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Hydrodynamic coupling of flexible flags in axial flows may profoundly influence their flapping dy-
namics, in particular driving their synchronization. This work investigates the effect of such coupling
on the harvesting efficiency of coupled piezoelectric flags, that convert their periodic deformation
into an electrical current. Considering two flags connected to a single output circuit, we investigate
using numerical simulations the relative importance of hydrodynamic coupling to electrodynamic
coupling of the flags through the output circuit due to the inverse piezoelectric effect. It is shown
that electrodynamic coupling is dominant beyond a critical distance, and induces a synchronization
of the flags’ motion resulting in enhanced energy harvesting performance. We further show that
this electrodynamic coupling can be strengthened using resonant harvesting circuits.

I. INTRODUCTION

Piezoelectric materials draw from their internal structure their fundamental ability to generate a net charge displace-
ment when they are deformed and to respond mechanically to an electric forcing. This two-way electro-mechanical
coupling may be exploited to convert the mechanical energy of a vibrating structure into electrical form, and has
become increasingly popular to design energy harvesters based on ambient vibrations [1–5].

Such systems critically depend on existing or forced vibrations of the structure. The concept can nevertheless be
extended to harvest energy from a steady flow by exploiting fluid-solid instabilities to generate self-sustained motions
of a solid body [see for example 6]. The spontaneous flapping of thin deformable plates in axial flow beyond a
critical flow velocity is another example, commonly referred to as the flag instability [see 7, for a recent review]. This
instability has been the focus of intense recent investigations to understand the impact of energy extraction on the
flapping dynamics [8] and assess the energy harvesting performance when the flag’s deformation is converted into
electric energy using piezoelectric and other electroactive materials covering the flag’s surface [9–13].

Much of the work on piezoelectric flags has so far focused on single flags connected with simple circuits, such as pure
resistors, to understand the effect of the fluid-solid-electric coupling on the system’s stability and the energy transfers
between the fluid, solid and electrical components [9, 11, 14]. Ref. [12] further showed that the flapping amplitude
and frequency of a piezoelectric flag can be significantly modified by the extraction of energy and coupling to the
dynamical properties of the output circuit even for a purely resistive output. Using a resonant circuit, Ref. Xia et al.
[15] reported a frequency lock-in phenomenon that considerably increases the flag’s flapping amplitude and efficiency:
during lock-in, the flapping frequency of the flag is dictated by the circuit to match its resonance frequency therefore
enabling large voltage and energy transfers to the output load.

Because of its material properties, a single piezoelectric harvester is still characterized by its small power output
[2, 3]. One potential solution to this problem is to combine multiple devices in order to produce the required power.
For flapping flags, however, the placement in close proximity of multiple flapping structures significantly modifies
their flapping dynamics, and hydrodynamic synchronization as well as modification of the flapping amplitude and
frequency have been reported in multiple recent studies [16–20].

Depending on their relative positioning, two side-by-side flags may flap in-phase (with identical vertical displace-
ments), or out-of-phase (with opposite vertical displacement) [21, 22]. More complex synchronization was also iden-
tified in numerical simulations for both side-by-side and tandem flags [17, 23]. The synchronization of the flags can
modify their individual dynamical properties and their individual performance as energy harvesters. Furthermore, if
the flags are to be connected electrically to a single device, for example to increase the available power, the relative
phase and amplitude of the generated signals (directly related to their mechanical dynamics) will be critical: the
electric interaction might be constructive (resp. destructive) if both signals are in-phase (resp. out-of-phase). Hy-
drodynamic coupling therefore influences the efficiency of flags that are electrically-isolated [24]. Finally, the inverse
piezoelectric effect introduces a feedback forcing on the flags’ dynamics by the electrical circuit: when multiple flags
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FIG. 1: (a) A schematic representation of two piezoelectric flags placed side-by-side in an axial flow, and (b) the electric
equivalence of the ith piezoelectric flag with its two electrodes. The flags’ electrodes are connected in a same circuit.

are connected to the same output loop, this introduces an additional electrodynamic coupling that competes with
hydrodynamic effects in setting the relative phase and dynamical properties of the flapping motion.

The motivation for the present work is therefore to investigate the role and relative weight of these different coupling
mechanisms and the resulting harvesting efficiency of coupled piezoelectric flags. To this end, we focus on the system
consisting of two flags placed side-by-side in an axial flow and connected to a single output circuit, a simple fluid-
solid-electric system which provides physical insight on the hydro- and electro-dynamic couplings and performance
of a two-flag assembly. In Section II, the models used to describe the fluid-solid-electric dynamics are presented.
Section III analyses the relative importance of hydrodynamic and electrodynamic coupling in synchronizing the flags’
motion. The role of the output circuit is then discussed in Section IV. Finally, conclusions and perspectives are
presented in Section V.

II. FLUID-SOLID-ELECTRIC MODEL

We consider here two piezoelectric flags placed side by side in an axial flow. The flapping motion of these structures
are coupled both hydrodynamically (each flag modifies the flow field experienced by the other one) and electrody-
namically (both flags are connected to the same output circuit). A schematic representation of the coupled system is
shown in Fig. 1.
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A. Piezoelectric flags modeling

Both piezoelectric flags are clamped side by side from their leading edge and placed in an axial fluid flow of density
ρf and velocity U∞ at a distance D from each other. Both flags are infinitely thin and have a span-wise dimension H
much larger than their streamwise length L, so that the flags’ and fluid’s motions are purely two-dimensional. Each
flag is entirely covered by a single pair of piezoelectric electrodes shunted through the flag with reverse polarity. The
piezoelectric material is characterized by an electromechanical coefficient χ = e31h/2, with h the thickness of the
piezoelectric flag and e31 the reduced piezoelectric coupling coefficient [25] and intrinsic capacitance C. The resulting
three-layer plate has bending rigidity B per unit length and mass per unit area µ. In the following, the problem is
non-dimensionalized using L, L/U∞, µL2 and U∞

√
µL/C respectively as characteristic length, time, mass and voltage

scales. Fluid forces are naturally scaled by ρU2
∞.

The deformation of flag i (i = 1, 2) induces a charge displacement Qi within the corresponding piezoelectric pair,
driven by the change in the patches’ length. For a thin patch positioned on an inextensible flag, it is determined by
the relative orientations of the flag centerline at both ends of the patch [14]. Here, the entire flag is covered by a single
pair and the leading edge is clamped: noting Θi(s) the flag’s orientation with respect to the flow direction, the charge
displacement is therefore completely determined by Θi(s = L). For the i-th flag (i = 1, 2), the charge displacement
Qi is then given by: [26]

Qi =
α

U∗
Θi(s = L) + Vi, (1)

where Vi is the voltage across the piezoelectric pair of flag i, and α and U∗ are the piezoelectric coupling coefficient
and relative velocity of the fluid flow and of structural bending waves, respectively defined as:

α = χ

√
L

BC
, U∗ = U∞L

√
µ

B
. (2)

The inverse piezoelectric effect converts the electric field within the piezoelectric material into mechanical stress. For
a pair of thin patches covering the entire flag, this leads to a piezoelectric torque [27] applied at the trailing edge flag
i:

Mpiezo = − α

U∗
Vi. (3)

The dynamics of each flag is described using the inextensible Euler-Bernoulli model, which is written in dimensionless
form as:

∂2xi

∂t2
=

∂

∂s

(
Tiτ i −

1

U∗2
∂2Θi

∂s2
ni

)
−M∗∆pini, (4)

∂xi

∂s
= τ i, (5)

where Ti(s, t) is the tension distribution within flag i and ∆pi = p+− p− is the difference of fluid pressure applied on
the upper surface (p+) and lower surface (p−) of the flag. Note that, for an inextensible flag, Ti(s, t) is not determined
a priori but instead plays the role of a Lagrange multiplier to guarantee the inextensibility condition. The flags are
clamped at their leading edge and free at their trailing edge:

at s = 0 : Θi = 0, x1 = 0, x2 = d ey, (6)

at s = 1 : Ti =
1

U∗2
∂Θi

∂s
− α

U∗
Vi =

1

U∗2
∂2Θi

∂s2
= 0. (7)

In particular, Eq. (7) indicates that the tension, internal torque and shear force must vanish at the free trailing edge,
including both the elastic components and the additional piezoelectric torque applied locally on s = 1. The fluid-solid
problem depends on two additional non-dimensional parameters:

M∗ =
ρfL

µ
, d =

D

L
, (8)

that are namely the fluid-solid mass ratio and the relative distance between the flags.
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B. Vortex sheet model

Solving for the fluid-solid dynamics requires a model for the fluid force ffluid
i in Eq. (4). We assume here that the

fluid’s viscosity is negligible except within thin boundary layers along the flag that separate at the trailing edge and
roll up into vortical structures. To describe this essentially-inviscid flow, we adopt a potential flow model, describing
each flag as a bound vortex sheet (i.e. a discontinuity in tangential velocity) and the vortex wake as a free vortex sheet
continuously shed from the flag’s trailing edge, thereby applying the vortex sheet model introduced and presented in
details by Ref. Alben [28].

The flow is inviscid, incompressible and irrotational except for two vortex sheets C1 and C2. Ci includes both the
bound vortex sheet attached to the flag (0 ≤ s ≤ 1) and the free vortex sheet shed at the flag’s edge (s > 1). Using
Biot-Savart’s law, the fluid’s velocity field at x is then obtained as:

u(x, t) = ex +
∑
i=1,2

1

2π

∫
Ci

γi(s
′, t)k× [x− xi(s

′, t)]

|x− xi(s′, t)|2
ds′, (9)

where γi(s, t) is the local strength of the vortex sheet Ci. When x is on Ci, the previous expression remains valid for
the mean flow velocity ũi (i.e. the average of the flow velocity on either side of the sheet) provided that the integral
on Ci is understood as a Cauchy Principal Value Integral. The free vortex sheet is simply advected by the local flow
field:

∂xi

∂t
(s, t) = ũi(xi(s, t), t), s > 1, (10)

and the circulation, i.e. the arc-length integral of γi along Ci, acts as a passive tracer for s ≥ 1. Enforcing the
continuity of the normal flow velocity on each flag provides coupled singular integral equations for the intensities
γi(s, t) of the bound vortex sheets:

ni ·
∂xi

∂t
(s, t) = ni · u(xi(s, t), t), 0 ≤ s ≤ 1. (11)

The regularity of the flow field near the trailing edge of each flag and conservation of total circulation around Ci

provides a unique solution for the integral equation problem.
In this inviscid limit, the fluid force ffluid

i comes purely from the difference of pressure on either side of the flag and
is obtained from Bernoulli’s theorem [28, 29]:

∆pi(s, t) =

[∫ s

0

∂γi
∂t

+ γiτ i ·
(
ũi −

∂xi

∂t

)]
. (12)

C. Electrical circuits

Two electrodes stretch out from each flag and are respectively denoted as T and B (see Fig. 1b), with the index
1 and 2 distinguishing flags 1 and 2. We may consider two types of connections: (i) the normal connection (NC)
by joining T1 to T2, and B1 to B2 (Fig. 2a), or (ii) the inverse connection (IC) by joining T1 to B2, and B1 to T2

(Fig. 2b).
The flags are connected in parallel to the same output circuit, thus sharing the same voltage (V1 = V2 = V ) when

the normal connection is used, and opposite voltage (V1 = −V2 = V ) when the inverse connection is used. The
dynamics of the output circuit can be written generally as

V + Z(
∂Q1

∂t
± ∂Q2

∂t
) = 0, (13)

where Z is formally the impedance of the output circuit, and the + (resp. −) sign in the previous equation corresponds
to the normal (resp. inverse) connection. For a linear output circuit, Z is a linear integro-differential operator in
time. For example, the case of a pure resistor R simply corresponds to Z = β, with β the non-dimensional resistance
of the output circuit,

β =
RCU∞
L

. (14)

Unless specified otherwise, the normal connection is used here with a resistive circuit (Fig. 2a). Equation (13) is
therefore rewritten as:

V + β(
∂Q1

∂t
+
∂Q2

∂t
) = 0. (15)
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Inverse connection

Normal connection

FIG. 2: Resistive circuit in (a) normal connection and (b) inverse connection

D. Energy harvesting efficiency

The harvesting component of the output circuit (i.e. the useful load) is modeled as a resistor R [9, 14]. In analogy
with the single flag problem and the classical definition of efficiency for wind-turbines, the energy-harvesting efficiency
η of the two-flag assembly is evaluated as the ratio between the average power dissipated in the circuit’s resistance
〈P〉 to the fluid kinetic energy flux (ρU3

∞/2) through the surface effectively swept by each flag’s trailing edge:

η =
〈P〉

1
2 (A1 +A2)

, (16)

where Ai the dimensionless peak-to-peak flapping amplitude of flag i at the trailing edge. The instantaneous rate of
dissipation within the resistance is given, in dimensionless form, by P = V 2/β.

E. Numerical solution

Equations (1), (4)–(7), (9)–(12) and (13) form a nonlinear system of partial differential equations for the fully-
coupled fluid-solid-electric dynamics. This system is marched in time using a second-order semi-implicit time-stepping
scheme. At each time step, the problems for the state variables (flag’s curvature, voltage and circulation) is recast
as a set of nonlinear equations which is solved iteratively [30]. A Chebyshev collocation method is used to compute
derivations and integration in space [28].

The singularity of the first kernel in Eq. (9) is regularized as (k× r)/(|r|2 + δ2) on the free vortex sheet to ensure
proper numerical integration [31], using δ = 0.2 [32].
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III. ELECTRODYNAMIC AND HYDRODYNAMIC SYNCHRONIZATIONS

In this section, we focus on the normal connection of the two piezoelectric flags with the simplest harvesting
circuit, namely a single resistor R (Figure 2). Energy can only be harvested when the flags are unstable and undergo
spontaneous flapping; in the following, we therefore focus on this postcritical regime.

Equations (1) and (13) now become:

2
∂V

∂t
+
V

β
+

α

U∗

(
∂Θ1

∂t
+
∂Θ2

∂t

)
= 0. (17)

In the normal connection, the voltage between the upper and lower electrodes is identical for each flag, and so are the
piezoelectric torques applied at each flag’s trailing edge: electrodynamic coupling of the piezoelectric flags is therefore
expected to favor an in-phase flapping pattern.

A. Hydrodynamic synchronization with no piezoelectric coupling

The flapping pattern without piezoelectric coupling (α = 0) is first investigated. Ref. [17] reported a continuous
evolution of the phase shift ∆φ with varying d. This observation is confirmed in our work using the same model in
the absence of piezoelectric coupling (Fig. 3): increasing d, the flapping pattern evolves continuously from in-phase
flapping (d = 0.95, Fig. 3a, d) to out-of-phase flapping (Fig. 3c, f). Rather than a sharp transition, the evolution
from in-phase to out-of-phase is continuous (see intermediate phase for d = 1.65, Fig. 3b, e). Increasing d further, the
phase shift maintains this smooth and monotonic evolution [17].

B. Effect of piezoelectric coupling

We now focus on the modification introduced to this hydrodynamic synchronization when the piezoelectric coupling
is activated (α 6= 0). All other parameters being held fixed, for a single flag, an optimal energy harvesting is obtained
when the output circuit is perfectly tuned, i.e. when the time scales of the circuit and of the flapping are identical
[12]. For simplicity, the value of β is chosen here for a perfect tuning for a single flag.

For small values of d, the evolution of ∆φ remains unchanged when α 6= 0 (Fig. 4a, b), demonstrating the dominance
of hydrodynamic coupling over the piezoelectric coupling in synchronizing the flags. The energy harvesting efficiency
is nevertheless strongly impacted by the phase shift: in-phase flapping results in Q1 ≈ Q2 and the forcing of the flags
on the circuit are additive resulting in high efficiency. The efficiency decreases as ∆φ evolves towards −π (out-of-phase
flapping). In that case, the forcing of the two flags on the circuit cancels out, leading to a very small current in the
output resistor.

For larger separation distances, the electrodynamic coupling modifies the synchronization, in favor of an in-phase
dynamics (∆φ→ 0) as anticipated (see for example, Fig. 4b). As a result, the harvesting efficiency at large distance
is more important and comparable to the one obtained for in-phase flapping at small distance (see Fig. 4d). Those
results also show a scaling of η as α2 in the efficient regime as explained by Ref. Michelin and Doaré [12] for small
electromechanical coupling.

C. Hydrodynamic vs. electrodynamic forcing

These observations are consistent with the weakening of hydrodynamic coupling with increasing d, while electro-
dynamic coupling is independent of d. A characteristic distance dc therefore exists where both effects are of the same
order and a transition from hydrodynamic to electrodynamic synchronization occurs.

We seek a scaling law for dc by comparing the relative magnitude of the piezoelectric and hydrodynamic torques
generated on one of the flag by the second one. In dimensional form, the former, Mpiezo, scales as:

Mpiezo ∼ χ[V ] ∼ χ2[Θ]

C
, (18)

where [Θ] = O(1) is the typical trailing edge angle. The typical perturbation velocity introduced by one flag near the
other is [u] ∼ U∞L/D (Biot-Savart’s law), therefore the hydrodynamic torque created on one flag by the motion of
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FIG. 3: (a, b, c) Flapping motion and instantaneous position of the flags and vortex sheets and (d, e, f) evolution of trailing
edge deflection Θi in time for d = 0.95 (a,d), d = 1.65 (b,e) and d = 2.62 (c,f) for α = 0, M∗ = 5, U∗ = 10.

the other, Mfluid ∼ ρf [u]2L2, scales as

Mfluid ∼ ρfL2U2
∞
L2

D2
. (19)

Consequently,

Mpiezo

Mfluid
∼ χ2[Θ]

ρfL2U2
∞C

(
D

L

)2

∼
(
D

Dc

)2

, with Dc =
LU∞
χ

√
ρfC, (20)

or in dimensionless form

dc =
U∗
√
M∗

α
. (21)

When d� dc, the hydrodynamic coupling dominates and synchronization of the two flags follows closely the behavior
obtained with no piezoelectric coupling. When d� dc, electrodynamic coupling through the piezoelectric electrodes
and circuit dominates and imposes in-phase flapping.
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FIG. 4: Evolution with d of (a, b) the relative phase of the flags ∆φ, and (c, d) the rescaled harvesting efficiency ηα−2, for
M∗ = 5, U∗ = 10, β = 0.17 (a, c) or M∗ = 3, U∗ = 13, β = 0.15 (b, d).

Equation (21) indicates that dc is proportional to α−1, consistent with the fact that a stronger electromechanical
coupling coefficient results in an electrodynamic synchronization at smaller distance as piezoelectric effects are larger
(Fig. 4).

D. Synchronization effects: linear analysis

To confirm the relation dc ∼ α−1, we investigate the synchronization properties of the linearly unstable modes of
the system: the nonlinear equations for the fluid-solid-electric dynamics are linearized for small vertical displacements
yi of the flags.

In this linear approximation, self-induction of the wake is negligible and so is the advection due to the plate’s
motion; therefore, the free vortex sheet is simply advected by the mean flow along the horizontal axis. The problem is
therefore recast as an eigenvalue problem, which is nonlinear due to the velocity induced by the semi-infinite wake on
the plate [33]. Because of the symmetries of the equations, eigenmodes of the problem are either in-phase (y1 = y2,
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FIG. 5: (a) Relative phase of the two flags ∆φ in the most unstable mode as a function of d and U∗, for M∗ = 3, α = 0 and
β = 0.1. (b) Evolution with α of the critical distance dc at which the synchronization of the most unstable mode switches from
out-of-phase to in-phase, for M∗ = 3 and varying U∗. The same data is plotted in logarithmic scale as an inset.

Q1 = Q2) or out-of-phase (y1 = −y2, Q1 = −Q2) [18].
For α = 0 and M∗ = 3, Figure 5a shows that the phase shift of the most unstable mode is ∆φ = π (out-of-phase)

at the stability threshold. A reduction of the critical velocity beyond which spontaneous flapping develops can be
observed at small distance d, which is consistent with previous work [34]. A switch to an in-phase dominant mode is
then observed at higher velocity (U∗ > 20). This switch from out-of-phase to in-phase is observed for α 6= 0 but for
shorter distances as the coupling between the electric and solid system becomes stronger: the piezoelectric coupling
increasingly favors the in-phase synchronization of the flags. Figure 5b shows that the switching distance scales as
dc ∼ α−1 which validates the scaling arguments presented above.

E. Synchronization effects: comparison with nonlinear results

In the nonlinear saturated regime, ∆φ is not restricted to discrete values 0 and ±π, but instead evolves continuously
with the different parameters. In order to assess the effect of α on the critical distance dc at which piezoelectric
coupling overcomes hydrodynamics, it is necessary to define a quantitative criterion in terms of ∆φ. Keeping all other
parameters constant, the distance d is varied to identify dc the distance beyond which ∆φ < ∆φc for a given cut-off
value ∆φc.

This distance dc is plotted as a function of α in Fig. 6, which shows that dc is indeed a decreasing function of α.
However, the evolution of dc with α does not follow dc ∼ α−1 in the nonlinear regime. One possible reason is that the
scaling analysis proposed in Section III C is essentially based on a far-field analysis where the flags’ relative distance
is much greater than their length. This approximation is not valid in the results presented on Fig. 6.

IV. THE ROLE OF THE OUTPUT CIRCUIT

When electrodynamic coupling becomes dominant over hydrodynamics, it is expected that the precise design of
the output circuit will play a major role in determining the synchronization of the flags [12, 15]. In the following, we
investigate two effects, namely the reversal of the flags’ connection and the addition of an inductance in the output
loop, before concluding on the role of electrodynamic coupling by comparing our results to the case of two piezoelectric
flags connected to independent circuits.
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M∗ = 3, U∗ = 13, β = 0.15 when the flags are connected in the Inverse Connection (IC).

A. Inverse connection (IC)

In the inverse connection shown in Fig. 2b, the upper electrode of the upper flag is connected to the lower electrode
of the lower one, and the dynamics of the corresponding output circuit is described by:

V + β(
∂Q1

∂t
− ∂Q2

∂t
) = 0. (22)

The voltages applied on the flag are now opposite (V1 = −V2 = V ) and so are the piezoelectric torques: such
coupling now favors an out-of-phase synchronization. This is confirmed on Figure 7: for large distances, out-of-
phase synchronization is induced by the piezoelectric effect and corresponds to a maximum efficiency. In the inverse
connection, the current forcing the output resistor is Q̇1 − Q̇2: an out-of-phase flapping leads to an additive forcing
of the flags on the circuit (Q̇2 = −Q̇1). The exact synchronization is therefore modified by the reversal of the flags’
connection, but the main fundamental result still holds: at large distance, the electrodynamic coupling of the two
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FIG. 8: Resistive-inductive circuit connected to two piezoelectric flags

flags overcomes hydrodynamic effects and imposes the relative phase of flapping so that it performs the most efficient
transfer to the circuit.

B. Resonant circuit

The addition of an inductive component to the output circuit provides the electrical system with a resonance
frequency. The coupling of the flag to the resonant circuit has recently been shown to enhance energy harvesting and
can modify the flapping dynamics due to the inverse piezoelectric effect [15, 35]. In this section, the output circuit
contains a resistor R and inductor L connected in parallel (Fig. 8)

The dimensionless equation for the circuit’s dynamics can now be written as:

2
∂2V

∂t2
+

1

β

∂V

∂t
+ ω2

0V +
α

U∗

(
∂2Θ1

∂t2
+
∂2Θ2

∂t2

)
= 0, (23)

with ω0 = L/(U∞
√
LC).

When the flapping frequency of the flag ω matches the natural frequency of the circuit ω0/
√

2 (the circuit contains
two identical capacitances), the circuit is forced at resonance leading to larger energy transfers from the mechanical
system to the output circuit (Fig. 9). For the parameter values of Fig. 9, an out-of-phase flapping is observed in
the absence of any piezoelectric coupling (α = 0) (see Fig. 9c), which would compete with the in-phase forcing
introduced by the electrodynamic coupling, and should therefore result in destructive interactions and low efficiency.
This is however not observed near the resonance peak, because the electrodynamic interaction of the two flags through
the resonant circuit leads to a modification in their synchronization: near resonance, in-phase flapping is observed
(Fig. 9d) with high efficiency. This can be interpreted as follows: when forced at resonance, the circuit experiences
large voltage amplitude resulting in an increased feedback on the flags’ dynamics through the piezoelectric torque.
Forcing at resonance increases the inverse piezoelectric effect, and therefore effectively increases the electrodynamic
coupling which becomes dominant over the hydrodynamic interactions. In the context of the previous section, this
amounts to a reduction in the critical distance at which electrodynamic and hydrodynamic interactions balance.

C. Comparison with two flags connected to different circuits

By connecting both flags to the same circuit, the present configuration confers the circuit a double role: a coupling
mechanism and an output where the energy is used. In this section, we finally attempt to shed some light on the former
role by comparing our results to that obtained for two hydrodynamically-coupled flags connected to two independent
and identical circuits. In that case, the harvested power can be obtained by summing the different contribution
of each circuit, but the flags do not experience any electrodynamic coupling [24]. Moreover, the energy harvesting
performance is not directly affected by the relative phase of flapping of the two flags, but is still impacted by the
flags’ interaction through the variations of their flapping amplitude or frequency depending on their hydrodynamic
synchronization.

Consistently, for two independent circuits, the relative phase of the flags is observed to follow exactly that of the
non-piezoelectric flags (α = 0) which contrasts with the one-circuit configuration (Fig. 10a). Figure 10(b) demonstrates
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FIG. 9: (a) Flapping frequency ω and (b) harvesting efficiency η with the normal connection, d = 1.5, α = 0.3, M∗ = 3,
U∗ = 13, β = 10. Flapping motion of two flags with d = 1.5, M∗ = 3, U∗ = 13 and (c) α = 0, (d) α = 0.3, β = 10, ω0 = 4.88,
normal connection at resonance.

that the electrodynamic interaction is not necessarily beneficial as it is sensitive to the flags’ relative phase: for small
distance, hydrodynamic drives an out-of-phase synchronization which leads to destructive interactions of the two flags
in forcing the same circuit and small efficiency, while the two-circuit system maintains its efficiency regardless of the
phase shift.

The main advantage of the one-circuit configuration remains its ability to power a single larger device as it effectively
synchronizes both outputs in the same electrical signal. Other techniques are however available to combine two
electrical signals with different phase [36].

V. CONCLUSION AND PERSPECTIVES

In this work, we investigated the competition of two different effects driving the synchronization of two side-by-
side piezoelectric flags and the consequences on their energy harvesting performance: (i) the hydrodynamic coupling
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resulting from the fluid motion induced by each flag’s displacement leading to a mechanical forcing of the other flag and
(ii) the electrodynamic coupling of the flags’ through the output circuit. When dominant, we have demonstrated that
the latter has two main consequences: because of the inverse piezoelectric effect it can force a particular synchronization
of the flags (either in-phase or out-of-phase depending on the connection used), and the resulting synchronization
leads to an additive forcing of the two flags on the output circuit leading to a larger efficiency.

Two factors have been identified to influence the relative importance of hydrodynamic and electrodynamic cou-
pling: (i) the distance between the flags d and (ii) the nature of the output circuit. The former does not impact
electrodynamics but directly impacts the intensity of the hydrodynamic coupling: at larger distances, the flow per-
turbations introduced by one flag near the other become negligible. Hence, at larger distances hydrodynamic effects
become subdominant and the flags’ synchronization is driven by electrodynamic interactions. The output circuit also
plays an important role: higher voltage in the output loop increases the piezoelectric feedback forcing on the struc-
ture and effectively increases electrodynamic coupling. Resonant circuits are therefore able to trigger electrodynamic
synchronization of the flags at much shorter distances than resistive circuits.

We exclusively focused here on the interaction of two side-by-side flags for which hydrodynamics introduce a
symmetric coupling between the flags. Other configurations deserve further scrutiny, in particular tandem flags:
one flag is placed in the wake of the other, breaking the hydrodynamic coupling’s scrutiny as the downstream flag
experiences a much stronger forcing for its relative phase of flapping. This downstream flag also experiences a larger
flapping amplitude [21, 37], which is beneficial from an energy harvesting point of view. In that configuration,
electrodynamic coupling is likely to be subdominant; it is therefore expected that much of the energy harvesting
performance can be inferred from the pure hydrodynamic coupling problem.

Our results show that a strong electrodynamic coupling is beneficial to the energy harvesting performance as it
sets a particular synchronization in which the forcing of the flags on the circuit interact constructively. A possible
route for improvement of the system’s efficiency therefore lies within the circuit itself, for example using active circuits
engineering such as Synchronized Switch Harvesting on Inductor (SSHI) to effectively synchronize the mechanical and
electrical systems and enhance energy transfers [38, 39].

The synchronization of more than two flags finally offer further opportunities and challenges. As demonstrated here,
the relative position of the flags plays a critical role in setting their relative phase through hydrodynamic interactions.
For larger flag assemblies, more complex phase distributions can be achieved [16, 18]. In-depth understanding of such
synchronization is however needed in order to assess the interest of such assemblies for energy harvesting purposes.
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