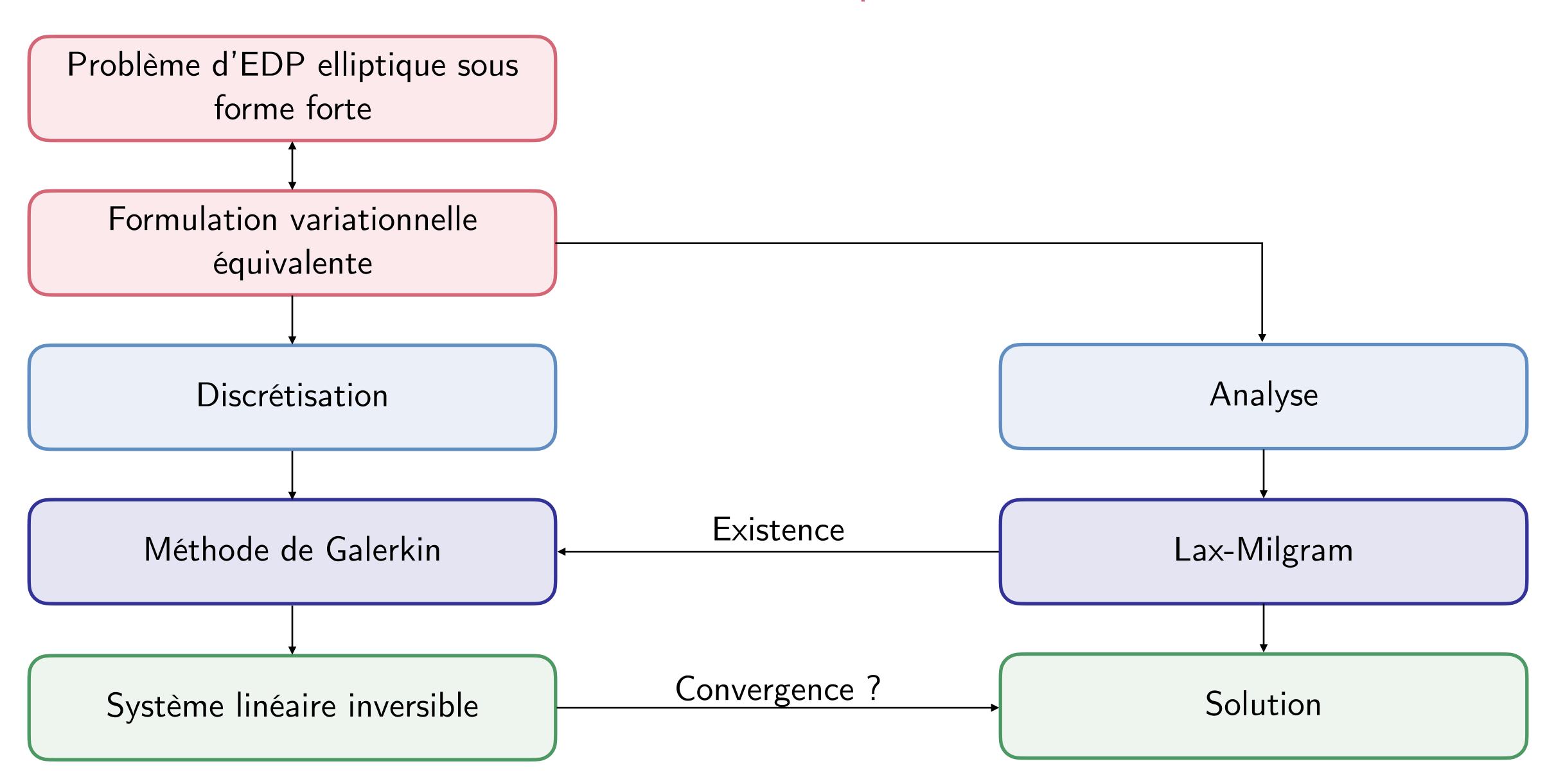
Introduction à la méthode des Eléments Finis.

Sonia Fliss

Chargés de TDs: Sarah Al Humaikani (UMA), Marc Bakry (CEA), Eliane Bécache (Inria, UMA), Pierre Boulogne (UMA), Xavier Claeys (UMA), Elise Fressart (CMAP, X), Benjamin Graille (Orsay), Erell Jamelot (CEA), Zois Moitier (UMA)

Point d'étape



Séance 6 : Analyse numérique de la méthode des éléments finis

Problème modèle et hypothèses

Convergence de l'approximation interne
Vitesse de convergence
Autres erreurs

Problème modèle

Soient
$$\Omega \subset \mathbb{R}^d$$
 un ouvert polygonal, $\kappa \in L^{\infty}(\Omega)$, $f \in L^2(\Omega)$ $0 < \kappa_0 \le \kappa \le \bar{\kappa}$

On cherche la solution u dans $\mathcal{V} = H^1(\Omega)$

$$\begin{cases} -\operatorname{div}(\kappa(\underline{x}) \nabla u(\underline{x})) + u(\underline{x}) = f(\underline{x}), & \underline{x} \in \Omega \\ \frac{\partial u}{\partial n}(\underline{x}) = 0, & \underline{x} \in \partial \Omega \end{cases}$$

On cherche la solution u dans $\mathcal{V} = H^1(\Omega)$

$$\forall v \in \mathcal{V}, \quad a(\underline{u}, v) = \ell(v) \quad \text{ou} \quad \begin{cases} a(\underline{u}, v) &= \int_{\Omega} \left[\kappa(\underline{x}) \underline{\nabla} \, \underline{u}(\underline{x}) \cdot \underline{\nabla} \, v(\underline{x}) + \underline{u}(\underline{x}) v(\underline{x}) \right] d\Omega \\ \ell(v) &= \int_{\Omega} f(\underline{x}) v(\underline{x}) d\Omega \end{cases}$$

On vérifie que le théorème de Lax-Milgram s'applique! voir Amphi 3

Maillage 2D

Définition : Maillage triangulaire

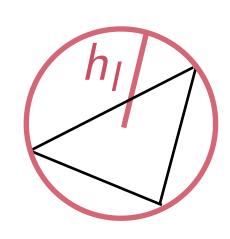
Soit Ω un ouvert connexe polyédrique de \mathbb{R}^2 . Un maillage triangulaire de $\overline{\Omega}$ est un ensemble de N_e triangles $\{T_I\}_{1\leq I\leq N_e}$ tels que

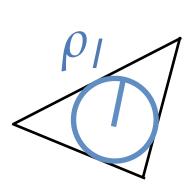
- Tout triangle T_k est d'intérieur non vide (c'est-à-dire $T_k \neq \varnothing$). On définit alors ρ_k le rayon du cercle inscrit au triangle T_k et h_k le rayon du cercle circonscrit.
- $T_k \cap T_{k'} = \varnothing \text{ si } k \neq k',$
- $\bullet \quad \bigcup_{\ell} T_k = \overline{\Omega},$
- ullet toute arête d'un triangle est soit une arête d'un autre triangle soit une arête portée par la frontière $\partial\Omega$.

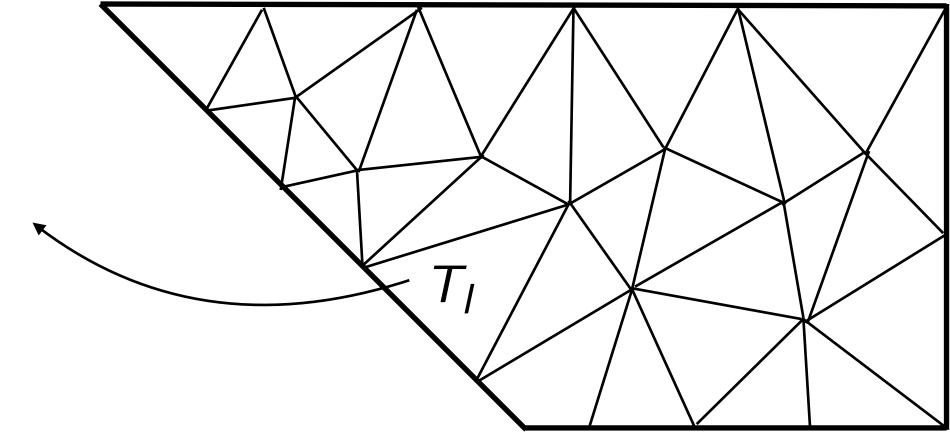
$$h(T) = \inf_{T \subset B(\underline{x},r)} r, \quad \rho(T) = \sup_{B(\underline{x},r) \subset T} r.$$

Pas du maillage

$$h = \max_{1 \le l \le N_e} h_l$$







Séquence de maillages

Hypothèse

Soit $(\mathcal{T}_h)_{h>0}$ une suite de maillages de Ω . On suppose que la famille de maillages $(\mathcal{T}_h)_h$ est réguliere, c'est à dire que

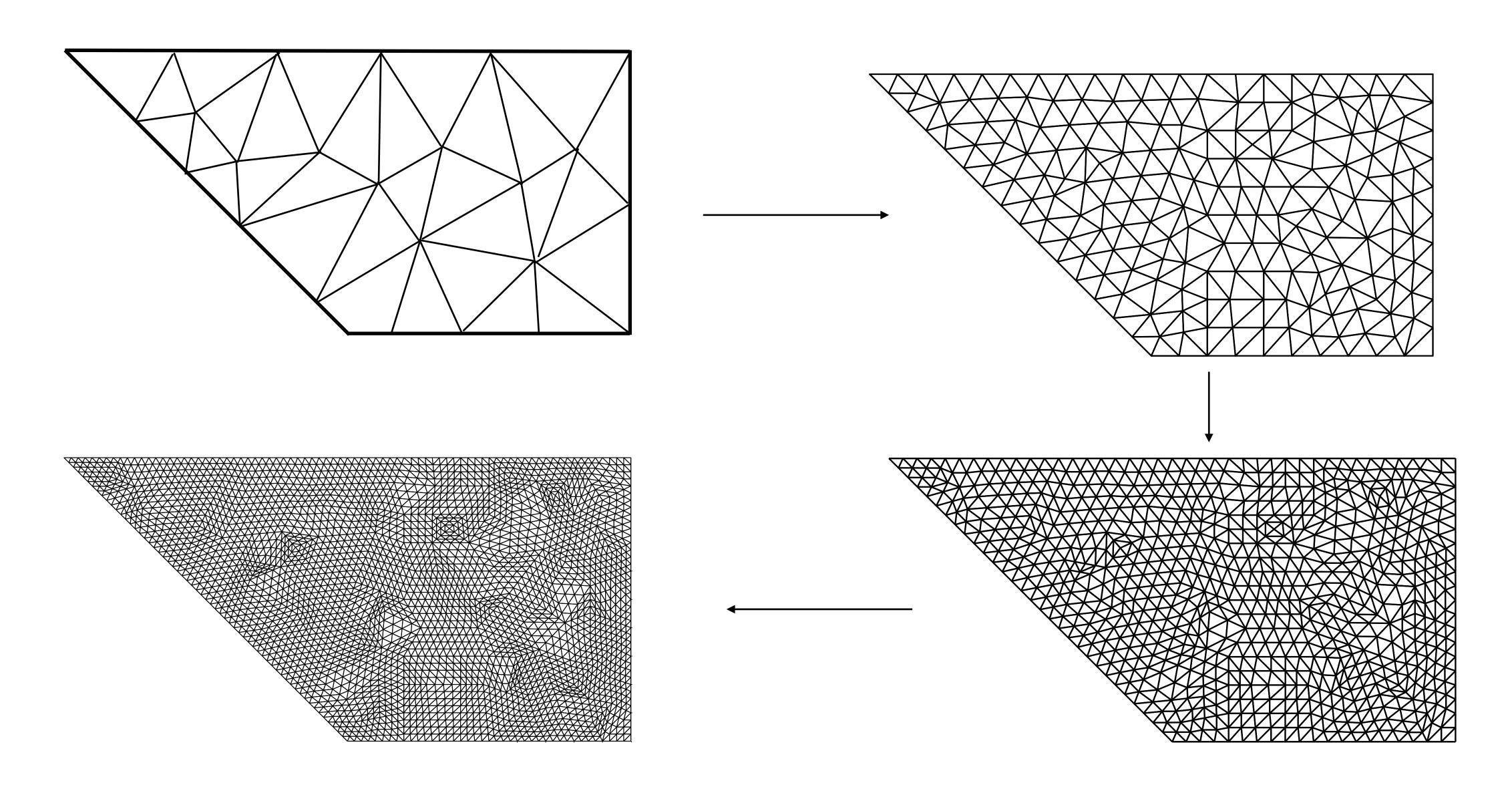
- 1. Ia suite $h = \max_{T_I \in \mathcal{T}_h} h(T_I)$ tend vers 0,
- 2. il existe une constante C telle que, pour tout h > 0 et tout $T \in \mathcal{T}_h$,

$$\frac{h(T)}{\rho(T)} \le C.$$

Remarques:

- Parfois, on définit h comme étant $\max_{T_I \in \mathcal{T}_h} \operatorname{diam}(T_I)$ où $\operatorname{diam}(T) = \max_{(\underline{x},\underline{y}) \in T^2} |\underline{x} \underline{y}|$ c'est équivalent car $C_1 \max_{T_I \in \mathcal{T}_h} \operatorname{diam}(T_I) \le h \le C_2 \max_{T_I \in \mathcal{T}_h} \operatorname{diam}(T_I)$
- En dimension d=2 la condition est équivalente à la condition suivante sur les angles du triangle T: il existe un angle minimum $\theta_0 > 0$ qui minore (uniformément en h) tous les angles de tout $T \in \mathcal{T}_h$.

Séquence de maillage



Séance 6 : Analyse numérique de la méthode des éléments finis

Problème modèle et hypothèses

Convergence de l'approximation interne

Vitesse de convergence

Autres erreurs

Formulation variationnelle discrete

ullet On écrit la formulation variationnelle dans un espace de dimension finie $\mathcal{V}_h=\mathcal{V}_h^k\subset\mathsf{H}^1(\Omega)$ où

$$\mathcal{V}_h = \mathcal{V}_h^k = \left\{ v_h \in \mathsf{C}^0(\bar{\Omega}) \text{ tel que } v_h \, \big|_{\mathcal{T}_i} \in \mathbb{P}_k \text{ pour tout } \mathcal{T}_i \in \mathcal{T}_h
ight\}$$

où $\mathbb{P}_k(T_l)$ désigne l'ensemble des polynômes multivariés sur T_l de degré au maximum k

• La formulation variationnelle discrète s'écrit

On cherche $u_h \in \mathcal{V}_h$ telle que $\forall v_h \in \mathcal{V}_h$, $a(u_h, v_h) = \ell(v_h)$

Lemme de Céa :

$$||u - u_h||_{\mathcal{V}} \le \frac{M_a}{\alpha}$$
 Erreur de meilleure approximation $\inf_{v_h \in \mathcal{V}_h} ||u - v_h||_{\mathcal{V}}$,

où Ma est la constante de continuité de a, et α sa constante de coercivité

Preuve au tableau

Continuité Coercivité

$$\exists M_a > 0, \ \forall v, w \in V, \quad |a(v, w)| \leq M_a ||v||_V ||w||_V$$

Un résultat abstrait de convergence

Proposition

On suppose qu'il existe un sous-espace ${\mathcal W}$ dense de ${\mathcal V}$ et, pour chaque h, une application $r_h:{\mathcal W} o{\mathcal V}_h$ tels que

alors

$$\forall v \in \mathcal{W}, \quad \lim_{h \to 0} ||v - r_h v||_{\mathcal{V}} = 0,$$

$$\lim_{h \to 0} ||u - u_h||_{\mathcal{V}} = 0,$$

Preuve Soit $\varepsilon > 0$, \mathcal{W} est dense dans \mathcal{V} donc, il existe $w \in \mathcal{W}$ tel que $\|u - w\|_{\mathcal{V}} \le \frac{\alpha \varepsilon}{2M_a}$. Par hypothèse, il existe $h(\varepsilon) > 0$ tel que $\forall h \le h(\varepsilon)$, $\|w - r_h w\|_{\mathcal{V}} \le \frac{\alpha \varepsilon}{2M_a}$.

D'après le lemme de Céa, nous avons donc

$$\|u-u_h\|_{\mathcal{V}} \leq \frac{M_a}{\alpha}\|u-r_hw\|_{\mathcal{V}} \leq \frac{M_a}{\alpha}\left[\|u-w\|_{\mathcal{V}} + \|w-r_hw\|_{\mathcal{V}}\right] \leq \varepsilon$$

Corollaire

Pour notre problème modèle, on a convergence de la méthode EF

$$\lim_{h\to 0}||u-u_h||_{\mathcal{V}}=0,$$

Il suffit de choisir $W=C^{\infty}(\overline{\Omega})$, $r_h=\Pi_h^k$ et d'utiliser ce que nous allons faire dans la suite pour la convergence dans W.Ce résultat est vrai sans hypothèse supplémentaire sur u.

Séance 6 : Analyse numérique de la méthode des éléments finis

Problème modèle et hypothèses Convergence de l'approximation interne

Vitesse de convergence

Autres erreurs

Vitesse de convergence

Définition : Vitesse de convergence

On dit que l'approximation interne est convergente à l'ordre β s'il existe une constante C>0, indépendante de h telle que

$$||u-u_h||_{\mathcal{V}}\leq Ch^{\beta}.$$

Comme

$$||u - u_h||_{\mathcal{V}} \le \frac{M_a}{\alpha} \inf_{v_h \in \mathcal{V}_h^k} ||u - v_h||_{\mathcal{V}}$$

on est donc ramené à étudier la vitesse de convergence de $\inf_{v_h \in \mathcal{V}_h^k} \|u - v_h\|_{\mathcal{V}}$, Erreur de meilleure approximation

(La control de la régularité de la régularité de la la ré

Opérateur d'interpolation

Définition: Opérateur d'interpolation

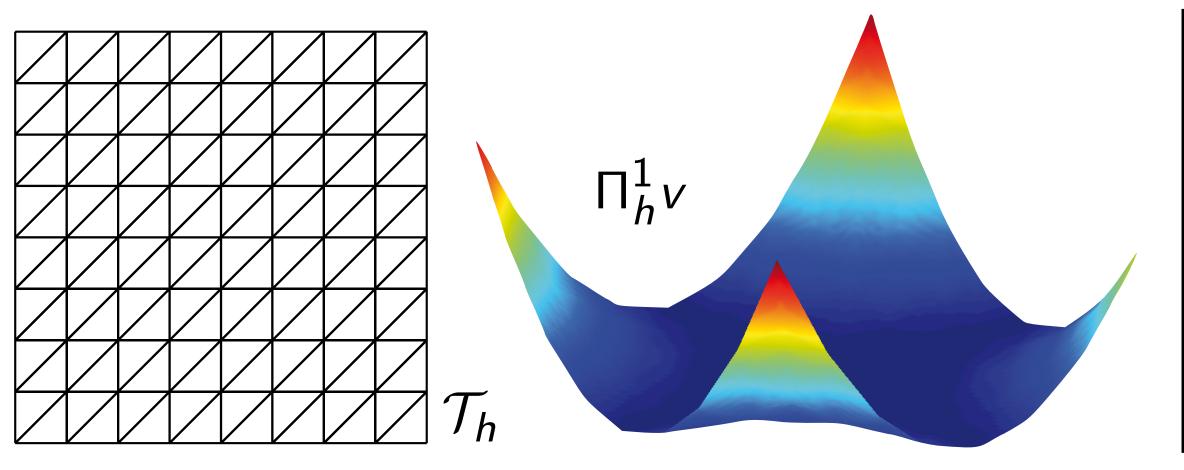
On appelle opérateur d'interpolation \mathbb{P}_k l'application linéaire Π_h^k de $\mathsf{C}^0(\overline{\Omega})$ dans \mathcal{V}_h^k , définie par

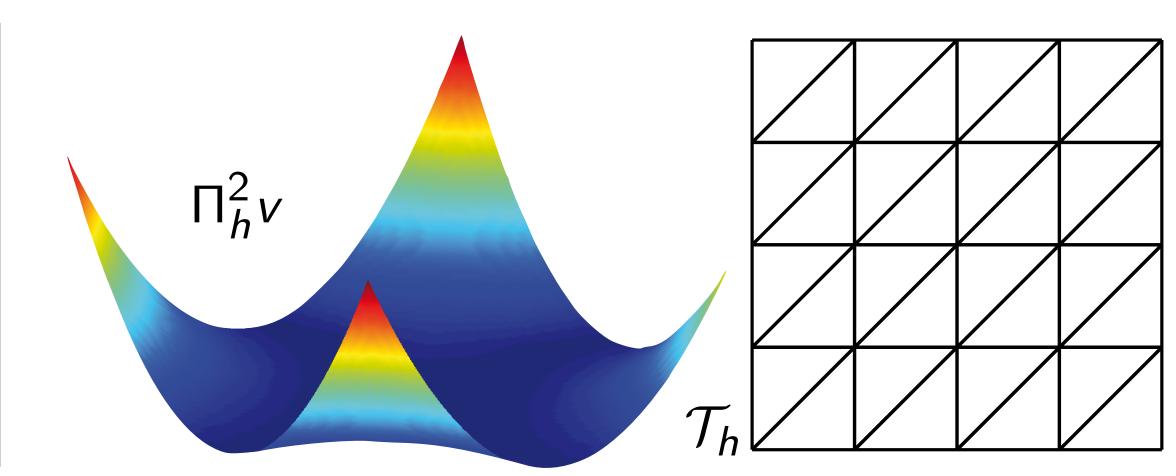
$$\forall v \in C^0(\overline{\Omega}), \quad (\Pi_h^k v)(\underline{x}) = \sum_{j=1}^N v(\underline{S}_j)\phi_j(\underline{x}),$$

où la famille $\{\phi_i,\ j\in \llbracket 1,N
rbracket\}$ est la base éléments-finis de \mathbb{P}_k

 $\Pi_h^k v$ est l'unique fonction de \mathcal{V}_h qui prend les mêmes valeurs que v aux noeuds $(\underline{S}_i)_i$

• Exemple $v:(x,y)\mapsto x^2y^2$





Opérateur d'interpolation

Définition : Opérateur d'interpolation

On appelle opérateur d'interpolation \mathbb{P}_k l'application linéaire Π_h^k de $\mathsf{C}^0(\overline{\Omega})$ dans \mathcal{V}_h^k , définie par

$$\forall v \in C^0(\overline{\Omega}), \quad (\Pi_h^k v)(\underline{x}) = \sum_{j=1}^N v(\underline{S}_j)\phi_j(\underline{x}),$$

où la famille $\{\phi_i,\ j\in\llbracket 1,N
rbracket\}$ est la base éléments-finis de \mathbb{P}_k

Proposition

L'opérateur Π_h^k est un opérateur de projection.

$$\forall v_h \in \mathcal{V}_h^k, \quad \Pi_h^k v_h = v_h$$

Remarque: on aimerait utiliser $\prod_{h=0}^{k} u$ dans le lemme de Céa

$$\|u - u_h\|_{\mathcal{V}} \le \frac{M_a}{\alpha} \inf_{v_h \in \mathcal{V}_h} \|u - v_h\|_{\mathcal{V}} \le \frac{M_a}{\alpha} \|u - \Pi_h^k u\|_{H^1(\Omega)}$$

Question : est ce que la solution u est dans $C^0(\overline{\Omega})$?

Régularité de la solution

Proposition: Régularité des espaces de Sobolev [ADMIS]

Si Ω est un ouvert de frontière suffisamment régulière et si $m>\frac{d}{2}+k$ alors $H^m(\Omega)$ s'injecte de manière continue dans $C^k(\overline{\Omega})$, c'est à dire:

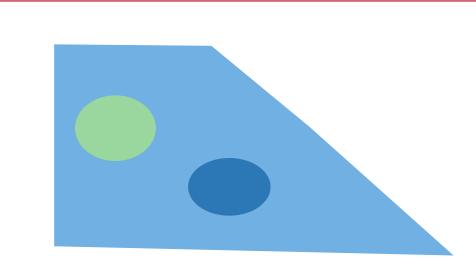
$$\mathsf{H}^m(\Omega)\subset\mathsf{C}^k(\overline{\Omega})\quad ext{et} \quad \exists C>0, \ \forall u\in\mathsf{H}^m(\Omega), \quad \|u\|_{\mathsf{C}^k(\overline{\Omega})}\coloneqq \sup_{x\in\overline{\Omega}}\sum_{|\alpha|\leq k}|\partial^{\alpha}u(x)|\leq C\|u\|_{\mathsf{H}^m(\Omega)}.$$

• On en déduit que si d=1 alors $\mathrm{H}^1(\Omega)\subset\mathrm{C}^0(\Omega)$ mais c'est faux pour $d\geq 2$ si d=2, 3 alors $\mathrm{H}^2(\Omega)\subset\mathrm{C}^0(\Omega)$

Proposition: Régularité des espaces de solutions [ADMIS]

Si Ω est un ouvert de frontière suffisamment régulière et si $u \in H^1(\Omega)$ avec $\Delta u \in L^2(\Omega)$ et u = 0 ou $\underline{\nabla} u \cdot n = 0$ sur $\partial \Omega$ alors $u \in C^0(\overline{\Omega})$

Pour le problème modèle, le coefficient κ doit être assez régulier ou réguliers par morceaux par inclusions



Étude de l'erreur d'interpolation $\|u - \Pi_h^k u\|_{H^1(\Omega)}$

D'après le lemme de Céa et si on suppose que $u\in C^0(\overline{\Omega})$, on peut utiliser l'opérateur d'interpolation

$$\|u - u_h\|_{\mathcal{V}} \le \frac{M_a}{\alpha} \inf_{v_h \in \mathcal{V}_h} \|u - v_h\|_{\mathcal{V}} \le \frac{M_a}{\alpha} \|u - \Pi_h^k u\|_{H^1(\Omega)}$$
Erreur d'interpolation

On se ramène à l'étude d'erreurs d'interpolation locale

$$\|\mathbf{u} - \Pi_{h}^{k} \mathbf{u}\|_{H^{1}(\Omega)}^{2} = \int_{\Omega} (\mathbf{u} - \Pi_{h}^{k} \mathbf{u})^{2} d\Omega + \int_{\Omega} \left| \vec{\nabla} (\mathbf{u} - \Pi_{h}^{k} \mathbf{u}) \right|^{2} d\Omega$$
$$= \sum_{\ell=1}^{N_{e}} \int_{T_{\ell}} (\mathbf{u} - \Pi_{h}^{k} \mathbf{u})^{2} d\Omega + \sum_{\ell=1}^{N_{e}} \int_{T_{\ell}} \left| \vec{\nabla} (\mathbf{u} - \Pi_{h}^{k} \mathbf{u}) \right|^{2} d\Omega$$

Definition: semi-normes locales

Sur chaque élément T_ℓ de \mathcal{T}_h , on définit les semi-normes $|v|_{m,T_\ell}^2 \coloneqq \sum_{\substack{\alpha \in \mathbb{N}^d \\ |\alpha| = m}} \int_{T_\ell} \left| \partial_{x_1^{\alpha_1} \dots x_d^{\alpha_d}}^{|\alpha|} v \right|^2 d\Omega$.

En particulier $|v|_{0,T_\ell} = \left(\int_{T_\ell} v^2 \,\mathrm{d}\Omega\right)^{\frac{1}{2}} \,\,\mathrm{et} \,\, |v|_{1,T_\ell} = \left(\int_{T_\ell} |\underline{\nabla} \,v|^2 \,\mathrm{d}\Omega\right)^{\frac{1}{2}} \,\,\mathrm{et} \,\, |v|_{2,T_\ell} = \left(\int_{T_\ell} |\underline{\underline{\nabla}}^2 v|^2 \,\mathrm{d}\Omega\right)^{\frac{1}{2}}$

Théorème de Bramble Hilbert

Théorème : Bramble-Hilbert

Pour tout triangle $T_I \in \mathcal{T}_h$ supposé non dégénéré, on note $h_I = h(T_I) \neq 0$ et $\rho_I = \rho(T_I) \neq 0$. Il existe une constante C indépendante de T_I telle que pour tout $v \in C^0(\overline{T_I}) \cap H^{k+1}(T_I)$ on a

$$\forall m \in [0, k], \quad |v - \Pi_h^k v|_{m, T_l} \leq C \frac{h_l^{k+1}}{\rho_l^m} |v|_{k+1, T_l}.$$

Lemme 1: Retour à l'élément de référence :

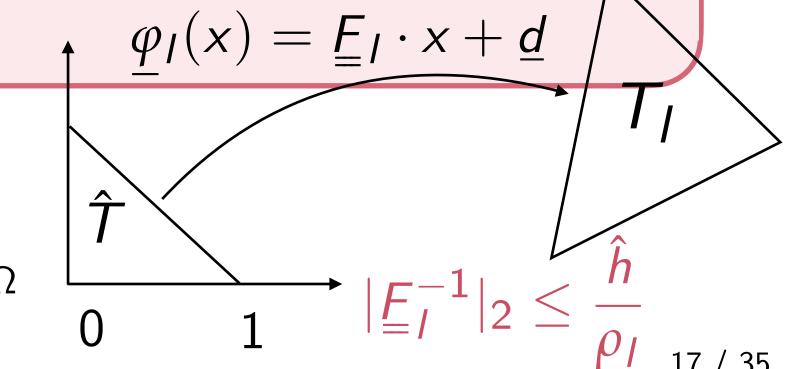
Pour tout triangle $T_I \in \mathcal{T}_h$ supposé non dégénéré, on note $h_I = h(T_I) \neq 0$ et $\rho_I = \rho(T_I) \neq 0$. Soient $m \in \mathbb{N}$, $v \in H^m(T_I)$ et $\hat{v} = v \circ \hat{\varphi}_I \in H^m(\hat{T})$, il existe des constantes C_m et C_m' telles que

$$|v|_{m,T_{I}} \leq C_{m}\rho_{I}^{-m}|\det \underline{F}_{I}|^{\frac{1}{2}}|\hat{v}|_{m,\hat{T}},$$

$$|\hat{v}|_{m,\hat{T}} \leq C'_m h_I^m |\det \underline{F}_I|^{-\frac{1}{2}} |v|_{m,T_I}.$$

Preuve: Changement de variable

$$\begin{aligned} |v|_{0,T_{I}}^{2} &\leq \int_{\hat{T}} |\hat{v}|^{2} |\det(\underline{F}_{I})| \, d\Omega \leq |\det(\underline{F}_{I})| \, |\hat{v}|_{0,\hat{T}}^{2} \\ |v|_{1,T_{I}}^{2} &\leq \int_{\hat{T}} |\underline{F}_{I}^{-\intercal} \cdot \underline{\nabla} \, \hat{v}|^{2} |\det(\underline{F}_{I})| \, d\Omega \leq |\underline{F}_{I}^{-1}|_{2}^{2} |\det(\underline{F}_{I})| \int_{\hat{T}} |\underline{\nabla} \, \hat{v}|^{2} \, d\Omega \leq \frac{\hat{h}}{\hat{\rho}_{I}} |\det(\underline{F}_{I})| \int_{\hat{T}} |\underline{\nabla} \, \hat{v}|^{2} \, d\Omega \end{aligned}$$



Preuve du théorème de Bramble-Hilbert — étape ii

Lemme 2: inégalité sur l'élément de référence :

Soit $\hat{\Pi}^k$ l'opérateur d'interpolation sur (\hat{T}) . Il existe une constante C telle que pour tout $\hat{v} \in H^{k+1}(\hat{T})$ on a

$$|\hat{\mathbf{v}} - \hat{\Pi}^k \hat{\mathbf{v}}|_{\mathsf{H}^k(\hat{T})} \leq C |\hat{\mathbf{v}}|_{k+1,\hat{T}}.$$

• Preuve dans le cas particulier k=1, d=1. Dans ce cas, $\hat{\Pi}^1\hat{v}=(\hat{v}(1)-\hat{v}(0))x+\hat{v}(0)$

On a $\hat{v} - \Pi^1 \hat{v} \in H^1_0([0,1])$ donc par l'inégalité de Poincaré $|\hat{v} - \hat{\Pi}^1 \hat{v}|_{L^2(]0,1[)} \le C|\hat{v}' - (\hat{\Pi}^1 \hat{v})'|_{L^2(]0,1[)}$

De plus, $(\hat{\Pi}^1 \hat{v})' = \int_0^1 \hat{v}' \operatorname{donc} \, \hat{v}' - (\hat{\Pi}^1 \hat{v})' \in H^1_\sharp([0,1]) := \left\{ w \in H^1([0,1]) \mid \int_0^1 w = 0 \right\}$

donc par l'inégalité de Poincaré-Wirtinger, voir TD3, exo4.

$$\left| \hat{v}' - (\hat{\Pi}^1 \hat{v})' \right|_{\mathsf{L}^2(]0,1[)} \leq \left| \hat{v}'' - (\hat{\Pi}^1 \hat{v})'' \right|_{\mathsf{L}^2(]0,1[)} = \left| \hat{v}'' \right|_{\mathsf{L}^2(]0,1[)}$$
 On obtient:
$$\left| \hat{v} - (\hat{\Pi}^1 \hat{v}) \right|_{\mathsf{L}^2(]0,1[)} \leq \left| \hat{v}' - (\hat{\Pi}^1 \hat{v})' \right|_{\mathsf{L}^2(]0,1[)} \leq \left| \hat{v}'' \right|_{\mathsf{L}^2(]0,1[)}$$

• Preuve dans le cas général : par l'absurde, on suppose qu'il existe une suite de fonctions qui ne vérifient pas l'inégalité et on utilise le théorème de Rellich hors programme, voir TD3 Exo5 et 5ANA1

Convergence de la méthode

Théorème:

Soit $(\mathcal{T}_h)_{h>0}$ une suite de maillages régulière de Ω . Si $u\in \mathsf{C}^0(\overline{\Omega})$ et pour tout $T_I\in\mathcal{T}_h$, $u\in\mathsf{H}^{k+1}(T_I)$ il existe C une constante indépendante de h et de u telle que

$$||u - u_h||_{\mathsf{H}^1(\Omega)} \le Ch^k \left(\sum_{l=1}^{N_e} |u|_{k+1,T_l}^2 \right)^{\frac{1}{2}}$$

Preuve

$$\|v - \Pi_h^k v\|_{H^1(\Omega)}^2 = \int_{\Omega} |\nabla (v - \Pi_h^k v)|^2 d\Omega + \int_{\Omega} (v - \Pi_h^k v)^2 d\Omega$$

où
$$\int_{\Omega} (v - \Pi_h^k v)^2 d\Omega = \sum_{l=1}^{N_e} \left| v - \Pi_h^k v \right|_{0, T_l}^2 \le C \sum_{l=1}^{N_e} h_l^{2k+2} \left| v \right|_{k+1, T_l}^2$$

et
$$\int_{\Omega} |\underline{\nabla} (v - \Pi_h^k v)|^2 d\Omega = \sum_{l=1}^{N_e} |v - \Pi_h^k v|^2_{1, T_l} \le C \sum_{l=1}^{N_e} \frac{h_l^{2k+2}}{\rho_l^2} |v|^2_{k+1, T_l}$$

Comme la suite de maillage est régulière $\forall \mathcal{T}_h$, $\forall \mathcal{T}_l \in \mathcal{T}_h$, $\frac{h(\mathcal{T}_l)}{\rho(\mathcal{T}_l)} \leq \delta$ on en déduit $\|v - \Pi_h^k v\|_{H^1(\Omega)}^2 \leq C(\delta^2 + h^2)h^{2k} \sum_{l=1}^{N_e} |v|_{k+1,\mathcal{T}_l}^2$ on en déduit $\|v - \Pi_h^k v\|_{H^1(\Omega)}^2 \leq C(\delta^2 + h^2)h^{2k} \sum_{l=1}^{N_e} |v|_{k+1,\mathcal{T}_l}^2$

$$|v - \Pi_h^k v|_{\mathsf{H}^1(\Omega)}^2 \le C(\delta^2 + h^2)h^{2k} \sum_{l=1}^{\infty} |v|_{k+1,T_l}^2$$

Convergence de la méthode

Théorème:

Soit $(\mathcal{T}_h)_{h>0}$ une suite de maillages régulière de Ω . Si $u\in \mathsf{C}^0(\overline{\Omega})$ et pour tout $T_I\in\mathcal{T}_h$, $u\in\mathsf{H}^{k+1}(T_I)$ il existe C une constante indépendante de h et de u telle que

$$||u - u_h||_{\mathsf{H}^1(\Omega)} \le Ch^k \left(\sum_{l=1}^{N_e} |u|_{k+1,T_l}^2 \right)^{\frac{1}{2}}$$

On rappelle que $u_h \in \mathcal{V}_h^k$.

!\ Remarques: • ce résultat de convergence nécessite une hypothèse de régularité sur la solution.

• Si k=1 (i.e. quand on utilise des éléments finis de Lagrange \mathbb{P}^1) et si $\forall \mathcal{T}_h, \ \forall \mathcal{T}_\ell, \ u \in H^2(\mathcal{T}_\ell)$ alors la méthode converge à l'ordre 1 en norme H^1

Exemples:

Si $\kappa \in C^1(\Omega)$, et Ω est convexe alors on peut montrer que $u \in H^2(\Omega) \Rightarrow \forall T_I, \quad u \in H^2(T_I)$

Si $\Omega=\Omega_1\cup\Omega_2$ avec Ω_1 et Ω_2 convexe et κ constant par domaine $u \in H^2(\Omega_1)$ et $u \in H^2(\Omega_2)$ mais $u \notin H^2(\Omega)$

Convergence de la méthode

Théorème:

Soit $(\mathcal{T}_h)_{h>0}$ une suite de maillages régulière de Ω . Si $u\in C^0(\overline{\Omega})$ et pour tout $T_I\in\mathcal{T}_h$, $u\in H^{k+1}(T_I)$ il existe C une constante indépendante de h et de u telle que

$$\|u-u_h\|_{\mathsf{H}^1(\Omega)} \leq Ch^k \left(\sum_{l=1}^{N_e} |u|_{k+1,T_l}^2\right)^{\frac{1}{2}}$$
 On rappelle

Remarques: ● ce résultat de convergence nécessite une hypothèse de régularité sur la solution.

- Si k=1 (i.e. quand on utilise des éléments finis de Lagrange \mathbb{P}^1) et si $\forall \mathcal{T}_h, \ \forall \mathcal{T}_\ell, \ \textit{\textbf{\textit{u}}} \in H^2(\mathcal{T}_\ell)$ alors la méthode converge à l'ordre 1 en norme H^1
- Par contre si on utilise des E.F. d'ordre au moins 2, une vitesse de convergence meilleure n'est pas garantie. Il faudrait que u soit encore plus régulière.
- Si la solution n'est pas régulière, cette convergence n'implique pas une convergence ponctuelle de u ou de ses dérivées.

Attention à l'éventuelle perte de regularité locale

Théorème:

Soit $(\mathcal{T}_h)_{h>0}$ une suite de maillages réguliers de Ω . Si $u\in C^0(\overline{\Omega})$ et pour tout $T_I\in\mathcal{T}_h, u\in H^{p+1}(T_I)$ il existe C une constante indépendante de h et de u telle que

$$\|u-u_h\|_{\mathsf{H}^1(\Omega)} \leq Ch^{\beta} \left(\sum_{l=1}^{N_e} |u|_{k+1,T_l}^2\right)^{\frac{1}{2}} \text{ où } \beta = \min(k,p)$$
 On rappelle que $u_h \in \mathcal{V}_h^k$.

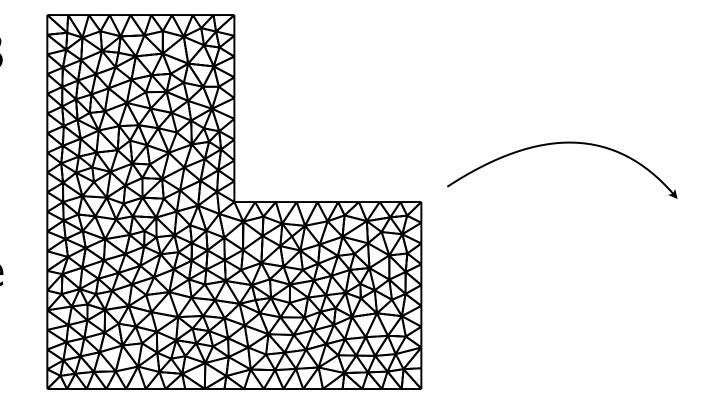
Remarques: • Il faut prendre en compte la régularité de la solution avant de choisir l'espace de discrétisation

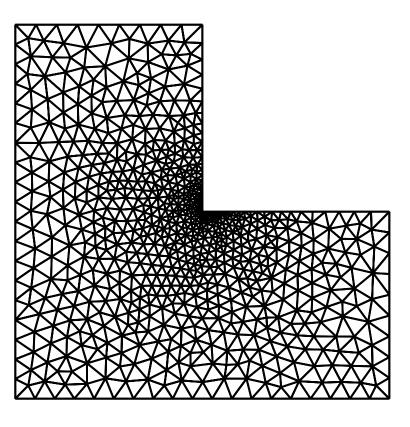
Exemple

Si κ est une constante et Ω est un domaine en forme de L (donc non convexe)

$$u \in H^s(\Omega) \Rightarrow \forall \mathcal{T}_h, \ \forall T_\ell, \ u \in H^s(T_\ell) \quad \text{avec } s < 5/3$$

- L'erreur sur la solution n'est pas uniforme sur le domaine
 - On peut donc raffiner localement le maillage





Estimation en fonction des données

Théorème:

Soit Ω un ouvert convexe polygonal et $(\mathcal{T}_h)_{h>0}$ une suite de maillages réguliers de Ω . Soit $u_h \in \mathcal{V}_h$, l'approximation interne par la méthode des éléments finis \mathbb{P}_1 pour $d \in \{2,3\}$. On suppose par ailleurs que $f \in \mathsf{L}^2(\Omega)$. Alors il existe C est une constante indépendante de h et de u telle que

$$||u - u_h||_{\mathsf{H}^1(\Omega)} \le Ch||u||_{2,\Omega}$$

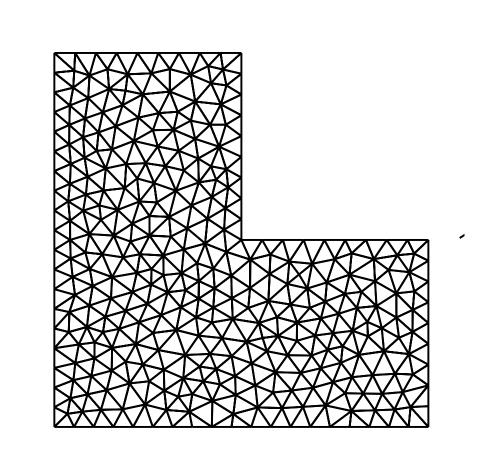
et surtout

$$||u-u_h||_{\mathsf{H}^1(\Omega)} \leq Ch||f||_{\mathsf{L}^2(\Omega)}$$

• Remarque: Si u n'est pas assez régulière on va perdre un ordre de convergence

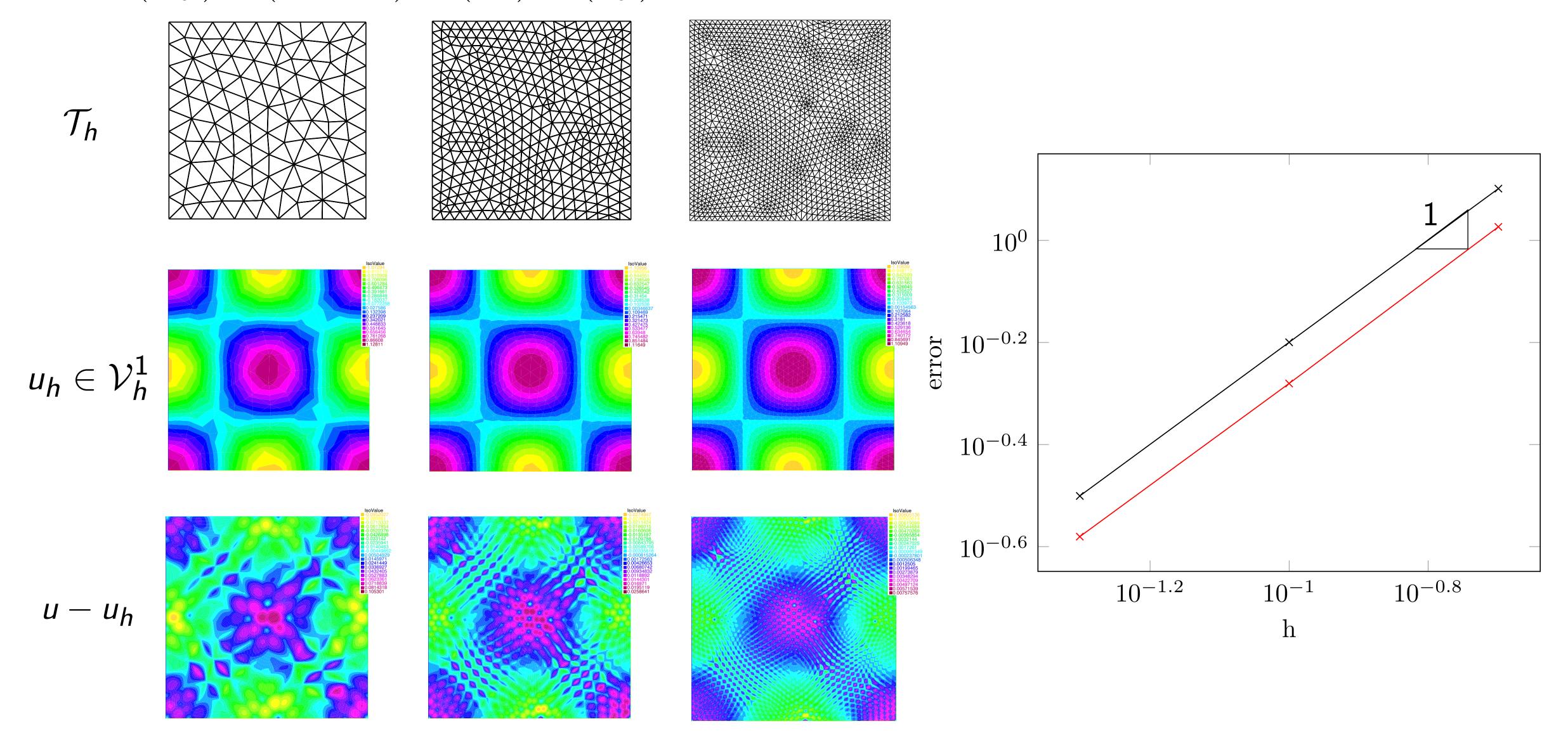
$$\forall s \leq s_{\max} \leq 1, \quad \|u - u_h\|_{\mathsf{H}^1(\Omega)} \leq C_s h^s \|u\|_{1+s,\Omega}$$

$$\|u - u_h\|_{\mathsf{H}^1(\Omega)} \leq C_s h^s \|f\|_{\mathsf{L}^2(\Omega)}$$



Exemple numérique

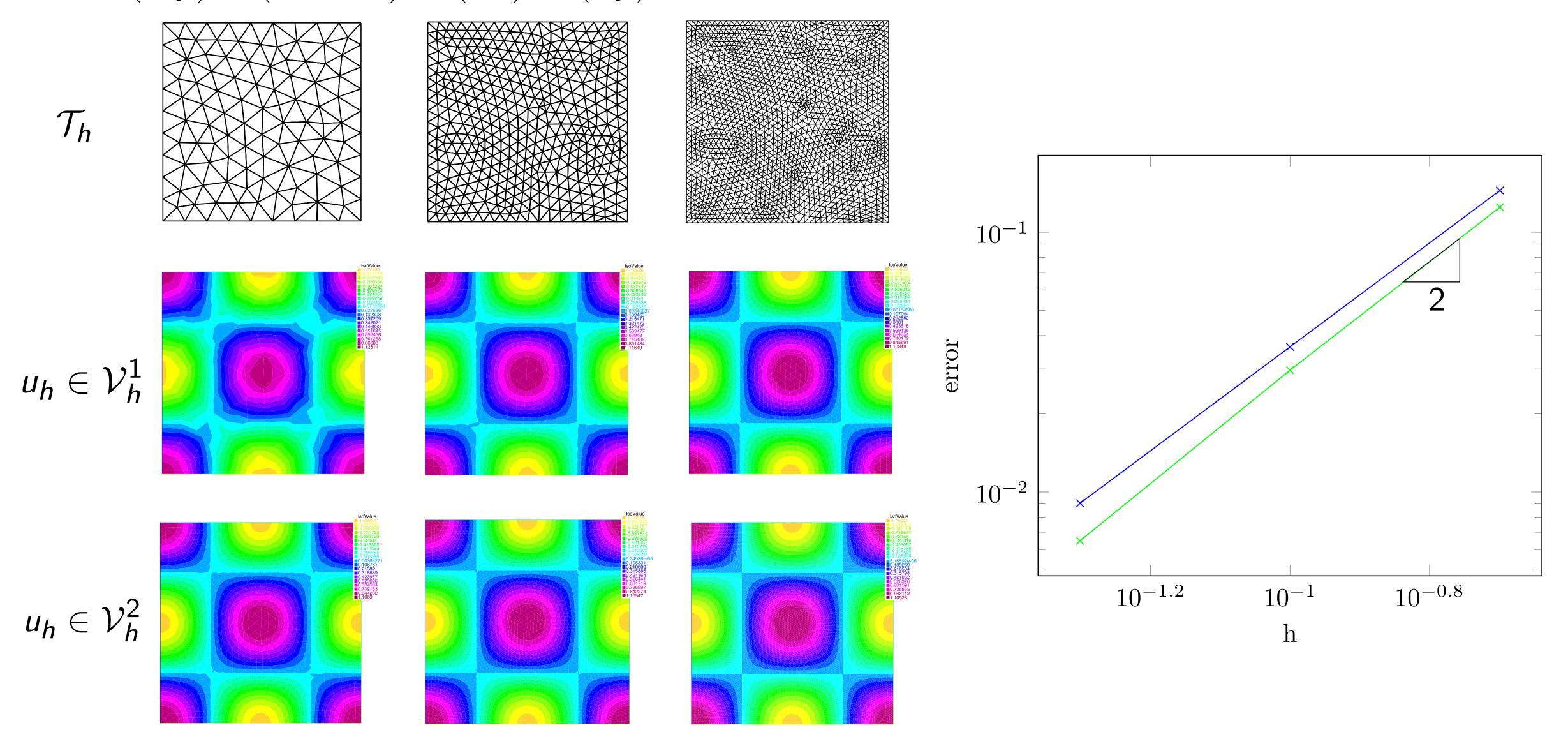
• Pour $f(x, y) = (2\pi^2 + 1)\cos(\pi x)\cos(\pi y)$ et $\kappa = 1$



S. Fliss — Introduction à la méthode des éléments finis

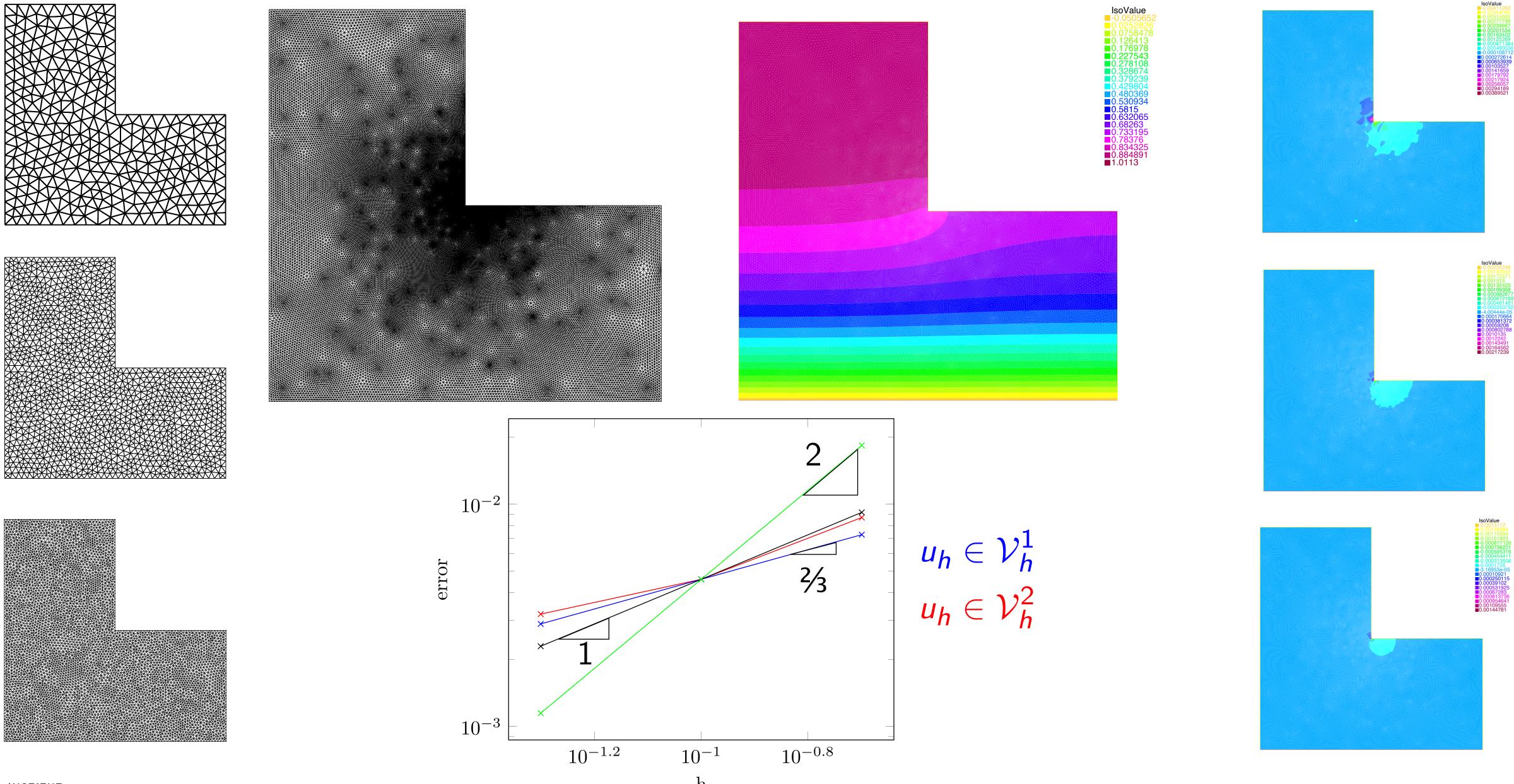
Exemple numérique

• Pour $f(x, y) = (2\pi^2 + 1)\cos(\pi x)\cos(\pi y)$ et $\kappa = 1$



S. Fliss — Introduction à la méthode des éléments finis

Un cas où u n'est pas assez régulière



S. Fliss — Introduction à la méthode des éléments finis

Séance 6 : Analyse numérique de la méthode des éléments finis

Problème modèle et hypothèses

Convergence de l'approximation interne

Vitesse de convergence

Autres erreurs

Erreur sur la donnée

Dans la pratique, nous avons plutôt calculé avec des EF P1

$$\forall v_h \in \mathcal{V}_h$$
, $a(\tilde{u}_h, v_h) = \ell_h(v_h)$ où $\ell_h(v_h) = \int_{\Omega} (\Pi_h^1 f) v \, d\Omega$

Par inégalité triangulaire

$$||u - \tilde{u}_h||_{\mathsf{H}^1(\Omega)} \le ||u - u_h||_{\mathsf{H}^1(\Omega)} + ||u_h - \tilde{u}_h||_{\mathsf{H}^1(\Omega)}$$

où on a d'après ce qui précède

$$||u - u_h||_{\mathsf{H}^1(\Omega)} \le Ch \left(\sum_{l=1}^{N_e} |u|_{2,T_l}^2 \right)^{\frac{1}{2}}$$

$$\|u - u_h\|_{\mathsf{H}^1(\Omega)} \le Ch \left(\sum_{l=1}^{N_e} |u|_{2,T_l}^2 \right)^{\frac{1}{2}}$$
 et
$$\|f - \Pi_h^1 f\|_{\mathsf{L}^2(\Omega)} \le C' h^2 \left(\sum_{l \in [\![1,N_e]\!]} |f|_{2,T_l}^2 \right)^{\frac{1}{2}}$$

Par ailleurs

$$\nu \|u_h - \tilde{u}_h\|_{\mathsf{H}^1(\Omega)}^2 \leq a(u_h - \tilde{u}_h, u_h - \tilde{u}_h) = \int_{\Omega} (f - (\Pi_h^1 f))(u_h - \tilde{u}_h) \ \mathrm{d}\Omega \leq \|f - (\Pi_h^1 f)\|_{\mathsf{L}^2(\Omega)} \|u_h - \tilde{u}_h\|_{\mathsf{L}^2(\Omega)}$$

On en déduit

$$||u - \tilde{u}_h||_{\mathsf{H}^1(\Omega)} \le Ch \left(\sum_{l=1}^{N_e} |u|_{2,T_l}^2 \right)^{\frac{1}{2}} + \left| \frac{C'}{\nu} h^2 \left(\sum_{l=1}^{N_e} |f|_{2,T_l}^2 \right)^{\frac{1}{2}} \right| \le C'' h (1+h) ||f||_{\mathsf{L}^2(\Omega)}$$

• Donc la vitesse de convergence n'est pas modifiée par l'approximation de f

Plus généralement erreur de quadrature

• On considère l'approximation par quadrature

$$\int_{\Omega} \kappa(\underline{\mathbf{x}}) \underline{\nabla} \, u_h(\underline{\mathbf{x}}) \cdot \underline{\nabla} \, v_h(\underline{\mathbf{x}}) \, d\Omega = \sum_{T_I \in \mathcal{T}_h} \sum_{1 \le n \le N_q} \alpha_n^I \kappa(\underline{\varphi}_I(\underline{\hat{q}}_n)) \underline{\nabla} \, u_h(\underline{\varphi}_I(\underline{\hat{q}}_n)) \cdot \underline{\nabla} \, v_h(\underline{\varphi}_I(\underline{\hat{q}}_n))$$

• ce qui revient à analyser l'erreur commise en utilisant des approximation du type

$$\int_{\Omega} (\Pi_h^m \kappa)(\underline{x}) \underline{\nabla} u_h(\underline{x}) \cdot \underline{\nabla} v_h(\underline{x}) d\Omega$$

• On résout donc en pratique une formulation variationnelle de la forme $\forall v_h \in \mathcal{V}_h$, $a_h(u_h, v_h) = \ell_h(v_h)$

Lemme de Strang (admis):

Si les a_h forment une famille stable, i.e.

$$\exists \beta > 0, \quad \forall v_h \in \mathcal{V}, \quad \sup_{w_h \in \mathcal{V}_h} \frac{a_h(v_h, w_h)}{\|w_h\|_{\mathcal{V}}} \geq \beta \|v_h\|_{\mathcal{V}},$$

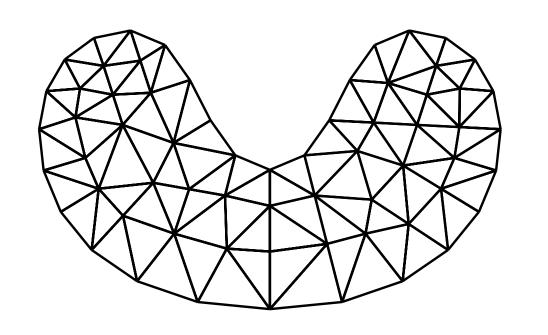
alors il existe une constante C indépendante de h telle que

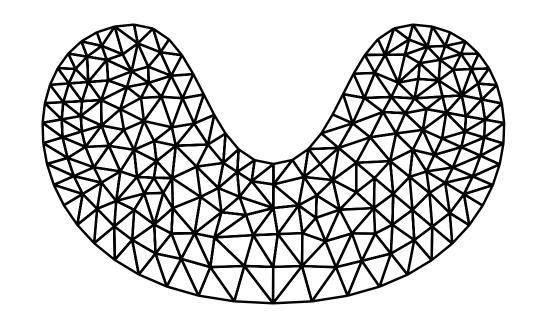
$$\|u - u_h\|_{\mathcal{V}} \le C \inf_{v_h \in \mathcal{V}_h} \left\{ \|u - v_h\|_{\mathcal{V}} + \sup_{w_h \in \mathcal{V}_h} \frac{|a(v_h, w_h) - a_h(v_h, w_h)|}{\|w_h\|_{\mathcal{V}}} + \sup_{w_h \in \mathcal{V}_h} \frac{|\ell(w_h) - \ell_h(w_h)|}{\|w_h\|_{\mathcal{V}}} \right\}$$

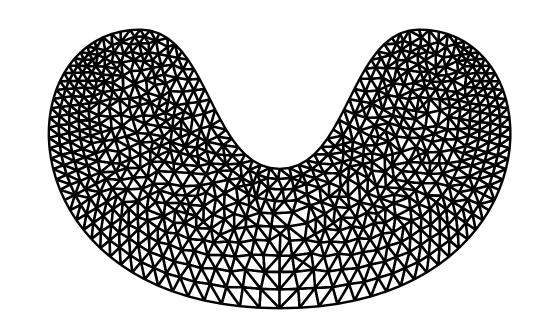
Domaine courbe

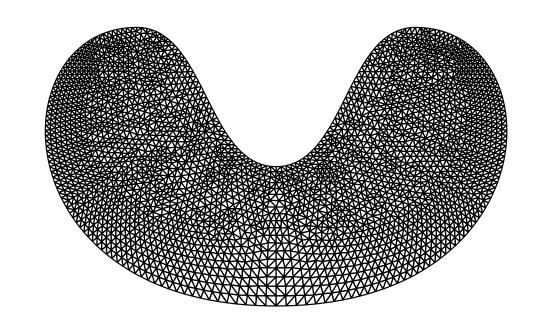
• On approche un domaine courbe par une séquence de maillages polyédriques telle que

$$\operatorname{dist}(\partial\Omega,\partial\Omega_h) \leq Ch^2$$









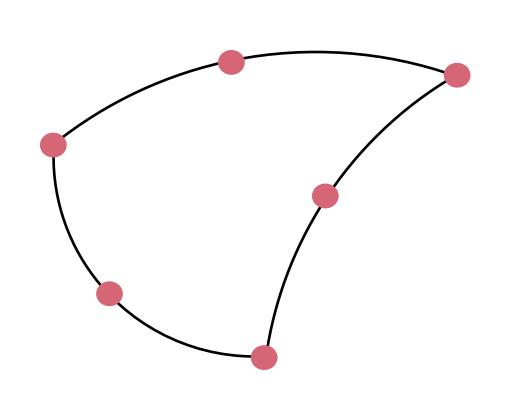
- ullet Dans ce cas nous n'avons plus une approximation interne ${\cal V}_h
 ot\subset {\cal V}$
- Mais on arrive tout de même à montrer que si k=1 et $u\in H^2(\Omega)$

mais si
$$k \geq 2$$
 et $u \in H^{k+1}(\Omega)$

$$||u-u_h||_{\mathsf{H}^1(\Omega)} \leq Ch|u|_{2,\Omega}$$

$$||u - u_h||_{\mathsf{H}^1(\Omega)} \le Ch^{\frac{3}{2}} |u|_{k+1,\Omega}$$

- \bullet Donc la méthode n'est pas très satisfaisante au delà du \mathbb{P}_1
- Dans le cas général on introduit une description courbe $(\mathbb{P}_{\it k})$ de la géométrie.
 - On parle d'éléments finis isoparamétriques



Théorème de Aubin-Nitsche

Lemme d'Aubin Nitsche:

Pour la méthode des éléments finis \mathbb{P}_1 on a sous les mêmes conditions le résultat de convergence L^2 :

$$||u-u_h||_{\mathsf{L}^2(\Omega)} \leq Ch^2||f||_{\mathsf{L}^2(\Omega)}$$

• Preuve: On introduit un problème auxiliaire, où on cherche $w \in H^1(\Omega)$ tel que

$$a(v, \mathbf{w}) = \int_{\Omega} (u - u_h) v d\Omega, \quad v \in H^1(\Omega).$$

pour lequel on a l'estimation

$$\|u - u_h\|_{L^2(\Omega)}^2 = a(u - u_h, w) = a(u - u_h, w - \Pi_h^1 w) \le M \|w - \Pi_h^1 w\|_{H_0^1(\Omega)} \|u - u_h\|_{H_0^1(\Omega)}$$

• On en déduit, en supposant que $w \in H^2(\Omega)$

$$\|u - u_h\|_{L^2(\Omega)}^2 \le C_1 h \|w\|_{H^2(\Omega)} C_2 h \|f\|_{L^2(\Omega)}$$
 et par ailleurs $\|w\|_{H^2(\Omega)} \le C_3 \|u - u_h\|_{L^2(\Omega)}$

On obtient donc bien

$$||u-u_h||_{\mathsf{L}^2(\Omega)} \leq Ch^2||f||_{\mathsf{L}^2(\Omega)}$$

Examen la semaine prochaine sans documents

Programme: tout ce qui a été fait jusqu'à présent.

Je réponds aux questions dans mon bureau le vendredi 17 après midi.

Un amphi d'ouverture suivra.