ENSTA 2ème année, Cours ANN1

Jeudi 14 novembre 2024

Contrôle de connaissances. Durée : 2 heures

Aucun document ou appareil électronique n'est autorisé.

1 Questions préliminaires

Question 1. Montrer qu'il existe une constante $C_1 > 0$ telle que

$$\forall v \in H^1(]0,1[), \ \|v\|_{L^2(]0,1[)} \le C_1 \{ \|v'\|_{L^2(]0,1[)} + |v(0)| \}.$$

On vous demande de détailler avec soin les arguments de densité utilisés.

On admet que pour Ω un ouvert borné de \mathbb{R}^N à frontière suffisamment régulière, il existe une constante $C_p>0$ telle que

$$\forall v \in H^{1}(\Omega), \quad \|v\|_{L^{2}(\Omega)}^{2} \le C_{p} \left[\|\nabla v\|_{L^{2}(\Omega)}^{2} + \|v|_{\partial\Omega}\|_{L^{2}(\partial\Omega)}^{2} \right]. \tag{1}$$

Question 2. (a). Montrer, en utilisant la première formule de Green vue en cours, que

$$\forall u, v \in \mathcal{C}^{\infty}(\overline{\Omega}), \ \forall \vec{b} \in (\mathcal{C}^{\infty}(\overline{\Omega}))^{3}, \ \int_{\Omega} \left[(\vec{b} \cdot \nabla u)v + (\vec{b} \cdot \nabla v)u + (\operatorname{div} \vec{b}) u v \right] d\Omega$$

$$= \int_{\partial \Omega} \vec{b} \cdot \vec{n} u \big|_{\partial \Omega} v \big|_{\partial \Omega} d\Gamma, \quad (2)$$

où \vec{n} est la normale extérieure à Ω .

(b). Expliquer pourquoi cette formule s'étend aux fonctions $u, v \in H^1(\Omega)$.

2 Equation d'advection-diffusion avec condition de Dirichlet

Soit Ω un ouvert borné de \mathbb{R}^3 de frontière $\partial\Omega$ suffisamment régulière. On considère une équation de diffusion avec un terme d'advection posée sous forme variationnelle : Trouver $u \in H^1_0(\Omega)$ telle que

$$\int_{\Omega} \left[\nabla u \cdot \nabla v + (\vec{b} \cdot \nabla u) v \right] d\Omega = \int_{\Omega} \vec{F} \cdot \nabla v \, d\Omega, \quad \forall v \in H_0^1(\Omega). \tag{FV_I}$$

Ici, $\vec{b} = (b_1, b_2, b_3) \in (\mathcal{C}^{\infty}(\overline{\Omega}))^3$ et $\vec{F} = (F_1, F_2, F_3) \in (\mathcal{C}^{\infty}(\overline{\Omega}))^3$ sont des **fonctions vectorielles** de Ω considérées comme des données du problème.

Question 3. On suppose dans cette question et la suivante qu'il existe une constante β strictement négative telle que

$$\operatorname{div} \vec{b} \leq \beta < 0.$$

En utilisant (2), montrer que la forme bilinéaire a associée à (FV_I) est coercive dans $H_0^1(\Omega)$ muni de la norme $\|\cdot\|_{H^1}$.

Question 4. (a). Montrer qu'il existe une unique solution au problème (FV_I) .

(b). Montrer que la solution est continue par rapport aux données. On explicitera cette propriété en fonction de \vec{F} et β .

Question 5. Montrer qu'il existe une constante $\eta > 0$ telle que si

$$\operatorname{div} \vec{b} \leq \eta$$

le problème reste bien posé dans $H_0^1(\Omega)$.

Question 6.(a). Retrouver le problème aux limites vérifié par la solution u de (FV_I) constitué d'une équation aux dérivées partielles satisfaite presque partout dans Ω et d'une condition aux limites sur le bord $\partial\Omega$.

(b). Montrer l'équivalence entre ce problème aux limites et la formulation variationnelle.

3 Equation d'advection-diffusion avec condition de fourier

On considère maintenant le problème d'advection-diffusion suivant Trouver u dans $H^1(\Omega)$, solution de

$$\begin{vmatrix}
-\Delta u + \vec{b} \cdot \nabla u = f, & \text{dans} & \Omega \\
\nabla u \cdot \vec{n} + \lambda u = g, & \text{sur} & \partial\Omega
\end{vmatrix}$$
(3)

avec $f \in L^2(\Omega), g \in L^2(\partial\Omega), \lambda \geq 0$ et $\vec{b} = (b_1, b_2, b_3) \in (\mathcal{C}^{\infty}(\overline{\Omega}))^3$ est tel que

$$\operatorname{div} \vec{b} = 0.$$

Question 7. (a). Ecrire la formulation variationnelle (FV_{II}) du problème (3). On appellera a la forme bilinéaire et ℓ la forme linéaire associées.

(b). Montrer l'équivalence entre la formulation variationnelle et le problème aux limites (3).

Question 8. On suppose dans cette question que

$$\frac{1}{2}\vec{b}\cdot\vec{n} + \lambda \ge \gamma > 0 \quad \text{sur} \quad \partial\Omega. \tag{4}$$

(a). Montrer que le problème (3) est bien posé dans $H^1(\Omega)$.

On suppose maintenant que $\vec{b} \cdot \vec{n} + 2\lambda \ge 0$ sur $\partial \Omega$. Comme $\vec{b} \cdot \vec{n}$ est une fonction très régulière du bord, il n'y a que deux configurations : soit $\vec{b} \cdot \vec{n} + 2\lambda \ge \gamma > 0$ sur une partie de $\partial \Omega$ de mesure non nulle, soit $\vec{b} \cdot \vec{n} + 2\lambda = 0$ sur $\partial \Omega$.

- (b). Est ce que le problème est toujours bien posé dans $H^1(\Omega)$ si $\vec{b} \cdot \vec{n} + 2\lambda \geq 0$ sur $\partial \Omega$ et $\vec{b} \cdot \vec{n} + 2\lambda \geq \gamma > 0$ sur une partie de $\partial \Omega$ de mesure non nulle.
- (c). On suppose enfin que $\vec{b} \cdot \vec{n} + 2\lambda = 0$ sur $\partial \Omega$. Montrer que ceci ne peut arriver que pour $\lambda = 0$. Est ce que le problème est toujours bien posé dans ce cas?

On suppose de nouveau que (4) est vérifiée. On se propose de calculer par éléments finis une approximation u_h de u.

On note V_h l'espace des éléments finis de Lagrange P^1 , associé à un maillage \mathcal{T}_h de pas h.

Question 9. (a). Rappeler la définition précise de V_h et les raisons pour lesquelles $V_h \subset H^1(\Omega)$. (b). Ecrire la formulation variationnelle discrète (FV_h) posée dans V_h . Montrer que cette formulation variationnelle discrète admet une unique solution dans V_h .

(c). Redémontrer le lemme de Céa pour (FV_{II}) , c'est à dire qu'il existe une constante C > 0 (que l'on explicitera) indépendante de V_h telle que

$$||u - u_h||_{H^1(\Omega)} \le C \inf_{v_h \in V_h} ||u - v_h||_{H^1(\Omega)}$$

(d). Nous avons montré dans le cours que si $u \in H^2(\Omega)$ alors il existe une constante C > 0 indépendante de h telle que

$$||u - u_h||_{H^1(\Omega)} \le Ch||f||_{L^2(\Omega)}.$$

Redémontrer le théorème d'Aubin-Nitsche : il existe une constante C>0 indépendante de h telle que

$$||u - u_h||_{L^2(\Omega)} \le Ch^2 ||f||_{L^2(\Omega)}.$$

On pourra considérer, l'unique solution $z \in H^1(\Omega)$ de $a(z,v) = \int_{\Omega} (u-u_h)v, \ \forall v \in H^1(\Omega)$.

Question 10. (a). Montrer que (FV_h) peut s'écrire sous la forme d'un système linéaire :

$$(\mathbb{K} + \mathbb{B} + \lambda \mathbb{S})\mathbb{U} = \mathbb{L},$$

où K est la matrice de rigidité vue en cours.

- (b). Est ce que les matrices \mathbb{K} , \mathbb{B} et \mathbb{S} sont symétriques? positives? définies positives? Montrer que $\mathbb{B} + \lambda \mathbb{S}$ est définie positive.
- (c). Montrer que si $\vec{b} \cdot \vec{n} = 0$ sur $\partial \Omega$, la matrice $\mathbb{K} + \mathbb{B} + \lambda \mathbb{S}$ est inversible si $\lambda > 0$ mais pas pour $\lambda = 0$.