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Abstract. Dielectric elastomers are soft actuators made of a thin layer of
elastomer sandwiched between compliant electrodes. Because of the resistivity
of the electrodes, the voltage is not uniform on the actuator at high frequencies.
We present experimental evidence that the voltage spatial distribution is coupled
to the membrane vibrations, as well as a model based on Maxwell’s equations in a
moving frame to explain the coupling. The model is validated experimentally, and
is used to explain the physics of the observed coupling. As a result, information
on the membrane deformation can be inferred from voltage measurements, which
opens self-sensing possibilities at high frequencies.

Keywords: Dielectric elastomers, Resistivity, Electrodynamics



Coupling between voltage distribution and vibrations in dielectric elastomers 2

1. Introduction

Dielectric elastomers (DEs) are soft active materials
capable of large deformations under electric actuation
[1]. Because of their high energy density, large
achievable strain, and combined actuation and sensing
possibilities, they have been considered for many
applications, including artificial muscles, soft robotics,
wearable sensors, loudspeakers, etc. They consist
of a soft elastomeric material (typically silicone or
acrylic), sandwiched between flexible electrodes. When
a high voltage is applied between the electrodes, the
membrane is squeezed by the Maxwell electrostatic
pressure, thins down and expands in area due to
incompressibility. Deformations up to 500% area strain
can be reached [2].

Self-sensing can be implemented with DE actu-
ators: the deformation of the actuator is monitored
during actuation without any added sensor, by measur-
ing the voltage and current flowing through the device.
Self-sensing improves the performance of DE actuators,
as they can be operated in closed loop to compensate
for their limitations, such as viscoelastic creep [3].

In order to set-up self-sensing strategies, the
relation between the deformation of the device and
its electrical behavior must be known. At low
frequencies, the DE membrane behaves as a capacitor,
so measuring the capacitance, which is proportional
to the membrane area, provides a good estimation of
the device geometry. To measure the capacitance, a
high frequency signal can be superimposed to the low
frequency actuation voltage [4, 5], or the actuation
signal can be directly used for sensing [6].

When the frequency increases, effects due to the
electrode resistivity come into play. Combined with the
capacitive nature of the DE membrane, the resistive
electrodes form a resistor-capacitor circuit, which is
characterized by its time constant τe. For frequencies
higher than 1/τe, the effective voltage which actuates
the transducer is smaller than the supplied voltage,
leading to a decrease in performance. The resistive
effects have first been modeled by lumped parameters
[7, 8], and lumped models are extensively used to study
self-sensing applications for one-degree-of-freedom (1-
DOF) systems [9, 3].

Another resistivity-induced effect arises at higher
frequencies: the voltage will no longer be uniform
on the electrodes. The lumped models then fail in
predicting the electrical behavior of the system, and
transmission line models which account for the spatial
variation of the voltage on the electrodes have been
proposed as a refinement [10, 11, 12, 13], either to study
the voltage distribution on DE membranes for actuator
applications, or to investigate self-sensing of stacked
DE transducers where the resistivity of the electrodes
connections is large [14, 15]. In all these studies on the

spatial distribution of the voltage on the electrodes, the
influence of the dynamics of the device are neglected.
This is valid for most applications, where actuation
occurs at timescales which are much larger than τe, so
the electrical behavior of the device can be computed
assuming that the geometry is static.

However, this no longer holds for high frequency
applications such as DEA-driven acoustics, or when
the electrode resistivity is high. Only very few studies
investigated the influence of the device dynamics on
the electrical behavior [16, 17, 15]. These studies
analysed 1-DOF systems using a lumped electrical
model, but to the author’s knowledge, the coupling
between the voltage spatial distribution and the
membrane dynamics has not been investigated neither
experimentally nor numerically. The goal of this article
is thus to propose a modelling approach that takes
into account this coupling and present experimental
results that assess the interest of such an approach.
The focus will be on high frequency applications where
DE devices operate at small deformations, which is the
case for DE loudspeakers for example.

The article is organized as follows: in section
2, it is observed experimentally that the voltage on
the electrodes of a DE actuator can be influenced by
its vibrations. The rest of the paper is dedicated
to modelling and understanding the physics of this
coupling between the electrodynamic loading of a DE
membrane and its movement: a model describing the
voltage distribution on moving resistive DE devices
is presented for an arbitrary geometry in section 3,
and is then validated by experiments in section 4 for
the inflated DE membrane configuration considered
in section 2. The coupling mechanism and its
consequences are finally discussed in section 5.

2. Experimental observation

In this section, it is shown experimentally that the
voltage on the electrodes of DE actuators can be
influenced by the displacement and the vibrations of
the device.

We consider the actuator shown in figure 1(a),
namely an axisymmetric DE membrane inflated over
a closed cavity. This system can be actuated at
high frequency, as no additional mass apart from the
DE membrane is moving. It has been investigated
by several researchers for use as pumps [18] or
loudspeakers [19, 20, 21, 22].

The membrane is made of 50 µm-thick silicone
(Elastosil Film 2030 from Wacker Chemie AG). A small
prestretch of 1.1 is applied by a circular pre-stretcher
[23] to keep the membrane flat during the pad-printing
of the electrodes, which are made of carbon-black
(Ketjenblack EC-600JD from Akzo Nobel N.V) loaded
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Figure 1. (a) Studied device: an axisymmetric dielectric elastomer membrane is inflated over a closed cavity. A biased non-
stationary voltage ua(t) = U + ũa(t) is applied at the top electrode border. (b) The voltage at the center of the membrane is
measured using a high voltage probe, connected to the electrodes by a thin flexible wire. (c) The voltage drops at eigenfrequencies
of the membrane, exhibiting a coupling between the membrane dynamics and the voltage distribution.

silicone (Silbione LSR 4305 from Elkem Silicones),
following the process described by Rosset et al [23]. As
this article focuses on resistivity effects, the electrode
surface resistivity is voluntarily made high around
250 kΩ/�, so that the observed resistivity-related
effects are clearly visible at medium frequencies. The
electrode surface resistivity is estimated by adjusting
the model which is presented in the following sections
on impedance measurements, so that the experimental
high frequency behavior is correctly described (see
figure 5). The electrode thickness is considered
constant and is estimated from the added mass. The
parameters of the studied prototype are given in Table
1.

The membrane is driven by a high voltage ua(t)
consisting of a DC bias and a non-stationary part
ua(t) = U + ũa(t), applied at the outer radius of
the top electrode using a multifunction NI card and
a Trek 609E-6 high voltage amplifier. The DC bias is
U = 1500 V, and the oscillating part is a white noise
of amplitude |ũa| = 20 V. The bottom electrode is
grounded on its outer perimeter, as shown in figure
1(a). The voltage on the top electrode u1 is measured
using a high voltage probe (Testec model TT-HVP15
HF) [see figure 1(b)], and the transfer function between
u1 and ua is computed and plotted in figure 1(c).

The voltage on the top electrode decreases at high
frequencies down to half of the applied voltage, as
a consequence of electrode resistivity. The electric
charges are slowed down by resistivity, and do not

have the time to spread on the electrodes during one
period of the excitation voltage, so the electrostatic
equilibrium is not satisfied, and the voltage is lower
further away from the connections. The experimental
observation reported here confirms the numerical
predictions found in the literature [12, 24].

What is more, at the first membrane eigenfrequen-
cies in the range 500-1200 Hz, clear peaks and drops are
visible in the voltage measured on the electrode. This
highlights a coupling between the membrane vibrations
and the voltage distribution, which arises because of
the electrode resistivity. Indeed, with perfectly con-
ductive electrodes, the voltage would be the same on
the whole electrode: |u1/ua| = 1, ∀R, and the mem-
brane dynamics would not affect the voltage.

This coupling has not been studied before, and
is considered in the present article because it allows
information on the membrane dynamics to be retrieved
from voltage measurements. It will be investigated in
depth in the rest of the article, first by introducing a
model describing the voltage distribution on moving
resistive DE devices, validating this model, and finally
discussing the physics that lie behind the observed
phenomenon.
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3. Model of moving resistive DEs

3.1. Studied system

In order to obtain the equations governing the voltage
distribution on the electrodes of moving resistive DE
devices, we consider a DE membrane on which an
electrode is deposited on both sides, on the surface
Σ. This setup is described in figure 2. The voltage
on the top and bottom electrodes are denoted u1 and
u2 respectively. The top electrode is connected to the
voltage supply on the contour Γ1 where the voltage is
fixed at ua. The bottom electrode is connected to the
ground on Γ2. On the rest of the border Γ = ∂Σ,
no current is flowing out. The electrode resistivity
is denoted re, the membrane dielectric permittivity
ε, the membrane and electrodes thicknesses h and he
respectively.

Dielectric elastomer membrane
Compliant electrodes

Figure 2. Studied dielectric elastomer membrane, and
definition of the variables.

The electrostatic excitation which is responsible
for the actuation is commonly described for incom-
pressible DE actuators by a pressure applied on the
membrane surface [1] which reads:

pES = ε

(
u1 − u2

h

)2

, (1)

so to compute the behavior of the DE actuator, it is
necessary to estimate precisely the distribution of the
voltages u1 and u2.

The equations governing the voltage distribution
on the electrodes will be obtained by two different
methods: first by using the transmission line theory,
which is the method chosen by most authors who
investigate resistivity effects on DEs, and second
starting directly from Maxwell’s equations, and
simplifying them to a moving DE membrane geometry.
The two methods are finally compared to each other.

3.2. Transmission line model

Transmission line theory is an intuitive way to
derive the equations governing the charge and voltage
distribution on a DE actuator [12]. An element of the

DE membrane is modelled as a capacitor connected to
resistors which stand for the electrode resistivity, see
figure 3.

Figure 3. Transmission line model of a dielectric elastomer
membrane. The black lines denote a unit cell, and the grey lines
other cells. The capacitor value is C = ε

h
δxδy, the blue resistor

values Rx = re
he

δx
δy

, and the red resistors values are Ry = re
he

δy
δx

.

Writing the current balance at the two nodes
identified by dots in figure 3, and using the standard
constitutive equations for resistors and capacitors, the
following system of equations is obtained :

∇s ·
(
he
re

∇su1

)
=

∂

∂t

( ε
h

(u1 − u2)
)
, (2a)

−∇s ·
(
he
re

∇su2

)
=

∂

∂t

( ε
h

(u1 − u2)
)
, (2b)

where ∇s denotes the surface del operator:

∇s =
∂

∂x
ex +

∂

∂y
ey . (3)

These governing equations must be completed
with the following boundary conditions:

u1 = ua on Γ1 , (4a)

u2 = 0 on Γ2 , (4b)

∇su1 · nb = 0 on Γ\Γ1 , (4c)

∇su2 · nb = 0 on Γ\Γ2 , (4d)

where nb is the normal vector to the border Γ, see
figure 2.

Even if it is not always written in this partial
differential equation form, the system (2) with the
boundary conditions (4) has been used by many
authors to study resistivity effects on DEs (see [12, 24,
11] for example). Most of the time these equations are
used in a more simple form, which is obtained if the
thickness and resistivity are assumed to be uniform,
and if the membrane thickness does not depend on
time:

∇2
sū =

2reε

heh

∂ū

∂t
, (5)
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where ū = u1 − u2. This is a diffusion equation which
is easily solved by finite element methods for example.
Although the governing equation is more compact in
the form (5), the form (2) is more practical because
the boundary conditions are much easier to implement
when the two variables u1 and u2 are used.

3.3. Maxwell model for a moving medium

The assumptions that lie behind the transmission line
theory must be clarified for a moving medium. A DE
membrane under dynamic excitation will move and
deform, and the motion could very likely interact with
the charge diffusion. In this section the equations
governing the voltage distribution on the electrodes
are obtained from Maxwell’s equations written for a
moving medium [25]. We will show that it leads to
additional terms in the equations compared to the
transmission line model.

Maxwell’s equations for a moving medium have
been written thoroughly by Kovetz [25]. Two frames
are defined: R is a Galilean reference frame, and R′
is the frame of reference of the matter. The frame
R′ moves relatively to R in a motion defined by the
velocity field v(x, t). Quantities will be noted with an
apostrophe when referring to the frameR′ and without
when referring to the frame R. In particular, the
current density i refers to the velocity of the charges
with respect to the reference frame R while the current
density i′ = i− ρv refers to the velocity of the charges
with respect to the matter. In the frame R, Maxwell’s
equations for electro-quasistatics [26] read:

∇ ·D = ρ , (6a)

∇ · i +
∂ρ

∂t
= 0 , (6b)

E = −∇u , (6c)

D = ε0E + P , (6d)

where D is the electric displacement, E the electric
field, ρ the charge density, u a scalar potential from
which the electric field E derives, P the polarization,
and ε0 the vacuum permittivity. All fields have the
same expression in R and in R′, except the current
density i.

These equations must be completed by constitu-
tive relations between the polarization P ′, the current
i′, and the electric field E′, which are written in the
frame R′ attached to the matter. In the present case
two types of materials are considered:

• The membrane is made of a linear dielectric
material, which does not conduct free charges,
that is i′ = 0, and in which the polarization P ′

is proportional to the electric field E′. Given that
there are no free charges initially in the dielectric,

and that there are no currents, the charge remains
null at all times (∀t, ρ′ = 0). So in the dielectric
membrane:

P = ε0χE , i = 0 , (7)

where χ is the membrane electric susceptibility.

• The electrodes are made of linear conductive
material, which satisfies Ohm’s law i′ = E′/re,
and is not polarizable, that is P ′ = 0. Thus, in
the electrodes:

P = 0 , i− ρv =
1

re
E . (8)

Because of the thinness of the system, it is possible
to describe the problem by equations written on a given
reference surface Σ close to the membrane geometry,
involving only two spatial variables, and not by volume
equations. The construction of the 2D model is based
on the following assumptions:

• In the electrodes the electric field is tangential.

• In the membrane the electric field is dominated
by the normal component (fringe effects are
neglected).

• Outside of the electrodes and of the membrane the
electric field is null.

The first assumption amounts to assume that the
potential u from which the electric field derives by
Eq. (6c) does not depend on the normal direction in
the electrodes.

The second assumption implies that in the
membrane the electric field is expressed as a function
of the electrode potentials as:

E = −u1 − u2

h
n . (9)

Indeed, due to the aether relation (6d) and the
constitutive law (7), the electric field and the electric
displacement are proportional:

D = εE , (10)

where ε = ε0(1 + χe) is the permittivity of the
membrane’s material. Therefore, as there are no
free charges in the membrane (ρ = 0), Gauss’s
law (6a) implies that the dominant normal component
of the electric field is uniform in the thickness of
the membrane, and the expression (9) is finally
obtained from (6c). Note that in this expression, the
tangential component of the electric field has been
omitted because it is negligible compared to the normal
component. The tangential component is actually of
the same order of magnitude in the membrane and
in the electrodes, due to its continuity across the
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interface between the two materials. On the other
hand, our assumptions violate the continuity of the
normal component of the electric field (null in the
electrodes and given by Eq. (9) in the membrane). In
practice, the charges will be mainly localized near the
interface because of the discontinuity of the material
properties, which justifies the jump of the electric field.

The charge balance (6b), Gauss’s law (6a) and
Ohm’s law (8) are integrated in the thickness of the
top electrode, to obtain surface conservation equations
(see appendix Appendix A for the details):

∇s · j1 +
∂σ

∂t
= 0 , (11)

σ =
ε

h
(u1 − u2) , (12)

j1 − v1‖σ + γ1∇su1 = 0 , (13)

where j1 is the surface current in the top electrode,
v1‖ the tangential velocity in the top electrode, γ1 the
surface conductivity of the top electrode, σ the surface
charge of the top electrode, and ∇s stands for the
surface del operator defined by Eq. (3), where x and
y now denote curvilinear coordinates on the reference
surface.

By inserting in the charge balance (11) the
expression of the surface current j1 given by Ohm’s
law (13) and the expression of the surface charge σ
given by equation (12), a diffusion equation governing
the voltage distribution on the top electrode is
obtained, and this procedure is repeated for the bottom
electrode, yielding:

∇s · (γ1∇su1) =
∂

∂t

( ε
h

(u1 − u2)
)

+ ∇s ·
( ε
h

(u1 − u2)v1‖

)
, (14a)

−∇s · (γ2∇su2) =
∂

∂t

( ε
h

(u1 − u2)
)

+ ∇s ·
( ε
h

(u1 − u2)v2‖

)
. (14b)

On the portion of the top electrode border where
there is no connection, the boundary condition read
i′ · nb = 0, that is:

i · nb = ρv · nb for x ∈ Γ\Γ1 . (15)

Integrating this condition over the thickness of the top
electrode and using Ohm’s law (13) yields:

∇su1 · nb = 0 on Γ\Γ1 . (16)

The same holds for the bottom electrode, and the full
set of boundary conditions is finally the same as in the
case of the model based on transmission line theory,
given by Eqs. (4).

3.4. Comparison between Maxwell and transmission
line models

The equations governing the voltage distribution on
resistive DE membranes have been derived using two
methods: either by applying the transmission line
theory which gives equations (2), or by using directly
Maxwell’s equations which yields equations (14). In
both cases, the boundary conditions are the same and
are given by equations (4).

If the dielectric membrane is at rest, v = 0, and
ε/h can be moved out of the derivative in equation (14).
Equations (2) and (14) are then identical.

However, if the membrane moves and deforms,
the voltage distribution appears to be coupled to
the membrane movement, and equations (2) and (14)
differ by the convective term ∇s ·

(
ε/h(u1 − u2)v‖

)
in

equation (14). This term matters when there is an
in-plane movement of the membrane.

3.5. Linearization

We now consider that the actuator is driven by an
oscillating voltage with a static bias: ua(t) = U+ũa(t),
as it is often the case for DE actuators [27]. Equations
(14) are linearized, by considering small voltage and
displacement perturbations around a steady state:

u1 = U + ũ1(t), u2 = 0 + ũ2(t), (17)

h = H + h̃(t), he = He + h̃e(t). (18)

Also, given the small thickness of the electrodes and
of the membrane, it is assumed that the tangential
velocity is the same in the whole membrane, meaning
that v1‖ = v2‖ = v‖. The top and bottom electrode
thicknesses and resistivity are also assumed to be
identical and uniform along the thickness direction,
which yields γ1 = γ2 = he/re.

The linearized versions of equations (14) are:

ε

H

∂

∂t
(ũ1 − ũ2)− εU

H2

∂h̃

∂t
=

∇s ·
(
He

re
∇sũ1

)
− U∇s ·

( ε
H

v‖

)
, (19a)

ε

H

∂

∂t
(ũ1 − ũ2)− εU

H2

∂h̃

∂t
=

−∇s ·
(
He

re
∇sũ2

)
− U∇s ·

( ε
H

v‖

)
. (19b)

Equations (19) show that even at first order,
the voltage distribution is coupled to the mechanical
vibrations, through the time derivative of the
membrane thickness and through the membrane
tangential velocity v‖. It must be noted that the
coupling terms are proportional to the bias voltage U .

We emphasize that all effects which are discussed
in the following are linear effects, independent of the
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amplitude of the excitation. For larger excitation
amplitudes, complex non-linear dynamics may arise, as
studied in depth by other researchers e.g. [28, 29, 30],
but are beyond the scope of the present article.

4. Experimental validation of the model

The model is now used to compute the mechanical and
electrical behavior of the device shown in figure 1(a):
an axisymmetric DE membrane inflated over a closed
cavity.

The equations governing the dynamics of this
membrane have already been derived [29, 21, 22,
31] and linearized around the inflated configuration.
Appending equations (19) to the linearized dynamic
equations results in a linear set of equations, which
strongly couples electrical and mechanical dynamics.
A weak form of these equations is built and solved
in the frequency domain using the open source finite
element solver FreeFEM (see [31, 22] for the details of
the method).

Three calculations are compared to measurements
in the following:

• Model w/o resistance: it is assumed that the
electrodes are perfectly conductive, so the voltage
is uniform on the electrodes for all frequencies, and
equal to the applied voltage.

• Uncoupled model : the electrical diffusion equa-
tions (19) are solved first, assuming the geometry
is static. The obtained frequency-dependent volt-
age distribution is then used as a given input to the
mechanical calculation. This is the approach used
by the authors who consider nonuniform voltage
distributions on dielectric elastomers.

• Coupled model : the system of fully coupled
electrical and mechanical equations is solved,
meaning that the influence of the vibrations of the
membrane on the voltage distribution is taken into
account.

The parameters of the studied membrane are
given in table 1. The behavior of the silicone
membrane is modelled by a Gent hyperelastic law.
The shear modulus µ and the stiffening parameter Jm
are estimated by fitting a simulation of the quasistatic
inflation of the membrane on an inflation experiment.
The range of the pressure sensor that we used limited
the achievable biaxial stretches to approximately 1.7,
at which the stiffening of the elastomer is not very
steep. As a consequence, the estimation of Jm is not
very accurate, and explains the large value in table 1.
However, all measurements presented in this article are
obtained for relatively small strains, for which Jm has
little influence.

Dissipation effects related to the viscosity of
the elastomer are taken into account by structural

Table 1. Parameters of the studied prototype. The membrane
and electrode thicknesses H0 and He0 are given in the reference
configuration, before the membrane is pre-stretched and inflated.

Name Symbol Value

Shear modulus µ 450 kPa
Gent stiffening parameter [32] Jm 60
Material loss factor η 2 %
Membrane thickness H0 50 µm
Electrode thickness He0 2 µm
Electrode resistivity re 0.5 Ωm
Membrane radius A 19 mm
Membrane biaxial pre-stretch λpre 1.1
Membrane density ρ 1042 kg m−3

Membrane relative permittivity εr 2.8
Inflation pressure P 1500 Pa
Bias voltage U 1500 V
Oscillating voltage amplitude |ũa| 20 V
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Coupled model

Figure 4. Transfer function between the vertical velocity of the
membrane vz at radius R = 0.1 × A and the applied voltage,
measured using a laser vibrometer and computed.

damping, using a constant loss factor η in the
membrane.

To assess the performance of the model and of the
numerical implementation, the membrane is excited
with white noise, and its velocity is measured using
a laser vibrometer (Polytec PSV-500). The transfer
function between the applied voltage and the velocity is
obtained using the H1 transfer function estimate [33],
and plotted in figure 4 together with the numerical
results.

The Model w/o resistance, Coupled model and
Uncoupled model differ most largely around the third
membrane mode, at 900 Hz. The coupled model yields
a larger loss factor for the third mode, indicating that
some mechanical energy is transferred to the electrical
part of the system and is dissipated by resistive effects.
All three models provide a convincing estimation of
the dynamics of the system, which suggest that for the
considered electrode resistivity the coupling between
the vibrations and the voltage distribution has a
minor effect on the electrostatic excitation. To further
analyse the consequences of this coupling, the electrical
behavior of the inflated membrane is now analysed.
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The impedance of the membrane ua/i can be
obtained from the numerical results, as the current
flowing through the membrane Σ reads:

i =

∫
Σ

ε

H

∂

∂t
(ũ1 − ũ2)dS +

∫
Σ

εU
∂

∂t

(
1

h̃

)
dS . (20)

In figure 5, this computed impedance is compared to
the measured impedance, obtained using the current
measured in a shunt resistor and the voltage given by
the monitor output of the Trek 609-E amplifier used
for the experiments.
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Figure 5. Membrane impedance, measured on a prototype, and
computed with the Model w/o resistance, Uncoupled model and
Coupled model. (a) Amplitude. (b) Phase.

The 1/ω behavior of the impedance at low
frequencies (below 500 Hz) is characteristic of a
capacitor, and resistive effects make it deviate from
the capacitive behavior at high frequencies. As the
frequency of the excitation passes one of the first
eigenfrequencies of the membrane, a large displacement
will be caused by the applied voltage ua. As a
consequence, the membrane thickness will oscillate,
and the second term in (20) results in peaks in the
impedance, which are both measured and computed
by the three models. The impedance thus reveals
coupling effects between the electrodynamic loading
of the membrane and its vibrations. This coupling
mechanism is not related to the electrode resistivity,
but to capacitance changes during actuation, and
occurs even with perfectly conductive electrodes (model
w/o resistance). It can thus be described by models
which assume a uniform voltage on the electrodes.

The measurement of the impedance may provide
useful information for self-sensing, as the first mem-

brane eigenfrequencies for example can be estimated
only from impedance measurements by peak-picking
algorithms. This information can then be used to per-
form adaptive filtering for example.

Here again, figure 5 shows that there are only very
small differences between the results of the Coupled
model and Uncoupled model, and the comparison with
the measurements does not show that the prediction of
the coupled model is better.

The voltage on the electrodes is now investigated,
and the usefulness of the coupled model is demon-
strated. The voltage is measured using a high volt-
age probe, as explained in figures 1(a) and 1(b). The
electrode voltage u1 is measured at different radii, and
plotted in figure 6, together with the results of the
models.
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Figure 6. Transfer function between the voltage on the top
electrode u1 at different radii during actuation and the applied
voltage ua, measured and computed. (a) Amplitude. (b) Phase.

On the one hand, the model w/o resistance
assumes that the voltage is uniform on the electrodes,
and equal to the applied voltage. As a consequence,
it is not able to describe the measured frequency
dependence. On the other hand, both the Uncoupled
model and the Coupled model capture the decrease
of the voltage at high frequencies due to electrode
resistivity. The further away from the electrical
the connections the measurement point is located,
the faster the voltage decreases at high frequencies.
This result is well known and has been analysed by
transmission line models on DEs [12, 13, 11].

What is more interesting is the behavior of the
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voltage on the electrodes at medium frequencies,
around 1 kHz. Peaks and drops are observed at the
membrane eigenfrequencies, as already analysed in
figure 1. These peaks are caused by the coupling
between the membrane vibrations and the voltage
diffusion, through the coupling terms which appear
in equation (19). Indeed, the Uncoupled model which
does not take these terms into account is not able to
predict the observed peaks. The Coupled model on
the other hand gives a good estimation of the drop
at 800 Hz for example. The errors between the model
and the experiments on the other peaks and drops may
be related to errors in the calculation of the dynamics
(see figure 4) or to measurement errors. Indeed, the
measurement of the voltage on a vibrating membrane
at high frequencies is difficult (see figure 1), as any
connecting wire tends to interfere with the dynamics.

To conclude this section, the voltage distribution
on the electrodes of vibrating DEAs is influenced by the
membrane movement, and it has been shown that this
effect arises from the coupling terms in equation (19).
The physical origin of the coupling will be discussed in
the following section.

5. Discussion

+ + + +
_ _ _ _

+
_

Stage 1 - Charged membrane at rest

Time

Time

+_
+ ++

_ ___

+++
__

+
__

+

Stage 3 - Displacement of the electric charges

+_
+ ++

_ ___

+

Stage 2 - Deformation of the membrane 

Figure 7. Physical interpretation of the observed coupling
mechanism. The characteristic times of electrical and mechanical
effects are τe and τm, respectively. The distinction between the
three stages is made here for pedagogical reasons, and does not
occur in practice.

In this section, the coupling observed in figure 6
and its consequences are discussed.

The peaks in the voltage at the membrane
eigenfrequencies seen in figure 6 can be explained by
figure 7 where the dynamic loading of a membrane is
decomposed into three stages:

• Stage 1 Consider a DE membrane at rest, charged
by a static voltage at its edge.

• Stage 2 Suppose that, under external action, the
membrane deforms during a mechanical response
time τm. This deformation induces local changes
in thickness. Before the charges move on the
membrane, due to Gauss’s law (12) the voltage
on the membrane will increase where it is thicker,
and decrease where it is thinner.

• Stage 3 Charges will be supplied by the
generator, and they will move on the membrane
so that the voltage equals the applied voltage
everywhere. This diffusion occurs during the
timescale τe.

In practice, the membrane is actuated by a
non stationary input voltage ua(t), which vibrates
the system at the period τm. The deformation
is most significant at system’s eigenmodes, thus,
we now examine the case where the excitation
frequency matches one of the eigenfrequencies. The
electromechanical behavior of the system is governed
by the ratio of the mechanical timescale τm and the
electrical time τe. Note that for such a resonant system,
the mechanical timescale is dictated by the system’s
resonances, and not by the material viscoelastic
relaxation time constants.

• If τe � τm, the electrodynamic equilibrium is
satisfied at all times, the voltage is uniform on
the membrane, and equal to the applied voltage
ua(t).

• If τe ≈ τm, the charge diffusion takes approxi-
mately one period of oscillation, so the electro-
static equilibrium is not satisfied at all times.
There are locally excess charges which gener-
ate voltage fluctuations, and the coupling phe-
nomenon described in figure 7 then occurs.

• If τe � τm, the charges do not have the time
to spread on the membrane, so the electrostatic
excitation is small, and the membrane does not
move. If the membrane is vibrated by another
mechanical excitation of period τm, the voltage
will still locally vary on the electrodes because the
charges are ’fixed’ by the high resistivity.

For the current prototype, the time scales for the
charge diffusion effects τe and for the mechanical effects
τm can be estimated by:

τe =
εA2re
HHe

≈ 50 µs , τm =
A√
µ/ρ

≈ 900 µs , (21)
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with the parameters defined in table 1. There is a
difference in the order of magnitude between τe and
τm of about 20, and the coupling is still visible. It is
however expected that it would be even stronger with
more resistive electrodes, which would increase τe.

To have an insight of the consequences of this
coupling for higher resistivity electrodes, we use the
model to compute the voltage distribution on the
inflated membrane at 1179 Hz, which corresponds to
the fourth membrane eigenfrequency. The results are
plotted in figure 8.

(a)

(b)
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0
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Figure 8. Computed dynamics of the inflated DE membrane at
the fourth eigenfrequency 1179 Hz, for more resistive electrodes
(τm/τe = 5). (a) Vertical position z of the static deformation
of the membrane and of the operational deflection shape around
the static equilibrium, scaled so that the maximum displacement
of the Uncoupled model is 0.3. The same scaling is used for
both calculations. (b) Voltage distribution at 1179 Hz, obtained
with the Uncoupled model and the Coupled model. (c) Transfer
function between the normal velocity at the center of the
membrane vz and the excitation voltage ua.

Figure 8(b) shows that the voltage distribution
on the membrane is influenced by the membrane
dynamics, as the results of the Uncoupled model and
Coupled model differ. The voltage on the electrodes
oscillates with a wavelength which is similar to the
mechanical wavelength which can be observed in
figure 8(a). This suggests that information on the
local deformation of the membrane at high frequencies
can be obtained by voltage measurements on the
electrodes, which could be useful for self-sensing.
Moreover, figure 8(c) indicates that for more resistive
electrodes than the measured ones (see figure 4),
the Coupled model ans Uncoupled model differ more,
which suggests that for highly resistive electrodes it is

necessary to take into account the coupling between
the vibrations and the voltage distribution to compute
accurately the electrostatic excitation. Experimental
studies with more resistive electrodes would provide
further insights in this direction.

6. Conclusion

To conclude, the present article provides an analysis
of resistivity effects on dielectric elastomers. It has
been shown experimentally that for a certain set of
parameters, when the timescale for electrodynamics
is similar to the mechanical timescale, a coupling
between the voltage distribution and the vibrations of
the membrane occurs.

The equations governing the voltage distribution
on moving resistive dielectric elastomer membranes
have been derived, and linearized around a pre-stressed
configuration with a static bias voltage. The linear
model succeeds in describing the observed coupling.

When the electrode resistivity is high, it is nec-
essary to take into account the influence of the mem-
brane dynamics on the voltage to compute accurately
the electrostatic excitation on the membrane. The pro-
posed model therefore refines the modelling of the ex-
citation in resistive dielectric elastomer actuators. In
practice, this may typically happen for example for DE
loudspeakers [34, 35, 36], which operate at high fre-
quencies, or for DE devices with resistive electrodes
driven at lower frequencies.

The studied coupling also opens self-sensing pos-
sibilities, as information on the membrane dynamics
can be deduced from voltage and impedance measure-
ments. More precisely, the local variations of the volt-
age on the electrodes provides information on the local
deformation. This may lead to self-sensing applications
to control dielectric elastomer actuators operated at
high frequencies, where the standard capacitive sensing
approaches no longer work, as the membrane thickness
varies locally, and no longer in a uniform way.

Preliminary experimental investigations have been
conducted to demonstrate the coupling, but we believe
that dedicated experiments with even more resistive
electrodes would help understanding the possible
applications, especially for self sensing.
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Appendix A. Integration of electrodynamic
equations

In this appendix Maxwell’s equations are integrated
in the normal direction in order to obtain surface
equations.

Dielectric elastomer membrane
Electrodes

Figure A1. Definition of the geometry of a thin membrane for
the simplification of Maxwell’s equations. A point of the system
is identified by the location x of its projection on the reference
surface, and its coordinate ξ along the normal n to the reference
surface. Surfaces ξ = ξ±i (x, t) define the bottom and top sides of
the electrodes, so that the thickness of the dielectic membrane
is h = ξ−1 − ξ+2 , and the thicknesses of the top and bottom

electrodes are ξ+1 − ξ
−
1 and ξ+2 − ξ

−
2 respectively, both supposed

to be equal to he in the section 3.2.

Each point in the volume of the membrane is
identified by a point x on the reference surface and an
altitude ξ, see figure A1. For an arbitrary vector field
a(x, ξ) in this volume, a‖(x, ξ) denotes its projection
on the tangent plane to the reference surface at location
x.

The equations will be expressed using surface
operators: the notation ∇sa refers to the surface
gradient of a scalar field a, defined as the projection
of ∇a on the tangent plane to the reference surface,
and ∇s · a refers to the surface divergence of a vector
field a, defined as the divergence of a‖. Assuming that
the thickness of the membrane is much smaller than
the radius of curvature of the reference surface, the
following relation holds:

∇ = ∇s +
∂

∂ξ
n . (A.1)

Appendix A.1. Integration of Gauss’s law

Using Eq. (A.1), the integration of Gauss’s law (6a)
from the reference surface to the outer boundary of
the top electrode reads:∫ ξ+1

0

∇s ·Ddξ +

∫ ξ+1

0

∂D

∂ξ
dξ · n =

∫ ξ+1

0

ρdξ . (A.2)

Note that the interval of integration includes the
interface where D ·n was assumed to be discontinuous.
The jump of D, related to the charge density ρ, is

expressed by the second member. Given that there
are charges only in the electrode, Eq. (A.2) is then
rewritten as: ∫ ξ+1

0

∇s ·Ddξ −D⊥ = σ , (A.3)

where σ is the surface charge density of the top
electrode defined as:

σ =

∫ ξ+1

ξ−1

ρdξ , (A.4)

and D⊥ is the normal component of the electric
displacement in the membrane, which does not depend
on ξ as seen in Eqs. (9) and (10). The normal
component of the electric field in the membrane is
much larger than its tangential component both in the
electrode and in the membrane and, in addition, the
membrane radius is much larger that its thickness so
the first term of Eq. (A.3) is negligible compared to
the second one. Finally, combining Eqs. (A.3), (9) and
(10) gives the expression of the surface charge density
as a function of the electrode potentials Eq. (12).

The same procedure applied to the bottom
electrode shows that its surface charge density is −σ.

Appendix A.2. Integration of the charge balance

Integrating the charge balance equation (6b) over the
thickness of the top electrode reads:∫ ξ+1

ξ−1

∇s · idξ +

(∫ ξ+1

ξ−1

∂i

∂ξ
dξ

)
· n +

∫ ξ+1

ξ−1

∂ρ

∂t
dξ = 0 .

(A.5)

Using the Leigniz integral rule to express the terms of
this equation yields:

∇s ·

(∫ ξ+1

ξ−1

idξ

)
− i(ξ+

1 ) ·
(
∇sξ

+
1 − n

)
+ i(ξ−1 ) ·

(
∇sξ

−
1 − n

)
+
∂

∂t

(∫ ξ+1

ξ−1

ρdξ

)

− ρ(ξ+
1 )
∂ξ+

1

∂t
+ ρ(ξ−1 )

∂ξ−1
∂t

= 0 . (A.6)

As neither the dielectric membrane nor the
surrounding air can conduct free charges, the boundary
conditions for the current on the top and bottom
surfaces of the electrode read i′(ξ±1 ) · n±1 = 0, that
is: [

i(ξ±1 )− ρ(ξ±1 )v(ξ±1 )
]
·
(
n−∇sξ

±
1

)
= 0 . (A.7)

Moreover, the normal velocity of the interfaces reads:

v(ξ±1 ) · n =
∂ξ±1
∂t

+ v(ξ±1 ) ·∇sξ
±
1 , (A.8)
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so the boundary conditions (A.7) become:

i(ξ±1 ) ·
(
n−∇sξ

±
1

)
− ρ(ξ±1 )

∂ξ±1
∂t

= 0 . (A.9)

Introducing these boundary conditions in the charge
balance (A.6) cancels all the boundary terms, so this
equation finally gives Eq. (11), where σ is the surface
charge density defined by Eq. (A.4), and the surface
current density on the top electrode

j1 =

∫ ξ+1

ξ−1

i‖dξ , (A.10)

has been introduced.

Appendix A.3. Integration of Ohm’s law

In this work, we are interested in the voltage
distribution on the electrodes, which is related to
the charges’ in-plane motion. The slowing down of
this motion, due to the resistivity of the electrodes,
is described by Ohm’s law. Since the significant
component of the charges’ motion is the tangential one,
Ohm’s law (8) is projected on the tangent plane to the
reference surface:

i‖ − ρv‖ =
1

re
E‖ . (A.11)

As in the precedent paragraphs, let us examine
the case of the top electrode. The electric field is
there given by the surface gradient of the potential u1

and is uniform in the electrode thickness. Integrating
Eq. (A.11) over the electrode thickness yields:∫ ξ+1

ξ−1

i‖dξ −
∫ ξ+1

ξ−1

ρv‖dξ = −∇su1

∫ ξ+1

ξ−1

1

re
dξ . (A.12)

In order to recognize in the second term the surface
charge σ defined by Eq. (A.4), we further assume that
the tangential velocity v‖ does not depend on ξ in the
electrodes. This tangential velocity is denoted by v1‖
and v2‖ in the top and bottom electrodes respectively.
The surface Ohm’s law (A.12) is then simplified to yield
Eq. (13), where j1 is the surface current defined by
Eq. (A.10), and the surface conductivity of the top
electrode

γ1 =

∫ ξ+1

ξ−1

1

re
dξ , (A.13)

has been introduced.
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