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Flutter Control of a Two-
Degrees-of-Freedom Airfoil
Using a Nonlinear Tuned
Vibration Absorber
The influence of a nonlinear tuned vibration absorber (NLTVA) on the airfoil flutter is
investigated. In particular, its effect on the instability threshold and the potential subcriti-
cality of the bifurcation is analyzed. For that purpose, the airfoil is modeled using the
classical pitch and plunge aeroelastic model together with a linear approach for the aer-
odynamic loads. Large amplitude motions of the airfoil are taken into account with non-
linear restoring forces for the pitch and plunge degrees-of-freedom. The two cases of a
hardening and a softening spring behavior are investigated. The influence of each NLTVA
parameter is studied, and an optimum tuning of these parameters is found. The study
reveals the ability of the NLTVA to shift the instability, avoid its possible subcriticality,
and reduce the limit cycle oscillations (LCOs) amplitude. [DOI: 10.1115/1.4036420]
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1 Introduction

When slender structures, such as bridge deck or airfoil, undergo
wind excitation, a flutter instability, triggered by a Hopf bifurca-
tion, may arise. The flow velocity for which the instability starts is
called the flutter velocity. This phenomenon is detrimental and
may even lead to fatal vibrations of the structure.

Numerous strategies have been investigated in the past in order
to control the flutter instability. Most of them concern active con-
trol techniques, such as governing a trailing edge flap on the wing
[1–3] or using piezoelectric actuators [4]. The reader may refer to
the Dowell’s book on aeroelasticity [5] for more details on flutter
active control. The alternative strategy is the use of passive con-
trol techniques [6], which is also the aim of the present study.
This research topic is relatively recent. Most efforts have been
devoted to bridge deck passive control [7–9].

The most classical passive device for controlling flutter instabilities
is the tuned vibration absorber (TVA) initially developed by Den
Hartog [10], and generally known as tuned mass damper (TMD) or
TVA. This device consists of a small-lumped mass attached to the
primary structure through a linear spring and a damper. If its

eigenfrequency and damping ratio are correctly tuned, it can signifi-
cantly shift the flutter speed [11]. Nevertheless, the TMD has no
effect on the nonlinearities arising in the post-critical regime.

Lee et al. [12,13] proposed to use a nonlinear energy sink
(NES) to control the flutter instability. The NES has been initially
investigated in the field of vibration control [14–16], it consists of
an oscillator linked to the primary structure through an essential
nonlinear stiffness (i.e., with no linear part), leading to targeted
energy transfer [17]. Applied to the flutter control, the method
shows an important reduction in the amplitude of the LCOs
[12,13,18,19]. Nevertheless, it has no effect on the flutter velocity
and needs a certain amount of energy to be activated.

In the present study, the use of a NLTVA, as proposed by Vig-
ui�e and Kerschen [20] and Habib et al. [21], is investigated. The
distinctive feature of the NLTVA is that it possesses both a linear
and a nonlinear stiffness. The linear part of the absorber enables
to recover the optimal control given by a TMD, whereas its non-
linear part can be tuned in order to enhance the control of the pri-
mary system nonlinearities, using a so-called principle of
similarity [22]. Its effectiveness has been proven on a Van der
Pol-Duffing oscillator [23]. Moreover, several experimental real-
izations of the NLTVA have been recently explored [24,25], and a
tuning rule for the NLTVA parameters coupled with a primary
system having polynomial nonlinearities has been proposed using
the Den Hartog’s equal peak method [22].
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In the present context of the flutter instability, two main design
rules are followed for optimizing the NLTVA characteristics.
First, the linear stiffness of the absorber is tuned in order to
increase as much as possible the critical flutter velocity, thus
repelling the appearance of LCO to larger flow velocities. This
step consists of finding the optimal values of a TMD in order to
control the flutter instability, for which the preliminary results can
be found in Ref. [26] for a specific set of airfoil parameters. Sec-
ond, the nonlinear stiffness of the NLTVA may be tuned in order
to enforce supercriticality, as well as to reduce the LCO ampli-
tudes. The aim of the present study is thus to extend the results
presented in Ref. [23], obtained for a Van der Pol-Duffing oscilla-
tor as a primary structure. To get closer to a real airfoil situation,
the primary structure is selected here as the classical two degrees-
of-freedom aeroelastic system, with pitch and plunge motions as
generalized coordinates [5]. The quasi-steady theory is used to
estimate the aerodynamic loads. In order to take into account the
nonlinear structural behavior for large displacements, the model
includes cubic stiffness terms in the pitch and plunge motion. This
allows the system to develop LCO in the post-critical regime.

The first section is devoted to the linear stability analysis. The
optimization of the linear characteristics of the vibration absorber
is investigated, showing in particular how the flutter velocity can
be repelled to larger values using a well-tuned absorber. The airfoil
parameters are then varied, and a design rule is proposed in order
to find easily the optimized linear values. Then, the influence of the
nonlinear part of the NLTVA is investigated. Two different cases
are specifically studied for the airfoil nonlinear restoring force: a
hardening and a softening scenario. These results give a number of
fruitful strategies in order to control passively the flutter instability
by means of a nonlinear vibration absorber.

2 Equations of Motion

2.1 Model Equations. The classical pitch and plunge model
is used to describe the airfoil motion, see, e.g., Ref. [5]. Pitch and
plunge are, respectively, described by the heave h and the angle of
attack a as shown in Fig. 1. The geometrical parameters of the air-
foil are the chord c, the semichord b, and the lifting surface S. EC
is the elastic center, GC the gravity center, and AC the aerody-
namic center. The distance between AC and EC is denoted by e.
The inertia terms of the airfoil are the mass M, the inertia moment
Ia, and the static moment Sa. The static moment Sa is equal to
MxCG, where xCG is the distance between EC and GC. The pitch
mode is described by the stiffness ka and the damping ca and the
plunge motion by the stiffness kh and the damping ch. The model
encompasses structural nonlinearities, which have the beneficial
effect of limiting the dynamics to LCOs in the post-critical
regime. Nonlinear terms in the plunge and pitch stiffnesses,
respectively, kh3 and ka3, are thus introduced in a similar fashion
as in Refs. [12], [13], [27], and [28] in order to take into account
the potential nonlinearities of the aeroelastic system that can arise
from, e.g., geometric or localized nonlinearities.

The flow goes from left to right with velocity U, as illustrated
in Fig. 1. It produces two aerodynamic loads, the lift L and the
aerodynamic moment Ma. The quasi-steady theory is selected for
modeling them, see, e.g., Refs. [5] and [29]. It gives the following

expressions: L ¼ 1=2ð Þq S U2dCl aþ _h=U
� �

and Ma ¼ 1=2ð Þ
q S c U2 e dCl aþ _h=U

� �
, where q is the fluid density, and dCl is

the slope at zero angle of attack of the lift coefficient.
The NLTVA is attached along the midchord of the airfoil at dis-

tance l from EC. It is composed of a mass m, a spring of linear
stiffness k and cubic stiffness k3, and a dashpot of damping c.
Finally, the equations of motion read

M €h þ Sa€a þ ch þ BUð Þ _h þ c _h � _x � l _að Þ

þ khhþ BU2aþ k h� x� lað Þ

þkh3 h3 þ k3 h� x� lað Þ3 ¼ 0 (1a)

Ia€a þ Sa
€h þ ca _a þ c l _x þ l _a � _hð Þ � NU _h

þ ka � NU2
� �

aþ k l xþ la� hð Þ

þka3 a3 þ k3 l xþ la� hð Þ3 ¼ 0 (1b)

m€x þ c _x þ l _a � _hð Þ þ k xþ la� hð Þ þ k3 xþ la� hð Þ3 ¼ 0 (1c)

where B ¼ 1=2ð Þ qS dCl, and N ¼ 1=2ð ÞqS e dCl.
The aim of the linear part of the NLTVA, which can be seen as

a TMD, is to repel the flutter velocity. The goal of its nonlinear
part is to reduce the LCO amplitude and ensure the supercriticality
of the bifurcation caused by the flutter instability. The NLTVA
nonlinear part is limited to a cubic stiffness in order to have the
same functional form as the airfoil nonlinearity as prescribed in
Ref. [23].

In order to reduce the number of the system parameters, the
equations of motion are made dimensionless, by introducing

y ¼ h=b and ~x ¼ x=b

The inertia coefficients become

ra ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ia=Mb2

p
and xa ¼ Sa=Mb

Afterward, by introducing the dimensionless time s¼xat, where

xa ¼
ffiffiffiffiffiffiffiffiffiffiffi
ka=Ia

p
, the expression of the frequency ratio, dimension-

less cubic stiffnesses, and damping ratios are obtained as

xh ¼
ffiffiffiffiffiffiffiffiffiffiffi
kh=M

p
; X ¼ xh=xa; nh ¼ kh3= M x2

a

� �
;

na ¼ ka3= M b2 x2
a

� �
; fh ¼ ch=Mxa and f ¼ c=mxa

Then, the dimensionless aerodynamic parameters are introduced
as follows:

~U ¼ U=bxa; b ¼ B b=M and � ¼ N=M

Eventually, the dimensionless NLTVA parameters are

e ¼ m=M; x ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
; c ¼ x2=x2

a; k ¼ l=b;

f ¼ c=mxa; and n ¼ k3= m x2
a

� �
The equations of motion finally can be recast in compact form as

Mq00 þ Cq0 þKqþ F qð Þ ¼ 0 (2)

with

q ¼
y

a

~x

2
64
3
75; M ¼

1 xa 0

xa r2
a 0

0 0 1

2
64

3
75;

Fig. 1 Sketch of the two degrees-of-freedom airfoil (main
structure) coupled with the NLTVA (absorber)
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C ¼
fh þ efþ b ~U �efk �ef
�� ~U � efk fa þ efk2 efk
�f fk f

2
64

3
75

K ¼
X2 þ ec b ~U

2 � eck �ec
�eck r2

a � � ~U
2 þ eck2 eck

�c ck c

2
64

3
75

and

F qð Þ ¼
nh y3 þ � n y� ~x � kað Þ3

na a3 þ � k n ~x þ ka� yð Þ3
n ~x þ ka� yð Þ3

2
64

3
75

where ð Þ0¼ d=ds.
The characteristics of the NLTVA are defined according the

following five parameters:

(1) the mass ratio e¼m/M, between the mass of the NLTVA
and that of the wing;

(2) the dimensionless distance k that specifies the location
where the NLTVA is attached;

(3) the NLTVA-reduced eigenfrequency c ¼ x2=x2
a, charac-

terizing the eigenfrequency of the NLTVA compared to
that of pitch motion;

(4) the NLTVA damping ratio f¼ c/mxa; and
(5) the NLTVA-reduced cubic stiffness n ¼ k3= m x2

a

� �
.

For the present study, the mass ratio has been taken equal to
5%. The larger the e the more efficient the NLTVA will be, how-
ever, one must keep in mind that the absorber needs to have a neg-
ligible mass as compared to the airfoil. In this work, the NLTVA
is located at the leading edge of the profile, thus, k¼ 1. Note that
its effect has been found, in our study, to be directly proportional
to k. Hence, the location where its influence on the airfoil is opti-
mal has been selected. Eventually, c and f are thus selected as our
linear control parameters and n as our nonlinear control parame-
ter, the optimal tuning of which is searched for.

2.2 Flutter Velocity. The aim of this section is to introduce
the flutter velocity of the airfoil system alone, which will be after-
ward compared to that obtained with the presence of the absorber.
The linear part of the equations of motion without the NLTVA
writes

1 xa

xa r2
a

" #
y00

a00

" #
þ fh þ b ~U 0

�� ~U fa

" #
y0

a0

" #

þ X2 b ~U
2

0 r2
a � � ~U

2

2
4

3
5 y

a

" #
¼ 0 (3)

We assume a solution of the form

y
a

� �
¼ y0

a0

� �
exp z tð Þ (4)

where y0¼ y(0), a0¼ a(0), and z 2 C. Therefore, three situations
are possible:

(1) < zð Þ < 0, the airfoil motion is stable;
(2) < zð Þ � 0 and = zð Þ 6¼ 0, the airfoil encounters flutter; and
(3) < zð Þ � 0 and = zð Þ ¼ 0, the airfoil encounters divergence.

The linear system Eq. (3) with the ansatz (4) writes

B
y0

a0

" #
exp z tð Þ ¼ 0 with

B ¼ z2 þ fh zþ b ~U zþ X2 xa z2 þ b ~U
2

xa z2 � � ~U z r2
a z2 þ fa zþ r2

a � � ~U
2

2
4

3
5

By canceling the determinant of B, the flutter velocity ~Uf can be
found, as shown in Refs. [5], [6], and [29–31].

Section 3 is devoted to the linear stability analysis in the
presence of the NLTVA. The calculation will follow the same
guidelines recalled here.

3 Linear Stability Analysis

3.1 Optimization of the NLTVA Linear Parameters. The
aim of this section is to study the influence of the design parame-
ters c and f on the flutter velocity ~Uf . The targeted optimal values
are those for which ~Uf is as large as possible, in order to repel the
instability.

In the remaining of this study, unless explicitly mentioned, the
airfoil linear parameters of Eq. (2) are equal to the parameters
from Ref. [5]. They are gathered in Table 1 and define the refer-
ence case. In the next section, the airfoil parameters will be varied
in order to investigate their influence on the NLTVA tuning and
effectiveness. In Sec. 3, the nonlinear terms are not taken into
account.

Using the same notations as Sec. 2.2, B is now equal to

B ¼
z2 þ fh þ efþ b ~U

� �
zþ X2 þ ec xa z2 � efk zþ b ~U

2 � eck �ef z� ec

xa z2 � � ~U � efk
� �

z� eck r2
a z2 þ fa þ efk2

� �
zþ r2

a � � ~U
2 þ eck2 efk zþ eck

�f z� c fk zþ ck z2 þ f zþ c

2
664

3
775

The determinant of the matrix B takes the form of a sixth-order polynomial

det Bð Þ ¼ a6 z6 þ a5 z5 þ a4 z4 þ a3 z3 þ a2 z2 þ a1 zþ a0 (5)

where a1–a6 are detailed in Appendix A. The Routh–Hurwitz criterion is used to determine when one of the roots of det Bð Þ has a posi-
tive real part.

Table 1 Dimensionless aeroelastic parameters of the reference
case [5]

xa ra b � X fa fh

0.2 0.5 0.2 0.08 0.5 0.01 0.01
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This study leads to four independent conditions called b5, c5,
d5, and e5, which read b5 ¼ a5a4 � a6a3ð Þ=a5 > 0; c5 ¼ b5a3

�a5b4 > 0; d5 ¼ c5b4 � c4b5 > 0, and e5¼ d5c4� d4c5> 0, with
b4¼ (a5a2� a6a1)/a5, b3¼ a0, c4¼ (b5a3� b3a5)/b5 and d4¼ b3.

These four conditions are plotted as an example in Fig. 2 for
f¼ 0.15. Each line corresponds to the points where one of the four
expressions b5–e5 becomes positive, as a function of the reduced
eigenfrequency c, and for increasing values of ~U . Thus, the flutter
velocity corresponds to the lowest curve and the stability zone to
the area below it, represented as a gray-shaded area in Fig. 2.

This calculation is then conducted for different values of f in
order to find the optimal couple (copt, fopt) for which the flutter
velocity is maximal. The result is shown in Fig. 3. The maximal
reduced flutter velocity, obtained for c¼ 0.462 and f¼ 0.11, is
equal to 1.255, which means a 34.5% gain as compared to the flut-
ter velocity without the absorber, which is equal to 0.934. This
gain on the flutter velocity is named G ~U f

and is equal to

G ~U f
¼

~U
NLTVA

f � ~U
noTVA

f

~U
noTVA

f

where ~U
noTVA

f is the flutter speed of the system without absorber

and ~U
NLTVA

f with the NLTVA. Because of their complexity, the

equations b5¼ 0, c5¼ 0, d5¼ 0, and e5¼ 0 cannot be easily made
explicit with respect to f and c. Thus, analytical expressions of the
optimal values of f and c are not defined. Nevertheless, these opti-
mal values can be found numerically.

In practical situations, a slight detuning of c and f may occur.

Thus, the sensitivity of ~Uf regarding these parameters is detailed.

It is shown in Fig. 3 that c has more influence on ~Uf than f. More-

over, ~U
max

f is on a sharp point rather than on a plateau. That is, if c

increases a little, ~Uf decreases significantly. Nevertheless, if c
decreases a little, the ~Uf ’s drop is less abrupt. Therefore, the con-
trol should guarantee c� copt. For a more quantitative point of

view, a 10% increase of c gives a 20% decrease of ~Uf and a 10%

decrease of c implies a 7% decrease of ~Uf , whereas a 10%

increase or decrease of f gives a 4% decrease of ~Uf .

3.2 Influence of the Airfoil Parameters. In this section, the
airfoil parameters’ influence on the NLTVA efficiency is investi-
gated. Three main parameters are identified for characterizing the
airfoil: the nondimensional static moment xa¼ Sa/(Mb), which
describes the coupling between pitch and plunge motion, the

radius of gyration ra ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ia= M b2ð Þ

q
, which expresses the ratio

between the airfoil inertias, and finally, the frequency ratio
X¼xh/xa between the two natural frequencies of the plunge and
pitch motion.

Let us now define the investigation range for each of these three
selected parameters.

The location of EC from the leading edge is equal to 0.45 c in
the reference case. The selected investigation range is selected as
[0 0.6]. The extreme value for xa is xa¼ 1.1; corresponding to a
gravity center at the trailing edge, however, this situation never

occurs in practice. The value for r2
a depends on the airfoil density

distribution and shape. Although theoretically not bounded, it is
generally in the interval [0 1] [29,32,33]; which is thus the
selected range in this study. Finally, variations of X2 are selected
in the range [0 1]. Indeed, the natural frequency of the pitch
motion is generally larger than the plunge one, thus, X2� 1.

The optimal value copt and fopt are computed using the method-
ology described in Sec. 3.1, while varying the three parameters xa,

r2
a , and X2 in their respective ranges. The corresponding gain in

flutter velocity, G ~U f
, is plotted in Fig. 4. The color represents the

value of G ~U f
for each set of airfoil parameters. The influence of

the NLTVA on G ~U f
is highly dependent on the airfoil parameters

and can vary from 10% up to more than 140%.
General tendencies on the influence of xa, r2

a , and X2 on the flut-
ter velocity gain G ~U f

can be drawn from Fig. 4. First of all, there

is a small strip of large G ~U f
for small values of r2

a , especially visi-

ble for X2¼ 0.4 and 0.7. This small strip has a singular behavior,

but the corresponding value of r2
a are particularly small and not

very realistic. Otherwise, the influence of r2
a is limited. Regarding

X2, the larger it is the larger is G ~U f
. Indeed, when X2 is close to

one, xa and xh are close to each other. In this case, the efficiency
of the NLTVA, working optimally at a single frequency, is
enhanced since both degrees-of-freedom can be controlled. Even-
tually, the influence of xa is substantial, the NLTVA effectiveness
decreasing while xa is increasing. The explanation of this tend-
ency is not obvious. An argument that can be given is that a large
xa push the two airfoil-coupled frequencies apart. Thus, as for X2,
the same causes producing the same effects, if xa is large the
NLTVA is less efficient.

3.3 NLTVA Linear Parameters Tuning Rule. The aim of
the present section is to provide a simple tuning rule allowing one
to compute easily the optimal NLTVA linear parameters, namely,
copt and fopt; as a function of the airfoil parameters, condensed in
the three-dimensionless parameters xa, r2

a , and X2. For that pur-
pose, a third-order polynomial expansion has been found to give
an accurate fit to the hypersurface shown in Fig. 4. More specifi-
cally, the following expansion has been used:

Fig. 3 Cartography of the reduced flutter velocity given by the
criterion e5 as a function of the NLTVA-reduced frequency c and
damping ratio f

Fig. 2 Reduced flutter velocity given by the Routh–Hurwitz cri-
terion as a function of the NLTVA-reduced eigenfrequency c,
and for a damping ratio f 5 0.15. The gray area corresponds to
the stability of the system.
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cfit
opt ¼

X3

i;j;k¼0

aijk xi
a r2

a

� �j
X2ð Þk

ffit
opt ¼

X3

i;j;k¼0

bijk xi
a r2

a

� �j
X2ð Þk (6)

the coefficients of which are given in Appendix B. The resulting

G ~U f
, calculated with cfit

opt and ffit
opt, is plotted in Fig. 5. This figure

has to be compared with Fig. 4, showing that the qualitative and
quantitative features are retrieved. Hence, Eq. (6) can be easily
used in order to determine directly the NLTVA linear parameters
as a function of its airfoil parameters.

4 Nonlinear Analysis of the Post-Critical Regime

This section is devoted to the tuning methodology for optimiz-
ing the nonlinear stiffness of the NLTVA. Two goals are in view.
First, one would like to ensure a supercritical bifurcation, as being
a safer scenario for an engineering design with respect to the
global stability of the airfoil. Second, the post-critical LCOs are
investigated in order to decrease their amplitudes as much as
possible.

For the nonlinear analysis, the NLTVA linear parameters corre-
spond to the airfoil reference case and are gathered in Table 2.

4.1 Criticality Analysis. The Hopf bifurcation encountered
at ~U ¼ ~Uf can be either subcritical or supercritical. In a normal
form analysis of the bifurcation, this characteristic is simply
related to the sign of the cubic nonlinear term when the system is
written in polar form [34–36]. The aim of this section is to obtain
the expression of this coefficient, based on a reduced-order model
that contains the leading-order nonlinearity of the normal form.
The technique used follows classical methods for dynamical sys-
tems [34,37] that have been recently applied on a Van der Pol-
Duffing oscillator [23]. It is decomposed into five steps.

The first step is to recast the equations of motion (2) as a first-
order dynamical system as follows:

~q 0 ¼ A~q þ b (7)

with

~q ¼

y
a
~x
y0

a0

~x 0

2
6666664

3
7777775
; A ¼ 03 Id3

�M�1K �M�1C

� �
;

Fig. 4 Evolution of the optimal flutter velocity gain G ~U f
caused by the NLTVA versus xa, r2

a ,
and X2

Fig. 5 Estimation of G ~U f
using the fitted parameters ffit

opt and cfit
opt versus xa; r2

a and X2
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b ¼

0

0

0

�M�1

nh y3 þ en y� ~x � kað Þ3

naa
3 þ enk ~x � yþ kað Þ3

n ~x � yþ kað Þ3

2
664

3
775

2
66666666664

3
77777777775

For the criticality analysis, na, nh, and n are left variable, n being
the nonlinear control parameter of the NLTVA.

The second step is to estimate the eigenvalues and eigenvectors

of A for ~U ¼ ~Uf . Because the expression of A is particularly tedi-
ous, an analytical expression of its eigenvectors and eigenvalues
is not reachable, and they are thus calculated using the airfoil
parameters from Table 1 and the retained NLTVA linear parame-
ters. The system being of dimension 6, the eigenvalues and eigen-

vectors of A for ~U ¼ ~Uf are denoted, respectively, as d1–d6 and
V1–V6. Besides, the real and imaginary part of d1…6 are denoted
as k1…6 and x1…6, respectively. The Hopf bifurcation is charac-
terized by a pair of complex conjugate eigenvalues crossing the

imaginary axis. At criticality for ~U ¼ ~Uf , these eigenvalues,
denoted d1 and d2, have a zero real part and read

d1 ¼ i x1 and d2 ¼ i x2 ¼ �i x1

Their corresponding eigenvectors are denoted V1 and V2. Because
it has been found that in our case V1–V6 are complex conjugates,
and the following transformation matrix is introduced [23,34]:

T ¼ Re V1ð Þ Im V1ð Þ Re V3ð Þ Im V3ð Þ Re V5ð Þ Im V5ð Þ
� �

The third step is to obtain the first-order Jordan form of Eq. (7) by
changing the linear basis with the transform ~q ¼ Ty. The dynam-
ics for y thus writes

y0 ¼Wyþ ~b (8)

where ~b ¼ T�1b and W ¼ T�1AT. It is reminded to the reader
that in this expression, the elements of ~b are function of na, nh,
and n.

The fourth step is to reduce Eq. (8) to its first-order center
manifold [34,35,38,39]. For a system encompassing only third-
order nonlinearities, this corresponds to neglect variables not
related to the bifurcation, i.e., y3–y6

y01
y02

� �
¼ 0 x1

�x1 0

� �
y1

y2

� �
þ

~b1
~b2

� �
(9)

where ~b1 and ~b2 are the following polynomial functions:

~b1 ¼ c30 na; nh; nð Þ y3
1 þ c21 na; nh; nð Þ y2

1 y2

þ c12 na; nh; nð Þ y1 y2
2 þ c03 na; nh; nð Þ y3

2

~b2 ¼ d30 na; nh; nð Þ y3
1 þ d21 na; nh; nð Þ y2

1 y2

þ d12 na; nh; nð Þ y1 y2
2 þ d03 na; nh; nð Þ y3

2

(10)

The expression of the cij(na, nh, n) and dij(na, nh, n) coefficients
are given in Appendix C.

The fifth step is to operate the following polar transformation:

y1 ¼ r cos x1ð Þ and y2 ¼ r sin x1ð Þ

where r 2 R. Unfolding the singularity in the vicinity of the criti-
cal point [35,36], the Hopf bifurcation can be locally described
with

r0 ¼ ka ~U � ~Uf

� �
r þ qr3 (11)

where ka ¼ @k=@ ~U and k¼ k1 for any ~U ; ka is estimated numeri-

cally. That is, k1 is calculated for a flow speed ~U slightly larger

than ~Uf (� 0.05%), and the slope between the two is calculated.

It has to be noticed that Eq. (11) is only valid for ~U in a neighbor-

hood of ~Uf , because Eqs. (9)–(11) result from a local analysis at
criticality. The validity of this neighborhood will be discussed in
Sec. 4.2.1. Eventually, it can be proven [35] that

q ¼ 1=8ð Þ 3c30 þ c12 þ d21 þ 3d03ð Þ (12)

The nontrivial solution of Eq. (11) is equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ka ~U � ~Uf

� �
=q

q
.

Thus, if q> 0, this solution is valid for ~U < ~Uf , and the bifurca-
tion is subcritical. Otherwise, if q< 0, the nontrivial solution of

Eq. (11) is valid for ~U > ~Uf , and the bifurcation is supercritical.
The value of n for which q¼ 0 (denoted nc) is a linear function of
na and nh and can directly be derived from Eq. (12). The expres-
sion of nc is found by using the parameters from Tables 1 and 2
and yields

nc ¼ 0:0116nh þ 0:0966na (13)

If n> nc, the instability is supercritical, and if n< nc, the instabil-
ity is subcritical. The nonlinearity of the NLTVA is thus able to
cancel the subcriticality of the bifurcation. The validation of
the analytical procedure described above as well as the behav-
ior of the system in the post-critical regime is investigated in
Sec. 4.2.

4.2 Post-Critical Regime. The analytical procedure described
above is compared with numerical solutions obtained by a contin-
uation technique, using a pseudo-arclength method implemented
in the software AUTO [40].

The post-critical regime is explored for a hard and a soft pitch
spring, i.e., na> 0 and na< 0, respectively. A hard spring can be
used to represent a thin wing or a propeller blade, whereas a soft
spring may be associated with panel buckling [27,41]. Nonlinear
restoring force is considered only on the pitch motions so that
nh¼ 0. This assumption is justified by the fact that in the post-
critical regime, LCOs’ amplitudes are very small on the plunge
mode, so that the cubic nonlinearity is not excited. Moreover, it
has been verified in all the numerical results presented that setting
nh¼ 1 does not change significantly the bifurcation behavior.

First, the hard pitch spring is investigated. This configuration is
similar to the one studied by Lee et al. [27]. Second, the configu-
ration with a soft pitch spring is explored. This case is similar to
the one studied by Pettit and Beran [28]. In this case, a quintic
stiffness is added to the pitch stiffness in order to have stable solu-
tions in the post-critical regime.

4.2.1 Hard Pitch Spring. In a similar manner as in Ref. [27],
we set here the nonlinear restoring forces to na¼ 1 and nh¼ 0.

The bifurcation diagram for the airfoil without absorber (i.e.,
with e¼ 0) is first shown in Figs. 6(a) and 6(b). The result corre-
sponds to a supercritical Hopf bifurcation. The analytical solution
obtained in Sec. 4.1 is also represented, showing a very good
agreement for small amplitude oscillations.

The case with an NLTVA without nonlinearities (i.e., n¼ 0),
which is equivalent to a TMD, is shown in Figs. 6(c) and 6(d). As

Table 2 NLTVA linear parameters used for the nonlinear
analysis

e k f c

0.05 1 0.11 0.462
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predicted by the linear stability analysis, the flutter velocity is
repelled from 0.93 to 1.26. Nevertheless, the Hopf bifurcation
becomes subcritical. Hence, a detrimental effect of repelling the
flutter velocity is to shift the originally supercritical Hopf bifurca-
tion to a subcritical one. The most salient disadvantage of subcriti-
cality lies in the appearance of a jump phenomenon at the flutter
velocity, when increasing (and decreasing) the flow speed. In this
example, when ~U is slightly larger than ~Uf , the amplitude of pitch
motion varies suddenly from 0 to 15 deg, which may cause serious
damage to the structure. Another effect of the subcriticality is the
existence of a bistable region for flow velocities smaller than the
flutter velocity.

We now investigate the influence of the nonlinear stiffness n of
the NLTVA on the Hopf bifurcation criticality. For that purpose,
the bifurcation diagram is plotted for four increasing values of n
in Fig. 7. The four selected cases are

(1) n¼ 0.06 (n< nc), where the subcriticality is less pro-
nounced than for n¼ 0;

(2) n¼ 0.0966 (n¼ nc), where, according to the analytical
prediction, there is a transition between subcritical and
supercritical behavior;

(3) n¼ 0.217 (nc< n< ns, where ns¼ 0.218), which is the larg-
est value of n before a global bifurcation appearance; and

(4) n¼ 0.218 (n¼ ns), where a global bifurcation suddenly
occurs in the diagram, with appearance of two limit points,
as well as two Neimarck–Sacker bifurcations points with in
between quasiperiodic solutions.

These results clearly evidenced the effect of the NLTVA on the
bifurcation diagram. Increasing the cubic stiffness n turns out to
make the bifurcation more and more supercritical. However, the
global behavior is also affected so that the optimal value is not the
largest possible value of n. The global bifurcation occurring for
ns¼ 0.218 modifies drastically the diagram, which is then nonop-
timal in a design point of view. Indeed, the two limit points give
rise to a new global subcritical behavior with the appearance of a
solution branch with large amplitude that persists for smaller

Fig. 6 Bifurcation diagram of pitch and plunge mode for the system without absorber (a) and
(b) and in the presence of an NLTVA without nonlinearities (c) and (d)

Fig. 7 Bifurcation diagram of (a) pitch and (b) plunge mode for four increasing values of n.
The solid lines correspond to the stable solutions and the dashed line to the unstable ones.
LP stands for limit point and NS for Neimark–Sacker bifurcation point.
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values of ~Uf . Hence, this situation is to be avoided, and optimal
values for n are founded with n> nc (ensuring supercriticality)
and n< ns (avoiding an extra global bifurcation scenario); the
largest decrease of LCO amplitude on pitch being obtained with
n¼ 0.217. This case could be optimal, but its robustness is not sat-
isfactory since n¼ 0.218 gives a detrimental global bifurcation
scenario. Furthermore, the abrupt and drastic transition of the sce-
nario for n varying from n¼ 0.217 to n¼ 0.218 suggests that peri-
odic stable solutions probably exist also for n< 0.218 and
~U < ~Uf . However, a detailed analysis of this aspect is out of the
scope of this study.

The influence of the NLTVA is summarized in Fig. 8. The
LCO amplitude on pitch has been reduced significantly by the
NLTVA. For example, at ~U ¼ 1:4, the LCO amplitude on pitch
has been decreased by 36.4% compared to the case without
absorber. Nevertheless, at the same time, the LCO amplitude on
plunge has been increased by 115.9%. Even if this increase seems
large, it is remarked that the more inconvenient LCO are those on

the pitch mode, because this is the most energetic mode of the sys-
tem in the post-critical regime and even after an increase of
115.9% the LCO amplitude on plunge remains very small (8% of
the semichord).

In order to study the influence of the NLTVA on the 2dofs air-
foil transient regime, direct numerical simulations of the system
Eq. (2) without absorber and with an NLTVA tuned as n¼ 0.217
are conducted and plotted in Fig. 9. The time integration is real-
ized using a fourth-order Runge–Kutta scheme.

A first set of simulations, Figs. 9(a)–9(c), is realized for

~U ¼ 1:1. This flow velocity is beyond the flutter velocity, ~U
noTVA

f ,

of the system without absorber but below the flutter velocity,

~U
NLTVA

f , of the system with the NLTVA. The initial conditions

are set to zero except for the initial amplitude of the pitch mode,
which is set equal to a(0)¼ 10 deg. The initial pitch amplitude has
been chosen large in order to have a long transient regime. As pre-
dicted by the continuation procedure, without absorber, the

Fig. 8 Influence of the NLTVA with n 5 0 and n 5 0.217 on the bifurcation diagram of the 2dofs
airfoil

Fig. 9 Time series simulations corresponding to Fig. 8 with and without absorber at ~U 5 1:1 (a)–(c) and ~U 5 1:4 (d)–(f). The
NLTVA is set such as n 5 0.217. The initial conditions are equal to zero except for the initial amplitude of the pitch mode, which
is set equal to a(0) 5 10 deg for (a)–(c) and to a(0) 5 6.1023 deg for (d)–(f).
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transient regime leads to limit cycles of amplitude 20 deg on pitch
and 0.024 on plunge; while, with the NLTVA, the oscillations are
canceled. Moreover, the NLTVA has the largest damping effect
on the pitch transient response. Indeed, as shown in Fig. 8, the
NLTVA reduces the oscillations amplitude on pitch but increases
those on plunge.

A second set of simulations, Figs. 9(d)–9(f), is realized for

~U ¼ 1:4. This flow velocity is beyond ~U
noTVA

f and ~U
NLTVA

f . The

initial conditions are set to zero except for the initial amplitude of
the pitch mode, which is set equal to a(0)¼ 6.10�3 deg. Because

the flow velocity is beyond ~U
noTVA

f and ~U
NLTVA

f , the transient

regimes with and without NLTVA lead to limit cycles. Furthermore,
the NLTVA postpones the limit cycle apparition, the LCOs settle
down around s ’ 73 without the absorber and around s ’ 139 with
the NLTVA. Indeed, when the flow speed is close to the flutter
velocity, the growth rate is small and the transient regime is long.
Thus, the transient regime is longer for the system with NLTVA.

4.2.2 Soft Pitch Spring. In this section, the influence of the
NLTVA on the airfoil with a soft pitch spring is investigated. That
is na¼�1 and nh¼ 0. Moreover, a quintic stiffness, named na5, is
added to the pitch restoring force, which means that the vector b
from Eq. (7) becomes

b ¼

0

0

0

�M�1

nh y3 þ en y� ~x � kað Þ3

naa3 þ na5a5 þ enk ~x � yþ kað Þ3

n ~x � yþ kað Þ3

2
664

3
775

2
66666666664

3
77777777775

We choose in this study na5¼ 7, this configuration is similar to
the case studied by Pettit and Beran [28].

As Sec. 4.2.1, the effect of n on the airfoil bifurcation dia-
gram is investigated. For that purpose, the bifurcation diagram
is computed for five increasing values of n from �0.5 to 0.4,
and the results are shown in Fig. 9. The key values are the
following:

� nc¼�0.0966, which is the critical value predicted from the
analytical study using Eq. (13). When n� nc, the bifurcation
is supercritical, otherwise it is subcritical.

� ns1
¼ �0:15 and ns2

¼ 0:125: between these two values, a
global bifurcation occurs and the solution branches encoun-
ters Neimarck–Sacker bifurcations, resulting in a more com-
plex shape of the diagram.

� n¼ 0 which corresponds to the TMD.

Around the criticality, detailed in Figs. 10(c) and 10(d), the
effect of increasing n is to bend the bifurcation branch to the right.
In order to have a supercritical behavior, one would have thus
expect that selecting a larger value than nc¼�0.0966 could have
been sufficient. However, the numerical simulation shows that
ensuring supercriticality with n� nc in the vicinity of the critical
flutter velocity do not avoid the occurrence of a global subcritical
behavior. Increasing n worsens the scenario with a large ampli-
tude branch going down to smaller velocities, even though locally
the supercriticality is enforced. In particular, the cases
n¼ nc¼�0.0966 and n¼ 0 shown in Figs. 10(a) and 10(b) show
large amplitudes especially present in the plunge mode, which are
not acceptable in a design perspective to mitigate the flutter insta-
bility. And still increasing n is definitely not a solution, as the sit-
uation worsens as soon as n > ns2

, as exemplified with the case
n¼ 0.4.

Fig. 10 Bifurcation diagram of (a) and (c) pitch and (b) and (d) plunge mode for increasing val-
ues of n. The solid lines correspond to the stable solutions and the dashed line to the unstable
ones. The plots (c) and (d) detail the bifurcation diagram around the criticality for n�20.15. LP
stands for limit point and NS for Neimark–Sacker bifurcation point.
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In this more difficult case, a compromise must be found
between the acceptable subcriticality and the amplitudes of LCOs
in the post-critical regime. With this aim in view, the case
n¼�0.5 shown in Fig. 9 could represent such an optimal, with a
small interval of subcriticality together with reduced amplitude of
the LCOs. Depending on the context and the design constraints,
n¼�0.15 also represents an interesting case for the control of the
flutter instability. Nevertheless the softening spring case is more
difficult to handle than the precedent hardening spring case, and
an optimal control as initially desired is out of reach with the pres-
ent NLTVA design.

5 Conclusion

The influence of an NLTVA on the airfoil flutter instability has
been investigated. The NLTVA is defined by two parameters: its
linear stiffness, which can be tuned in order to repel as much as
possible the flutter velocity Uf; and its nonlinear stiffness, which
can be used for a better control of the bifurcation diagram. Linear
stability analysis has shown that the flutter velocity can indeed be
repelled by finding optimal values of stiffness together with the
damping ratio of the absorber. Important gains ranging roughly
from 30% to more than 150% can be theoretically achieved. A
design rule has also been provided by means of a polynomial fit of
the optimal parameters, for varying values defining the studied
airfoil.

A nonlinear analysis has then been conducted, including a local
analytical prediction, and a bifurcation study for a hardening and
a softening pitch spring stiffness. The results show that in the
hardening case, an optimal tuning is achieved, controlling the
bifurcation in a supercritical case with an important gain in the
LCOs amplitudes. The softening case has been found more diffi-
cult to optimize, and a compromise between subcriticality and
large amplitude LCOs has to be found, depending on the context.
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Appendix A: Coefficients of Eq. (5)

a6 ¼ r2
a � x2

a a5 ¼ fh þ 1þ eð Þfð Þr2
a þ �xa þ br2

a

� �
~U

þ fa � x2
afþ 2xa þ kð Þekf

a4 ¼ X2 þ ffh þ 1þ eð Þcþ 1
� �

r2
a þ bfa þ �xa þ r2

ab
� �

f
� �

~U

� bxa þ �ð Þ ~U
2 þ fh þ 1þ eð Þfð Þfa þ ek2ffh

� cx2
a þ 2xa þ kð Þeck

a3 ¼ fX2 þ 1þ cð Þ fh

�
þ 1þ eð ÞfÞr2

a � �fh þ bxafþ 1þ eð Þ�fð Þ ~U
2

þ bffa þ c�xa þ r2
ab 1þ cð Þ

� �
~U þ ffa þ eck2

� �
fh

þ 1þ eð Þcfa þ fa þ ek2f
� �

X2

a2 ¼ 1þ cð ÞX2 þ ffh þ 1þ eð Þc
� �

r2
a

� �X2 þ �ffh þ bcxa þ 1þ eð Þc�
� �

~U
2

þ b cfa þ r2
af

� �
~U þ ffa þ eck2

� �
X2 þ cfafh

a1 ¼ fX2 þ cfh

� �
r2
a � � fX2 þ cfh

� �
~U

2 þ bcr2
a

~U

þ cfaX
2a0 ¼ r2

a � � ~U
2

	 

cX2

Appendix B: Coefficients of Eq. (6)

The majority of the coefficients aijk and bijk from Eq. (6) are
neglectable. The non-neglectable coefficients aijk and bijk are

a000¼ 0.328 a100¼�0.629 a200¼ 0.173 a300¼ 0.294
a010¼ 0.604 a210¼ 0.165 a030¼�0.124 a001¼ 0.486
a101¼�0.437 a111¼�0.113 a021¼�0.275 a002¼ 0.278
a102¼�0.254 a003¼ 0.142 a103¼�0.143
b000¼ 0.11 b100¼ 0.0475 b200¼�0.0701 b300¼�0.174
b010¼ 0.00307 b210¼ 0.174 b030¼�0.0329 b001¼�0.00415
b101¼�0.128 b111¼ 0.106 b021¼ 0.0164 b002¼�0.081
b102¼�0.0444 b003¼�0.00191 b103¼ 0.00259

Appendix C: Coefficients of Eq. (10)

The nonlinear coefficients of the cubic polynomial terms
appearing in Eq. (10) are here detailed. Since the first transforma-
tion matrix has no simple analytic expression, the numerical val-
ues of the coefficients are given, which correspond to the airfoil
parameters of the reference case given in Table 1 and to the
optimal NLTVA linear parameters given in Table 2.

c30 ¼ 0:047 nh � 0:064 na � 4:9 n d30 ¼ �0:01 nh � 0:43 na � 0:28 n

c21 ¼ �0:054 nh þ 0:16 na þ 2:6 n d21 ¼ 0:012 nh þ 1:1 na þ 0:15 n

c12 ¼ 0:021 nh � 0:13 na � 0:46 n d12 ¼ �4:5:10�3 nh � 0:87 na � 0:026 n

c03 ¼ �2:7:10�3 nh þ0:036 na

þ0:027 n
d03 ¼ 5:7:10�4 nh þ 0:24 na þ 1:5:10�3 n
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