
Improving the performance of standard solvers

for quadratic 0-1 programs by a tight convex

reformulation: the QCR method

Alain Billionnet1, Sourour Elloumi2, Marie-Christine Plateau2

1Laboratoire CEDRIC, Institut d’Informatique d’Entreprise,
18 allée Jean Rostand, F-91025 Evry

billionnet@ensiie.fr
2Laboratoire CEDRIC, Conservatoire National des Arts et Métiers,

292 rue Saint Martin, F-75141 Paris
{elloumi,mc.plateau}@cnam.fr

Abstract

Let (QP) be a 0-1 quadratic program which consists in minimizing
a quadratic function subject to linear equality constraints. In this
paper, we present QCR, a general method to reformulate (QP)
into an equivalent 0-1 program with a convex quadratic objective
function. The reformulated problem can then be efficiently solved
by a classical branch-and-bound algorithm, based on continuous
relaxation. This idea is already present in the literature and used in
standard solvers such as CPLEX. Our objective in this work was to
find a convex reformulation whose continuous relaxation bound is,
moreover, as tight as possible. From this point of view, we show that
QCR is optimal in a certain sense. State-of-the-art reformulation
methods mainly operate a perturbation of the diagonal terms and
are valid for any {0, 1} vector. The innovation of QCR comes from
the fact that the reformulation also uses the equality constraints and
is valid on the feasible solution domain only. Hence, the superiority
of QCR holds by construction. However, reformulation by QCR
requires the solution of a semidefinite program which can be costly
from the running time point of view. We carry out a computational
experience on three different combinatorial optimization problems
showing that the costly computational time of reformulation by QCR
can however result in a drastically more efficient branch-and-bound
phase. Moreover, our new approach is competitive with very specific

1

methods applied to particular optimization problems.

Keyword: Quadratic 0-1 programming, Convex quadratic pro-
gramming, Semidefinite programming, Densest k-subgraph, Graph bi-
section, Task allocation, Experiments.

1 Introduction

Consider the following linearly-constrained zero-one quadratic program:

(QP) : Min
{

g(x) = xtQx + ctx : Ax = b, x ∈ {0, 1}n
}

where c is an n real vector, b is an m real vector, Q is a symmetric n × n

real matrix and A is an m × n real matrix. Without loss of generality, we
assume that all diagonal terms of Q are equal to 0.

Quadratic zero-one programming with linear constraints is a general
model that allows to formulate numerous important problems in combina-
torial optimization including, for example: quadratic assignment [19], graph
partitioning [33], task allocation [5] and densest k-subgraph [31].

Various heuristics and exact methods have been proposed to solve (QP).
Due to the non-convexity of the objective function, (QP) is often reformu-
lated before searching for its optimal solution. So, several methods have
been developed to solve it exactly through 0-1 linear reformulations (see,
for example, [1], [2], [20], [22], [39]) or 0-1 convex quadratic reformulations
(see, for example, [7], [12], [24], [34], [37]). This paper is concerned with the
latter type of reformulation. Although 0-1 linear reformulations of (QP)
are the most common approaches, other methods have been proposed. Let
us cite, for example, algebraic and dynamic programming methods ([16],
[25]), reformulation to a continuous concave minimization problem ([29])
and enumerative methods based on different types of relaxations such as
lagrangian relaxation, semidefinite relaxation or convex quadratic relaxation
([3], [9], [11], [13], [18], [21], [23], [27], [35]).

In this paper we reformulate (QP) by an equivalent zero-one quadratic
program with a convex objective function. Consequently, we can solve the
transformed problem using general-purpose optimization software which
implement branch-and-bound algorithms with a bounding procedure based
on the optimal value of the continuous relaxation. We will show how to find
the best convex reformulation of (QP), in a certain sense, by semidefinite

2

programming.

The paper is organized as follows. In Section 2 we present QCR, a
reformulation of (QP) by a zero-one quadratic program with a convex
objective function. Section 3 reports computational experiments on the
solution of the densest k-subgraph problem, the graph bisection problem
and a task allocation problem. More precisely, we apply QCR on the one
hand and the default preprocessing of CPLEX on the other hand in order to
compare the efficiency of the two convexifications. Moreover, for the graph
bisection problem, we compare QCR with a specific branch-and-bound
algorithm, developed by Karisch, Rendl and Clausen [30]. Section 4 gives a
conclusion.

2 QCR: a Quadratic Convex Reformulation

method

Let X = {x : Ax = b, x ∈ {0, 1}n} be the set of feasible solutions of prob-
lem (QP) and X = {x : Ax = b, x ∈ [0, 1]n} be the set of feasible solutions
of the continuous relaxation of (QP).
The general term of matrix A is denoted by aij and the general term of Q

by qij.
The objective function of (QP) is not convex since all diagonal terms of Q

are equal to 0. Consider the following zero-one quadratic problem equivalent
to (QP) and depending on two parameters α ∈

�
m×n and u ∈

�
n:

(QPα,u) : Min {gα,u(x) : Ax = b, x ∈ {0, 1}n}

where

gα,u(x) = g(x) +
m
∑

k=1

(

n
∑

i=1

αkixi

)

(

n
∑

j=1

akjxj − bk

)

+
n
∑

i=1

ui (x
2
i − xi)

= xtQαx + ct
αx +

n
∑

i=1

ui (x
2
i − xi)

= xtQα,ux + ct
α,ux

and
Qα = Q + 1

2
(αtA + Atα), Qα,u = Qα + Diag(u),

cα = c− αtb, cα,u = cα − u.
Diag(u) is a diagonal n× n matrix with the elements of u on the diagonal.

3

It is easy to verify that for all x ∈ X, function gα,u(x) is equal to g(x). We
are interested by the reformulations of g(x) into gα,u(x) if gα,u(x) is convex
over

�
n. This is always possible. Take α equal to the null matrix and

u = −λe where λ is the smallest eigenvalue of matrix Q and e the n-vector
of all ones. This amounts to the eigenvalue method introduced in [24].

The transformation of g(x) into a convex function over
�

n allows to solve
(QPα,u) by a branch-and-bound algorithm based on continuous relaxation.
It is well known that the behavior of such an algorithm is very dependent
upon the bound at the root of the search tree. This bound is equal to the
optimum value of the continuous relaxation of (QPα,u) that can be solved
in polynomial time with a given accuracy. So we are going to determine
α ∈

�
m×n and u ∈

�
n such that gα,u(x) is convex and the value of the

continuous relaxation of (QPα,u) is as tight as possible. More precisely we
have to solve the following problem:

(C(QP)) : Max
α∈ � m×n,u∈ � n

Qα,u�0

Min
x∈X

gα,u(x)

In the following theorem, we show that problem (C(QP)) is equivalent
to the SDP-dual of a semidefinite relaxation (SDQP) of problem (QP).
Therefore, an optimal solution (α∗, u∗) of (C(QP)) can be obtained by solv-
ing (SDQP), which can be done in polynomial time. For instance, Renegar
[38] develops an interior point method for semidefinite programming, and
shows that it can solve semidefinite programs to a prescribed accuracy in a
polynomial number of arithmetic operations.

Theorem 1. The optimum value of (C(QP)) is equal to the optimum value

of the following semidefinite program (SDQP), which is a semidefinite re-

4

laxation of (QP):

(SDQP)

Min ctx +
n
∑

i=1

n
∑

j=1

qijXij

s.t. Xii = xi i = 1, . . . , n (1)

−bkxi +
n
∑

j=1

akjXij = 0 k = 1, . . . , m; i = 1, . . . , n (2)

Ax = b

(

1 xt

x X

)

� 0

x ∈
�

n, X ∈ S
n

where Sn represents the set of n× n real symmetric matrices.

For problem (C(QP)), optimal values u∗
i (i = 1 . . . , n) are given by the opti-

mal values of the dual variables associated with constraints (1) and optimal

values α∗
ki (k = 1, . . . , m; i = 1, . . . , n) are given by the optimal values of the

dual variables associated with constraints (2).

Proof. Consider the quadratic function zα,u,β(x) = gα,u(x) + βt(Ax − b) de-
pending on the three multidimensional parameters α, u and β ∈

�
m. Let

zα,u,β(x) = xtQα,ux+ct
α,u,βx−βtb with ct

α,u,β = ct
α,u +βtA. By observing that

x2
i ≤ xi is equivalent to 0 ≤ xi ≤ 1, our convexification problem (C(QP))

can be written as (D1):

(D1) : Max
α∈ � m×n,u∈ � n

Qα,u�0

Min
x∈ � n

{

gα,u(x) : Ax = b, x2

i ≤ xi(i = 1, . . . , n)
}

gα,u(x) is a convex function; the constraints Ax = b and x2
i ≤ xi define a

convex set. Assuming the Slater’s interiority condition is satisfied then, by
Lagrangian duality, (D1) is equivalent to (D2):

(D2) : Max
α∈ � m×n,u∈ � n,β∈ � m,λ∈ � n

+

Qα,u�0

Min
x∈ � n

{

gα,u(x) +
n
∑

i=1

λi(x
2

i − xi) + βt(Ax− b)

}

(D2) is also equivalent to (D3):

5

(D3) : Max
α∈ � m×n,u∈ � n,β∈ � m

Qα,u�0

Min
x∈ � n

{

gα,u(x) + βt(Ax− b)
}

= Max
α∈ � m×n,u∈ � n,β∈ � m

Qα,u�0

Min
x∈ � n

zα,u,β(x)

Indeed, if (α∗, u∗, β∗, λ∗) is an optimal solution of (D2), (α∗, u∗ = u∗+λ∗, β∗)
is a feasible solution of (D3) with the same value. Moreover, the optimal
value of (D2) is obviously greater than or equal to the optimal value of
(D3).

It is well known that a necessary condition for the quadratic function zα,u,β(x)
to have a minimum not equal to −∞ is that matrix Qα,u is positive semidef-
inite. Hence, (D3) is equivalent to (D4):

(D4) : Max
α∈ � m×n,u∈ � n,β∈ � m

Min
x∈ � n

zα,u,β(x)

This last problem is the Lagrangian dual obtained from (QP ′) by relaxing
all the constraints:

(QP ′) : Min

g(x) : Ax = b, x2
i = xi(i = 1, . . . , n), xi(

n
∑

j=1

akjxj − bk) = 0 (i = 1, . . . , n; k = 1, . . . , m)

Observe that (QP ′) is equivalent to the initial problem (QP). Following
Lemaréchal and Oustry ([32], Corollary 4.2), the dual of (QP ′) is equivalent
to the SDP problem (D5):

(D5)

Max r

s.t.

(

−βtb− r 1

2
ct
α,u,β

1

2
cα,u,β Qα,u

)

� 0

r ∈
�

, α ∈
�

m×n, u ∈
�

n, β ∈
�

m

Following again Lemaréchal and Oustry ([32], Theorem 4.4), if we apply
SDP duality to problem (D5), we get (SDQP). Note that there is no duality
gap since (i) the feasible domain of (SDQP) is nonempty (as (QP) admits
a feasible solution) and then (D5) is bounded. (ii) (D5) satisfies Slater’s
condition. For example, by setting α = β = 0 and taking the ui components

6

positive and large, and r negative with |r| large, it is possible to build a
feasible matrix of (D5) that is positive definite.

Remark

We can observe that, since
m
∑

k=1

(

n
∑

i=1

α∗
kixi

)

(

n
∑

j=1

akjxj − bk

)

is null for all

x ∈ X, then:

Min
x∈X

gα∗,u∗(x) = Min
x∈X

gO,u∗(x)

where O is the m× n-null matrix.
However, gO,u∗(x) is not necessarily convex over

�
n and recall that our

main objective is to convexify g(x) over
�

n in order to make the continuous
relaxation easy to solve.

Example

Consider the following linearly constrained 0-1 quadratic programming
problem whose optimal value is −80, obtained for x2 = x3 = x5 = 1 and
x1 = x4 = 0:

(E) : Min φ(x) = −9x1 − 7x2 + 2x3 + 23x4 + 12x5 − 48x1x2 + 4x1x3 + 36x1x4

−24x1x5 − 7x2x3 + 36x2x4 − 84x2x5 + 40x3x4 + 4x3x5 − 88x4x5

s.t.
x1 + x2 + x4 + x5 = 2
x1, x2, x3, x4, x5 ∈ {0, 1}

The SDP relaxation of our example (E) is:

(SDE) : Min −9x1 − 7x2 + 2x3 + 23x4 + 12x5 − 48X12 + 4X13 + 36X14

−24X15 − 7X23 + 36X24 − 84X25 + 40X34 + 4X35 − 88X45

s.t.
x1 + x2 + x4 + x5 = 2
X1i + X2i + X4i + X5i = 2xi i = 1, . . . , 5 ← α∗

i

Xii = xi i = 1, . . . , 5 ← u∗
i

(

1 xt

x X

)

� 0

x ∈
�

5, X ∈ S5

7

Parameters u∗ and α∗ that allow us to build the new problem are obtained
from the solution of (SDE). The optimal solution value of (SDE) equals
-88.02. It is therefore the optimal solution value of the continuous relaxation
of the QCR-reformulated problem (Eα∗,u∗):

(Eα∗,u∗): Min φ(x)
+(14x1 + 18.6x2 − 1.4x3 + 0.12x4 + 29.26x5)(x1 + x2 + x4 + x5 − 2)
+24.6(x2

1 − x1) + 3.38(x2
2 − x2) + 17.38(x2

3 − x3) + 111.46(x2
4 − x4)

−7.4(x2
5 − x5)

s.t. x1 + x2 + x4 + x5 = 2
x ∈ {0, 1}5

Note that the bound obtained by the preprocessing of CPLEX is −113.68.

A QCR variant

We consider the following transformation of g(x):

gβ,u(x) = g(x) + β

m
∑

k=1

(

n
∑

j=1

akjxj − bk

)2

+

n
∑

i=1

ui

(

x2

i − xi

)

and so the new problem:

(QPβ,u) : Min {gβ,u(x) : Ax = b, x ∈ {0, 1}n}

As for the above QCR method, the optimal parameters β∗ and u∗ are the
ones that allow to convexify g(x) and to obtain an optimal continuous value
as tight as possible. They are given by solving the following semidefinite
relaxation:

(SDQP ′)

min ctx +
n
∑

i=1

n
∑

j=1

qijXij

s.t. Xii = xi i = 1, . . . , n (1)

m
∑

k=1

(

n
∑

i=1

n
∑

j=1

akiakjXij − 2
n
∑

j=1

bkakjxj + b2
k

)

= 0 (4)

(

1 xt

x X

)

� 0

x ∈
�

n, X ∈ S
n

8

The u∗
i values are given by the optimal values of the dual variables associated

with constraints (1) and the β∗ value is given by the optimal value of the
dual variable associated with constraint (4).

QCR and this new transformation provide the same lower bound since the
associated semidefinite programs have the same optimal value [18]. So, this
new semidefinite relaxation should be more efficient than (SDQP) because
of its smaller size. However a preliminary experiment does not show that the
resolution with this variant accelerates the global solution time.

3 Computational results

In this section, we present different applications of QCR: the densest
k-subgraph problem (Section 3.1), the graph bisection problem (Section 3.2)
and finally a task allocation problem (Section 3.3).

All the experiments have been carried out on a Pentium IV 2.2 GHz
computer with 1 Go of RAM. For each instance, execution time limit is set
to 1 hour.

We choose to solve semidefinite programs using SB ([26], [28]), a software
applying the spectral bundle method on eigenvalue optimization problems,
developed by Helmberg and Rendl [28]. (QPα∗,u∗) is modeled with AMPL
and then solved by CPLEX9 [15]. Note that we use the default accuracy
(10−5) to solve the semidefinite problem and the continuous relaxation.

For convenience, we use ’QCR+CPLEX’ to refer to CPLEX with QCR
preprocessing and ’CPLEX’ to refer to the direct execution of CPLEX. In-
deed, CPLEX can solve problem (QP) by operating a convexification algo-
rithm. A brief computational test led us to think that this algorithm is based
on the smallest eigenvalue method of [24].

For all the results reported in the following tables, gap represents the
average value of the gap at the root node, defined as | bound−opt

opt
| ∗100 where

opt is the value of the optimal or the best known solution and bound is the
optimal value of the continuous relaxation at the root node of the branch-
and-bound algorithm.

3.1 Computational results for the densest k-subgraph

problem

Given an undirected graph G = (V, U) with n nodes {v1, ..., vn} and a
positive integer k in {3, ..., n − 2}, the densest k-subgraph problem consists

9

in selecting a node subset S ⊆ V of cardinality k and such that the subgraph
of G induced by S contains as many edges as possible.

The densest k-subgraph problem can be formulated as the following lin-
early constrained 0-1 quadratic optimization problem (DS):

(DS) : Max

{

∑

i<j

δijxixj :

n
∑

j=1

xj = k, x ∈ {0, 1}n

}

where the binary coefficient δij = 1 if and only if [vi, vj] is an edge of G. The
binary variable xi is equal to 1 if and only if vertex vi is in the k-subgraph.
(DS) is also known under the name of k-cluster problem [14]. It can be also
considered as a special case of the k-dispersion-sum problem [36].

The densest k-subgraph problem can be rewritten as follows:

(DS ′) : Min

{

f(x) = xtMx :

n
∑

j=1

xj = k, x ∈ {0, 1}n

}

where the general term of M is mij = −1

2
δij, ∀i, j. Problems (DS) and

(DS ′) are equivalent and their optimal values are opposite.

Now, we can apply the QCR approach to problem (DS ′).
According to the general method presented in Section 2, the reformulation

of (DS ′) is:

(DS ′
α,u) : Min

{

fα,u(x) :
n
∑

j=1

xj = k, x ∈ {0, 1}n

}

where fα,u(x) = xtMx +
∑n

i=1
ui(x

2
i − xi) +

∑n

i=1
αixi

(

∑n

j=1
xj − k

)

.

Since problem (DS ′) has just one constraint, α is a vector with n com-
ponents. The best parameters α∗ and u∗ are then computed by the SDP
relaxation associated to (DS ′), that we call (SDDS ′) in the following.

We consider randomly generated instances of the densest k-subgraph
problem. We take different graph sizes (n = 40, 80, 100), different densi-
ties (d = 25%, 50%, 75%) and different k values (k = n

4
, n

2
, 3n

4
). For each

couple (k, d), there are 5 instances (used in [4] for n = 40 and in [37] for
n = 80). They are generated as follows: for a given density d and any pair
of indexes (i, j) such that i < j, we generate a random number ρ from [0, 1].
If ρ > d then δij is set to 0, otherwise, δij is set to 1.

All the results are reported in Table 1.

10

Legend of Table 1:
• d, density of the graph
• CPU , the average value of the CPU time, for five instances, required by

CPLEX to solve (DS ′) or required by SB and CPLEX to solve (SDDS ′) and
(DS ′

α∗,u∗) respectively. Note that a number i < 5 in brackets corresponds
to the number of instances out of 5 solved within 1h. In this case, the
corresponding CPU time is the average over these i instances.

Table 1: Average results for 135 randomly generated instances of k-cluster
QCR+CPLEX CPLEX

n k d(%) CPU gap(%) CPU gap(%)
40 bn

4
c 25 0.16” 9.63 1’5” 91.4

50 0.36” 9.32 - 154.53
75 3.96” 12.28 - 257.40

bn
2
c 25 0.08” 3.06 5’41” 33.1

50 0.22” 2.5 - 43.45
75 0.10” 1.5 - 71.27

b3n
4
c 25 0.12” 1.08 13.88” 10.6

50 0.04” 0.78 8’32” (4) 17.7
75 0.03” 0.48 - 23.6

80 bn
4
c 25 2’6” 9.16 - 114.4

50 5’26” 8 - 170.7
75 22’3” 6.44 - 225.3

bn
2
c 25 19.6” 2.96 - 42.9

50 18.54” 1.8 - 62.1
75 2’57” 1.32 - 78.2

b3n
4
c 25 0.92” 0.86 - 14.9

50 2.09” 0.56 - 20.9
75 3.6” 0.42 - 26.2

100 bn
4
c 25 24’32” 9.1 - 124.1

50 32’58” 7.88 - 180
75 - 5.6 - 229.9

bn
2
c 25 7’54” 2.56 - 47.3

50 6’32” (1) 2.18 - 67
75 9’8” 1 - 79.3

b3n
4
c 25 9” 0.8 - 16.1

50 50.81” 0.64 - 22.8
75 14.32” 0.34 - 26.7

-: none of the five corresponding instances could be solved within 1h
(i): i instances out of 5 were solved within 1h

11

The running times corresponding to the computation of (α∗, u∗) by the
semidefinite programming solver SB are very small, always less than one
second.

As a general remark, the gap of ’QCR+CPLEX’ is about 20 times
smaller than the one of ’CPLEX’. The CPU time is hence drastically
improved. Indeed, ’CPLEX’ solves only 19 out of the 135 instances within
one hour of CPU time whereas ’QCR+CPLEX’ allows to solve 126 instances.

Instances with 40 and 80 nodes have already been used in [37]: eigenvalue
methods have been applied to solve (DS). Note that for all instances,
QCR improves results presented in [37] (i.e the bound value and therefore
the CPU time): the gap obtained with QCR is about 2 times smaller. In
addition, the ’QCR+CPLEX’ approach allows to solve all instances with
n = 80 and k = bn

4
c whereas, with the reformulation studied in [37], only 3

instances out of 15 are solved in less than one hour.
Moreover, we can solve larger problems than in recent publications

that use the same instances but different approaches. In [36], the reported
results concern weighted instances with no more than 60 nodes. The integer
linear programming approach presented in [4] and based on six different
formulations doesn’t allow to solve instances with 80 nodes, except for a
density of 75%.

3.2 Computational results for the graph bisection

problem

Let G = (V, E) be an undirected graph with n nodes {v1, . . . , vn} and a
set of weighted edges E. The graph bisection problem consists in dividing
the nodes of G into two sets V1 and V2 such that | V1 |= p and | V2 |= n− p

and such that the total weight of edges that have end-points in different
sets is minimal. This problem can be formulated as the following linearly
constrained zero-one quadratic problem:

(BP) : Min

g(x) =
n−1
∑

i=1

n
∑

j=i+1

cij (xi(1− xj) + (1− xi)xj) :
n
∑

i=1

xi = p, x ∈ {0, 1}n

where cij is the weight of edge [vi, vj]. The binary variable xi is equal to 1
if and only if the node vi is in V1.

12

(BP) is equivalent to the following problem where, in the objective function,
linear terms are separated from quadratic terms:

(BP) : Min

g(x) =

n−1
∑

i=1

n
∑

j=i+1

− 2cijxixj +

n
∑

i=1

Cixi :

n
∑

i=1

xi = p, x ∈ {0, 1}n

where Ci =
i−1
∑

j=1

cji +
n
∑

j=i+1

cij. According to the general method presented in

Section 2, the reformulation of (BP) is:

(BPα,u) : Min

{

gα,u(x) :
n
∑

i=1

xi = p, x ∈ {0, 1}n

}

with:

gα,u(x) = g(x) +

n
∑

i=1

ui

(

x2

i − xi

)

+

n
∑

i=1

αixi

(

n
∑

j=1

xj − p

)

The best parameters α∗ and u∗ are computed by the SDP relaxation
associated to BP that we call (SDBP) in the following.

Note that one constraint is added to (BP) when p = n
2

in order to ac-
celerate the branch-and-bound algorithm, which consists in fixing to 1 the
variable corresponding to a largest degree node.

3.2.1 Randomly generated unweighted graphs

We first apply QCR to randomly generated unweighted graphs. They are
generated as follows: for a given density d ∈ [0, 1] and a pair of indices (i, j)
such that i < j, we generate a random number ρ from [0, 1]. If ρ > d then
cij is set to 0, otherwise, cij is set to 1.

Table 2 shows the results for four graph sizes (n = 40, 80, 90, 100), three
densities (d = 25%, 50%, 75%) and three p values (p = bn

8
c, bn

4
c, bn

2
c). For

each triplet (n, p, d), we solve 5 instances.

Legend of Table 2 :

• d, density of the graph.

• CPU , average value of the total CPU time required by CPLEX to solve
(BP) or required by SB and CPLEX to solve (SDBP) and (BPα∗,u∗)
respectively. Note that a number i < 5 in brackets corresponds to
the number of instances out of 5 solved within 1h. In this case, the
corresponding CPU time is the average over these i instances.

13

Table 2: Average results for 180 randomly generated unweighted instances of the graph
bipartition problem

QCR+CPLEX CPLEX
n p d(%) CPU gap(%) CPU gap(%)
40 bn

8
c 25 0.04” 12.45 1.17” 100

50 0.07” 7.22 8.2” 100
75 0.08” 4.32 53.4” 100

bn
4
c 25 0.15” 10.2 2’6” 100

50 0.25” 6.33 - 100
75 0.36” 3.36 - 100

bn
2
c 25 0.54” 8.05 13’9” (3) 89.37

50 0.64” 3.08 - 93
75 0.53” 2.02 - 93.7

80 bn
8
c 25 5.7” 8.48 - 100

50 3.8” 4.98 - 100
75 14.8” 3.26 - 100

bn
4
c 25 2’18” 8.4 - 100

50 4’04” 4.54 - 100
75 5’09” 2.6 - 100

bn
2
c 25 24’21” 6.52 - 95.3

50 10’51” 3.26 - 96.5
75 6’49” 1.62 - 96.9

90 bn
8
c 25 41.2” 10.04 - 100

50 25.3” 5.14 - 100
75 29.6” 3.08 - 100

bn
4
c 25 19’31” (4) 8.76 - 100

50 13’40” (4) 3.48 - 100
75 9’46” (3) 2.56 - 100

bn
2
c 25 36’1” (3) 5.92 - 96.2

50 9’48” (1) 3.14 - 97
75 23’18” (3) 1.6 - 97.4

100 bn
8
c 25 1’22” 9.54 - 100

50 2’9” 5.36 - 100
75 3’4” 3 - 100

bn
4
c 25 27’13” (1) 7.9 - 100

50 26’34” (1) 4.4 - 100
75 22’40” (2) 2 - 100

bn
2
c 25 - 5.92 - 96.7

50 - 3 - 97.5
75 - 1.7 - 97.7

-: none of the five corresponding instances could be solved within 1h
(i): i instances out of 5 were solved within 1h

For Table 2, the running times corresponding to the computation of
(α∗, u∗) by semidefinite programming are very small: they are always much
smaller than the running time of the branch-and-bound phase.

14

We can observe that the gap obtained with the QCR approach are rather
small and whatever the graph sizes are, the best gap values are obtained
for largest densities. The average gap is equal to 9% for d = 25%, 4% for
d = 50% and 3% for d = 75%.

With ’CPLEX’, the gap is always equal to 100%, except when p = bn
2
c,

where a constraint is added to (BP). Note that if this constraint is not
added, then the gap will be 100%. Because of these results, ’CPLEX’ allows
to solve few instances within 1 hour whereas with ’QCR+CPLEX’, the first
CPU times higher than 1 hour are obtained when n ≥ 90 and p 6= bn

8
c.

Observe that the longest running times are obtained for the graph
equicut problem (i.e. p = bn

2
c): intuitively, we can think that the partition

size p increases the difficulty of the problem when it tends towards the
value n

2
since the number of feasible solutions is equal to the number of

combinations of p objects taken among n.

3.2.2 Comparison with Karisch, Rendl and Clausen (KRC)
method

In this section, we compare our method with the one of Karisch, Rendl
and Clausen (KRC) who designed an exact solution method for the graph
bisection problem [30]. Their approach is a specific branch-and-bound
algorithm based on semidefinite programming and polyhedral relaxations.

Comparison with the KRC method based on Brunetta, Conforti
and Rinaldi instances
Karisch, Rendl and Clausen tested their approach on a library created by
Brunetta, Conforti and Rinaldi (BCR) [10]. We choose to solve instances
from it (ftp://ftp.math.unipd.it/pub/Misc/equicut) and compare our results
with the ones of KRC. The instances correspond to p = bn

2
c and are

divided into 4 classes: Random Instances, Toroidal Grid Instances, Mixed

grid Instances, Instances with Negative Weights. We only present results
for Toroidal Grid Instances. For more information, all results and more
complete details are available in [8].

Note that our computer is about 15 times faster than the one of Karisch,
Rendl and Clausen whose experiments were performed on a HP 9000/735.
So, in the following tables, we report CPU times required by the KRC
method divided by 15.

Legend of Tables 3 and 4:

15

• opt, value of the optimal solution

• CPUQCR, total CPU time required by the ’QCR+CPLEX’ method

• gapQCR =| bound−opt

opt
| where bound is the optimal value of the continu-

ous relaxation of the QCR reformulated problem

• CPUKRC , total CPU time required by the KRC method on a HP
9000/735 (divided by 15).

Table 3: Equicut of toroidal grid instances from the BCR-library
KRC QCR+CPLEX

problem n d(%) opt CPUKRC CPUQCR gapQCR(%)
4x5t 20 21 28 0.06” 0.01” 12.6
6x5t 30 14 31 0.2” 0.02” 26.9
8x5t 40 10 33 0.4” 0.09” 38.5
12x2t 42 10 9 0.34” 0.05” 66.5
23x2t 46 9 9 8.3” 0.2” 78
4x12t 48 9 24 1.13” 0.14” 54.2
5x10t 50 8 33 0.4” 0.25” 50
10x6t 60 7 42 23.33” 2.22” 53.5
7x10t 70 6 45 38.13” 3.69” 54.2
10x8t 80 5 43 1’3” 2.29” 47.7

Average value 13.53” 0.9” 48.21

We solve all instances to optimality. For all instances, the CPU time
required to find the optimal solution is drastically improved compared with
the results found by KRC: CPUQCR can be up to 40 times smaller than
CPUKRC taking into account the difference of computers. Our method is 15
times faster in average and in spite of a rather large gap, the CPU time is
very small.

Comparison with the KRC results obtained on their randomly
generated instances
Finally, we apply our method on random instances, generated by Karisch
et al. [30]. The graphs are unweighted random graphs with uniform edge
probability 1

2
. Instances have a number of nodes varying from 36 to 84, and

the p values are bn
2
c, b3n

4
c, b7n

12
c and b13n

24
+ 1

2
c. Table 4 presents the results.

16

Table 4: Randomly generated unweighted instances
KRC QCR+CPLEX

graph n p opt CPUKRC CPUQCR gapQCR(%)
ex36a 36 bn

2
c 117 3” 0.22” 4.5

ex60a 60 367 20” 11.39” 3.4
ex84a 84 742 2h02’55” 40’06” 3.5
ex36a 36 b 3n

4
c 85 31” 0.13” 7.8

ex60a 60 268 9’56” 8.95” 5.96
ex84a 84 548 8’20” 12’24” 4.9
ex36a 36 b 7n

12
c 112 0.67” 0.21” 5

ex60a 60 351 22.53” 3.56” 2.9
ex84a 84 721 37’7” 2h17’24” 4.08
ex36a 36 b 13n

24
+ 1

2
c 114 0.2” 0.13” 4.5

ex60a 60 360 21.2” 8.72” 3.1
ex84a 84 735 20’15” 1h52’48” 3.8

Average value 16’41” 25’16”

As Karisch et al. noted, randomly generated instances of this type con-
stitute the most difficult classes. All instances are solved to optimality. By
’QCR+PLEX’, the solution time for the different p values are very small for
n = 36 (less than 1”) and n = 60 (less than 11.39”). For n = 84, several
minutes and even hours are required (between 12’ and 2h17’). Note that, for
all instances, the gap is rather small.

Now, if we compare our results with the ones of KRC, our method is not
always better. For instance, when n = 84 and p = b 7n

12
c, the optimal value is

found 3.7 times faster with their approach than with the QCR one. But we
can say that Karisch et al. apply a specific method to the graph bisection
problem whereas QCR is a very general approach which can be applied to
many combinatorial optimization problems.

3.3 Computational results for the task allocation prob-
lem

Let P = {P1, . . . , Pn} be a set of non identical processors of a distributed
system and T = {T1, . . . , Tm} be a set of tasks that must be run over this
distributed system. Some of these tasks have to communicate.

The task allocation problem can be formulated as the following linearly
constrained 0-1 quadratic optimization problem (TA):

17

(TA) : Min

l(x) =

m
∑

i=1

n
∑

k=1

eikxik +

m−1
∑

i=1

m
∑

j=i+1

n
∑

k=1

n
∑

`=1

cikjlxikxjl :

n
∑

k=1

xik = 1 (i = 1, . . . ,m), x ∈ {0, 1}m×n

}

where the real coefficient eik represents the execution cost of task Ti when
it is assigned to processor Pk and the real coefficient cikjl represents the
communication cost between two tasks Ti and Tj (respectively assigned to
processors Pk and P`). The binary variable xik is equal to 1 if and only if
task Ti is assigned to processor Pk.

According to the general method presented in Section 2, the reformulation
of (TA) is:

(TAα,u) : Min

{

lα,u(x) :
n
∑

k=1

xik = 1, (i = 1, . . . , m), x ∈ {0, 1}m×n

}

with:

lα,u(x) = l(x) +

m
∑

i=1

n
∑

k=1

uik

(

x2

ik − xik

)

+

m
∑

i=1

(

m
∑

j=1

n
∑

l=1

αijlxjl

)(

n
∑

k=1

xik − 1

)

Optimal parameters α∗ and u∗ are computed by the SDP relaxation
associated to (TA) that we call (SDTA) in the following. For comparison of
’CPLEX’ and ’QCR+CPLEX’, we consider randomly generated instances:
we choose the parameters m and n who define the problem dimension and
then the coefficients eik and cikjl are randomly selected from an interval
[−50, 50]. These instances have been already used in [6] and can be obtained
from http://cedric.cnam.fr/oc/TAP/TAP.html.

Table 5 presents results for all instances that we have considered: 3 values
of n (3, 4, 5) and 4 values of m (10, 15, 18, 20). For each pair (m, n), average
values (over 10 instances) of computation time and gap are reported.

18

Legend of Table 5:

• CPU , average value of the total CPU time required by CPLEX to solve
(TA) or required by SB and CPLEX to solve (SDTA) and (TAα∗,u∗) re-
spectively. Note that a number i in brackets corresponds to the number
of instances out of 10 solved within 1h. In this case, the corresponding
CPU time is the average of these i instances.

Table 5: Average results for 70 randomly generated instances of the task allocation
problem

QCR+CPLEX CPLEX
m n CPU gap(%) CPU gap(%)
15 5 21” 30 4’16” 63
18 4 27” 22 4’34” 60
20 4 35” 24 21’4” 62
20 5 9’59” 34 - 67
25 4 9’14” 24 - 59
25 5 48’27”(1) 35 - 67
25 6 - 46 - 76

-: none of the ten corresponding instances could be solved within 1h
(i): i instances out of 10 were solved within 1h

For all instances, QCR drastically improves the default preprocessing of
CPLEX. More complete comparisons are presented in [17]. In this refer-
ence, our ’QCR+CPLEX’ method is compared with a sophisticated linear
programming based method. For the m = 20 and n = 5 instances, it is
observed that the average gap (resp. CPU time) of the linear programming
based method is 84% (resp. 36’46”) versus 34% (resp. 9’59”).

4 Conclusion

In this paper, we have considered the problem (QP) of minimizing a

quadratic 0-1 function g(x) subject to linear equality constraints
n
∑

j=1

akjxj =

bk ∀k = 1, . . . , m. We have proposed a reformulation of this problem into
an equivalent 0-1 program with a convex quadratic objective function gα,u(x)
depending on two parameters α and u and obtained by adding to g(x) the two

following functions, null on the feasible solution set, g1(x) =
n
∑

i=1

ui (x
2
i − xi)

and g2(x) =
m
∑

k=1

(

n
∑

i=1

αkixi

)

(

n
∑

j=1

akjxj − bk

)

. The n-vector u and the m×n-

matrix α are determined by semidefinite programming in order to make

19

gα,u(x) convex and to maximize its minimum value over the relaxed domain
X. This reformulation, that we call QCR (Quadratic Convex Reformula-
tion), can be viewed as a preprocessing of (QP) in order to solve it by a
general-purpose (MIQP) solver. We applied QCR to three difficult combi-
natorial optimization problems: the densest k-subgraph, the graph bisection
and a task allocation problem. For all the considered instances of these prob-
lems, QCR largely outperforms the method consisting to directly submit the
quadratic 0-1 problem to CPLEX.

Moreover, for the densest k-subgraph problem, QCR also outperforms
the methods proposed in the literature (specific algorithms or linearizations).
For the graph bisection problem, QCR is competitive with the best method
- to our knowledge - proposed in the literature: the one of Karisch, Rendl
and Clausen (KRC) that is a specific branch-and-bound algorithm based on
semidefinite programming and polyhedral relaxations.

Finally, QCR is a general approach which can be applied to a lot of com-
binatorial optimization problems. We are currently trying to extend QCR to
quadratic 0-1 programs involving linear inequality constraints.

Acknowledgment
The authors are thankful to Frédéric Roupin for useful discussions about
semidefinite programming.

References

[1] W.P. Adams, R. Forrester, and F. Glover. Comparisons and enhance-
ment strategies for linearizing mixed 0-1 quadratic programs. Discrete

Optimization, 1(2):99–120, 2004.

[2] W.P. Adams and H.D. Sherali. A tight linearization and an algo-
rithm for 0-1 quadratic programming problems. Management Science,
32(10):1274–1290, 1986.

[3] K.M. Anstreicher and N.W. Brixius. A new bound for the quadratic
assignment problem based on convex quadratic programming. Mathe-

matical Programming, 89:341–357, 2001.

[4] A. Billionnet. Different formulations for solving the heaviest k-subgraph
problem. Information Systems and Operational Research, 43(3):171–186,
2005.

[5] A. Billionnet, M.-C. Costa, and A. Sutter. An efficient algorithm for
a task allocation problem. Journal of the association for computing

machinery, 39:502–518, 1992.

20

[6] A. Billionnet and S. Elloumi. Best reduction of the quadratic semi-
assignment problem. Discrete Applied Mathematics, 109:197–213, 2001.

[7] A. Billionnet and S. Elloumi. Using a mixed integer quadratic program-
ming solver for the unconstrained quadratic 0-1 problem. Mathematical

Programming, 109:55–68, 2007.

[8] A. Billionnet, S. Elloumi, and M.C. Plateau. Quadratic convex reformu-
lation : a computational study of the graph bisection problem. Technical

Report CEDRIC, http://cedric.cnam.fr/PUBLIS/RC1003.pdf, 2005.

[9] A. Billionnet and E. Soutif. An exact method based on lagrangian de-
composition for the 0-1 quadratic knapsack problem. European Journal

of Operational Research, 157(3):565–575, 2004.

[10] L. Brunetta, M. Conforti, and G. Rinaldi. A branch-and-cut algorithm
for the equicut problem. Mathematical Programming, 78:243–263, 1997.

[11] P. Carraresi and F. Malucelli. A new lower bound for the quadratic as-
signment problem. Operations Research, 40(Suppl. No1):S22–S27, 1992.

[12] M.W. Carter. The indefinite zero-one quadratic problem. Discrete Ap-

plied Mathematics, 7:23–44, 1984.

[13] P. Chardaire and A. Sutter. A decomposition method for quadratic
zero-one programming. Management Science, 41(4):704–712, 1995.

[14] D.G. Corneil and Y. Perl. Clustering and domination in perfect graphs.
Discrete Applied Mathematics, 9:27–39, 1984.

[15] Cplex. Ilog cplex 9.0 reference manual. ILOG CPLEX Division, Gen-

tilly, France, http://www.ilog.com/products/cplex, 2004.

[16] Y. Crama, P. Hansen, and B. Jaumard. The basic algorithm for pseudo-
boolean programming revisited. Discrete Applied Mathematics, 29(2-
3):171–185, 1990.

[17] S. Elloumi. Linear programming versus convex quadratic programming
for the module allocation problem. Technical Report CEDRIC 1100,
http://cedric.cnam.fr/PUBLIS/RC1100.pdf, 2005.

[18] A. Faye and F. Roupin. Partial lagrangian and semidefinite relax-
ations of quadratic programs. Rapport technique CEDRIC N◦673,
http://cedric.cnam.fr/PUBLIS/RC673.pdf, 2004.

21

[19] G. Finke, R.E. Burkard, and F. Rendl. Quadratic assignment problems.
Annals of Discrete Mathematics, 31:61–82, 1987.

[20] R. Fortet. Applications de l’algèbre de boole en recherche
opérationnelle. Revue Française d’Automatique d’Informatique et de

Recherche Opérationnelle, 4:5–36, 1959.

[21] A.M. Frieze and J. Yadegar. On the quadratic assignment problem.
Discrete applied mathematics, 5:89–98, 1983.

[22] F. Glover and E. Woolsey. Further reduction of 0-1 polynomial pro-
gramming problems to 0-1 linear programming problems. Operations

Research, 21:156–161, 1973.

[23] M.X. Goemans. Semidefinite programming in combinatorial optimiza-
tion. Mathematical Programming, pages 143–161, 1997.

[24] P.L. Hammer and A.A. Rubin. Some remarks on quadratic programming
with 0-1 variables. RAIRO, 3:67–79, 1970.

[25] P.L. Hammer and S. Rudeanu. Boolean methods in operations research.
Springer, Berlin, 1968.

[26] C. Helmberg. A c++ implementation of the spectral bundle method.
Manual version 1.1.1, http://www.zib.de/helmberg/SBmethod, 2000.

[27] C. Helmberg and F. Rendl. Solving quadratic (0,1)-problems by semidef-
inite programs and cutting planes. Math. Programming, 8(3):291–315,
1998.

[28] C. Helmberg and F. Rendl. A spectral bundle method for semidefinite
programming. SIAM Journal on Optimization, 10(3):673–696, 1999.

[29] B. Kalantari and A. Bagchi. An algorithm for quadratic zero-one pro-
grams. Naval Research Logistics, 37:527–538, 1990.

[30] S.E. Karisch, F. Rendl, and J. Clausen. Solving graph bisection prob-
lems with semidefinite programming. INFORMS Journal on Computing,
12(3):177–191, 2000.

[31] J Krarup, D. Pisinger, and F. Plastria. Discrete location problems with
push-pull objectives. Discrete Applied Mathematics, 123:365–378, 2002.

[32] C. Lemaréchal and F. Oustry. Semidefinite relaxations and lagrangian
duality with application to combinatorial optimization. RR-3710, IN-

RIA Rhones-Alpes, 1999.

22

[33] T. Lengauer. Combinatorial algorithms for integrated circuit layout.
Wiley,Chichester, 1990.

[34] R.D. McBride and J.S. Yormark. An implicit enumeration algorithm for
quadratic integer programming. Management Science, 26(3), 1980.

[35] P. Michelon and N. Maculan. Lagrangian decomposition for integer non
linear programming with linear constraints. Mathematical Programming,
52(2):303–314, 1991.

[36] D. Pisinger. Upper bounds and exact algorithm for p-dispersion prob-
lems. Computers and Operations Research, 33(5):1380–1398, 2006.

[37] M.C. Plateau, A. Billionnet, and S. Elloumi. Eigenvalue methods for lin-
early constrained quadratic 0-1 problems with application to the densest
k-subgraph problem. In 6ème congrès ROADEF, Tours, 14-16 février,

Presses Universitaires Francois Rabelais, pages 55–66, 2005.

[38] J. Renegar. A mathematical view of interior-point methods in convex
optimization. MPS-SIAM Series on Optimization, SIAM, Philadelphia,
2001.

[39] H.D. Sherali and W.P. Adams. A Reformulation-Linearization Tech-

nique for Solving Discrete and Continuous Nonconvex Problems. Kluwer
Academic Publishers, Norwell, MA, 1999.

23

