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Abstract. Many combinatorial optimization problems can be formu-
lated as the minimization of a 0-1 quadratic function subject to linear
constraints. In this paper, we are interested in the exact solution of
this problem through a two phases general scheme. The first phase con-
sists in reformulating the initial problem either into a compact integer
linear program or into an integer quadratic convex program. The sec-
ond phase simply consists of submitting the reformulated problem to a
standard solver. The efficiency of this scheme strongly depends on the
quality of the reformulation obtained in phase 1. We show that a good
compact linear reformulation can be obtained by solving a continuous
linear relaxation of the initial problem. We also show that a good qua-
dratic convex reformulation can be obtained by solving a semi-definite
relaxation. In both cases, the obtained reformulation profits from the
quality of the underlying relaxation. Hence, the proposed scheme gets
around, in a sense, the difficulty to incorporate these costly relaxations
in a branch-and-bound algorithm.
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Résumé. Le problème de la minimisation d’une fonction quadratique
en variables 0-1 sous contraintes linéaires permet de modéliser de nom-
breux problèmes d’Optimisation Combinatoire. Nous nous intéressons
à sa résolution exacte par un schéma général en deux phases. La
première phase permet de reformuler le problème de départ en un
programme en nombres entiers, soit linéaire compact, soit quadra-
tique convexe. La deuxième phase consiste simplement à soumettre
le problème reformulé à un solveur standard. L’efficacité de ce schéma
est étroitement liée à la qualité de la reformulation obtenue à la fin de
la phase 1. Nous montrons qu’une bonne reformulation linéaire com-
pacte peut être obtenue par la résolution d’une relaxation linéaire. De
même, une bonne reformulation quadratique convexe peut être obtenue
par une relaxation semi-définie positive. Dans les deux cas, la reformu-
lation obtenue tire profit de la qualité de la relaxation sur laquelle elle
se base. Ainsi, le schéma proposé contourne, d’une certaine façon, la
difficulté d’intégrer les relaxations, coûteuses en temps de calcul, dans
un algorithme de branch-and-bound.

Introduction

Consider the following linearly-constrained zero-one quadratic program :

Q01 : Min







F (x) =

n
∑

i=1

qixi +

n
∑

i=1

n
∑

j=1,j 6=i

qijxixj : x ∈ X, x ∈ {0, 1}n







where X =

{

x :
n
∑

i=1

akixi = bk, k = 1, .., m;
n
∑

i=1

a′
ℓixi ≤ b′ℓ, l = 1, .., p; x ∈ {0, 1}n

}

is the feasible solution set of Q01 and qi, qij , aki, bk, a′
ℓi, b′ℓ are real numbers.

Without loss of generality, we can assume that qij = qji. We denote by X the

continuous-relaxation solution set of Q01. Set X is obtained from X by replacing
x ∈ {0, 1} by x ∈ [0, 1].

Problem Q01 is NP-hard [10]. It allows to formulate many Combinatorial Op-
timization problems such as graph bipartition, quadratic knapsack, and quadratic
assignment. It also has several applications. Due to its complexity, many heuristic
solution methods have been proposed for it. For example, [2], [12], [18], and [19]
apply tabu search for the unconstrained problem and local search heuristics are
applied to graph bipartition problems in [16], [17].

Exact solution methods have also been proposed for solving Q01. In this paper,
we focus on two main approaches : linear reformulation and quadratic convex re-
formulation. Linear reformulation techniques transform Q01 into a mixed integer
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linear program. The most frequently used linearization was first introduced by
Fortet in [8], [9] and is sometimes called the classical linearization. It consists in
replacing each product xixj by a new variable yij and adding a set of linear con-
straints that force yij to be equal to xixj , i.e. yij ≤ xi, yij ≥ xi +xj − 1, yij ≥ 0,
and yij = yji for all i 6= j. A strengthening of the classical linearization by a
family of valid inequalities was later proposed by Sherali et al. in [21], [22]. They
developed a Reformulation and Linearization Technique (RLT). Using quite differ-
ent ideas, Glover [11] introduced an alternative linearization strategy that requires
a much smaller set of additional variables and constraints than the classical lin-
earization and RLT. This is why it is often called a compact linearization. Compact
linearization, and variants of it, was further used by several authors [1], [6], [13].

Another class of exact solution methods aims at reformulating the objective
function of Q01 by a quadratic convex function. Doing this, solving the continu-
ous relaxation of the reformulated problem becomes tractable in polynomial time.
For example, Hammer and Rubin [15] devise a simple convexification method
based on a smallest eigenvalue computation. Later, Carter [7] then Billionnet and
Elloumi [3], Plateau et al. [20], and Billionnet et al. [4] study several families of
quadratic convex reformulations and provide theoretical and computational com-
parisons between these families. All the reformulations proposed in [3], [20], and [4]
are based on an exact solution of a quadratic semidefinite program. Among these
papers, the reformulation proposed in [4] and called QCR gives the provably best
bound by continuous relaxation.

In this paper, we introduce a positive compact linearization method and we
recall the quadratic convex reformulation method QCR [4]. We will focus on the
fact that each of these methods takes profit from a preprocessing phase. This
phase aims both at finding a suitable reformulation of the problem and at making
the further resolution process as efficient as possible. To achieve this last objective,
we use the common criteria that prefers reformulations yielding bounds as tight
as possible by continuous relaxation. We will show how we build a positive linear
compact reformulation once an RLT relaxation is solved (or computed) and how
it captures the bound obtained by this relaxation. In a similar way, QCR is built
once an appropriate SDP relaxation is solved and it captures the bound obtained
by SDP relaxation.

The rest of the paper is organized as follows: Linear compact reformulations
and convex quadratic reformulations are presented in Section 1. In Section 2, we
show how to build a positive compact linearization from the RLT solution. In
Section 3, we show how to build a QCR reformulation from the solution of an
SDP relaxation. Section 4 is a conclusion.

Example:
All along this paper, we will use the same example for illustration purposes. Con-
sider the following 0-1 quadratic programming instance E, which optimal value is
-65:
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E : Min φ(x) = −9x1 − 7x2 + 2x3 + 23x4 + 12x5 − 48x1x2 + 4x1x3 + 36x1x4

−24x1x5 − 7x2x3 + 36x2x4 − 84x2x5 + 40x3x4 + 4x3x5 − 88x4x5

s.t.
x1 − 2x2 + 5x3 + 2x4 − 2x5 ≥ 2
x1 + x2 + x4 + x5 = 2
x1, x2, x3, x4, x5 ∈ {0, 1}

1. Reformulation of quadratic 0-1 programs

In the context of this paper, a reformulation of Q01 is any equivalent mathe-
matical program P with integer or mixed integer variables, that is either linear or
quadratic convex. These equivalent reformulations are expected to preserve the
feasible solution domain and the optimal value. Among all the possible reformula-
tions, we choose two reformulation schemes that either use the same variables and
constraints as program Q01 or require a reduced number of additional variables
and constraints. Let us first recall the linear compact reformulation of Glover.

1.1. The compact linearization of Glover [11]

The linear reformulation method proposed in [11] aims to replace non-linear
expressions of Q01 by a set of continuous variables. More precisely, take zj =

xj

n
∑

i=1,i6=j

qijxi and reformulate Q01 by:

RLg : Min F (x) =

n
∑

i=1

qixi +

n
∑

j=1

zj

s.t.
n

∑

i=1

akixi = bk k = 1, . . . , m

n
∑

i=1

a′
ℓixi ≤ b′ℓ ℓ = 1, . . . , p

Ljxj ≤ zj ≤ Ujxj j = 1, . . . , n
n

∑

i=1,i6=j

qijxi − Uj(1 − xj) ≤ zj j = 1, . . . , n

zj ≤
n

∑

i=1,i6=j

qijxi − Lj(1− xj) j = 1, . . . , n

x ∈ {0, 1}n, zj ∈ R
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where Lj and Uj are respectively lower and upper bounds of the linear func-

tions
n
∑

i=1,i6=j

qijxi, computed as : Lj = Min

{

n
∑

i=1,i6=j

qijxi : x ∈ X

}

and Uj =

Max

{

n
∑

i=1,i6=j

qijxi : x ∈ X

}

By optimality considerations, since coefficients of the zj variables in the objective

function are nonnegative, inequalities zj ≤ Ujxj and zj ≤
n
∑

i=1,i6=j

qijxi−Lj(1−

xj) can be discarded.
In the following, we present a family of compact linearizations that are inspired

from the linearization of Glover. They are built from a first reformulation of the
objective function as a constant plus a nonnegative function over X.

1.2. Positive linear compact reformulation

Suppose one has identified a constant c and functions L(x), fi(x), and gi(x)
that are nonnegative on the relaxed domain X , and that satisfy:

∀x ∈ X, F (x) = c + L(x) +

n
∑

i=1

xifi(x) +

n
∑

i=1

(1− xi)gi(x) (1)

This first reformulation of F (x) is always possible since a quadratic pseudo-
boolean function can be written as a constant plus a quadratic posiform. Function
K
∑

k=1

CkTk is a quadratic posiform if all coefficients Ck are nonnegative and every

Tk is a literal or the product of two literals. A literal is either a variable xi or its
complement (1 − xi). Writing a quadratic pseudoboolean function as a constant,
as large as possible, plus a posiform has addressed much interest in literature
and we know it can be done by at least three different methods, see for exam-
ple [14]. For our example E, the largest constant equals -160 and we can write
φ(x) = −160+41(1−x1)+42(1−x2)+x1[48(1−x2)+24(1−x5)]+71x2(1−x5)+x3(40x4+4x5)+

x4[7x5+85(1−x5)]+(1−x1)[4(1−x3)+36(1−x4)]+(1−x2)[7x3+36(1−x4)+13x5]+(1−x3)(1−x5)

From the first reformulation as (1), we can now build our positive compact
linearization. For i = 1, ..., n, we need an upper bound f i (resp. gi) for function
fi(x) (resp. gi(x)) over the feasible solution set X . Let RLcomp be the following
mixed 0-1 linear program :
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RLcomp : Min FL(x) = c + L(x) +

n
∑

i=1

hi +

n
∑

i=1

h′
i

s.t.
n

∑

i=1

akixi = bk k = 1, . . . , m

n
∑

i=1

a′
ℓixi ≤ b′ℓ ℓ = 1, . . . , p

hi ≥ fi(x) − f i(1− xi) i = 1, . . . , n

h′
i ≥ gi(x) − gixi i = 1, . . . , n

x ∈ {0, 1}n

hi ≥ 0 h′
i ≥ 0 i = 1, . . . , n

The inequalities on hi and h′
i impose that, for any optimal solution (x, h, h′)

for RLcomp, if xi = 0 then hi = 0 and h′
i = gi(x) ; if xi = 1 then hi = fi(x) and

h′
i = 0. Hence, variable hi (resp. h′

i) is equal to xifi(x) (resp. (1− xi)gi(x)). The
following property states the equivalence of Q01 and RLcomp:

Proposition 1.1. Problems Q01 and RLcomp are equivalent in the sense that,

from any optimal solution of the one, we can build a solution to the other, with

the same objective value.

Program RLcomp has the n variables xi and the m + p constraints of the initial
program Q01. In addition, it has 2n nonnegative variables hi and h′

i, and 2n

additional constraints.
Other linear compact reformulations are reported in literature. Most of them

are inspired from [11]. Our positive compact linearization can also be considered
as a variation of [11] and has the advantage of working on a first reformulation
of the objective function as a constant c plus a quadratic function, nonnegative
over X. Hence, we can be sure that the lower bound computed by continuous
relaxation of RLcomp is at least c. Observe also that this last property holds for

any correctly chosen values of the upper bounds f i et gi on functions fi(x) and
gi(x).

1.3. Quadratic convex reformulation [4]

A quadratic convex reformulation of Q01 consists in finding a quadratic convex
function Fc(x) that satisfies F (x) = Fc(x) for any feasible solution x in X . Hence,
the following problem RQconv is equivalent to Q01:
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RQconv : Min Fc(x) = q′0 +
n

∑

i=1

q′ixi +
n

∑

i=1

n
∑

j=1

q′ijxixj

s.t.
n

∑

i=1

akixi = bk k = 1, . . . , m

n
∑

i=1

a′
ℓixi ≤ b′ℓ ℓ = 1, . . . , p

x ∈ {0, 1}n

Function Fc is convex if and only if its Hessian matrix Q′ = (q′ij) is positive
semidefinite.

Such reformulation of Q01 is always possible. One can for example use equality
x2

i = xi satisfied by any binary variable xi in order to raise up the diagonal
coefficients of matrix Q′ by a large-enough constant. This diagonal perturbation
can then immediately be balanced by the coefficients of the linear terms q′i. Based
on this idea, a simple convex reformulation was already proposed in [15] and
consists in a perturbation of the diagonal terms of Q′ by its smallest eigenvalue.
For our example E, the smallest eigenvalue of the Hessian matrix equals -56.87

and φ(x) can be reformulated as φc(x) = φ(x) + 56.87
5

P

i=1

`

x2

i − xi

´

and the minimum

of φc over X is equal to -119.31.
Problem RQconv has precisely the same number of variables and constraints as

problem Q01.

1.4. A comparison criteria for reformulations

The linear and quadratic reformulations presented above have the following as
a common property: solving their continuous relaxation is tractable in polynomial
time, and better still is quick to compute. Indeed, the reformulated problem has,
roughly speaking, the same size as the original problem Q01. Hence a natural way
to solve the mixed-01 reformulated problems is to submit them to standard solvers
whose exact solution procedures are based on branch-and-bound and continuous
relaxation. Further, we know that the efficiency of a branch-and-bound algorithm
is strongly dependant upon the quality of the bound at the root of the branch-
and-bound tree, computed as the optimal value of the continuous relaxation of the
reformulated problem. This provides us with a criteria for comparing reformula-
tions. We consider that the quality of a reformulation is given by the tightness
of its continuous relaxation. Within a given reformulation scheme, reformulation
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F1 is better than reformulation F2 if the continuous relaxation of F1 leads to a
tighter bound than the continuous relaxation of F2.

2. Building a compact linear reformulation by use of
the bound of a linear relaxation

2.1. The RLT-relaxation

The relaxation we use here in known in literature under the name “RLT-level 1”
[21], [22]. It consists in adding quadratic valid inequalities to Q01 before a classical
linearization step. The valid inequalities are obtained by multiplying every equality
by xi and every inequality by xi and (1−xi). Then, each product of two variables
xixj is replaced by a new real variable yij . Linearization constraints ensure the
validity of the substitution. Finally, a continuous relaxation step provides the
following linear program PLp that is precisely called the RLT-relaxation:

PLp : Min F (x, y) =

n
∑

i=1

qixi +

n
∑

i=1

n
∑

j=1,j 6=i

qijyij

s.t.
n

∑

i=1

akixi = bk k = 1, . . . , m

n
∑

i=1

akiyij = bkxj k = 1, . . . , m; j = 1, . . . , n

yij = yji i = 1, . . . , n; j = 1, . . . , n : j 6= i

yii = xi i = 1, . . . , n
n

∑

i=1

a′
ℓixi ≤ b′ℓ ℓ = 1, . . . , p (2)

n
∑

i=1

a′
ℓiyij ≤ b′ℓxj ℓ = 1, . . . , p; j = 1, . . . , n (3)

n
∑

i=1

a′
ℓi(xi − yij) ≤ b′ℓ(1− xj) ℓ = 1, . . . , p; j = 1, . . . , n (4)

yij ≤ xi i = 1, . . . , n; j = 1, . . . , n, j 6= i (5)

xi + xj − yij ≤ 1 i = 1, . . . , n; j = i + 1, . . . , n (6)

xi ≤ 1 (7)

xi ≥ 0 yij ≥ 0
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This relaxations can be viewed as a strengthening trick for the classical lin-
earization recalled in the Introduction. The bound computed by solving problem
PLp is known to be quite efficient but rather slow to compute because of the im-
portant size of PLp. This makes it difficult to incorporate these bounds into a
branch-and-bound algorithm.

2.2. Using a dual solution of PLp in order to build a positive linear
compact reformulation

The following proposition shows how a reformulation of the objective func-
tion F (x), in the form (1), can be obtained from any dual solution of the RLT-
relaxation.

Proposition 2.1. For any dual feasible solution of PLp, having objective value
V , there exists L(x), fi(x), and gi(x) such that, ∀x ∈ X

F (x) = V + L(x) +
n

∑

i=1

xifi(x) +
n

∑

i=1

(1− xi)gi(x)

where L(x), fi(x), and gi(x) are linear functions, nonnegative over the relaxed set
X.

Proof. (Use the Property in Appendix A) Let si (resp. sij) be the slack variables
of the inequalities in the dual of PLp associated to xi (resp. yij). Given a dual
feasible solution of PLp, having objective value V , we take s̃i and s̃ij , values of
variables si and sij , and the dual variables values ṽ1 (resp. ṽ2, ṽ3, ṽ4, ṽ5, ṽ6)
associated to inequalities (2) (resp. (3), (4), (5), (6), (7)). We get,

For any feasible solution (x, y) of PLp :

F (x, y) = V +
n
∑

i=1

s̃ixi +
n
∑

i=1

n
∑

j=1,j 6=i

s̃ijyij +
p
∑

ℓ=1

ṽ1
ℓ (b′ℓ−

n
∑

i=1

a′
ℓixi)+

p
∑

ℓ=1

n
∑

j=1

ṽ2
ℓj(b

′
ℓxj −

n
∑

i=1

a′
ℓiyij) +

p
∑

ℓ=1

n
∑

j=1

ṽ3
ℓj(b

′
ℓ(1 − xj) −

n
∑

i=1

a′
ℓi(xi − yij)) +

n
∑

i=1

n
∑

j=1,j 6=i

ṽ4
ij(xi − yij) +

n−1
∑

i=1

n
∑

j=i+1

ṽ5
ij(1 + yij − xi − xj) +

n
∑

i=1

ṽ6
i (1− xi)

For any x ∈ X , there exists a unique y such that (x, y) is a feasible solution to
PLp. This y is defined as yij = xixj , and gives, for any x ∈ X :

F (x) = V +
n
∑

i=1

s̃ixi +
n
∑

i=1

n
∑

j=1

s̃ijxixj +
p
∑

ℓ=1

ṽ1
ℓ (b′ℓ −

n
∑

i=1

a′
ℓixi) +

p
∑

ℓ=1

n
∑

j=1

ṽ2
ℓjxj(b

′
ℓ −

n
∑

i=1

a′
ℓixi)+

p
∑

ℓ=1

n
∑

j=1

ṽ3
ℓj(1−xj)(b

′
ℓ−

n
∑

i=1

a′
ℓixi)+

n
∑

i=1

n
∑

j=1,j 6=i

ṽ4
ijxi(1−xj)+

n−1
∑

i=1

n
∑

j=i+1

ṽ5
ij(1−

xi)(1− xj) +
n
∑

i=1

ṽ6
i (1− xi)
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Let:

L(x) =
n
∑

i=1

s̃ixi +
n
∑

i=1

ṽ6
i (1− xi) +

p
∑

ℓ=1

ṽ1
ℓ (b′ℓ −

n
∑

i=1

a′
ℓixi)

fi(x) =
n
∑

j=1

s̃ijxj +
n
∑

j=1,j 6=i

ṽ4
ij(1− xj) +

p
∑

ℓ=1

ṽ2
ℓi(b

′
ℓ −

n
∑

j=1

a′
ℓjxj)

gi(x) =
n
∑

j=i+1

ṽ5
ij(1− xj) +

p
∑

ℓ=1

ṽ3
ℓi(b

′
ℓ −

n
∑

j=1

a′
ℓjxj)

observing that, for any x ∈ X , the above functions are nonnegative, we obtain the
reformulation of F (x) as (1), i.e.:

∀x ∈ X, F (x) = V + L(x) +

n
∑

i=1

xifi(x) +

n
∑

i=1

(1 − xi)gi(x)

�

Finally, we determine the upper bounds : f i = Max {fi(x) : x ∈ X} and gi =
Max {gi(x) : x ∈ X} in order to get a positive linear compact reformulation asso-
ciated to the given dual solution of PLp.

Corollary 2.2. For any dual solution of PLp having objective value V , we can
build a positive linear compact reformulation which continuous relaxation value is
at least V . The best value of V is obviously obtained from an optimal solution.

Let us observe that Adams et al. [1] build a different compact linearization,
more directly inspired from [11] and whose continuous relaxation is equal to the
optimal value of PLp. An additional advantage of Corollary 2.2 is that it allows
to reformulate the objective function F as the optimal value plus a nonnegative
function over X. This reformulation can be used for other exact or approximate
solution approaches.

Example :
Let us reformulate the objective function φ(x) of E once the RLT-relaxation has
been solved:

φ(x) = −67.52
+x1 (109.83x4 + 30.07x5)
+x2 (129.90x4 + 3.52 (1− x3))
+x3 (1.26 [−2− (−x1 + 2x2 − 5x3 − 2x4 + 2x5)])
+x4 (6.95 [−2− (−x1 + 2x2 − 5x3 − 2x4 + 2x5)])
+x5 (52.34 (1− x3) + 11.22 [−2− (−x1 + 2x2 − 5x3 − 2x4 + 2x5)])
+ (1− x2) (0.74 [−2− (−x1 + 2x2 − 5x3 − 2x4 + 2x5)])
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We can now define functions fi(x) and gi(x),

f1(x) = 109.83x4 + 30.07x5

f2(x) = 129.90x4 + 3.52(1− x3)

f3(x) = 1.26(−2− (−x1 + 2x2 − 5x3 − 2x4 + 2x5))

f4(x) = 6.95(−2− (−x1 + 2x2 − 5x3 − 2x4 + 2x5))

f5(x) = 52.34(1− x3) + 11.22(−2− (−x1 + 2x2 − 5x3 − 2x4 + 2x5))

g2(x) = 0.74(−2− (−x1 + 2x2 − 5x3 − 2x4 + 2x5))

deduce the upper bounds,

f1 = 139.90, f2 = 133.42, f3 = 7.56, f4 = 41.7, f5 = 67.32, g2 = 4.44.

and finally, build the following program RLcompE
.

RLcompE
: Min φ(x) = −67.52 +

5
∑

i=1

hi + h′
2

s.t.

−x1 + 2x2 − 5x3 − 2x4 + 2x5 ≤ −2

x1 + x2 + x4 + x5 = 2

hi ≥ fi(x)− f i(1 − xi) i = 1, . . . , 5

h′
2 ≥ g2(x)− g2x2

x ∈ {0, 1}n

hi ≥ 0 i = 1, . . . , 5

h′
2 ≥ 0

The optimal value of the continuous relaxation of RLcompE
is -67.52.

In Appendix B we apply the linear compact reformulation of Glover [11] to
the initial problem E. Its continuous relaxation value is -110.78 that is signifi-
cantly lower than the continuous relaxation value of our positive linear compact
reformulation.

3. Building a quadratic convex reformulation by use of
the bound of a semidefinite relaxation

3.1. A semidefinite relaxation of Q01

Let us consider again problem Q01. We multiply every equality constraint
n
∑

i=1

akixi = bk by xi and then replace the products xixj by variables Xij , we
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obtain the following equivalent problem:

Min F (x) =
n
∑

i=1

qixi +
n
∑

i=1

n
∑

j=i,j 6=i

qijXij

s.t.
n
∑

i=1

akixi = bk k = 1, . . . , m

n
∑

i=1

akiXij = bkxj k = 1, . . . , m; j = 1, . . . , n

n
∑

i=1

a′
ℓixi ≤ b′ℓ ℓ = 1, . . . , p

Xij = xixj i = 1, . . . , n; j = 1, . . . , n

x ∈ {0, 1}n

The semidefinite relaxation consists in replacing the set of constraints Xij = xixj

by the linear matrix inequality X−xxt � 0. By the Lemma of Schur, X−xxt � 0

is equivalent to

(

1 xt

x X

)

� 0.

The obtained SDP relaxation is the following:

SDP : Min

n
∑

i=1

qixi +

n
∑

i=1

n
∑

j=i,j 6=i

qijXij

s.t.
n

∑

i=1

akixi = bk k = 1, . . . , m

n
∑

j=1

akjXij = bkxj k = 1, . . . , m; j = 1, . . . , n (8)

n
∑

i=1

a′
ℓixi ≤ b′ℓ ℓ = 1, . . . , p

Xii = xi i = 1, . . . , n (9)
(

1 xt

x X

)

� 0

x ∈ Rn, X ∈ Rn×n

3.2. Using an optimal solution to SDP in order to build a quadratic
reformulation

The QCR method consists in reformulating problem Q01 by adding a combi-
nation of quadratic functions that vanish on the feasible solution set X . For any
α ∈ Rm×n and u ∈ Rn, let us consider the following quadratic function:
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Fα,u(x) =
n
X

i=1

qixi+

n−1
X

i=1

n
X

j=i,j 6=i

qijxixj+
m
X

k=1

 

n
X

i=1

αkixi

! 

n
X

j=1

akjxj − bk

!

+
n
X

i=1

ui

`

x
2

i − xi

´

Function Fα,u is a reformulation of F since for all x ∈ X , Fα,u(x) is equal
to F (x). We focus our interest on reformulations of F by Fα,u where Fα,u(x)
is convex over Rn. Once F (x) is transformed into a convex function, the refor-
mulated problem can be solved by mixed integer convex quadratic programming.
Our objective now is to find values for parameters α ∈ Rm×n and u ∈ Rn such
that Fα,u(x) is convex on the one hand and the optimal value of the continuous
relaxation of the reformulated problem is maximized. It was proved in [4] that
solving the above semidefinite relaxation SDP allows to deduce optimal values for
parameters α and u. More precisely, the optimal values u∗

i of ui (i = 1 . . . , n) are
given by the optimal values of the dual variables associated to constraints (9) and
the optimal values α∗

ik of αik (i = 1, . . . , n; k = 1, . . . , m) are given by the optimal
values of the dual variables associated to constraints (8).

The obtained quadratic convex reformulation is then:

RQconv: Min Fα∗,u∗(x)

s.t.
n

∑

i=1

akixi = bk k = 1, . . . , m

n
∑

i=1

a′
ℓixi ≤ b′ℓ ℓ = 1, . . . , p

x ∈ {0, 1}n

It is proved in [4] that vSDP , the optimal value to SDP is equal to the optimal
value of the continuous relaxation of RQconv.

Remark 3.1. In a similar way as in the linear reformulation, we reformulate the
objective function F (x) as a constant plus a convex quadratic function that is non-
negative for any feasible solution x ∈ X. Indeed, let g(x) = Fα∗,u∗(x) − vSDP ,

we have F (x) = vSDP + g(x) and g(x) ≥ 0 ∀x ∈ X .
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Example:
The SDP relaxation of our example E is:

SDPE : Min −9x1 − 7x2 + 2x3 + 23x4 + 12x5 − 48X12 + 4X13 + 36X14

−24X15 − 7X23 + 36X24 − 84X25 + 40X34 + 4X35 − 88X45

s.t.
x1 − 2x2 + 5x3 + 2x4 − 2x5 ≥ 2
x1 + x2 + x4 + x5 = 2
X12 + X14 + X15 = x1 ← α∗

1

X12 + X24 + X25 = x2 ← α∗
2

X13 + X23 + X34 + X35 = 2x3 ← α∗
3

X14 + X24 + X45 = x4 ← α∗
4

X15 + X25 + X45 = x5 ← α∗
5

X11 = x1 ← u∗
1

X22 = x2 ← u∗
2

X33 = x3 ← u∗
3

X44 = x4 ← u∗
4

X55 = x5 ← u∗
5

(

1 xt

x X

)

� 0

x ∈ Rn, X ∈ Rn×n

The optimal solution value of SDPE equals -81.32. It is also the optimal so-
lution value of the continuous relaxation of the reformulated problem RQconvE

.
Parameters u∗ and α∗ that allow to build RQconvE

are obtained from the optimal
solution of SDPE :

RQconvE
: min φ(x) + (8066.79x1 + 8076.64x2 − 8.79x3 + 8040.33x4 + 8088.93x5)

(x1 + x2 + x4 + x5 − 2) + 8.63(x2
1 − x1) + 0.17(x2

2 − x2)
+12.44(x2

3 − x3) + 66.36(x2
4 − x4)− 7.70(x2

5 − x5)
s.t.

x1 − 2x2 + 5x3 + 2x4 − 2x5 ≥ 2
x1 + x2 + x4 + x5 = 2

x ∈ {0, 1}n

4. Conclusion

Nowadays, efficient mathematical programming solvers are available to solve
mixed-integer linear or convex quadratic problems. Consequently, try to use them
for the general 0-1 quadratic problem is attractive. For that, a preprocessing phase
is necessary in order to reformulate the initial problem into a tractable form. The
efficiency of this exact solution approach strongly depends on the quality of the
bound given by the continuous relaxation of the reformulation and also on the size
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of this reformulation. For both classes of solvers - mixed-integer linear or mixed-
integer convex quadratic - we have proposed a concise reformulation technique that
incorporates, in a sense, the optimal values of tight linear or positive semi-definite
relaxations. Experimental results presented in [1], [3], [4] and [5] show the potential
of such an approach. Future research topics include obtaining reformulations based
on even tigher relaxations.
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Appendix A

Let P be the following linear program:

P : Min f(x) =

n
∑

i=1

cixi

s.t.
n

∑

i=1

akixi = bk k = 1, . . . , m

n
∑

i=1

a′
ℓixi ≤ b′ℓ ℓ = 1, . . . , p

xi ≥ 0

and let D be its dual problem :

D : Max g(u, v) =

m
∑

k=1

(−bk)uk +

p
∑

ℓ=1

(−b′ℓ)vℓ

s.t.
m

∑

k=1

(−aki)uk +

p
∑

ℓ=1

(−a′
ℓi)vℓ ≤ ci i = 1, . . . , n (10)

uk ∈ R ; vℓ ≥ 0

Proposition

Let si, i = 1, . . . , n be the non-negative slack variables associated to constraints (10)
and let (ũ, ṽ, s̃) be a feasible solution for the dual problem D. Then, for any feasible
solution x of the primal P, we have:

f(x) = g(ũ, ṽ) +
p
∑

ℓ=1

ṽℓ(b
′
ℓ −

n
∑

i=1

a′
ℓixi) +

n
∑

i=1

s̃ixi

Proof. By definition of the slack variables si: ci =
m
∑

k=1

(−aki)ũk +
p
∑

ℓ=1

(−a′
ℓi)ṽℓ + s̃i.

We can now use the last identity in the expression of f(x).
We get, for any vector x:

f(x) =
n
∑

i=1

(
m
∑

k=1

(−aki)ũk +
p
∑

ℓ=1

(−a′
ℓi)ṽℓ + s̃i)xi

=
m
∑

k=1

ũk(−
n
∑

i=1

akixi) +
p
∑

ℓ=1

ṽℓ(−
n
∑

i=1

a′
ℓixi) +

n
∑

i=1

s̃ixi

=
m
∑

k=1

(−bk)ũk +
p
∑

ℓ=1

(−b′ℓ)ṽℓ +
m
∑

k=1

ũk(bk−
n
∑

i=1

akixi)+
p
∑

ℓ=1

ṽℓ(b
′
ℓ−

n
∑

i=1

a′
ℓixi)+

n
∑

i=1

s̃ixi

= g(ũ, ṽ) +
m
∑

k=1

ũk(bk −
n
∑

i=1

akixi) +
p
∑

ℓ=1

ṽℓ(b
′
ℓ −

n
∑

i=1

a′
ℓixi) +

n
∑

i=1

s̃ixi
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now, for any feasible solution x to P, we have bk −
n
∑

i=1

akixi = 0, and then:

f(x) = g(ũ, ṽ) +

p
∑

ℓ=1

ṽℓ(b
′
ℓ −

n
∑

i=1

a′
ℓixi) +

n
∑

i=1

s̃ixi

Observe that for any feasible solution x, b′k−
n
∑

i=1

a′
ℓixi ≥ 0, xi ≥ 0 and coefficients

ṽℓ et s̃i are ≥ 0. �
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Appendix B

Recall our example E presented all along the paper:

E : Min φ(x) = −9x1 − 7x2 + 2x3 + 23x4 + 12x5 − 48x1x2 + 4x1x3 + 36x1x4

−24x1x5 − 7x2x3 + 36x2x4 − 84x2x5 + 40x3x4 + 4x3x5 − 88x4x5

s.t.
x1 − 2x2 + 5x3 + 2x4 − 2x5 ≥ 2
x1 + x2 + x4 + x5 = 2
x1, x2, x3, x4, x5 ∈ {0, 1}

Let us apply the classical linearization to it:

Min −9x1 − 7x2 + 2x3 + 23x4 + 12x5 − 48y12 + 4y13 + 36y14

−24y15 − 7y23 + 36y24 − 84y25 + 40y34 + 4y35 − 88y45

s.t.
−x1 + 2x2 − 5x3 − 2x4 + 2x5 ≤ −2
x1 + x2 + x4 + x5 = 2
yij ≤ xi i < j; cij < 0
yij ≤ xj i < j; cij < 0
1− xi − xj + yij ≥ 0 i < j; cij > 0
yij ≥ 0 i < j; cij > 0
x1, . . . , x5 ∈ {0, 1}

The optimal solution value to LRE equals -115.

If one applies the compact linearization of Glover [11] to E (see Section 1.1),
we get the following linear program :

Min −9x1 − 7x2 + 2x3 + 23x4 + 12x5 + z1 + z2 + z3 + z4 + z5

s.t.
−x1 + 2x2 − 5x3 − 2x4 + 2x5 ≤ −2
x1 + x2 + x4 + x5 = 2
z1 ≥ −30x1

z1 ≥ −24x2 + 2x3 + 18x4 − 12x5 − 20(1− x1)
z2 ≥ −69.5x2

z2 ≥ −24x1 − 3.5x3 + 18x4 − 42x5 − 16.6(1− x2)
z3 ≥ −1.5x3

z3 ≥ 2x1 − 3.5x2 + 20x4 + 2x5 − 22(1− x3)
z4 ≥ −36x4

z4 ≥ 18x1 + 18x2 + 20x3 − 44x5 − 56(1− x4)
z5 ≥ −85.2x5

z5 ≥ −12x1 − 42x2 + 2x3 − 44x4 + 10(1− x5)
x1, . . . , x5 ∈ {0, 1}
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which optimal value of the continuous relaxation equals -110.78.

Below, we summarize the optimal values of different relaxations associated with
example E:

Opt. Classical Compact lin. RLT-1 Our positive Eigenvalue Our quad.

value lin. of Glover compact lin. reform. conv. reformulation

-65 -115 -110.78 -67.52 -67.52 -119.31 -81.39


