Networks (GAN)

Optimal transport [alexhwilliams]

One of the nice aspects of optimal transport theory is that it can be
grounded in physical intuition through the following thought experiment.
Suppose we are given the task of filling several holes in the ground. The
image below shows an overhead 2D view of this scenario - the three red
regions correspond to dirt piles, and the eight blue regions correspond
to holes.

32 / 70

Introduction to Generative Adversarial Networks (GAN)

Optimal transport [alexhwilliams]

Our goal is to come up with the most efficient transportation plan to
which moves the dirt to fill all the holes. We assume the total volume
of the holes is equal to the total volume of the dirt piles.

33 / 70

Introduction to Generative Adversarial Networks (GAN)

Optimal transport [alexhwilliams]

The "most efficient" plan is the one that minimizes the total
transportation cost. To quantify this, let’s say the transportation cost C
of moving 1 unit of dirt from (x0, y0) → (x1, y1) is given by the squared
Euclidean distance:

C (x0, y0, x1, y1) = (x0 − x1)
2 + (y0 − y1)

2

Now we’ll define the transportation plan T , which tells us how many
units of dirt to move from (x0, y0) → (x1, y1) which is given by

T (x0, y0, x1, y1) = ω

34 / 70

Introduction to Generative Adversarial Networks (GAN)

Optimal transport [alexhwilliams]

35 / 70

Introduction to Generative Adversarial Networks (GAN)

Optimal transport [alexhwilliams]

The transportation plan, T , specifies an arrow like this from every
possible starting position to every possible destination. Further, in
addition to being non negative, the plan must satisfy the following two
conditions: ∫ ∫

T (x0, y0, x , y)dxdy = p(x0, y0) ∀x0, y0∫ ∫
T (x , y , x1, y1)dxdy = q(x1, y1) ∀x1, y1

Where p(·, ·) and q(·, ·) are density functions encoding the units of dirt
and hole depth at each 2D location. Intuitively, the first constraint says
that the amount of piled dirt at is "used up" or transported somewhere.
The second constraint says that the hole at is "filled up" with the
required amount of dirt (no more and no less).

36 / 70

Introduction to Generative Adversarial Networks (GAN)

Optimal transport [alexhwilliams]

Suppose we are given a function T that satisfies all of these conditions
(i.e. we are given a feasible transport plan). Then the overall transport
cost is given by:

total cost =
∫ ∫ ∫ ∫

C (x0, y0, x1, y1)T (x0, y0, x1, y1)dx0dy0dx1dy1

Xe multiply the amount of dirt transported, given by T , by the per unit
transport cost, given by C . Integrating over all possible origins and
destinations gives us the total cost.

37 / 70

Introduction to Generative Adversarial Networks (GAN)

Optimal transport [alexhwilliams]

Given two probability distributions µ0 and µ1, and a positive cost
function c : RD × RD → R+ The Wasserstein distances is given by

OP(µ0, µ1) = inf
γ∈Π(µ0,µ1)

∫
c(x , y)dγ(x , y)

where Π(µ0, µ1) is the set of probability distributions γ with marginal
distributions µ0 and µ1.

38 / 70

Introduction to Generative Adversarial Networks (GAN)

Optimal transport [Arjovsky2017]

When using c(x , y) = ∥x − y∥p one defines Wasserstein distances.
The p-Wasserstein distance W p between µ0 and µ1is defined as

W p(µ0, µ1) = inf
γ∈Π(µ0,µ1)

∫
∥x − y∥p dγ(x , y)

Which is similar to solve the dual following dual problem for p = 1

W p(µ0, µ1) = sup
ϕ∈Lip1

[Ex∼µ0(ϕ(x))− Ex∼µ0(ϕ(x))]

with

Lip1 = {f : RD → R such that ∀(x , y)∥f (x)− f (y)∥ ≤ ∥x − y∥}

39 / 70

Introduction to Generative Adversarial Networks (GAN)

Wassestein GAN [Arjovsky2017]

GAN (Vanilla):

min
Dθ

max
Gϕ

Ex∼p(x) [logD(x)] + Ez∼p(z) [log(1 − D(G (z)))]

Wassestein GAN :

min
Dθ

max
Gϕ

Ex∼p(x) [D(x)]− Ez∼p(z) [(D(G (z)))]

We just got rid of the log and D is not a probability... but we now have a
constrained optimization D ∈ Lip1 The original WGAN paper uses weight
clipping to restrict the Lipschitz constant (heuristic)

40 / 70

Introduction to Generative Adversarial Networks (GAN)

Cycle GAN [geeksforgeeks]

We use two Conditional GAN:

GY→X : Y → X

GX→Y : X → Y

41 / 70

Introduction to Generative Adversarial Networks (GAN)

Cycle GAN [geeksforgeeks]

More specifically the CycleGAN architecture is different from other GANs
in a way that it contains 2 mapping function (G or GY→X and F or
GX→Y) that acts as generators and their corresponding Discriminators
(Dx and Dy): The generator mapping functions are as follows:

42 / 70

Introduction to Generative Adversarial Networks (GAN)

Cycle GAN [geeksforgeeks]

43 / 70

Introduction to Generative Adversarial Networks (GAN)

Cycle GAN [geeksforgeeks]

44 / 70

Introduction to Generative Adversarial Networks (GAN)

Cycle GAN [geeksforgeeks]

Each CycleGAN generator has three sections:
Encoder
Transformer
Decoder

45 / 70

Introduction to Generative Adversarial Networks (GAN)

Cycle GAN [geeksforgeeks]

The input image is passed into the encoder. The encoder extracts
features from the input image by using Convolutions and compressed the
representation of image but increase the number of channels.
Then the output of encoder after activation function is applied is passed
into the transformer. The transformer contains 6 or 9 residual blocks
based on the size of input.
The output of transformer is then passed into the decoder which uses 2
-deconvolution block of fraction strides to increase the size of
representation to original size.

46 / 70

Introduction to Generative Adversarial Networks (GAN)

Cycle GAN [geeksforgeeks]

47 / 70

Introduction to Generative Adversarial Networks (GAN)

Cycle GAN [geeksforgeeks]

In discriminator the authors use PatchGAN discriminator. The
difference between a PatchGAN and regular GAN discriminator is that
rather the regular GAN maps from a 256 × 256 image to a single scalar
output, which signifies ’real’ or ’fake’, whereas the PatchGAN maps from
256 × 256to an N × N (here 70 × 70) array of outputs X, where each Xij

signifies whether the patch ij in the image is real or fake.

48 / 70

Introduction to Generative Adversarial Networks (GAN)

Cycle GAN losses

Cycle GAN losses has several losses : First, the standard loss function for
cGAN training is defined as follows:

LcGAN(θG , θD) = Ex [logDx(x | y)] + Ez [log(1 − Dx(GY→X (z | y)))],
(1)

49 / 70

Introduction to Generative Adversarial Networks (GAN)

Cycle GAN losses

Cycle GAN losses has several losses : Secondly, in addition to the
adversarial loss defined, it also have a cycle loss defined by:

LL2(θG) = E(x,y)[∥y − GX→Y ((GY→X (y)) ∥2] + E(x,y)[∥x − GY→X ((GX→Y (x)) ∥2] (2)

50 / 70

Introduction to Generative Adversarial Networks (GAN)

Cycada [Hoffman2018]

51 / 70

Introduction to Generative Adversarial Networks (GAN)

Pix2Pix [Phillip2017]

52 / 70

Introduction to Generative Adversarial Networks (GAN)

Pix2Pix [Phillip2017]

it is composed of a Conditional Generator and one discriminator. For
Pix2Pix the discriminator is PatchGan and the Generator is a Unet.

53 / 70

Introduction to Generative Adversarial Networks (GAN)

Pix2Pix [Phillip2017]

Pix2pix has the following two losses :

LcGAN(θG , θD) = Ex [logDx(x | y)] + Ez [log(1 − Dx(GY→X (z | y)))],
(3)

In addition to the adversarial loss defined, an L1 loss, is added to the cost
function of cGANs to reduce blur:

LL1(θG) = E(x,y ,z)[∥x − G (z | y)∥1]. (4)

54 / 70

Introduction to Generative Adversarial Networks (GAN)

Remember: regularization with Batch normalization

For every channel c we estimate

µc =
1

NHW

N∑
i=1

H∑
j=1

W∑
K=1

xicjk and σc =
1

NHW

N∑
i=1

H∑
j=1

W∑
K=1

(xicjk − µc)
2 (5)

x̂ =
x − µc√
σ2
c + ϵ

(6)

55 / 70

Introduction to Generative Adversarial Networks (GAN)

Remember: regularization Instance Normalization

For every channel c we estimate

µnc =
1

HW

H∑
j=1

W∑
K=1

xncjk and σnc =
1

HW

H∑
j=1

W∑
K=1

(xncjk − µnc)
2 (7)

x̂ =
x − µnc√
σ2
nc + ϵ

(8)

56 / 70

Introduction to Generative Adversarial Networks (GAN)

Remember: Batch normalization or Instance
Normalization

After we have assess x̂ we to de-normalise the data

BN(x) = γ
x − µ(x)√
σ2(x) + ϵ

+ β (9)

IN(x) = γ
x − µ(x)√
σ2(x) + ϵ

+ β (10)

where γ and β are affine parameters learned during the training

57 / 70

Introduction to Generative Adversarial Networks (GAN)

Batch normalization vs Instance Normalization

58 / 70

Introduction to Generative Adversarial Networks (GAN)

adaptive instance normalization (AdaIN) [Huang2017]

AdaIN receives a content input x and a style input y, and simply aligns
the channelwise mean and variance of x to match those of y.

AdaIN(x , y) = γ(y)
x − µ(x)√
σ2(x) + ϵ

+ β(y) (11)

in which we simply scale the normalized content input with γ(y), and
shift it with β(y). Similar to IN, these statistics are computed across
spatial locations.

59 / 70

Introduction to Generative Adversarial Networks (GAN)

SPatially-Adaptive (DE)normalization (SPADE)
[Park2019]

Spade(x , label) = γ(label)
x − µ(x)√
σ2(x) + ϵ

+ β(label) (12)

60 / 70

Introduction to Generative Adversarial Networks (GAN)

SPatially-Adaptive (DE)normalization (SPADE)
[Park2019]

In the SPADE generator, each normalization layer uses the segmentation
mask to modulate the layer activations.

The SPADE generator contains a series of the SPADE residual blocks
with upsampling layers ant it is just a decoder.

61 / 70

Introduction to Generative Adversarial Networks (GAN)

Style GAN [geeksforgeeks]

62 / 70

Introduction to Generative Adversarial Networks (GAN)

Style GAN Novelties [geeksforgeeks]

Baseline Progressive Growing GANs: Style GAN uses baseline
progressive GAN architecture which means the size of generated image
increases gradually from a very low resolution (4 × 4) to high resolution
(1024 × 1024). This is done by adding a new block to both the models
to support the larger resolution after fitting the model on smaller
resolution to make it more stable.

63 / 70

Introduction to Generative Adversarial Networks (GAN)

Style GAN Novelties [geeksforgeeks]

Mapping Network and Style Network: The goal of the mapping
network is to generate the input latent vector into the intermediate
vector whose different element control different visual features. Instead of
directly providing latent vector to input layer the mapping is used. In this
paper, the latent vector (z) of size 512 is mapped to another vector of
512 (w). The mapping function is implemented using 8-layer MLP (8-
fully connected layers). The output of mapping network (w) then passed
through a learned affine transformation (A) before passing into the
synthesis network which AdaIN (Adaptive Instance Normalization)
module. This model converts the encoded mapping into the generated
image.

64 / 70

Introduction to Generative Adversarial Networks (GAN)

Style GAN Novelties [geeksforgeeks]

Removing traditional (Latent) input: Most previous style transfer
model uses the random input to create the initial latent code of the
generator i.e. the input of the 4 × 4 level. However the style-GAN
authors concluded that the image generation features are controlled by w
and AdaIN. Therefore they replace the initial input with the constant
matrix of 4 × 4 × 512. This also contributed to increase in the
performance of the network.

65 / 70

Introduction to Generative Adversarial Networks (GAN)

Style GAN Novelties [geeksforgeeks]

Addition of Noisy: Input A Gaussian noise (represented by B) is added
to each of these activation maps before the AdaIN operations. A
different sample of noise is generated for each block and is interpreted on
the basis of scaling factors of that layer.

66 / 70

Introduction to Generative Adversarial Networks (GAN)

Style GAN Novelties [Karras2019]

67 / 70

Introduction to Generative Adversarial Networks (GAN)

Bibliography

[Srivastava2017] Srivastava, A., Valkov, L., Russell, C., Gutmann, M.
U.,& Sutton, C. (2017). Veegan: Reducing mode collapse in gans using
implicit variational learning. Advances in neural information processing
systems, 30.

[Goodfellow2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative
adversarial nets. Advances in neural information processing systems, 27.

[Radford2015] Radford, A., Metz, L., & Chintala, S. (2015).
Unsupervised representation learning with deep convolutional generative
adversarial networks. arXiv preprint arXiv:1511.06434.

68 / 70

Introduction to Generative Adversarial Networks (GAN)

Bibliography

[Hoffman2018] Hoffman, J., Tzeng, E., Park, T., Zhu, J. Y., Isola, P.,
Saenko, K., ... & Darrell, T. (2018, July). Cycada: Cycle-consistent
adversarial domain adaptation. In International conference on machine
learning (pp. 1989-1998). PMLR.

[Mirza2014] Mirza, M., & Osindero, S. (2014). Conditional generative
adversarial nets. arXiv preprint arXiv:1411.1784.

[jonathan-hui] https://jonathan-hui.medium.com/gan-why-it-is-so-hard-
to-train-generative-advisory-networks-819a86b3750b

[geeksforgeeks] https://www.geeksforgeeks.org/

[alexhwilliams]
http://alexhwilliams.info/itsneuronalblog/2020/10/09/optimal-
transport/

[Phillip2017] Isola, Phillip, et al. "Image-to-image translation with
conditional adversarial networks." Proceedings of the IEEE conference on
computer vision and pattern recognition. 2017.

69 / 70

Introduction to Generative Adversarial Networks (GAN)

Bibliography

[Huang2017] Huang, Xun, and Serge Belongie. "Arbitrary style transfer
in real-time with adaptive instance normalization." Proceedings of the
IEEE international conference on computer vision. 2017.

[Park2019] Park, Taesung, et al. "Semantic image synthesis with
spatially-adaptive normalization." Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 2019.

[Karras2019] Karras, Tero, Samuli Laine, and Timo Aila. "A style-based
generator architecture for generative adversarial networks." Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition.
2019.

[Arjovsky2017] Arjovsky, Martin, Soumith Chintala, and LÃ©on
Bottou. "Wasserstein generative adversarial networks." International
conference on machine learning. PMLR, 2017.

70 / 70

