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Abstract

We present a hybrid numerical-asymptotic (HNA) hp boundary element method for

solving the problem of time-harmonic scattering of an incident plane wave by two-

dimensional planar screens with sound-soft (Dirichlet) boundary conditions. The

method uses a HNA approximation space enriched by oscillatory basis functions

chosen to efficiently capture the high-frequency asymptotics of the solution. Pre-

vious work using this approach for scattering problems is essentially conducted using

Galerkin schemes. In this work, we investigate via numerical experiments a related

collocation method, for which we demonstrate that similar convergence rates are

achieved. The performance of the method is characterised by a computational cost

almost frequency independent, providing that appropriate highly oscillatory numeri-

cal quadrature is implemented.
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Chapter 1

Introduction

We present a numerical method for solving two-dimensional high-frequency wave

scattering problems. Scattering problems arise in numerous areas of science and

engineering such as acoustics, electromagnetics or linear elasticity. These problems

are usually stated as boundary value problems, involving a partial differential equation

for the unknown wave field u and appropriate boundary conditions on the scatterer

boundary Γ. If the medium of propagation of the wave is homogeneous, the partial

differential equation can take the simple form of the Helmoltz equation, (∆+k2)u = 0,

for a wave number k > 0.

Wave scattering problems can be solved with classical finite element methods

(FEM) for instance. However, problems are often posed on unbounded domains (ex-

terior problems) which imposes to truncate the domain and implement an absorbing

boundary condition on the fictive boundary, such as a ’perfectly matched layer’. An

attractive alternative approach is to recast the problem on the boundary of the do-

main, the scatterer, using for instance Green’s theorem. This is possible thanks to the

availability of a fundamental solution of the partial differential equation. A boundary

integral equation (BIE) is then obtained, the global nature of which is the price to

pay for reducing the dimension by one. This second approach is the basis of the

boundary element methods (BEM) considered here.

Different numerical approaches are possible to solve the BIE, among which the

Galerkin and collocation methods1. In both methods one starts by considering a

finite-dimensional approximation space in which to look for a solution. The differ-

ence between the two approaches is the way they numerically select a member of

the approximation space considered. The Galerkin scheme is based on a variational

1Other methods include the qualocation method of Sloan [30] or the Nyström method [25] also

referred to as the quadrature method.
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reformulation of the integral equation whereas the collocation approach imposes the

BIE to hold exactly at a finite set of points on the boundary. The conventional choice

for the approximation space is to use a space of piecewise polynomial functions. Such

a choice implies that the number of degrees of freedom used by the method grows at

least linearly with the wave number k in order to capture the increasing oscillations of

the solution. In this context, any numerical method is impractical at high frequency

and one must turn to asymptotic methods. However, asymptotic approximations are

only arbitrary accurate as the wave number k tends to infinity. There is therefore

a gap between moderate and very large frequencies for which no efficient numerical

method can provide solutions at an arbitrary precision.

To overcome such limitations, a key idea that has been proposed is to introduce

into the approximation space some known asymptotic behaviour of the solution at

high frequencies, in an attempt to reduce the number of degrees of freedom required at

large frequencies. FEM and BEM schemes that incorporate some asymptotic knowl-

edge into the approximation space are referred to as hybrid numerical-asymptotic

(HNA) methods, and have been the subject of recent research, reviewed in [8]. Most

of the asymptotics built in the approximation space are known from the geometrical

theory of diffraction (GTD); see [5]. From the knowledge of the GTD it is in particu-

lar possible to enrich the piecewise polynomial approximation space with oscillatory

basis functions, leaving only the amplitude of the oscillations to be approximated

numerically by piecewise polynomial functions.

The HNA methods are well suited to problems where the high-frequency asymp-

totics are relatively simple in order to be inserted into the approximation space with

moderate complexity. It has been applied mainly in the context of BEMs, which re-

quire only the knowledge of the asymptotic behaviour of the solution on the scatterer

(unlike FEM), and to two-dimensional (2D) problems. The 2D problems that have

been currently investigated include scattering by sound-soft smooth convex obsta-

cles [3, 32], convex [2, 11, 17] and non-convex polygons [10], and planar screens [16].

With the exception of [2], the HNA approach is conducted in these works within

a Galerkin framework and has proved to be very effective in reducing the number

of degrees of freedom required at large frequencies. The theoretical analysis of the

method is also greatly covered and convergence proofs are available. Such varia-

tional methods are however rather difficult to implement as they require the eval-

uation of two-dimensional oscillatory integrals. In the prospect of generalisation of

the method to higher dimensions, for which the implementations of such Galerkin
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schemes would become rather difficult, alternative approaches are considered. In par-

ticular, an attractive alternative comes from collocation schemes, which only requires

the evaluation of one-dimensional oscillatory integrals. This is the approach consid-

ered in [2] for instance, where a BEM scheme is developed for convex polygons in

2D. The BEM described is an h-version in which the HNA approximation space uses

piecewise constant functions to approximate the amplitudes of the oscillations. Other

research in the context of the scattering problems considered here and using a collo-

cation method, although with no particular attention to the high frequency case, have

proved to be very successful, see [4, 7, 13, 14]. In the present work, we propose to

extend the HNA collocation approach of [2] to an hp-version of the BEM method and

work on the problem of the scattering by planar screens in 2D as in [16]. The main

goal is to experimentally investigate the performance of the method, in particular by

studying how the design of the HNA approximation space and the distribution of the

collocation points on the boundary affect accuracy and conditioning.

An outline of this work is as follows. In Chapter 2, we first describe in Section 2.1

the problem of the scattering by sound-soft planar screens which is considered here.

This involves writing the boundary value problem with the Helmoltz equation and

the associated boundary conditions. In Section 2.2 we reformulate the problem as

a boundary integral equation, which is the equation we are aiming to solve using a

BEM. We then continue in Section 2.3 by specifying the high-frequency asymptotic

form of the solution and on which the approximation space is built. Chapter 3 is

then dedicated to the description of the numerical method. Precisely, we define in

Section 3.1 the HNA approximation space considered, before explaining how we pro-

pose to numerically select members of this approximation space by using a collocation

method in Section 3.2. Chapter 3 ends with Section 3.3 which presents the different

distributions of collocation points that we consider. The numerical quadrature strat-

egy, which is an essential ingredient in the method, is then introduced and discussed

in Chapter 4. The numerical integration required is carried out using appropriate

oscillatory integration routines so that the method has a frequency-independent com-

putational cost. In particular, the Filon-type highly oscillatory quadrature rule used

is described in Section 4.3. The results of our numerical experiments are presented

in Chapter 5. The efficiency of the different designs of the approximation spaces

considered are precisely compared in Section 5.1. The performance of the HNA BEM

using collocation is finally demonstrated in Section 5.3 in which we show that the

computational cost of the method is frequency independent. The conclusions of the

present work and some opportunities for future work are finally exposed in Chapter 6.
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Chapter 2

Boundary integral equation

2.1 Wave scattering problem

We describe here the two-dimensional wave scattering problem that we propose to

solve in this work, as illustrated in Figure 2.1. We consider a time harmonic plane

wave as incident field ui with wave number k ∈ R, k > 0 and direction given by the

unit vector d = (d1, d2) ∈ R2. We have

ui(x) = eikx·d, for x = (x1, x2) ∈ R2. (2.1)

The domain of propagation is considered homogeneous so that we assume that the

wave number k is constant throughout the domain. Note that the restriction to

the case of harmonic waves is done for simplicity of the analysis but more general

time dependence can be straightforwardly obtained by combining harmonic waves of

different frequencies using Fourier synthesis.

The scattering objects are sound soft screens, that we assume to be the union of

a finite number ns ∈ N of open and colinear intervals {Γi}ns
i=1 such that

Γ =
ns⋃
i=1

Γi, Γi = (s2i−1, s2i)× {0} ⊂ R2, i = 1, . . . , ns, (2.2)

where 0 = s1 < s2 < · · · < s2ns = L ∈ R. The domain of propagation D of the waves

is then

D = R2\Γ̄, (2.3)

where Γ̄ is the closure of Γ.

Let C2(D) be the space of twice continuously differentiable functions on D. Let

also W 1
loc(D) := {u ∈ L2

loc(D) | ∇u ∈ L2
loc(D)}, where ∇u denotes the weak gradient
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Figure 2.1: Sketch of the wave scattering problem for ns = 2.

of u and L2
loc(D) is the set of locally integrable functions u on D. The total field

u ∈ C2(D) ∩W 1
loc(D) is composed of the incident field ui and the scattered field us

so that u = ui + us. The field u is found as the solution of the Helmholtz equation

with Dirichlet boundary condition:{
∆u+ k2u = 0, in D,

u = 0, on Γ.

(2.4a)

(2.4b)

The domain of propagation D is unbounded hence requiring an additional condi-

tion on the field reflected by the scattering obstacle at infinity. Explicitly, we assume

that the scattered field us satisfies the Sommerfeld radiation condition at infinity,

∂us

∂r
− ikus = o

(
r−1/2

)
, uniformly as r = |x| → ∞. (2.5)

The wave scattering problem that we are going to study is given by the PDE (2.4a)

and the two boundary conditions (2.4b) and (2.5).

We assume in the following that all lengths have been conveniently nondimen-

sionalised with respect to a typical length scale so that the wave number k is non-

dimensional.

2.2 Boundary Integral Equation

We now give the reformulation of the problem as a boundary integral equation. The

rigorous analysis of the scattering by two-dimensional planar screens is in the context

of the fractional Sobolev spaces H1/2(Γ) and H̃−1/2(Γ), the precise definition of which

are given, for instance, in [9, Section 2.] or [23].

We first recall the fundamental solution of the Helmholtz equation in two dimen-

sions [8]

Φk(x,y) =
i

4
H

(1)
0 (k|x− y|), x,y ∈ R2, (2.6)
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where H
(1)
0 is the Hankel function of the first kind or order zero.

We define the single layer potential Sk : H̃−1/2(Γ)→ C2(D)∩W 1
loc(R2) which, for

φ ∈ Lp(Γ) and p > 1, is represented by the integral formulation [8]

Skφ(x) =

∫
Γ

Φk(x,y)φ(y) ds(y), x ∈ D. (2.7)

The single layer potential can be thought of in physical terms as an infinite distri-

bution, on the boundary of the screen Γ, of elementary source terms Φk(x, ·) with

respective density φ. The representation formula holds [9, 16]

u(x) = ui(x)− Sk
[
∂u

∂n

]
(x), x ∈ D, (2.8)

where [
∂u

∂n

]
= ∂+

n (χu)− ∂−n (χu) (2.9)

and χ is an arbitrary element of

C∞0,1
(
R2
)

:=
{
φ ∈ C∞0

(
R2
)
| φ = 1 in some neighbourhood of Γ

}
. (2.10)

The normal derivative operators ∂±n are precisely defined in [9].

We define the single layer boundary integral operator Sk : H̃−1/2(Γ) → H−1/2(Γ)

which, for φ ∈ Lp(Γ) and p > 1, is represented by the integral formulation [8]

Skφ(x) =

∫
Γ

Φk(x,y)φ(y) ds(y), x ∈ Γ. (2.11)

From (2.8), taking traces onto the boundary Γ and applying the jump relations con-

necting Sk and Sk, the wave scattering problem can be reformulated as [8]:

Find
[
∂u
∂n

]
∈ H̃−1/2(Γ) such that∫

Γ

Φk(x,y)

[
∂u

∂n

]
(y) ds(y) = ui

∣∣∣
Γ
(x), x ∈ Γ. (2.12)

Equation (2.12) is the boundary integral equation of the first kind that we propose

to solve. There exists no simple closed form solution to this BIE and one needs to

solve it numerically, as we detail below.

An important question is the well-posedness of the problem given by (2.12).

Wavenumber-explicit coercivity and continuity estimates for Sk have been recently

derived [9, 16]. These results ensure existence and uniqueness of the solution to the

BIE via application of the Lax-Milgram lemma.

We also mention that other formulations are possible. In particular, it is pos-

sible to obtain BIE of the second kind, which could be better conditioned, see for

instance [6].
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2.3 High-Frequency Asymptotics

The boundary integral equation (2.12) can be solved numerically using a conven-

tional boundary element method. This involves picking a finite dimensional subspace

of H̃−1/2(Γ) in which to look for a solution and solve the integral equation in vari-

ational form using a Galerkin method, or via collocation, by enforcing the integral

equation to hold exactly at finite number set of points. Even though these methods

are controllably accurate, they would be numerically tractable only for low or mod-

erate frequencies. Indeed, to correctly capture the oscillations of the solution, the

number of degrees of freedom should scale at least linearly with the wave number

k [8]. The method would then become prohibitively expensive when k is large. It

is true that other approaches can be considered in the high frequency regime, and

a number of asymptotic theories such as the Geometrical Theory of Diffraction are

available. However such theories are arbitrarily accurate only in the limit as k tends

to infinity. As a result, there is large gap of frequencies for which no computationally

feasible method can provide an accurate solution. To overcome this difficulty, the

key idea that has been proposed [8] is to enrich the approximation space (defined

precisely in Chapter 3) with the known asymptotic behaviour of the solution given

by asymptotic theories.

We now introduce the high-frequency asymptotics that we rely on to built our

hybrid numerical-asymptotic approximation space. We represent a point x on the

boundary Γ using the following parametrisation involving the arc length s

x(s) = (s, 0), where s ∈ Γ̃ :=
ns⋃
i=1

(s2i−1, s2i). (2.13)

On each screen (s2i−1, s2i), the Geometrical Theory of Diffraction gives an approxi-

mation of the jump
[
∂u
∂n

]
in the high frequency regime of the form[

∂u

∂n

]
(x(s)) ≈ 2

∂ui

∂n
(x(s)) + Aeiks +Be−iks, as k → +∞, (2.14)

where A and B are the diffraction coefficients which are expected to be slowly varying

on the scatterer [5]. The first term is the geometrical optic approximation and rep-

resents the sum of the incident and reflected waves on the obstacle. It is the leading

term in the asymptotic behaviour and, used alone in (2.8), corresponds to the ’phys-

ical optic’ or ’Kirchoff’ approximation. The two other terms represent the diffracted

waves emerging from the ends of each screen.
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The construction of the hybrid numerical-asymptotic approximation space is sup-

ported by a regularity result from [16, Theorem 4.1], that we restate in Theorem 2.1.

Standard elliptic regularity results ensure continuity in D of the solution u of the

wave scattering problem described in Section 2.1. Since, in addition, u(x) ∼ ui(x) as

x→∞, x ∈ D, we have that

M(u) := sup
x∈D
|u(x)| (2.15)

exists and is finite [16]. We define also

lmin := min
i=1,...,ns

(s2i−1 − s2i). (2.16)

We now quote the regularity result.

Theorem 2.1. Let klmin ≥ c0 for some c0 > 0. For i = 1, . . . , ns, we have[
∂u

∂n

]
(x(s)) = 2

∂ui

∂n
(x(s)) + ν+

i (s− s2i−1)eiks + ν−i (s2i − s)e−iks, s ∈ (s2i−1, s2i).

(2.17)

The functions ν±i are analytic in the right half-plane and non-oscillatory. Explicitly,

there exists C1 ∈ R, C1 > 0, which depends only on c0, such that in the right-hand

side plane <(s) > 0, we have

|ν±i (s)| ≤ C1M(u)k|ks|−1/2, <(s) > 0. (2.18)

For a proof of this result, we refer to [17].

Note that the bound (2.18) is sharp in that the functions s 7→ νi±(s) are actually

equivalent to the bound as s→ 0. Hence ν±i /∈ L2(Γ). Following Remark 4.2 in [16],

we note also that the Cauchy integral formula for derivatives yields bounds of the

form

|ν±(n)
i (s)| ≤ cnC1M(u)k1/2s−(n+1/2), s > 0, n ∈ N, n ≥ 1, (2.19)

for each derivatives ν
±(n)
i and where the constants cn ∈ R, cn > 0 only depend on

n. The fact that these bounds (2.19) have the same k-dependence for all n implies

that the functions ν±i are non-oscillatory. Finally note that they encapsulate all the

contributions from the multiple-diffracted waves along the boundary.

Using the representation (2.17) for the unknown
[
∂u
∂n

]
leaves only the amplitude

functions ν±i to compute numerically. Let

φ =

[
∂u

∂n

]
, and Ψ = 2

∂ui

∂n
. (2.20)
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In addition, we denote by ϕ the difference between φ and its geometrical optic ap-

proximation Ψ scaled by 1/k, such that

ϕ(s) =
1

k
(φ(x(s))−Ψ(x(s))), s ∈ Γ̃. (2.21)

The wave scattering problem can now be reformulated as:

Find ϕ such that

Skϕ =
1

k

(
ui
∣∣∣
Γ
− 2Sk

∂ui

∂n

)
. (2.22)

The explicit integral form of (2.22) reads∫
Γ

Φk(x,y)ϕ(y) ds(y) =
1

k

(
ui
∣∣∣
Γ
(x)− 2

∫
Γ

Φk(x,y)
∂ui

∂n
(y) ds(y)

)
, x ∈ Γ. (2.23)

We propose to solve (2.22) using a boundary element method with an approximation

space (defined precisely in the next section) based on the decomposition, inspired by

Theorem 2.1,

ϕ(s) =
1

k

(
ν+
i (s− s2i−1)eiks + ν−i (s2i − s)e−iks

)
, s ∈ (s2i−1, s2i). (2.24)
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Chapter 3

Numerical method

3.1 Hybrid Numerical-Asymptotic approximation

space

The numerical method we now present is based on a hybrid numerical-asymptotic

approximation space using the result given in Theorem 2.1. The unknown ϕ, solution

to the BIE (2.22), takes the form of (2.24) in which the functions ν±i are approximated

by piecewise polynomials on each screen. Note that it is not the unknown ϕ itself

which is approximated numerically as in more standard numerical methods but rather

only the diffraction amplitudes ν±i .

We now describe the meshes we use and on which we rely to define precisely

the piecewise polynomial functions of the approximation space. We consider two

different approximation strategies on each screen Γi for i = 1, . . . , ns, both involving

geometrical grading towards the singularities:

1. Overlapping meshes, used for instance in [16] or [2]: this strategy consists in

constructing two independent meshes for the two components ν±i e
±iks of the

unknown, the right (+) and left (−) propagating waves. From the geometri-

cal theory of diffraction [5], we know that the two amplitude functions ν±i do

not have the same behaviour on the screen Γi. The right propagating wave

component ν+
i (s)e+iks has a (square-root) singularity on the left of the screen

s = s2i−1, and is graded accordingly. For the left propagating wave ν−i (s)e−iks,

the singularity is present at the right of the screen s = s2i, where a similar

grading is applied. A sketch of two overlapping meshes corresponding to this

description is given in Figure 3.1a for a single screen.

10



2. Single mesh: the alternative strategy involves only one mesh on which both

components ν±i (s)e±iks are evaluated. The mesh must therefore be graded at

both ends. A similar meshing strategy, using a single mesh but with a different

type of grading, is described for instance in [12] for a related problem. As a

practical note, this type of mesh can be computed as the intersection of the two

overlapping meshes. See Figure 3.1b for a sketch of a single-mesh configuration.

The overlapping-type meshing strategy is tailored exactly to be able to capture

the two unknown terms in the unknown ϕ, in particular their own singularities.

An associated difficulty, from an implementation point of view, is the necessity to

keep track of the elements in the two meshes. In our two-dimensional problem with

planar screens, this complication remains limited, but can however be an issue in

the perspective of tackling problems in three dimensions. This remark is valid for

both Galerkin or collocation methods. In the latter context, there is an additional

complexity coming from the distribution of the collocation on the two meshes, as

allocating two points almost at the same position but on the two different meshes

leads immediately to bad conditioning of the matrix (singular matrix if the position

is exactly the same), see Section 3.3 and also [2] for more details.

The single mesh strategy do not suffer from these issues. In particular, the al-

location of the collocation points is easier. The strategy is however not exempt of

conditioning problems. The fact to have both the two oscillatory components of the

unknown in each element makes it difficult to numerically separate their two contri-

butions on the small (with respect to the wavelength λ = 2π/k) elements near the

corners of the screens, as the oscillatory factors e±iks will almost match. This leads

also to ill-conditioning; see [2] and the end of the current section for more details

and a way of dealing with this issue. The main drawback of the single-type meshing

comes from the fact introduction of unnecessary degrees of freedom in the approxi-

mation space. The amplitude function ν+
i is indeed approximated by far more basis

functions near the right corner of the screen s = s2i than necessary, and similarly for

the function ν−i near the left corner s = s2i−1.

We now give some more details on the practical construction of the meshes, start-

ing with the overlapping configuration. Consider the screens Γ =
⋃ns

i=1 Γi described

in (2.2). For each i = 1, . . . , ns, let (n+
i , n

−
i ) ∈ N2, such that n+

i ≥ 1 and n−i ≥ 1. The

mesh on the screen Γi and supporting the right propagating wave ν+
i e

+iks is denoted

Mo+

n+
i

(Γi) where n+
i is the number of layers or elements in the mesh. It is given by

11



ν+e+iks

ν−e−iks

(a) Sketch of an overlapping-type mesh

ν±e±iks

(b) Sketch of a single-type mesh

Figure 3.1: Illustrations of the two mesh configurations considered on a single screen.

Grading parameter σ = 0.15.

the set of points {x+
j }

n+
i
j=0 such that:

x+
0 := s2i−1, x+

j := s2i−1 + σn
+
i −j(s2i − s2i−1), j = 1, . . . , n+

i . (3.1)

In [28], the theoretical optimum value for the grading parameter σ in such geometric

meshes is given to be σ =
(√

2− 1
)2 ≈ 0.17. Practical experience suggests that a

slightly more severe grading is desirable and in [16] the choice σ = 0.15 is recom-

mended. This is the value taken in all the numerical experiments presented in this

work. The meshMo−
n−
i

(Γi) supporting the left propagating wave ν−i e
−iks on the same

screen Γi and using n−i layers contains the points {x−j }
n−
i
j=0 such that:

x−j := s2i − σj(s2i − s2i−1), j = 0, . . . , n−i − 1, x−
n−
i

= s2i. (3.2)

The single-type meshMs
n+
i ,n

−
i

(Γi) is obtained from the two previous sets of points by

intersection

Ms
n+
i ,n

−
i

(Γi) :=Mo+

n+
i

(Γi) ∩ Mo−
n−
i

(Γi). (3.3)

Let a, b ∈ R, a < b and p ∈ N; we denote by Qp(a, b) the space of continuous

polynomials on the interval (a, b) of degree at most p

Qp(a, b) :=
{
ρ : [a, b]→ C

∣∣∣ deg(ρ) ≤ p
}
. (3.4)

Let n ∈ N, n ≥ 1 and c, d ∈ R, c < d. We consider a general mesh Mn = {xi}ni=0

with n elements, on the interval [c, d]. Let p ∈ Nn; following [16] we define Pp(Mn)

the space of piecewise polynomials with degrees given by p on the mesh Mn as

Pp(Mn) :=
{
ρ : [c, d]→ C

∣∣∣ ρ|(xi,xi+1) ∈ Qpi
(xi, xi+1), i = 0, . . . , n− 1

}
. (3.5)

For each i = 1, . . . , ns, we denote respectively by N+
i and N−i the total number

of basis functions with support included in Γi for approximating the right ν+
i and

left ν−i components. Explicitly we have N+
i = n+

i and N−i = n−i if an overlapping-

mesh configuration is considered and we have N+
i = N−i = n+

i + n−i − 1 if a single-

mesh configuration is considered. In the latter case, the definition assumes that no

12



interior points coincide in the two sets intersected in (3.3), but trivial adaptation

can be carried out if this is not the case. For each i = 1, . . . , ns, choose (p+
i ,p

−
i ) ∈

NN+
i × NN−

i . The simplest choice for the vector of degrees p±i would be to take all

degrees constant, p±i = p, i = 1, . . . , N±i . However, for reasons of efficiency and

stability, it is standard practice to decrease the degree of the polynomials linearly

towards the singularity [16]. For the overlapping meshing strategy we take

p±i =

{
p− bα(N±

i +1−i)
N±

i

pc, 1 ≤ i ≤ N±i − 1,

p, i = N±i ,
(3.6)

where α is chosen in [0, 1]. For the single-mesh strategy we take

p+
i =


p− bα(N+

i +1−i)
N+

i

pc, 1 ≤ i ≤ N+
i − 1,

p, i = n+
i ,

p− b αi
N−

i

pc, 1 ≤ i ≤ N−i − 1,

(3.7a)

and

p−i =


p− bα(N+

i +1−i)
N+

i

pc, 1 ≤ i ≤ N+
i − 1,

p, i = n−i ,
p− b αi

N−
i

pc, 1 ≤ i ≤ N−i − 1,

(3.7b)

where α is chosen similarly. For α = 0 we recover the case of constant degrees

for all polynomials and for α = 1 we have the most reduction of the degree of the

polynomials towards the singularity. The latter choice gives better conditioning [16]

and importantly reduces the number of degrees of freedom required. This choice of

parameter α = 1 is confirmed by our numerical experiments for the two meshing

strategies; see Section 5.1 for more details.

We are now able to give a proper definition of our hybrid numerical-asymptotic

(HNA) approximation space, noted SN , where N denotes the total number of degrees

of freedom of the numerical scheme (calculated later). We define the spaces S+
i and

S−i such that

S+
i :=

{
s 7→ ρ(s)e+iks

∣∣∣ ρ ∈ Pp+
i

(
M+ (Γi)

)}
, (3.8a)

S−i :=
{
s 7→ ρ(s)e−iks

∣∣∣ ρ ∈ Pp−
i

(
M− (Γi)

)}
, (3.8b)

where

M+ (Γi) :=Mo+

n+
i

(Γi) , M− (Γi) :=Mo−
n−
i

(Γi) , (3.9)

for an overlapping-mesh configuration, and

M+ (Γi) :=Ms
n+
i ,n

−
i

(Γi) , M− (Γi) :=Ms
n+
i ,n

−
i

(Γi) , (3.10)
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for a single-mesh configuration. The approximation space SN then reads

SN := span

{
ns⋃
i=1

(
S+
i ∪ S−i

)}
. (3.11)

Note that elements of SN are of the form of (2.24) and are, by the result in Theo-

rem 2.1 well-suited to approximate the exact solution ϕ. The total number of degrees

of freedom in the numerical scheme N is given by

N := dim (SN) =
ns∑
i=1

N+
i∑

j=1

((p+
i )j + 1) +

N−
i∑

j=1

((p−i )j + 1)

 . (3.12)

For the single-type mesh, an issue we already mentioned and highlighted in [2]

comes from the relatively short elements with length l � λ at both ends. These

elements are supposed to support both the left e−iks and right e+iks propagating

waves that almost match in this case and leads to ill-conditioning. One can cope with

this quite easily by setting to zero the coefficient of the wave which is not singular

at the end under consideration. This amounts to modifying the approximation space

SN as follows. For each screen Γi with i = 0, . . . , ns, let M̃
o+

n+
i

(Γi) :=
{
x+

0

}
∪
{
x+
i ∈Mo+

n+
i

(Γi)
∣∣∣ x+

i − x+
i−1 ≥ β 2π

k
, i = 1, . . . , n+

i

}
,

M̃o−
n−
i

(Γi) :=
{
x−0
}
∪
{
x−i ∈Mo−

n−
i

(Γi)
∣∣∣ x−i − x+

i−1 ≥ β 2π
k
, i = 1, . . . , n−i

}
,

(3.13)

where β is an arbitrary parameter. Numerical experiments suggests that β should be

O(1). In practical computations we take β = 2. Note that we implicitly incorporate

some k-dependency in the approximation space as we measure the shortness of the

elements with respect to the wavelength λ of the problem. For a fixed initial number

of layers n±i , the number of degrees of freedom that are used increases with the wave

number k, even though it is bounded uniformly in k. We then redefine the meshes

M+ (Γi) and M− (Γi) in (3.10) as

M+ (Γi) :=Mo+

n+
i

(Γi) ∩ M̃o−
n−
i

(Γi), M− (Γi) := M̃o+

n+
i

(Γi) ∩ Mo−
n−
i

(Γi). (3.14)

The definitions of the spaces S+
i and S−i in (3.8), the approximation space SN in (3.11)

and the number of degrees of freedom N in (3.12) are left unchanged. Numerical

experimentations have confirmed the efficiency of this modification. In addition, we

note that the refinement for both basis functions at both ends of each screens in the

case of the single-type meshing strategy results in an unnecessary increased number
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of degrees of freedom. In this respect, dropping one basis function when the elements

are too short helps to minimise this effect.

We now quote the best approximation result given in [16, Theorem 5.1], that

ensures exponential convergence of a member of SN towards the unknown ϕ as the

maximum degree of the polynomials p increases. It relies on the regularity result

given in Theorem 2.1 and is proven in [16] for the approximation space based on the

overlapping meshes. A similar result is believed to hold for the similar approximation

space using a single mesh.

Theorem 3.1. Let klmin ≥ c0 > 0. Suppose that N±i = Ne and p±i = p for each

i = 1, . . . , ns, where p is defined according to (3.6) and Ne is such that Ne ≥ cp for

some constant c ∈ R, c > 0. Choose any 0 < ε < 1/2. Then there exists a constant

C2 ∈ R, C2 > 0, depending only on ε, σ, ns and c0; and a constant τ ∈ R, τ > 0,

depending only on ε, σ, α and c such that

inf
v∈SN

||ϕ− v||
H̃

−1/2
k (Γ)

≤ C2M(u)k−1(kL)εe−pτ . (3.15)

For a proof of this result we refer to [16].

3.2 Collocation method

A possible choice for solving the BIE (2.12) is to use a Galerkin framework after refor-

mulating (2.12) in variational form. This approach has been used successfully for the

overlapping mesh case in [16]. However, the method requires numerical evaluation of

oscillatory double integrals for two-dimensional problems. When three-dimensional

problems are considered, the implementation of the Galerkin method appears to be

even more challenging. The collocation method could be in this respect a simpler

method to implement, in particular for generalisation to higher dimensions. A main

advantage over the Galerkin method is that, for two-dimensional problems, the os-

cillatory integrals that one needs to evaluate are only single integrals. However the

theoretical analysis of the convergence of collocation methods for the scalar Helmoltz

equation is less available [30, page 318], compared to analysis for the Galerkin method.

For instance, a full convergence analysis of a Galerkin HNA BEM method has been

presented in [16], with frequency-explicit error estimates, for the scattering problem

under consideration. The main purpose of this work is then to determine whether a

collocation method is appropriate and efficient to solve such problems. In particular,
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the question of the robustness of the method with respect to the position of the col-

location points on the boundary is an important question. A related question is the

evolution of the conditioning of the numerical problem with respect to the number of

degrees of freedom. We shall address all these points in the following.

Choose, for the wave scattering problem described in Section 2.1, a HNA ap-

proximation space SN with N degrees of freedom, as defined in Section 3.1. Choose

independently a set of N distinct collocation points CN = {cn}Nn=1 distributed on the

screens Γ =
⋃ns

i=1 Γi. This choice selects a numerical approximation ϕN ∈ SN of the

solution ϕ of the BIE (2.22) and is computed precisely as follows. Let us introduce

the following notation for ϕN : Γ̃→ C

ϕN := s 7→
ns∑
i=1

[ N+
i∑

j=1

(p+
i )j∑

m=0

(
ν+
i,j,mρ

+
i,j,m(s)e+iks

)
+

N−
i∑

j=1

(p−
i )j∑

m=0

(
ν−i,j,mρ

−
i,j,m(s)e−iks

) ]
,

(3.16)

where {ν±i,j,m ∈ C}i,j,m are the N degrees of freedom and {ρ±i,j,m}i,j,m are polynomials

that we define now. No special property is required for the polynomials used. Note

that this is not true for Galerkin methods, for which particular choices of polynomials

are sometimes preferable over others, depending on their properties. For instance,

orthogonality can increase matrix sparsity of the linear system for a Galerkin method.

The most simple choice for our collocation method has therefore been made, namely

we use monomials such that

ρ̂p := [−1, 1]→ R, with ρ̂p(s) := λp s
p, p ∈ N. (3.17)

The factors {λp ∈ R}p∈N are normalisation constants. In our numerical experiments

the simple choice λp = 1 for p ∈ N has been made. However, a particular normalisa-

tion of these polynomials might help with the conditioning of the matrix. The basis

of polynomials {ρ̂p}p∈N are defined on [−1, 1]. They are translated and scaled to be

supported on the subintervals of the meshes as necessary. For each screen Γi with

i = 0, . . . , ns, the meshes (3.9) and (3.14) are denoted as M+ (Γi) = {x+
j }

N+
i

j=0 and

M− (Γi) = {x−j }
N−

i
j=0. We have

ρ+
i,j,m(s) :=

{
ρ̂m

(
2

x+j+1−x
+
j

(
s− x+j +x+j+1

2

))
, s ∈ (x+

j , x
+
j+1),

0, s ∈ Γ̃\(x+
j , x

+
j+1),

m = 0, . . . , (p+
i )j,

(3.18a)

ρ−i,j,m(s) :=

{
ρ̂m

(
2

x−j+1−x
−
j

(
s− x−j +x−j+1

2

))
, s ∈ (x−j , x

−
j+1),

0, s ∈ Γ̃\(x−j , x−j+1),
m = 0, . . . , (p−i )j.

(3.18b)
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Our approximate solution ϕN in (3.16) is completely described now except for the

set of degrees of freedom {ν±i,j,m ∈ C}i,j,m. At each collocation point cn ∈ CN , for

n = 1, . . . , N , we require

ns∑
i=1

∫
Γi

ϕN |Γi
(s)Φk(cn, s) ds,= ui

∣∣∣
Γ
(cn)−

ns∑
i=1

∫
Γi

2
∂ui

∂n
(s)Φk(cn, s) ds. (3.19)

Choose an ordering for the set of degrees of freedom {ν±i,j,m ∈ C}i,j,m and collect them

in the vector ν ∈ CN . For each collocation point cn ∈ CN , with n = 1, . . . , N , also

collect, using the same ordering, the set{∫
Γi

ρ±i,j,m(s)Φk(c, s)e
±iks ds

}
i,j,m

(3.20)

into the nth line Mn of the matrix M ∈ CN×N . For each collocation point cn ∈ CN ,

with n = 1, . . . , N , let finally the nth component Fn of the vector f ∈ CN be

fn := ui
∣∣∣
Γ
(cn)−

ns∑
i=1

∫
Γi

2
∂ui

∂n
(s)Φk(cn, s) ds. (3.21)

These definitions allow to recast the system of equations (3.19) in the form of the

linear system

M ν = f . (3.22)

The matrix M is dense but its size, N ×N , is moderate as N is typically at most a

few hundreds. The linear system is then solved using standard direct solvers and the

numerical solution ϕN is completely determined from ν = M−1f .

3.3 Allocation of the collocation points

One question we have not answered yet is the allocation of the collocation points

CN = {cn}Nn=1 distributed on the screens Γ. This is not an easy question and different

approaches can be considered.

Given our approximation space SN , the simplest choice is to distribute p+1 points

in an element of the mesh supporting a polynomial of degree p. By doing this, we

allocate the N points available.

The local allocation of the collocation points on each mesh element can then be

done in different ways and two of them were investigated. One naive choice is to

distribute them uniformly. Suppose that we need to allocate Nc collocation points on
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a segment [a, b], which can be a whole screen or only an element of it. We place the

points {ci}Nc
i=1 according to

ci = a+

(
i− 1

2

)
b− a
Nc

, i = 1, . . . , Nc. (3.23)

Note that it is not possible to place collocation points at the ends of the screens where

singularities in the solution occur.

However, given the analogy of a collocation method with a projection operator de-

fined by interpolation [22, Section 13.3], one may consider other types of distributions.

In particular, to avoid possible Runge phenomena, Chebyshev grids can be consid-

ered. Since it is not possible to place collocation points at the ends of the screens, the

roots of the Chebyshev polynomials of the first kind, the so-called Chebyshev nodes,

are used. The Nc points {ci}Nc
i=1 on the segment [a, b] are then placed according to [31]

ci =
1

2
(a+ b) +

1

2
(b− a) cos

(
2i− 1

Nc

π

)
, i = 1, . . . , Nc. (3.24)

These two allocation strategies are referred to as local strategies. An alternative

choice is a global strategy for which the points are positioned on the screen indepen-

dently of the mesh-elements. This latter approach might seem appropriate given the

global nature of the BIO in (2.22). However, the results obtained from our imple-

mentation of the method using the global approach were unsatisfactory, and spurious

oscillations in the numerical solution on the boundary were observed. We therefore

only consider local distributions of the collocation points in the following.

We finish this section by a note on the conditioning of the matrix of the problem,

related to the allocation of the collocation points in the overlapping meshing strat-

egy. The main issue when using overlapping meshes, as we already pointed out in

section 3.1, is that allocation of collocation points on each mesh may result in two

points being relatively close to each other, which leads to ill-conditioning [2]. This is

illustrated by the evolution of the condition number of the matrix M with respect to

the number of degrees of freedom, given in Section 5.1. A solution to this issue is to

reposition the points by introducing some additional space between the two points.

One then needs to built an heuristic strategy to reposition the points. No attempt in

this direction has been made in this work.
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Chapter 4

Numerical quadrature

4.1 Integral evaluation required by the method

The hybrid numerical-asymptotic collocation method described above requires, for

the construction of the matrix M in the linear system (3.22) and evaluation of the

representation formula (2.8), the computation of integrals of the type

Ik =

∫ b

a

f(s) H
(1)
0 (k|x− s|) eiθks ds, (4.1)

where s 7→ f(s) is a polynomial, H
(1)
0 is the Hankel function of the first kind of order

zero, (a, b) ⊂ R, x ∈ R2 and θ, k ∈ R with θ ∈ {±1, d1} and k > 0. We review

now the features that make integrals of this form difficult to evaluate using numerical

quadrature.

In general x ∈ R2, but let us first consider the particular case where x is on the

boundary Γ, so that x = x ∈ R. All the integrals involved in the computation of the

linear system (3.22) are of this type. The Hankel function H
(1)
0 has a log-singularity

at the origin [26, Section 10.7(i)], H
(1)
0 (x) ∼ 2i

π
ln(x), for x ∈ R, x > 0. Hence if

x ∈ (a, b), this integral (4.1) is itself singular. If on the other hand x /∈ (a, b) but x

is close to a or b, in a sense to be specified, then the integral is ’nearly singular’ and

still requires careful numerical treatment.

Furthermore, when the wave number k is large, the integral (4.1) is, in general,

(but not always as we shall see) highly oscillatory. Define the exponentially scaled

Hankel function H̃
(1)
0 (x) = H

(1)
0 (x) e−ix, for x ∈ R. Note that the e−ix factor cancels

the oscillations of the Hankel function for x > 0, so that H̃
(1)
0 is non-oscillatory for

large x > 0 [26, Section 10.17(i)]. The integral (4.1) can then be rewritten as

Ik =

∫ b

a

f(s) H̃
(1)
0 (k|x− s|) eik(θs+|x−s|) ds. (4.2)
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Hence, the oscillations are cancelled if x < s and θ = −1 or if x > s and θ = 1. If

these conditions are not met however, the integral (4.1) becomes highly oscillatory as

the wave number k increases, the oscillations being in this case only contained in the

factor eik(θs+|x−s|). Note that in the oscillatory case the phase of the oscillations, k(θs+

|x − s|), is linear in s. Standard integration routines such as Gaussian quadrature

cannot evaluate highly oscillatory integrals efficiently and one must use specialised

oscillatory quadrature techniques that we will present in Section 4.3.

Consider now that x = (x1, x2) in the integral (4.1) is in the domain x ∈ D.

We are confronted by integrals of this type if we wish to evaluate the solution in

the domain via the representation formula (2.8). The integral (4.1) can no longer be

singular but could still be difficult to evaluate when x is close to the boundary Γ.

The integral (4.1) is still oscillatory, and we can write

Ik =

∫ b

a

f(s) H̃
(1)
0 (k|x− s|) eik

(
θs+
√

(x1−s)2+x22

)
ds. (4.3)

The non-linearity of the phase of the oscillator makes the evaluation of such integrals

more difficult in general than for the integral (4.2). wave field u in the domain of

propagation D. No frequency independent quadrature rule has been implemented for

this work, and we resorted to using standard quadrature rules when required. We

refer to [21] and the references therein for some details on the oscillatory numerical

quadrature methods available to evaluate integrals of the form of (4.3).

We shall now describe how the integrals of the form of (4.2) can be computed

accurately with a computational cost which is independent of the wave number k.

4.2 Gauss-Legendre quadrature

The standard Gauss-Legendre quadrature rule is appropriate for integrals that are

neither singular nor oscillatory. It belongs to the general class of Gauss quadrature

methods approximating integrals by a weighted sum of function evaluations of the

form [31] ∫ b

a

ω(s)f(s) ds ≈ Qn
GL =

n−1∑
i=0

wif(xi), (4.4)

for some nodes {xi}n−1
i=0 and weights {wi}n−1

i=0 with n ∈ N, n ≥ 1. In the previous

expression ω is a given positive integrable weight function, supposed to be constant

for the particular case of Gauss-Legendre quadrature. Gauss quadrature rules are

exact [31] for any polynomial of degree 2n − 1 or less, for a unique choice of nodes
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{xi} and weights {wi}. For the Gauss-Legendre rule, the nodes correspond to the

roots of Legendre polynomials. There is no closed form expression for these and they

are therefore computed to double precision using Newton-Raphson iterations [15, 27]

x
(k+1)
i = x

(k)
i −

Pn−1(x
(k)
i )

P ′n−1(x
(k)
i )

, k > 1, i = 0, . . . , n− 1, (4.5)

where Pn−1 is the Legendre polynomial of degree n − 1 which is computed by the

three-term recurrence relation [26, Section 18.9(i)],

(n+ 1) Pn+1(x) = (2n+ 1)x Pn(x)− n Pn−1(x), n ≥ 1, (4.6)

with the first two terms given by

P0(x) = 1, P1(x) = x. (4.7)

The first derivative is computed using [26, Section 14.10],

P ′n+1(x) =
n

x2 − 1
x Pn(x)− Pn−1(x), n ≥ 1. (4.8)

The initial guesses {x(0)
i } are given by a low order asymptotic approximation [15, 27]

x
(0)
i = cos

(
4i+ 3

4n+ 2
π

)
, i = 0, . . . , n− 1. (4.9)

The weights {wi} are then computed using [31]

wi =
2

(1− x2
i )
(
P ′n−1(xi)

)2 . (4.10)

4.3 Highly oscillatory quadrature

There are numerous methods for efficiently evaluating oscillatory integrals. Here we

focus on Filon quadrature rules [8, 18, 20], in which one approximates the modulat-

ing amplitude of the oscillations by a polynomial, and then integrates exactly. Other

methods include the numerical method of steepest descent, which is based on a de-

formation of the path of integration into the complex plane to replace the oscillatory

integrals by two Laplace-type integrals; see for instance [19].

We now describe the Filon-type method for evaluating the general integral

I
[a,b]
k [f ] =

∫ b

a

f(s)e±iks ds, (4.11)
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where a, b, k ∈ R, with a < b and k > 0. The function f : [a, b] → C is supposed

analytic. The case where a singularity is present in the domain is presented in the

next section. Choose q points a ≤ x1, . . . , xq ≤ b in (a, b) with respective multiplicity

m1, . . . ,mq ∈ N. Let f̃ be the unique Hermite interpolation polynomial of degree

m =
∑q

i=1(mi)− 1 such that [20]

f̃ (j)(xi) = f (j)(xi), j = 0, . . . ,mi − 1, 1, . . . , q. (4.12)

Then the integral I [a,b][f ] is approximated by the quadrature rule

Qm+1
F [f ] =

∫ b

a

f̃(s)e±iks ds, (4.13)

which can be computed exactly provided that the so called moments µq = Qm+1
F [Pq],

where Pq is a polynomial of degree q of the interpolation basis, can themselves be

computed exactly. The oscillator is here assumed linear ±iks, hence the computation

of the moments will be exact. This is not true for more general oscillators, even

though, in some cases, a change of variables in the integral can be made to get

a linear phase and a modified amplitude. The Filon method can then be applied

directly. There also exist moment-free methods, see [18] for instance.

In particular, if the Legendre basis is used for the Hermite interpolation, which is

the basis used in this work, the moments are computed as follows. By integration by

parts, we have, for n ≥ 1,

µn =

∫ b

a

Pn(s)e±iks ds, (4.14)

= ∓ i
k

(
Pn(b)e±ikb − Pn(a)e±ika

)
± i

k

∫ b

a

P ′n(s)e±iks ds. (4.15)

Now using the result [26, Section 14.10],

(2n+ 1)Pn = P ′n+1 − P ′n−1, n ≥ 1, (4.16)

we obtain the following recurrence relation to compute iteratively the moments

µn+1 = µn−1 + i
2n+ 1

k
µn, n ≥ 1, (4.17)

with the first two terms simply given by

µ0 = ∓ i
k

(
e±ikb − e±ika

)
, µ1 = ∓ i

k

(
be±ikb − ae±ika

)
+

1

k2

(
e±ikb − e±ika

)
. (4.18)

However, in practice, the sequence computed using the relation above diverges due

to numerical errors for values of the wave number k inferior to the degree n. In this
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situation, the domain of integration is subdivided in intervals of length equal to the

wave length λ = 2π/k and a standard high-order Gauss-Legendre quadrature rule is

applied on each one. The moments are computed iteratively when k is larger than

n (which is almost always the case in our numerical experiments). This is the only

time the wave number appears explicitly in the numerical quadrature routines. Some

convergence results of Filon-type quadrature rules are given in [24].

4.4 Treatment of singularities

Here we consider the case where a singularity is present at one end of the domain of

integration. It is always possible to get to this situation by splitting the domain in

two parts. Let l ∈ R with l > 0. Suppose that we have to evaluate the integral

J [l] =

l∫
0

f(s)ds, (4.19)

for which the integrand f : [0, l] → C has a singularity at the origin s = 0. The

singularity is dealt with by subdividing the interval of integration according to a

geometrical grading towards the singularity and using ng layers as follows. Construct

the sequence {li}ng

i=0 such that

l0 = 0, li = σng−i, i = 1, . . . , ng. (4.20)

The grading parameter σ is again here chosen to be equal to σ = 0.15. A quadrature

rule is then applied on each sub-interval (li−1, li) for i = 1, . . . , ng. A Filon-type

quadrature as described in Section 4.3 is used if the integral J [l] is oscillatory; a

standard Gauss-Legendre quadrature as presented in Section 4.2 is used otherwise.

We remark that some singularities might be outside the domain of integration but

still close to one end. If not dealt with properly, these near-singularities can be the

source of numerical errors. Using a single element and applying the quadrature rules

as in Sections 4.2 and 4.3 will not succeed in capturing the ’near-singularity’ to the

desired precision. One needs a strategy as the one described for a singular integral,

involving some grading towards the ’near-singularity’. The approach proposed in this

case is fairly simple but succeeds in computing the integrals to the desired precision.

Let l, d ∈ R with l > 0 and d > 0. Suppose that we have to evaluate the integral

K[l, d] =

l∫
0

f(s)ds, (4.21)
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d l

Situation

G [−d, l]
ng

G [0, l]
nl

Figure 4.1: Sketch of the near-singularities strategy for which we have nl = 2.

for which the integrand f : [−d, l] → C has a singularity at s = −d. The procedure

is as follows. For ease of implementation a geometrical mesh as above is used on

the interval (0, l) but with a reduced number of layers that we now determine. We

consider the geometrical mesh G [−d, l]
ng = {xi}ng

i=0 as if the domain of integration was

[−d, l] with the associated number of layers ng that would be used. Then the actual

number of layers nl used in the geometrical mesh G [0, l]
nl is computed as

nl := card
{
xi ∈ G [−d, l]

ng

∣∣∣ 0 < xi ≤ l
}
. (4.22)

From this definition, nl is equivalently found from this definition as the only integer

satisfying

σnl ≤ d

l + d
≤ σnl−1, (4.23)

which finally yields the following explicit expression

nl = d
log l+d

d

− log σ
e. (4.24)

The number of layers required is computed in practical implementation as the for-

mula above. The integral K[l, d] in (4.21) is finally computed using a subdivision of

the domain of integration according to the geometrical mesh G [0, l]
nl . A sketch of the

procedure is given in Figure 4.1.

4.5 Calibration of the numerical quadrature rou-

tines

The quadrature rules we described above have some parameters embedded which

we shall now choose for our purposes. Note that this step could have been avoided

by implementing adaptive versions of the quadrature rules. The choice of not using

adaptive quadrature is justified by the fact that all the integral evaluations required
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by the method to form the linear system (3.22), hence solve the problem, share the

same form given by (4.2). The integrand of the integrals is well-known so that we

are able to set the parameters in the quadrature rules once for all, therefore saving

computational time.

This tuning of the parameters essentially amounts to select the number of quadra-

ture nodes to obtain the aimed accuracy. Specifically, we aim at evaluating the inte-

gral (4.2) to the safe relative accuracy of ≈ 10−12. Recall that the integral (4.2) can

be of four main ’types’ for which we need to select the parameters: non-oscillatory

non-singular, computed using Gauss-Legendre quadrature; non-oscillatory singular,

computed using Gauss-Legendre quadrature on a geometrical mesh; oscillatory non-

singular, computed using Filon quadrature; and oscillatory singular, computed using

Filon quadrature on a geometrical mesh. The parameters for the ’near-singular’ in-

tegrals are set to be equal to the parameters chosen for the singular integrals.

In our numerical experiments given in Chapter 5, we do not consider maximum

polynomial degree p in (3.6) and (3.7) higher than p = 16. In the integral (4.2), the

polynomial f has therefore in practice a degree lower or equal to p = 16. The numer-

ical experimentations for tuning the quadrature parameters and reported thereafter

are obtained in the special case where (a, b) = (0, 1) in (4.2) and with a wave number

k = 106. The position of the singularity is given by x = −0.18 in the non-singular

case, which is close to the limit ≈ 0.17647 for which the integral is classified as ’near-

singular’. The singular case presented corresponds to the situation where x = 0. In

the singular or non-singular case, the integral is oscillatory when θ = 1 and non-

oscillatory when θ = −1. Other numerical experimentations than the ones presented

thereafter were performed to check the robustness of the choices made, in particular

with respect to the wave number k but also the integral bounds and position of the

singularity. The convergence results we now present illustrate the tuning, confirmed

by numerous other results.

We start by the Gauss-Legendre quadrature rule described in Section 4.2 and

for which we need to determine the order of the quadrature, denoted nGL, so as

to evaluate non-oscillatory non-singular integrals of the form of (4.2) to the desired

precision. To do so, we compute the relative error rpq such that

rpq :=
|Qpq

GL −Q∗GL|
|Q∗GL|

, (4.25)

where Q
pq
GL is defined in (4.4) and Q∗GL is taken as a reference value of the integral,

computed with a high order Gauss-Legendre quadrature rule. The convergence of
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the relative error rpq with respect to the quadrature order pq for different polynomial

degree p of the polynomial f in (4.2) is given in Figure 4.2a. From these results

and others, we choose nGL = 20 quadrature nodes in the Gauss-Legendre quadrature

rule (4.4) to compute non-oscillatory and non-singular integrals.

(a) Gauss-Legendre quadrature, non-singular

integrand.

(b) Filon quadrature, non-singular inte-

grand.

Figure 4.2: Convergence of the relative error rpq with respect to the order of the

quadrature rule pq for the computation of the non-singular integral (4.2) and for

several different polynomial degrees p of the polynomial f using Gauss-Legendre (left)

and Filon (right) quadrature rules.

We turn now to the Filon quadrature rule described in Section 4.3 and for which

we need to determine the order of the quadrature, denoted nF , so as to evaluate

oscillatory non-singular integrals of the form of (4.2) to the desired precision. To do

so, we abuse notation and compute the relative error rpq such that

rpq :=
|Qpq

F [f ]−Q∗F [f ]|
|Q∗F [f ]|

, (4.26)

where Q
pq
F [f ] is defined in (4.13) and Q∗F [f ] is taken as a reference value of the integral,

computed with a high order Filon quadrature rule. The convergence of the relative

error rpq with respect to the quadrature order pq, for different polynomial degrees p

of the polynomial f in (4.2), is given in Figure 4.2b. From these results and others,

we choose nF = 40 quadrature nodes in the Filon quadrature rule (4.13) to compute

oscillatory and non-singular integrals.

We consider now singular integrals as described in Section 4.4. Recall that to

capture the singularity, a geometrical mesh using ng layers is constructed and a
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(a) Gauss-Legendre quadrature, singular in-

tegrand.

(b) Filon quadrature, singular integrand.

Figure 4.3: Convergence of the relative error rNq with respect to the number of

quadrature nodes Nq for the computation of the singular integral (4.2) and for several

values of the parameter cq using Gauss-Legendre (left) and Filon (right) quadrature

rules. The polynomial degree p of the polynomial f is p = 16.

Gauss-Legendre or Filon quadrature rule is applied to each subinterval of this mesh,

depending on the oscillatory nature of the integrand. The order of the quadrature

applied to each of the subinterval, denoted pq, is assumed constant. Given pq, the

number of layers ng used in the construction of the geometrical mesh is computed as

ng = dcq(pq + 1)e, where cq is a parameter that we need to determine. The tuning of

pq and cq is done in order to minimise the number of quadrature nodes used, denoted

Nq, and such that Nq := ng(pq+1) = cq(pq+1)2. Let Q
cq ,pq
GL be the quadrature rule for

non-oscillatory singular integrals and Q
cq ,pq
F be the quadrature rule in the oscillatory

case. The optimal values of the parameters cq and pq for the singular quadrature with

respectively Gauss-Legendre and Filon quadrature on the subintervals are denoted by

cGLq , nsGL and cFq , nsF . To choose these parameters, we compute the relative error rNq

such that

rNq :=
|Qcq ,pq

T −Q∗T |
|Q∗T |

, (4.27)

where T is either GL or F and Q∗T is a reference value for the integral computed

with the corresponding high order quadrature rule. The convergence of the relative

error rNq with respect to the number of quadrature nodes Nq is given in Figure 4.3.

From these results and others, we choose cGLq = 1, nsGL = 17 for the computation

of non-oscillatory singular integrals and we choose cFq = 1/2, nsF = 34 in the oscil-

latory case. Note that the choices of cq are not optimal with respect to the results
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presented, but a slight k-dependency on the optimal value for the parameter cq has

been observed. The values selected ensure that the aimed accuracy is obtained for

all integrals encountered. Note also that these choices imply that the same number

of layers ng = 18 is used, whether the integral is oscillatory or not.
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Chapter 5

Numerical results

5.1 Comparison of the different approximation

strategies

The implementation of the HNA BEM was coded in Python, with the exception of

the quadrature routines for which C++ was preferred for efficiency reasons. The Filon

quadrature routines were based on Matlab codes kindly supplied by Dr Stephen

Langdon (University of Reading).

Different approximation strategies were presented in Chapter 3 and we now com-

pare their performance. To simplify the discussion, we introduce the following conve-

nient notations. The HNA BEM using an approximation space based on one single

mesh is further referred to as the M s method, whereas the related HNA BEM us-

ing the approximation space based on two overlapping meshes is referred to as the

M o method. For each of these two methods, the allocation of the collocation points

locally on each mesh elements can be done using either a uniform distribution of

the collocations points according to (3.23), for which the subscript u is used, or a

Chebyshev distribution of the collocations points according to (3.24), for which the

subscript C is used. Accordingly, we refer to the four different strategies as the M s
u,

M s
C , M o

u and M o
C methods.

Let p ∈ N be the maximum degree of the polynomials in the approximation

space SN . We adopt an hp-strategy, namely we increase the number of elements in

the meshes together with p to obtain better accuracy of the solution. The relation

between the number of elements n±i in the meshes and the maximum polynomial

degree p is as follows. We take for i = 1, . . . , ns,

n+
i = n−i = max (2, bcL(p+ 1)c) , (5.1)
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where cL ∈ R, cL > 0, is a parameter. We usually take cL = 2 in our numerical

experiments but other alternatives are considered thereafter. The choice of using at

least two layers is imposed by the overlapping meshing strategy in order to avoid

singular matrix. We choose in addition α = 1 in the definitions of the vectors of

degrees p±i in (3.6) and (3.7), although other alternatives for α are also considered

thereafter.

The comparison of the different methods is done on a simple test case consisting

of one single screen Γ = Γ1 with L = 1 so that (s1, s2) = (0, 1). We consider an

oblique incident plane wave ui in (2.1) with d = (1/
√

2, −1/
√

2).

We abuse notation and denote in the plots the numerical solution as ϕp using the

more meaningful polynomial degree p as subscript rather than the total number of

degrees of freedom N . The solution |ϕp| with p = 8 on the screen Γ1 for two wave

numbers k = 16 and k = 256 is given in Figure 5.1. Note the logarithmic scale used

and the discontinuities in the numerical approximations. The real part of the total

field u = ui + us in the domain D for k = 16 is represented in Figure 5.2. The M o
u

method is used for plotting purposes.

(a) k = 16 (b) k = 256

Figure 5.1: Solution |ϕp| with p = 8 on the screen Γ1 for two frequencies k = 16 and

k = 256 and for an incidence d = (1/
√

2, −1/
√

2).

We now study the convergence of the approximate solution ϕN to the exact solu-

tion ϕ on the screens Γ. No analytical solution is available to compare with. For mod-

erate frequencies k < 300, we use as reference the numerical solution computed using

a spectral method from the SingularIntegralEquations.jl Julia package [29],

noted φSIE and computed to machine precision on the screen. Note that the output

solution φSIE corresponds to the total jump on the screen, namely
[
∂u
∂n

]
as in (2.20).

We therefore compare it to φN := Ψ + kϕN from our numerical solution.
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Figure 5.2: Real part of the total field u = ui +us in the domain D for the scattering

problem with one screen Γ1, wave number k = 16 and incidence d = (1/
√

2, −1/
√

2).

Our approximate solution ϕN is in H̃−1/2(Γ). As a result, convergence of the ap-

proximate solution should be presented in the associated norm || · ||H̃−1/2(Γ), defined

precisely in [9, 23]. This norm is however difficult to evaluate numerically. Follow-

ing [16], a possibility is to compute || · ||Γ defined as

||φ||Γ :=
√
|〈Skφ, φ〉|, φ ∈ H̃−1/2(Γ), (5.2)

which is an equivalent norm on H̃−1/2(Γ) and is easier to compute [16]. Note that this

norm still requires the evaluation of a double integral. We therefore prefer to use a

computationally cheaper norm, namely the norm on the Lq(Γ) space, noted || · ||Lq(R),

with q = 3/2 such that

||φ||Lq(R) =

(∫
Γ

|φ(s)|q ds

)1/q

, φ ∈ Lq(Γ). (5.3)

This choice directly follows from the result given in Corollary 5.4 in [16] that we quote

now.

Theorem 5.1. For 1 < q ≤ 2, Lq(R) can be continuously embedded in H−1/2(R) with

||φ||
H

−1/2
k (R)

≤ k1/q−1 max

[
1,

1√
(2π − 1)(q − 1)

]
||φ||Lq(R), φ ∈ Lq(R). (5.4)

The above result implies that the Lq(Γ) norm for 1 < q ≤ 2 is stronger than the

H
−1/2
k (Γ) norm, which defines an equivalent norm on H̃−1/2(Γ); see [9, Section 2.] for

precise definitions and properties of these norms. Therefore, convergence in || · ||Lq(Γ)
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implies convergence in the appropriate space H̃−1/2(Γ). Even though the numerical

approximation is in Lq(Γ) for q ≥ 1, the exact solution is not in L2(Γ) (see the remark

following Theorem 2.1). The choice of the L3/2(Γ) norm has therefore been made.

Note that no particular physical meaning is associated with this norm but it fits our

purposes.

In practice, the numerical evaluation of the L3/2(Γ) norm still requires much care

as the integrand typically exhibits high absolute values near the corners of the screens

as well as high oscillations. The oscillations are captured by subdividing the domain

of integration into subintervals with length of the order of the wavelength. The

singularities near the domain ends are tackled as before by introducing subdivisions

of the domain of integration according to a geometrical grading towards the corners.

On each subinterval a high-order Gauss-Legendre quadrature rule is applied.

We compute the relative error rp[φp] for the polynomial degree p, defined as

rp[φp] :=
||φSIE − φp||L3/2(Γ)

||φSIE||L3/2(Γ)

. (5.5)

The convergence plots of the relative errors rp[φp] for the M s
u and M o

u methods is

given in Figure 5.3.

When achieved, the convergence with respect to the polynomial degree p is ex-

ponential. This was expected from the results presented for the Galerkin method

in [16], and our best approximation result in Theorem 3.1 (for the overlapping mesh-

ing strategy). Even though we lack a quasi-optimality estimate, contrary to the

Galerkin method, these results hint at the possibility that a similar result could hold

for the collocation method.

Another remarkable feature of these convergence plots is the decrease of the er-

ror for a given polynomial degree p as the wave number of the problem k increases,

reproducing the results in [16] for the Galerkin scheme. This suggests that the per-

formance of the HNA method actually improves with the frequency, assuming that

the reference solution is computed to the same precision uniformly in k.

For some particular frequencies, the convergence of the error is either not obtained

(low frequencies in the overlapping meshes case) or not exponential (relatively high

frequencies in the single mesh case). A closer look to the numerical solutions shows

that they exhibit spurious oscillations. These oscillations are present at the ends

of the mesh elements in the centre of the screen, in the single mesh case. In the

overlapping meshes case, however, the oscillations are present in the small elements

near the corners of the screen. We note similarities of these oscillations with the Runge
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(a) M s
u method. (b) Mo

u method.

Figure 5.3: Comparison of the convergence of the relative error rp[φp] on the boundary

with respect to the polynomial degree p for several frequencies and the two meshing

strategies. Uniform allocation of the collocation points locally on each mesh elements.

Scattering problem with one screen Γ1 and with incidence d = (1/
√

2, −1/
√

2).

phenomenon, at least in the case of the single type mesh, as they are located at the

end of the element supporting the polynomial, and manifest themselves particularly

when the polynomial order increases. The uniform allocation of the collocation points

locally on each mesh elements according to (3.23) is then reconsidered. The other

allocation process, using a Chebyshev distribution of the collocation points locally on

each elements according to (3.24), is now tested. The convergence plots of the relative

errors rp[φp] for the two methods M s
C and M o

C using this Chebyshev distribution of

collocation points is given in Figure 5.4. The improvement of the convergence of

the error for the M s
C method is clear, as exponential convergence is achieved for all

frequencies. For the M o
C strategy, however, the convergence of the error is clearly

harmed for p ≥ 4. In fact the solutions are now wrong, except for k = 256 for which

we obtain convergence, although not exponentially.

To further investigate this issue, we first plot the evolution of the condition num-

ber, noted κp, of the matrix M of the linear system (3.22) with respect to the maxi-

mal polynomial degree p; see Figure 5.5. For all methods the growth of the condition

number κp is exponential with respect to the polynomial degree p. In fact, no real

difference in the conditioning is observed between the different methods, quite sur-

prisingly. The fact that the growth seems bounded by 1017 is likely due to a wrong

numerical evaluation of κp when these high values are reached.

The rate of increase is noticeably more important for small wave numbers. For
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(a) M s
C method. (b) Mo

C method.

Figure 5.4: Comparison of the convergence of the relative error rp[φp] on the boundary

with respect to the polynomial degree p for several frequencies and the two meshing

strategies with allocation of the collocation points on Chebyshev grids locally on

each mesh elements. Scattering problem with one screen Γ1 and with incidence d =

(1/
√

2, −1/
√

2).

moderate to large values of k, note also the slight decrease in the condition number

as k increases. This was expected since the two oscillatory terms in ϕ exhibit similar

behaviour when the wavelength λ is of the order of the length of the screen. The direct

solver used to solve the linear system can however in this case produce inaccurate

results. The bad conditioning of the matrix M could therefore explain the poor

convergence observed for small frequencies for the M o
u method in Figure 5.3b.

As discussed previously in Section 3.3 and pointed out in [2], the conditioning of

the problem in the overlapping meshing strategy could be possibly improved by pre-

venting two collocations points belonging to the two different meshes to be too close.

This has not been tested and could be investigated in further work. However, the

conditioning of the matrix M alone cannot explain the lack of convergence for the M o
C

method displayed in Figure 5.4b. In this case, the current explanation might be that

the implementation of this particular configuration is prone to numerical instability,

further complicated by the ill-conditioning. It is possible that a different implemen-

tation using the same approximation space would provide different results for which

convergence would be achieved. In the light of these results, it is unfortunately not

possible to decide which meshing strategy is best.

The wave numbers considered so far are relatively moderate so that we are able

to compare with the reference solution from the SingularIntegralEquations.jl
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(a) M s
u method. (b) Mo

u method.

(c) M s
C method. (d) Mo

C method.

Figure 5.5: Comparison of the condition number κp of the matrix M with respect to

the polynomial degree p for several frequencies. Scattering problem with one screen

Γ1 and with incidence d = (1/
√

2, −1/
√

2).

Julia package. We now show convergence of the method for much larger frequencies

by computing an alternative relative error r̃p[φp] again with respect to the polynomial

degree p but using φ8 as a reference solution (when actual convergence is achieved)

and considering only p < 8

r̃p[φp] :=
||φ8 − φp||L3/2(Γ)

||φ8||L3/2(Γ)

. (5.6)

The convergence of the error r̃p[φp] for all four methods is given in Figure 5.6. The

error rp[φp], rather that r̃p[φp], has already been computed for the two smaller wave

numbers k = 16 and k = 256 and therefore serves as a comparison. These new

results at large frequencies confirm the exponential convergence with respect to the

polynomial degree p when using either the M s
C or the M o

u strategies. The lack of
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convergence of the M s
u at large frequencies is also confirmed, as no convergence has

been achieved for k = 65536. The somewhat surprising result is the exponential

convergence of the M o
C strategy for large frequencies.

(a) M s
u method. (b) Mo

u method.

(c) M s
C method. (d) Mo

C method.

Figure 5.6: Comparison of the convergence of the relative error r̃p[φp] on the boundary

with respect to the polynomial degree p for several frequencies. Scattering problem

with one screen Γ1 and with incidence d = (1/
√

2, −1/
√

2).

To sum up the previous results exposed, the M s
C method is the most effective as it

converges for all frequencies tested; the M o
u method performs really similarly, except

at low frequencies where conditioning issues arise. Further results are therefore only

presented for the two methods M s
C and M o

u.

We compare the convergence with respect to the number of degrees of freedom

N of the method, in order to determine the most computationally efficient method.

To do this, we use the reference solution from the SingularIntegralEquations.jl

package and compute the relative error rN [φN ] with respect to the total number of
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(a) M s
C method. (b) Mo

u method.

Figure 5.7: Comparison of the convergence of the relative error rN [φN ] on the bound-

ary for several frequencies. Scattering problem with one screen Γ1 and with incidence

d = (1/
√

2, −1/
√

2).

degrees of freedom N defined as

rN [φN ] :=
||φSIE − φN ||L3/2(Γ)

||φSIE||L3/2(Γ)

. (5.7)

The convergence plots of the relative errors rN [φN ] are given in Figure 5.7. For small

frequencies, the number of degrees of freedom N in both methods are identical for

a given p. However, this does not hold for larger values of the frequency, for which

the M s
C strategy tends to add more degrees of freedom for similar levels of accuracy

obtained. The M o
u method is therefore expected to perform even more efficiently with

respect to N as the frequency gets higher. Recall however that N for the M s
C method

is bounded uniformly with respect to k, so that the difference in performance for p

fixed between the two strategies will stop increasing for a limiting value of k.

We now turn our attention to the choice of two parameters present in the ap-

proximation space, namely the parameter α used in the definitions of the vectors of

degrees p±i in (3.6) and (3.7), and the parameter cL used in (5.1).

Starting with the parameter α, we plot the evolution of the error rN [φN ] with

respect to the number of degrees of freedom N , together with the evolution of the

condition number κp of the matrix M with respect to the polynomial degree p, for

different values of the parameter α, in Figure 5.8. From the graphs, it is clear that

the choice α = 0, corresponding to constant maximum polynomial degree on every

mesh element, only increases slightly the accuracy of the method, at the cost of an

important increase in the number of degrees of freedom used and in the conditioning

37



(a) M s
C method. Relative error rN [φN ]. (b) Mo

u method. Relative error rN [φN ].

(c) M s
C method. Condition number κp. (d) Mo

u method. Condition number κp.

Figure 5.8: Comparison of the convergence of the relative error rN [φN ] on the bound-

ary with respect to the number of degrees of freedom N , and of the evolution of the

condition number κp of the matrix M with respect to the polynomial degree p, for

different values of the parameter α. Scattering problem with one screen Γ1, wave

number k = 8 and incidence d = (1/
√

2, −1/
√

2).

of the problem. The choice α = 1, corresponding to a linear decrease in the maximal

degree of the approximating polynomials gradually towards the singularities, is then

legitimate.

We now plot in Figure 5.9 the evolution of the error rN with respect to the number

of degrees of freedom N , and evolution of the condition number κp of the matrix M

with respect to the polynomial degree p, for different values of the second parameter

of interest cL. Note that for the case cL = 3, the maximum polynomial degree

considered is p = 5 compared to p = 7 for the other values. Higher values of p in this

case (cL = 3) leads to too much refinement in the geometrical meshes used. Indeed,
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(a) M s
C method. Relative error rN [φN ]. (b) Mo

u method. Relative error rN [φN ].

(c) M s
C method. Condition number κp. (d) Mo

u method. Condition number κp.

Figure 5.9: Comparison of the convergence of the relative error rN [φN ] on the bound-

ary with respect to the number of degrees of freedom N , and of the evolution of the

condition number κp of the matrix M with respect to the polynomial degree p, for

different values of the parameter cL. Scattering problem with one screen Γ1, wave

number k = 8 and incidence d = (1/
√

2, −1/
√

2).

when using double precision, one cannot use more than 18 layers in a geometrical

mesh with a grading parameter of σ = 0.15.

The improvement in the convergence of the error rN with increasing values of the

parameter cL, hence increasing refinement in the geometrical grading of the meshes,

demonstrates the efficiency of this approach to capture the singularities in the screen

corners. However, using a too high value of cL, such as cL ≥ 3, only allows to resolve

the singularities, at the cost of a poor resolution of the oscillations. It also leads

to ill-conditioning of the problem, that prevents to reach the desired accuracy by

limiting the maximum polynomial degree p that can be used in the method. On the
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contrary, using a too low value of cL, such as cL ≤ 1, imposes to greatly increase the

maximum polynomial degree p used in order to obtain a desired accuracy, which can

also lead to ill-conditioning. The optimality seems therefore to lie in between, with

values such as cL = 2. For this choice of cL, relatively fast convergence is obtained

and the maximum polynomial degree p can be increased in order to obtain the desired

level of accuracy.

We also highlight the fact that the L3/2(Γ) norm might measures preferentially

the convergence in the capture of the singularities rather than in the capture of the

oscillations. In this respect, the choice of the optimal values for the two parameters

α and cL might differ according to the norm used.

(a) M s
C method. (b) Mo

u method.

Figure 5.10: Comparison of the convergence of the relative error rp[up] in the domain

of propagation D with respect to the polynomial degree p for several frequencies.

Scattering problem with one screen Γ1 and with incidence d = (1/
√

2, −1/
√

2).

We now turn to the evaluation of another quantity of more physical interest,

namely the value of the total field u = ui + us in the domain D of propagation.

Following previous notation, we refer to the numerical approximation of the total

field as up, where p denotes the maximum polynomial degree used. No theoretical

error estimates are available for the total field approximation up. However, following

the proof of Theorem 6.2 in [16], we remark that for x ∈ D, we have

|u(x)− up(x)| = k|Sk(ϕ− ϕp)(x)|, (5.8)

≤ k||Φk(x, ·)||H1/2
k (Γ)

||ϕ− ϕp||H̃−1/2
k (Γ)

. (5.9)

The quantity ||Φk(x, ·)||H1/2
k (Γ)

is bounded, although non uniformly, in D, with a k

dependence behaving like O
(

log1/2(k)
)
; see Lemma 4.6(ii) in [16]. From our best-
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approximation result in Theorem 3.1 and the exponential convergence of the numerical

approximation ϕp on the boundary, one can expect that the numerical approximation

of the wave field up converges also exponentially in the domain D.

The accuracy of the numerical approximation is investigated by approximating the

infinity norm on a circle, noted C, of centre (1/2, 0) and radius 1 in the domain. The

reference solution, denoted uSIE, is computed using the SingularIntegralEquations.jl

Julia package. We compute rp[up] defined as

rp[up] :=
maxx∈C |up(x)− uSIE(x)|

maxx∈C |uSIE(x)|
, (5.10)

on 2560 points uniformly distributed on the circle, so that there are 10 points per

wavelength for the highest wave number considered k = 256. The convergence plots

are given in Figure 5.10. While convergence of the numerical approximation up to the

reference solution uSIE is clearly obtained, it is not possible to assert that exponen-

tial convergence is achieved. For the M s
C method, the somewhat better convergence

rate that seems to be obtained at low frequencies could be explained by the fact

that the oscillations are resolved not only by the explicit oscillatory factors e±iks in

our approximation space, but also by the high order polynomials approximating the

amplitudes.

(a) k = 16 (b) k = 256

Figure 5.11: Magnitude of the far field pattern |Fp| with p = 8 for two wave numbers

k = 16 and k = 256. Scattering problem with one screen Γ1 and incidence d =

(1/
√

2, −1/
√

2).

Another quantity of interest is the far-field pattern F . We compute a numerical

approximation Fp to the far-field pattern according to [16], as

Fp(x̂) = −
∫
Γ

(Ψ(y) + kϕp(y)) e−ikx̂·y ds(y), x̂ =
x

|x|
∈ S1, (5.11)

41



where S1 denotes the unit circle.

The magnitude of the far-field pattern |Fp|(t) with p = 8 for t ∈ [0, 2π] at two

values of the wave number k = 16 and k = 256 is given in Figure 5.11. The peaks cor-

responding to the specular reflection and geometrical shadow are clearly identifiable

respectively at t = π/4 and t = 3π/4.

Again, no theoretical error estimates are available for the numerical approximation

of the far field pattern Fp. However, following the proof of Theorem 6.3 in [16], we

remark that for x̂ ∈ S1, we have

|F (x̂)− Fp(x̂)| = k|〈e−ikx̂·(·), ϕ− ϕp〉Γ|, (5.12)

≤ k||e−ikx̂·(·)||
H

1/2
k (Γ)

||ϕ− ϕp||H̃−1/2
k (Γ)

, (5.13)

where the duality pairing 〈·, ·〉Γ on H1/2(Γ) × H̃−1/2(Γ) is defined precisely in [9].

The quantity ||e−ikx̂·(·)||
H

1/2
k (Γ)

is bounded on Γ by a constant with k dependence

behaving like O
(√

k
)
; see Lemma 4.6(i) in [16]. Again, for the far-field pattern,

the previous results hint at the possibility to have exponential convergence of the

numerical approximation Fp.

We approximate the infinity norm on S1 by sampling the unit circle using 50 000

points. We compute the following relative error r̃p[Fp], using the numerical approxi-

mation F8 as the reference solution,

r̃p[Fp] :=
maxx̂∈S1 |Fp(x̂)− F8(x̂)|

maxx̂∈S1 |F8(x̂)|
. (5.14)

The convergence plots of the error r̃p[Fp] are given in Figure 5.12. The convergence

rates observed are similar to that of the convergence in the domain for the wave field

up.

5.2 A more challenging test case

To demonstrate the capabilities of the method and its implementation in handling

more difficult problems, we now present a more challenging test case taken from [16].

The test consists of ns = 5 screens Γ =
⋃ns

i=1 Γi, as defined in (2.2) and such that

s1 = 0, s2 = 2π, s3 =
21π

10
, s4 =

5π

2
, s5 =

14π

5
, s6 =

7π

2
, (5.15a)

s7 = 4π, s8 = 6π, s9 =
61π

10
, s10 = L = 10π. (5.15b)
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(a) M s
C method. (b) Mo

u method.

Figure 5.12: Comparison of the convergence of the relative error r̃p[Fp] with respect to

the polynomial degree p for several frequencies. Scattering problem with one screen

Γ1 and with incidence d = (1/
√

2, −1/
√

2).

We consider for this problem the ’non-grazing’ incidence d = (1/
√

2, −1/
√

2) as

well as the ’grazing’ incidence d = (1, 0) . This problem is more challenging by the

number of screens, the variety of the lengths and separations between the screens and

the incidences considered.

The solution |ϕp| with p = 15 and cL = 1 on the boundary Γ for two frequencies

k = 10 and k = 2560 is given in Figure 5.13. For this test, the choice cL = 1 has been

retained in order to limit the mesh refinement as the maximal polynomial degree is

increased. Note that as a result, we are able to obtain numerical solutions for very

high values of p.

The real part of the total field u is represented in Figure 5.14a for the non-

grazing incidence d = (1/
√

2, −1/
√

2) and in Figure 5.14b for the grazing incidence

d = (1, 0), both with a wave number k = 5. The magnitude of the far-field pattern

|Fp| with p = 15 is represented in Figure 5.15 for the two incidences considered and

for k = 16.

We present convergence results of the numerical solution ϕp for p < 15, using the

numerical solution computed with p = 15 as a reference solution. The convergence of

the relative error r̃p[φp] as defined in (5.6) is given in Figure 5.16 for several frequencies

and the two incidences considered. Exponential convergence is achieved again on this

more challenging problem, with a convergence rate independent of the wave number.

The relative error in the domain, noted r̃p[u], is computed on the perimeter of

a rectangle, noted R, with corners at (−π,−π), (11π,−π), (11π, π), (−π, π) which
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(a) Non-grazing incidence, k = 10. (b) Grazing incidence, k = 10.

(c) Non-grazing incidence, k = 2560. (d) Grazing incidence, k = 2560.

Figure 5.13: Solution |ϕp| with p = 15 on the boundary Γ of the scatterer for the

scattering problem with five screens, for two wave numbers k = 10 and k = 2560 and

for the grazing d = (1, 0) and non-grazing d = (1/
√

2, −1/
√

2) incidences.

surrounds the screens, and sampled with at least 10 points per wavelength, such that

r̃p[up] :=
maxx∈R |up(x)− u15(x)|

maxx∈R |u15(x)|
. (5.16)

The reference solution used is up with p = 15. The convergence of the relative

error r̃p[up] in the domain D is given in Figure 5.17, for several frequencies and

the two incidences considered. The relative error in the far field pattern, noted

r̃p[Fp] is computed according to (5.14) but using Fp with p = 15 as the reference

solution. The convergence of the relative error in the far field pattern r̃p[Fp] is given

in Figure 5.18, for several frequencies and the two incidences considered. Note that

the results obtained with the M o
u method with p = 8 are affected by conditioning

issues. Convergence of the numerical approximations up and Fp is again obtained

for this more challenging problem, demonstrating the robustness of the method in

handling more complicated scatterer.

44



(a) Non-grazing incidence.

(b) Grazing incidence.

Figure 5.14: Real part of the total field u = ui+us in the domain D for the scattering

problem with five screens, wave number k = 5 and for the grazing d = (1, 0) and

non-grazing d = (1/
√

2, −1/
√

2) incidences.

(a) Non-grazing incidence. (b) Grazing incidence.

Figure 5.15: Far field pattern |Fp| with p = 15 for the scattering problem with

five screens, wave number k = 16 and for the grazing d = (1, 0) and non-grazing

d = (1/
√

2, −1/
√

2) incidences.
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(a) M s
C method. Non-grazing incidence. (b) Mo

u method. Non-grazing incidence.

(c) M s
C method. Grazing incidence. (d) Mo

u method. Grazing incidence.

Figure 5.16: Comparison of the convergence of the relative error r̃p[φp] on the bound-

ary Γ of the scatterer with respect to the polynomial degree p and for several frequen-

cies. Scattering problem with five screens for the grazing d = (1, 0) and non-grazing

d = (1/
√

2, −1/
√

2) incidences.
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(a) M s
C method. Non-grazing incidence. (b) Mo

u method. Non-grazing incidence.

(c) M s
C method. Grazing incidence. (d) Mo

u method. Grazing incidence.

Figure 5.17: Comparison of the convergence of the relative error r̃p[up] in the domain

of propagation D with respect to the polynomial degree p and for several frequencies.

Scattering problem with five screens for the grazing d = (1, 0) and non-grazing

d = (1/
√

2, −1/
√

2) incidences.
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(a) M s
C method. Non-grazing incidence. (b) Mo

u method. Non-grazing incidence.

(c) M s
C method. Grazing incidence. (d) Mo

u method. Grazing incidence.

Figure 5.18: Comparison of the convergence of the relative error r̃p[Fp] for the far

field pattern Fp with respect to the polynomial degree p and for several frequencies.

Scattering problem with five screens for the grazing d = (1, 0) and non-grazing

d = (1/
√

2, −1/
√

2) incidences.
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5.3 Execution time

Conventional numerical methods to solve wave scattering problems similar to the ones

presented in this work have a strongly k-dependent computational cost. In particular,

the number of degrees of freedom used to achieve a given accuracy typically increases

at least linearly with the wave number k. On the contrary, the hybrid numerical-

asymptotic approximation space used in the method we presented has the remarkable

feature that the number of degrees of freedom required to achieve a given accuracy

and the computational cost are essentially constant as the frequency increases.

Figure 5.19: Comparison of the execution time between the

SingularIntegralEquations.jl Julia package (SIE), the single mesh strat-

egy with Chebyshev collocation points, and the overlapping meshing with uniform

distribution of the collocation points method. The maximum polynomial degree used

for these last two methods is p = 8.

To illustrate this, we plot the computational time required by our two preferred

methods together with the computational time required by the method implemented

in the SingularIntegralEquations.jl Julia package that provides our reference

solution. The test case is the wave scattering problem as in Section 5.1 consisting of

one single screen Γ1 and oblique incidence d = (1/
√

2, −1/
√

2). The results are given

in Figure 5.19. The execution time used to solve the problem by the Julia package

grows like a polynomial law in the wave number k [29]. The computational cost of the

overlapping meshing method with uniform allocation of the collocation points is fairly

constant for the wide range of frequencies considered. The single mesh strategy with

Chebyshev collocation points has a slight increase in the computational cost, due to

the increase of number of degrees of freedom used for a given p, as the wave number k
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increases. However the increase in computational cost is appreciably small compared

to the range of frequencies considered and is bounded from above uniformly in k (as

the number of degrees of freedom N is bounded from above uniformly in k).

Note importantly that the frequency-independent computational cost of the method

is due to the implementation of efficient quadrature rules. Note importantly that the

fact that the method has a computational cost frequency independent was made pos-

sible by the implementation of efficient quadrature rules to compute highly oscillatory

integrals in a k independent fashion. The development of HNA methods at high fre-

quencies relies therefore strongly on the availability and efficiency of such quadrature

methods.
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Chapter 6

Conclusions

The application of a hybrid numerical-asymptotic boundary element method for solv-

ing the boundary integral equation arising from the problem of high-frequency wave

scattering by two-dimensional planar screens has been investigated. If the efficiency

of such HNA BEM using Galerkin schemes is relatively well understood, both the-

oretically and numerically [11, 10, 17, 16], little is known on collocation approaches

for such methods, with the exception of [2]. This work has mainly shown that using

a collocation method can indeed be an efficient and robust strategy, provided some

care is taken in its practical implementation.

Two types of HNA approximation spaces were investigated. The first one, for

which a best-approximation result holds, involves two overlapping meshes to approxi-

mate the two oscillatory components of the solution. The second one relies on a single

mesh, in an attempt to simplify the structure of the approximation. In both cases,

the approximation space is carefully designed to minimise conditioning problems as

the number of degrees of freedom N increases.

The collocation method we put into place to numerically select elements in these

approximation spaces requires to choose a distribution of N collocation points on the

boundary. The allocation of these points can be done in various ways. The uniform

and Chebyshev distributions, locally on the mesh elements, have been considered.

In our numerical experiments, two different strategies have proved to solve effi-

ciently the problem, namely the strategy based on an approximation space using a

single mesh with a Chebyshev distribution of the collocation points, and the strat-

egy based on an approximation space using two overlapping meshes with a uniform

distribution of the collocation points.

For these two successful strategies, we numerically obtained exponential conver-

gence of the numerical solution on the boundary as the maximum polynomial degree
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p of the approximation increases. This numerical result hints at the possibility that

the collocation BEM actually achieves quasi-optimality. We also show convergence

of our numerical solution in the domain of propagation and in the far-field, although

the convergence rate is not precisely identified.

We finally emphasise that these results where obtained with a number of degrees

of freedom fairly constant with respect to the frequency of the problem. The conver-

gence of the numerical solution on the boundary actually improves as the frequency

increases. In fact the computational cost of this HNA method is (almost) frequency-

independent. This result was made possible by the implementation of efficient highly

oscillatory numerical quadrature. The well-known behaviour of the integrands in

the integrals considered greatly simplified the construction of dedicated numerical

integrators.

In future work, the numerical instabilities observed with the approximation space

based on two overlapping meshes with a Chebyshev distribution of the collocation

points could be further investigated. We also note that we implicitly assumed that

the number of collocation is equal to the number of degrees of freedom N . However

nothing prevents us from considering a higher number of collocation points and the

over-determined systems associated. Other possibilities of extensions include Neu-

mann or Robin problems, which are often of high interest for acoustic applications,

and other formulations of the boundary integral equations.
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