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In this article a dynamical model of the vibrations and
acoustic radiation of a circular clamped plate excited by a
voice coil and two annular piezoelectric patches is derived.
This model is used to perform an optimization of the geome-
tries with the objective to minimize the vibration of the plate
along its second and third modes, so that the plate’s radi-
ation is equilibrated between its first and fourth eigenfre-
quencies. Experiments are then performed and show a good
agreement with the model. Radiation of the designed sys-
tem presents improvements when compared to a system when
only a voice coil is used.

Nomenclature

W Plate’s vertical displacement (m), non-dimensional ~» w

R Radius variable (m), non-dimensional ~> r

T Time (s), non-dimensional ~~ ¢

A,B Internal, external radii of piezo (m), non-dimensional

~+a,b

C Radius of voice coil (m), non-dimensional ~~ ¢

Ro Plate’s radius, non-dimensional ~~ 1

Ey,E, Young’s modulus of plate and piezo

Vo,Vp, Ve Poissons’s coefficient of plate, piezo and glue

Po,Pp,Pg Density of plate, piezo and glue

Hp Plate’s thickness (m)

H, Piezos thickness (m)

H, Glue thickness (m)

Uo,Mp, g Surface density of plate, piezos and glue layer

Dy Rigidity of plate = Ey/12(1 —Vv3)

D, Rigidity of piezos = E, /(1 —V3) x (H,Hg /2+ H;Ho +
2H;/3)

My Total mass of the plate (kg)

R. Electrical resistance of the voice coil (Ohms)
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L. Inductance of the voice coil (H)

Bl Electromechanical conversion factor (T.m)

Tension across the voice coil and the piezo respec-
tively (V)

Z, Moment arm of the piezoelectric patch = ( W)

Uc,Up

1 Introduction

Classically, sound is produced by exciting air with a moving
surface. The manufacturing of loudspeakers has converged
to a design involving a cone excited at a given radius by a
voice coil and fixed at its outer radius to a rigid structure
through a flexible material, referred to as the surround. As a
first approach, the radiation behavior of such designed loud-
speakers can be estimated by considering a translating plane
surface baffled in an enclosure and coupled to an electrical
circuit. This assumption served as a basis for the theory of
Thiele [1, 2] in the context of closed boxes and Small [3,4]
for vented boxes. They are yet widely used for the design
complete loudspeaker systems in the industry. In practice,
such system possesses also structural modes at higher fre-
quencies [5]. The useful bandwidth of this kind of loud-
speakers (i.e. the frequency range where the radiated power
is almost constant and suitable for high-fidelity reproduc-
tion) is in practice comprised between the two first eigenfre-
quencies of the system. Hence, with this design, the higher
the first eigenfrequency of the structural modes compared to
the frequency piston-like oscillator, the wider the bandwidth.
That is one of the reasons why a conical membrane is used.
One can find many attempts to depart from this now classical
piston-like design. In addition to designs involving piezo-
electric transducers [6], one can mention systems involving
rectangular plates excited by multiple electrodynamic trans-
ducers, at the origin of the DML system [7,8]. Other systems



involving regtancular panels are used to synthesize acousti-
cal wave fields [9, 10], and thus referred to as Wave Field
Synthesis.

The present article adresses the problem of a loud-
speaker contisting of a circular plate clamped at its outer ra-
dius, excited by a voice coil. Attention is paid on this system
because it makes possible the design of flat loudspeakers, and
a deformation along its first mode presents a better directiv-
ity factor than a translating baffled piston mode [11]. This
design has however a major inconvenience: compared to
piston-like structures, the first eigenfrequency is poorly sep-
arated from the others. The bandwidth of such a transducer
is hence significantly reduced in comparaison to the classi-
cal design. In order to circumvent this problem, we treat the
reduction of the vibrations of the undesirable modes with the
introduction of additional forcings on the system exerted by
piezoelectric patches. Vibrating plates or beams equipped
with piezoelectric elements interacting with electric circuits
have been extensively studied during the last decades, in
various application fields such as active control of undesir-
able vibrations [12], aeroelastic instabilities [13, 14], passive
damping [15-17], eneregy harvesting [18-21]. In the spe-
cific domain of acoustics, piezoelectric actuators and sensors
have been used to control the sound radiated by vibrating
plates [22-26], the sound transmitted by plates between two
spaces [27-29]. Piezoelectric coupling will be introduced in
the present work using results of Lee et al. [30,31], who de-
rived the equations governing the dynamics of a general non-
isotropic three layered lamitated plate with two symmetric
piezoelectric layers.

The work of the present article has for objective to find
the optimal geometric parameters of the voice coil and the
piezoelectric patches so that the plate’s response has a maxi-
mal amplitude along its first mode and a minimal amplitude
at the other ones when the same signal is sent to all actuators.
The paper is organized as follows. In section 2, a dynamical
model of a flat circular clamped plate equipped with a voice
coil and two piezoelectric patches is derived. In section 3,
this model is used to perform an optimization with the ob-
jective above mentioned. In section 4, various experimental
and theoretical transfer functions are compared to validate
the model and results of a controlled loudspeaker are pre-
sented. A conclusion then closes the article.

2 Reduced order model of a plate equipped with a voice
coil and two symmetrical piezoelectric annuli

2.1 Position of the problem

In this section, a reduced order dynamical model of a flat
circular clamped plate equipped with a voice coil and two
piezoelectric patches is presented. Firstly, dynamical equa-
tions of a plate with added mass and rigidity due to the pres-
ence of piezoelectric patches are derived. A modal expan-
sion will then be performed and the full dynamical equations
of the plate with piezoelectric patches, voice coil and their
associated forcings will be projected on the eigenmodes to
obtain a linear discrete dynamical system where each modal
displacement and electrical displacements of each electrical
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Fig. 1. Schematic view of a flat plate loudspeaker with a voice coil
and two piezoelectric patches.

circuit represent one degree of freedom. This model will then
be used to compute various electromechanical transfer func-
tions.

2.2 Equations and eigenmodes of a plate with piezoelec-
tric patches

Consider the system sketched in Figure 1, representing a
plate of thickness Hp, radius Ry on which two piezoelectric
anuli of internal radius A, external radius B and thickness H),
are glued. A voice coil of mass M, is fixed at R = C on the
plate. Due to the presence of two piezoelectric layers be-
tween the radii A and B, the flexural rigidity of the pate has
the following expression,

D(R) = Do+ F,(R)D,,, 1)
where Dy is the flexural rigidity of the plate without piezo-
electric layers, D), is an added flexural rigidity due to the
presence of the piezoelectric material and F), is a function
that equals 1 for R € [A, B] and zero elsewhere, so that is it
appropriately described by the sum of two Heaviside func-
tions,

F,(R)=H(R—A)—H(R—B). 2)

The exact expression of the flexural rigidity D, as function of
the material properties and their geometries has been derived



in the case of a three layer laminate by Lee et al. [30-32]
and is given in the nomenclature. We may also consider the
five layer problem where two additional layers of glue are
considered. It is presented in appendix B. It is shown in this
appendix that it is possible to end up with an equivalent three
layer problem after an appropriate change of variables. Thus
the three layer model is retained here for the sake of simplic-
ity.

The surface density of the plate has the following ex-
pression,

M.
2nC’

u(R) = po + Fp(R)u, + 8(R — C) 3)

where yp and u, are the surface density of the plate and
the two piezoelectric patches respectively. Using a linear
Kirchoff-Love approximation, the displacement of the plate
is known to satisfy the following equation:

D(R)A’W (R, T) +u(R\WW(R,T) = P(R,T). 4)

where P is the pressure exerted on the plate. The plate’s
diplacement is here considered independent of the polar an-
gle, which is justfied by the fact that all forcings exerted on
the plate are axisymmetric. The boundary conditions of the
problem are classical boundary conditions of a plate clamped
at R = Ry,

_ IW(R,T)

W(R=Ry,T)= =0. ©)

Three kind of external forcing are now considered: the force
coming from the voice coil P,, the force due to piezoelectric
coupling P, and a force due to a pressure difference between
each side of the plate P,.

Following the modelization of Thiele [1,2] of electrome-
chanical coupling introduced in the context of piston-like
electrodynamic transducers, the force exerted by the voice
coil is considered to be proportional to the electrical current
in the coil i, to the radial magnetic flux density in the air
gap B and to the length of the wire in the magnetic field /.
This force is then exerted on a circle of radius C so that its
contribution in the right-hand term of equation (4) reads,

d(R-C)

PR, T) = Bli(T) 25—

(6)

The pressure P, is a consequence of the stretching of
the piezoelectric material induced by charge displacements.
Its expression can be deduced from the results of Lee and
Moon [30], where it is expressed in cartesian coordinates
in the general case of non-isotropic piezoelectric materials.
Considering isotropy in the plane (X,Y) (i.e. the plane of
the plate) and axisymetry, the contribution of one piezoelec-
tric patch in the right-hand term of equation (4) is readily

obtained in polar coordinates as

0’F,

1 OF
P,,(R,T)u,,(T)e3IZ,,<W+ ”), 7

R OR

where u,, is the voltage at the outlets of the piezoelectric el-
ement, ez is a piezoelectric coefficient describing the cou-
pling between the deformation in the plane of the plate to the
electrical field in the Z—direction. In the present approach,
two symmetrically glued piezoelectric patches are consid-
ered, each are connected to a distinct circuit. In many works,
piezoelectric patches are glued in such a way that their re-
spective polarity is inversed. Connected in series, they be-
have like a single piezoelectic patch with a moment arm of
twice the value in equation (7) and an electric capacity of two
condensers in series, C,,/2. This configuration is in practice
that which induces the smallest non-linear effects, not mod-
elized in the present approach. Indeed, this configuration en-
sures that the longitudinal stretching of the plate induced by
one piezoelectric patch is cancelled by the other [12]. In the
present model, the voltages exerted on both piezoelectric ele-
ments are always equal, thus leading to the same conclusion,
but it leaves the possibility to use non-symmetric forcings for
which the present model is valid only at the linear level.

If the loudspeaker is placed in a closed box of volume Vj
at static equilibrium, there is a pressure difference between
each side of the plate, due to the volume variation of the box.
This pressure is hence expressed as

8V _p, JsW(R.T)dS

P —
! Vo Vo
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&
]
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®)

This expression is similar to those found in models consid-
ering piston-like loudspeaker [3,4]. The difference comes
from the fact that the plate’s dispacement depends on 7 in
the present model and has to be integrated to compute the
volume variation.

Let us now consider the electrical networks on which the
electromechanical devices are connected. The electrical net-
work considered for the voice coil is sketched in Figure 2a.
It consists of a resistance R, an inductance L. and a power
source BIW(T) due to the electromechanical coupling. A
voltage source coming from an amplifier is connected in par-
allel of these three elements. The model equation of this
electrical network is then,

, dic  dW(C)
Reie(T) +Le o +BI—

= u.(t). )

The equivalent electrical network for the piezoelectric
patches is sketched in Figure 2b and is considered when the
piezoelectric material is used as an actuator. Here a voltage
signal u, coming from an amplifier is connected directly to
the outlets of the piezoelectric material, which behaves as
a capacitive element in series with a power source due to



Fig. 2. Models of electrical circuits for the voice coil (a) and the
piezoelectic patch (b).

the electromechanical coupling. The equation governing the
electric charge displacement Q), reads [30],

Qo 2o [ (FW 1OW)
. ¢, F(R)( 3pz T g )9S = w(®). (10)

Non-dimensional equations are now derived. Introduc-
ing the non-dimensional radius, displacement, time and pres-
sure as

=R/R =W /H _r__ T __F
r=R/Ry, w=W/Hy, t__c_RZ T P = Bory
04/ Do R;
(11)
the non-dimensional local equilibrium equation (4) becomes,
l_)(r)Azw—i—,[z(r)w = p(nt), (12)
with
D(r) =1+D,fp, (13)
_ _ o(r—c) -
ﬂ(r):]+ﬂpfp+ (ZC ) c (14)
Jo(r) =H(r—a)—H(r—b), (15)

and where a = A/Ry and b = B/Ry are the non-dimensional
radii characterizing the piezoelectric annulus geometry,
D, = D, /Dy is the non-dimensional flexural rigidity of the
three-layers laminate, fi, = u,/uo is the non-dimensional
surface density and M, = M, /My is the mass of the voice
coil normalized by the mass of the plate. The dimension-
less pressure due to external forcings on the plate is similarly
decomposed into three components p = p. + p,, + p, with,

6 _
pe(r,t) = %eic(t) (;MC), (16)
92 19
pp(1t) = —putp(1) < arfz” n ;%) : (17
1
p(nt) = —T:V27t/0 w(rt)rdr, (18)

where g = q/T,, and where the three following coupling co-
efficients have been introduced:

L (19)
c = DOH07
_ Zpe3|R(2)

=+t 20
Y= (20)
_ YR RS
Ty = ——. 21
= VD @n

The coefficient T, quantifies the coupling between the cur-
rent in the voice coil and the dimensionless force exerted on
the plate. T, quantifies the coupling between the current in
the piezoelectric patches and the force exerted on the plate.
Finally, T, quantifies the force exerted on the plate due to a
volume variation in the closed box. It has to be noted that g
is not a dimensionless quantity as it has the dimensions of an
electric charge per unit time. This normalization is preferred
because it allows to keep voltages and currents expressed in
Volts and Amperes respectively while all purely mechanical
quantities are dimensionless. Another consequence is that
g, ¢ and § have all the dimension of Amperes while T, and
%, have the dimension of Amperes~!. The dimensionless
equivalents of equations (9-10) gorverning the charge in the
electric circuits are respectively,

dg. . d*q. _ dw(c)
RCW +Lcﬁ JrTecT:Hc(f), (22)
v 4 z,,2mrw)P = uy(t). (23)
Cp

where L, = L./T;, C, = C,/T, and where 7, and %, are
mechanical to electrical coupling coefficients,

_ BIHy |D,
T =—51 [ = (24)
R() Ho
_ Zpes Hy
Top = pC . (25)
P

These coefficients have the dimension of Volts.

2.3 Discretization of the plate’s equations

Let us now consider that the eigenfrequencies ®, and
eigenmodes ¢, (r,¢) of the unforced plate without voice coil
are known functions. These are the eigenmodes of equation
(12) with p(r,t) = 0, M, = 0 and with boundary conditions
(5). They are considered to be known in the present deriva-
tion an their exact calculation is presented in appendix A.
They are used to perform a modal expansion of the problem.
The displacement is hence expressed as a truncated sum of
modal contributions,

N
w(r,t) 22 Y Gun(£)n(r). (26)
n=1



Equation (12) is then projected on the modes ¢,,(r), leading
to the following discrete problem,

MGy +KGw = fo(t) + f(t) + £ (2), @7

where M is the mechanical mass matrix which elements read

My = <¢n17p¢n> = Opn JFTCMC(I)m(C)q)n (C)7 (28)

and K is the mechanical rigidity matrix which elements have
the following expression:

Ky = <¢m;D¢n> = Smnmrzn- (29)

Orthogonality relations of equations (76) and (77) have been
used here. The m'" component of the modal force f.(t) has
the following expression,

fcm = <¢m;pc> = Tch)m(C)ic(t)- (30)

The m"* component of modal force fp () is,

Spm = (Om, Pp) (31)

T N
T P —_
= — 22wl Lo ()~ TpTep Y 40} o1r0) o gun (1):
L4 n=1

This force is the sum of two terms, the first one effectively
acts as a forcing term due to a charge displacement in the
piezoelectric material. The second one is proportional to the
mechanical modal displacement and will appear as an added
rigidity matrix in the complete dynamical problem. Finally,
the modal force m due to a pressure variation in the closed-
box has the following expression:

N

1
fvm = <¢n17pv> =-T, <¢m; Z QWnZTE/ ¢nrdr> . (32)
n=1 0

As this modal force depends linearly on the mechanical
modal displacements, it is a rigidity force, and will appear
in the rigidity matrix of the final problem.

In order to write the full dynamical equations satisfied
by the modal displacements, the following projection vectors
are introduced:

d1(c) 2n[ro 1 2 [ oy rdr

o= | one) | o= | 2nbr0gi2 | 3= | 2nf durar
on(e) 2n(ral ) 2 f) owrdr

(33)

Next, the two added rigidity matrices are introduced:

Kp = 'Ep%epji; -fp ) Kv = %vztv' _’v- (34)
The dynamical problem may now be written by adding three
lines to the matrix dynamical equation (27) corresponding to
the three electrical circuits,

RS : 0 s :
M|l 000 |G, C TXe 00| | G
_E D +(|o0 T

-0---L.00 Ge fECTC... R.00 Ge
+0-- 000 [Gp 0 - 000 | |gp
-0 000] [gp2] [ 0 - 000 | [gp]

T I

K+K,+K,:| O =&% —¢Xp| | Gw 0
+ s : =1,

0o - 00 O gc Uc

—@,;7(’,, 0 1/6,, 0_ qpi Upi

L 7%ep%tp ° 0 0 1/Cp qu _upz_
(35)

where indices 1 and 2 are used to differentiate between front
and rear piezoelectric patches. This equation is the full dis-
cretized problem of the electrically forced transducer where
a voice and two piezoelectric patches of the same size and
material properties are considered, as sketched on Figure 1.
The N x N diagonal matrix C appearing in the upper left
part of the dissipation matrix modelizes all sources of energy
losses in the system, such as visco-eleasticity of the material
or acoustic radiation. In the present modeling the coefficients
of this diagonal matrix have to be adjusted empirically from
experiments. In a more compact form, equation (35) reads,
MG(r) + Cq(r) + Kg(r) = i(r). (36)
2.4 Transfer functions computation
The model presented above will be used to compute
transfer functions between different quantities of the system.
Considering the forcing and response vectors to be of the
form,
ii(t) = g™, G(t) = Goe'". 37)
Introducing these expressions in equation (36) and factoriz-
ing go leads to the following expression for the response’s
amplitudes,
Go(®) = (—@M +iC + K)~do. (38)
Numerical computation of a transfer function hence consists
in inverting a matrix for discrete values of ®. This is done



with Matlab for the results presented in this article. Let us
consider first the loudspeaker’s impedance, which is a trans-
fer function commonly measured on loudspeakers. Practi-
cally, it can be achieved by forcing the voice coil with a volt-
age in the form of a harmonc signal at different frequencies
and measuring the intensity. Numerically, this is done by
considering a forcing vrector iy in the form of a vector full
of zeros, except at the position corresponding to up.. One
next compute the response vector with equation (38). The
voice coil impedance then reads,

io(0)e™  ingo.()
7, = ©__ .

upce'™ Uuge

(39)

Another transfer function that will be considered in the
following is the transfer function between the displacement
at a given position r and the voice coil voltage. After us-
ing equation (26) to express the displacement as function of
the modal variables, the transfer function we are looking for
reads,

( :_ZQOH

Uoe =

(40)

Similarly, the transfer function between tension at coil and
acceleration reads,

%L- )0 (r0)- @1)

- _0)2 Z CIOn

Let us consider now the pressure radiated by the plate at
a distance L from the plate, on the Z axis. This pressure can
be computed using the Rayleigh integral [33],

_ sz// ﬂKL
L/

where L' = /L% + R? is the distance between the point of
interest and a point on the plate and K is the wavenumber,

R)RARAS,

(42)

Q
K==.
co

(43)

In the above equation, the use of capitals letters indicates
that dimensional quantities are used. The point is consid-
ered to be at a distance greater than the typical size of the
plate, L' ~ L, and can be put outside of the integral. After
a straightforward calculation, the pressure takes then the fol-
lowing form,

pHORz —iKL
2nT?

P(L)=— ZZW

)X vn- (44)

3 Optimization of the position of the voice coil and the
piezoelectric patches

The objective of this section is to address the design of a
flat plate excited by a voice coil that approaches the behavior
of a classical piston-like loudspeaker. In the low frequency
approximation, the latter is viewed as a single mode oscilla-
tor coupled to an electrical circuit through electromechanical
coupling. The typical tranfer functions of such ideal loud-
speaker can be obtained by only considering the first plate
mode in the model of the previous section, so that N =1
in equation (26). It is plotted in Figure 3a-d and compared
to the same voice coil when five modes are retained in the
model. In these figures, arbitrary but representative values
of the parameters have been chosen. It appears then in Fig-
ure 3d that without any particular care taken in the design of
this flat loudspeaker, the level of the pressure radiated is not
homogeneous, resulting in a poorly equlibrated loudspeaker
at frequencies above the second eigenfrequency. Hence, the
effective useful bandwidth of this loudspeaker is a narrow
range of frequencies above its first eigenfrequency. Con-
versely, the case N = 1 has an increased bandwidth that is
more similar to that of a piston-like loudspeaker.

It is envisaged to approach the N = 1 behavior by can-
celling the effect of resonances of modes 2 and 3 by a care-
ful design of two actuators: one voice coil and one pair of
piezoelectric patches. In this optimization process, modes 2
and 3 are addressed differently. Indeed the parameters of the
system are adjusted so that the projection of the pressure ex-
erted by the voice coil and the piezoelectric patch on mode
3 equals zero, while mode 2 is cancelled by using appropri-
ate respective values of the amplitudes of the voice coil and
piezoelectric voltages uc, up; and u,y. In order to ensure
a good efficiency of the forcing exerted on mode 2 by the
piezoelectric patch, a high value of the piezoelectric modal
force of mode 2 is looked for. Finally, in a more compact
formal form the optimization procedure can be expressed as:

Maximize )2 with %3 =0and )3 =0 45)

Equation (33) indicates that ¥ and ), depend only on a,
b, ¢ and the mode shapes ¢,,. The latter depend on Vg, v, Vg,
D,, ip, Dg, fig, a, b and c. Consequently, if the material pa-
rameters are fixed quantities (see table 1), only the geometric
quantities a, b and c are variables for the optimization pro-
cess. Hence, before performing the optimization procedure,
mechanical parameters used for the plate and the piezoelec-
tric actuators have to be known quantities.

The chosen material for the plate is a polymethacrylim-
ide thermoformed foam. This material is used in some mod-
ern commercial loudspeakers and its parameters have have
been estimated by measuring the first two eigenfrequencies
of cantilevered plates coming from the same material sam-
ple as the one used for the final prototype. The retained
material parameters are those ensuring the best fit between
experimental frequencies and frequencies predicted by sim-
ple finite element computations for different plate sizes. The
piezoelectric patches are thin films of PVDF (polyvinylidene
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Fig. 3. Typical transfer functions of a clamped flat plate used as a loudspeaker obtained using the present model without considering
piezoelectric patches. In blue, N = 1 so that its behavior is similar as a single mode piston-like loudspeaker. In black, N = 5. (a), voice
coil impedance; (b) transfer function between tension at the voice coil outlets and displacement at the center of the plate; (c) transfer function
between tension at the voice coil outlets and acceleration at the center of the plate; (d) pressure at 1 meter for a voltage of 2.8V at the voice

coil outlets, computed using rayleigh integral calculation.

fluoride) furnished by Piezotech with a complete dataset of
the material parameters. In the prototype that is built af-
ter this optimization procedure, the piezoelectric patches are
glued on the plate using double face adhesive tape. As the
mechanical properties of the adhesive were not known, it was
decided to arbitrarly set the Young’s modulus and the Pois-
son coefficient equal to that of the piezoelectric material. The
density of the adhesive layer was measured with a precision
balance and the thickness estimated by measuring the total
thickness of a small part of the two-layer laminate with a
Keyence precsion laser sensor and removing the thickness of
the piezoelectric layer. All the material parameters used in
this optimization procedure are finally given in Table 1. The
voice coil mass may also have a strong influence in the opti-
misation process. To otain an estimate of this parameter the
radius of the voice coil has been estimated at 1.5 cm so that
it coincides with a zero of the third eigenmode of the plate
without piezoelectric layer. Such a voice coil was weighted
to M. = 9.3g. This mass is fixed in the optimization process
that is now presented.

An optimal loudspeaker satisfying criteria (45) is now
sought for in the (a,b,c) space. For each triplet of these pa-
rameters, the linear problem detailed in appendix A is solved

Parameter Rohacell Piezo Adhesive
Yng’s mod. MPa) | Eg =220 | E,=1780 | E, = 1780
Poisson’s ratio vo=0.1 v, =02 vy =0.2
Thickness (mm) ho=3 | h,=0.04 | h,=0.05
Density (kg/m>) po=96 | pp=1850 | p, =500

Radius (m) Ro =0.08
Piezo coeff. (C/m?) e31 =0.02

Table 1. Table of materials properties

to compute the eigenmodes and the projections X2, X 3 and
Xc3- In Figure 4, the contour levels of ), are plotted in the
(a,b) plane for different values of ¢. The contour lines where
Xp3 and X3 equal zero are plotted on the same figures in blue
and red respectively. Each crossing of the blue and red lines
corresponds to a situation where both 3 and )3 vanish.
Such points are looked for in the vincinity of a maximum of
X p2- It appears that multiple choices of the triplet (a,b,c) are
possible. They occur at differents points in the (a,b) plane in
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Fig. 4. Contour levels of X2 in the map (a,b), zeros of X p3 (blue) and zeroes of )3 (red). Points satisfying the criteria of equation (45)

are indicated by an arrow.

the range ¢ € [0.254,0.266]. Good candidates are indicated
by an arrow on these figures. The chosen design is finally the
one emphasized at ¢ = 0.254 on Figure 4 and the final triplet
of chosen parameters is

a=036, b=0.8, c=0.254. (46)

4 Experiments

Based on the design rules obtained in the previous section,
the flat plate loudspeaker presented in Figure 5 has been
built. Due to practical problems in cuting and gluing manu-
ally the piezoelectric patches, the desired radii could not be
selected with precision. The following dimensional values of
the three geometrical parameters were finally obtained,

A=0.029m, B=0.063m, C=0.0195m, 47)
the corresponding non-dimensional parameters being,
a=0363, b=0.787, c=0.244. (48)

As these parameters are different than that required by the
optmization procedure, the criteria (45) is not perfectly sat-
isfied by the prototype. In particular, %3 and X,3 # 0 and
mode 3 reamains excited. It is expected that this could be im-
proved by more precise and robust manufacturing. Generally

Fig. 5. Photographs of the prototype.

speaking, the standard manufacturing tolerance of piezoelec-
tric material is around 0.2 mm and usually less. Given the
geometrical parameters in the experiment, one can expect a
precision of the order of 10~3 on the geometrical parameters
a and b, while it is of 102 for the present manual procedure.

Mechanical transfer functions predicted by the model
are now compared to measurements on the prototype. In the
experiments, a National Instrument DAQ card and Labview
are used to manage sewpt sine measurements. Output volt-
ages are sent to the voice coil with a QSC 5050 amplifier and
to the piezoelectric patches with a TREK PZD-350 amplifier.
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Fig. 6. Comparison of experimental (dashed blue line) and theoretical (plain black line) transfer functions; (a), voice coil impedance; (b),
transfer function between volage at the voice coil outlets and diplacement at the center of the plate; (c) transfer function between voltage at the
piezoelectric patches outlets and displacement at the center of the plate when the voice coil outlets are not connected; (d), transfer function
between voltage at the piezoelectric patches outlets and displacement at the center of the plate when the voice coil outlets are short-circuited.

The displacement of the plate is measured at the center using
a Keyence LK-G37 laser displacement. Four different result-
ing transfer functions are plotted on Figure 6 and compared
to the theory:

(a) the voice coil impedance,

(b) the transfer function between voltage at the voice coil in-
lets and displacement at the center of the plate (w), Juc),

(c) the transfer function between tension at the piezoelec-
tric patches outlets and displacement at the center of
the plate when the voice coil outlets are not connected
(Wy, /uc with T, forced to 0)

(d) the same as the latter when the voice coil outlets are

short-circuited (wy, /uc).

The modal dampings of modes 1 and 2 have been adjusted
so that the height of the peaks are the same for theory and
experiments on the impedance curves of Figure 6(a). Preci-
sion of the identification of damping using impedance peaks
was insufficient for higher modes, it was hence chosen to ad-
just modal damping of these modes so that we observe the
best fit between theory and experiments in the transfer func-
tion of Figure 6(b). Finally, the five diagonal coefficients of
the matrix C of equation (35) are set to [2.4,3.6,7,15,17]. It
has to be noted that eigenmodes of the system are indepen-
dent of the diagonal terms in the damping matrix because



these terms do not introduce coupling between modes in the
mechanical system (35). Consequently, results of the the op-
timization procedure presented in section 3 are not affected
by the adjustement of these damping coefficients.

The first observation that can be made from the the ex-
perimental and theoretical curves of Figure 6 is that a good
agreement exists between experiments and a model where
only the damping has been adjusted. Indeed, it has to be
recalled that all other parameters have been identified us-
ing distinct experiments: dynamic tests on beams for the
plate’s material, manufacturer data for the piezoelectric ma-
terial, electrical measurements for the static resistance and
impedance of the voice-coil, wheightings for the different
masses. Only the Young’s modulus of the glue has been ar-
bitrarly chosen. However, this parameter was adjusted in or-
der to improve the agreement. Slight improvements of the
model’s results have been observed when E, is strongly in-
creased, but changes were not significant enough to justify a
change in the value selected in the previous section. It has
to be noted that in the case presented here, contrary to the
objectives of the optimization performed in section 3, mode
3 remains excited by both the piezoelectric patches and the
voice coil. This is clearly visible on each of the plots. This
may be due to the imprecisions occuring during the manu-
facturing process.

Let us now adress the cases where both the voice coil
and the piezoelectric patches are used to force the plate. It
is desired to approach a case where only the first mode is
excited, so that we obtain a better spectral equilibrium of the
radiated power. On Figures 7 and 8, the transfer function
between voltage at the voice coil and the displacement at the
center of the plate is plotted in five different cases:

. Only the voice coil is used (piezoelectric patches short
circuited), theoretically and experimentally. This case is
in practice the same as in Figure 6b

. The same electrical signal is sent to the piezoelectric
patches, but with an amplitude multiplied by 250, the-
oretically and experimentally.

. A virtual case where only the first mode is excited by
the voice coil (N = 1 theoretical approximation).

The chosen factor 250 is the one that displays the best fit
between the N = 1 approximation and the experimental re-
sult. On these plots we observe that it is possible to reduce
significantly the amplitude of anti-resonance and resonance
associated to mode 2 on both displacement and acceleration
plots. However, due to the fact that X 3 and X3 do not vanish,
mode 3 remains excited.

Finally, the experimental and theoretical radiated power
on the axis at 84 cm expressed in dBspr, units is plotted on
Figure 9a and Figure 9b in two different cases. In the first
case, a white noise signal of 0.48V rms amplitude is sent
to the voice coil while the piezoelectric patches are shunted
(up12 = 0). This case is referred to as the non-controlled
system. In the second case, the same signal amplified 250
times is sent to the piezoelectric patches (120V rms). This
case is referred to as the controlled system. Experimentally,
the loudspeaker is baffled in a wood plane of 60 x 65 cm and
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measurements are performed in an anechoic chamber. It is
known that for acoustical wavelengths equal or greater than
the typical size of the plate, the rearward radiation interferes
with the frontward direct radiation [33], so that the results
can not be compared with Rayleigh integral computations,
which corresponds to an infinite baffle. Above this grayed
range, experiments and theory are in good agreement.

The radiation of the uncontrolled system presents a peak
at 1500Hz, followed by a strong hole due the resonance
and antiresonance of the second mode. The antiresonance
is strongly reduced in the controlled system. A succession
of resonance and antiresonance is also observed for the third
mode around 3000 Hz. The controlled system presents also
a reduced antiresonance. Finally, if we tolerate a maximum
difference of 10dB in the pressure radiated by the plate, we
can conclude that the system is able to extend the useful
bandwidth from [200Hz,1500Hz] up to [200Hz,4000Hz].

5 Conclusion
In order to reduce the depth of the devices used to repro-
duce sound, one can envisage to use a clamped flat plate as
a loudspeaker. In this article, the dynamics of a clamped
plate excited by a voice coil at a given radius has been mod-
elized. In order to circumvent the problems due to the vibra-
tions of the plate along undesirable modes, we investigated
the use of an additional forcing exerted by annular piezoelec-
tric patches. An optimization has been performed to design
a system where the modal force due to the voice coil and the
piezoelectric patches second and third modes is minimized.
A prototype has then been presented and transfer functions
measured and predicted by the model have been succesfully
compared. Next, control tests have been presented, showing
encouraging results. Indeed the radiated power shows that
forcing the system with both the voice coil and the piezoelec-
tric patches at appropriate respective amplitudes, the effects
of the antiresonance and resonance of the second mode are
less pronounced. Concerning the third mode, the objective
was to design actuators which geometries allowed to cancel
the forcing on this particular mode. The manufacturing as
not precise enough to fully satisfy this objective.
Improvements to this study are multiple. Firstly, some
work should be made to improve the precision of the man-
ufacturing of the piezoelectric patches. Better understand-
ing of the glue mechanical properties could also induce bet-
ter agreement between theoretical and experimental results
and thus improve the optimization process. Different plates
could also be envisaged. Indeed, the thermoformed foam
was used because it is commonly used in conical loudspeak-
ers. This does not mean that it is the best material for the
present application. Guidelines for the choice of this mate-
rial could be found for instance in studies that look for pa-
rameters that maximize the piezoelectric coupling on sand-
wich beams [34]. Multiple pairs of piezoelectric patches or
supplementary voice coils could also be envisaged to extend
the bandwidth of the plate. Piezoelectric materials of differ-
ent shapes or with spatially varying polarization could also
be considered to design so-called modal actuators that could
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Fig. 9. Power radiated by the plate on axis at 84 cm, comparison
of non controlled and controlled systems. Experiments in dashed
blue and theory in plain black. Grayed region indicates the frequency
range where backward radiation interferes with frontward radiation,
which is not taken into account by the model. The arrow indicates
the bandwidth of the loudspeaker where a maximum 10 dB difference
between minimum and maximum value is tolerated. (a), uncontrolled
system; (b) controlle system.

improve mode selectivity [32,35]. Finally, nonlinear aspects
have been overlooked in this work and should be included in
the model to adress the distorsions that arises at high vibra-
tion amplitudes [36].
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Appendix A: Eigenmodes and eigenfrequencies of the un-
forced plate without voice coil

The plate equation (4) is rewritten in the form of a union of
homogeneous problems,

DoA’W (R, T) 4 uoW (R, T) = 0in Q; and Q3,
(Do+Dp)A*W (R, T) + (uo + )W (R, T) = 0in Q), (49)

where Q1 =R € [0,A], ®a =R € [A,B] and Q3 =R € [B,Ro].
To the set of local equations (4), a set of boundary condi-
tions has to be added. These boundary conditions are the
continuity of the displacement W, the rotation dW /0R the
momentum and the shear at R = A and R = B and the bound-
ary conditions of a plate clamped at R = Ry,

W' =0,[w/oRI}" =0,[0l =091} =0,

W1 =0,[ow /oRE" =0,[08" =0,[M]E" =0, (50)
W

W(Ro) =0, =5 (Ro) =0.

In the particular case of a displacement independent of the
polar angle, the momentum reads:

9*W 1w .
M:—DOW—DOV()ﬁﬁ mn Q] andQ3
o'W 1ow
M:_(DO—’—DP)W_(DOVO—FDPVP)Eﬁ m QQ,
(51)
and the shear has the following expression:
0 =—-D iAW in Q) and Q
= OaR 1n 321 an 3
d
Q0=—(Do+D,)s-AW in Q. (52)

oR

Introducing the non-dimensional radius, displacement,
time and force given in equation (11) the non-dimensional
local equilibrium equation (49) becomes,

A’w+w=0 inQ; and Q;3,

DyA*w+fpw =0 in Q. (53)

In non-dimensional form, the boundary conditions have then

the following expanded form,

wlg- =0, (54)
Pw/ar]%" =0, (55)
IA (1+D )EA =0 (56)
arwa, parwa+_’
| tow
or? 0 or .
_ 0w _ 10w
_(1+DP)W+(VO+DPVP);§ a+:0, (57)
W =0, (58
[Ow/or]. =0, (59)
IA — (14D )EA =0 (60)
ar W bt P ar W b— o
R
or? 0 or bt
_ 9w _ 1ow
,(1+D,,)ﬁ+(vo+D,,v,,)r§ N =0, 61)
w(l) =0, (62)
ow
g(l) =0 (63)

The eigenfrequencies and eigenmodes of equation (53)
with boundary conditions (54-63) are now sought for. It is
practically done by introducing a solution of the form

w(r,t) = @(r)e'™ (64)
in equation (53). The latter now reads,

Aw—2A*w=0 inQ; and Q3

Aw—a*A*'w=0 inQ,, (65)
where
A = o? (66)
and
ot = 1TF (67)
1+D,

The solutions of these well known ordinary differential equa-



tions are combinations of Bessel functions,

©1(r) =A1Jo(Ar) +Azlp(Ar) , in Q (68)
©2(r) = AszJo(0Ar) + AgYo(0Ar)
+Aslo(0hr) +AgKo(0hr) , inQy  (69)
@3(r) =A7Jo(Ar) +AgYo(Ar)
+Aoly(Ar) +A1oKo(Ar) , in Q3 (70)

Introducing these solutions in the boundary conditions ex-
pressions leads to a linear problem,
MpA =0, (71)

where A is a column vector with 10 elements corresponding
to the amplitudes A,, n € [1,10] and M}, is the matrix which
coefficients are deduced from the boundary conditions ex-
pressions. A non trivial solution exists if
det(M,) = 0. (72)

The numerical resolution of this last equation gives the dis-
crete values of A,,, which then gives the eigenfrequencies us-
ing equation (66). Introducing a particular value A, in the
linear problem (71) gives the associated eigenmode through
the vector A,. The associated eigenmode ¢,(r) is the union
of functions @3 in their respective domains. One has then

to choose a convention for the norm of the eigenmodes. Let
us define a scalar product in the domain Q :

1
(r.6)= [ reds=2x | rerar (73)
The chosen convention for the normalization is,
@(r)on(r), dn(r)) =1, (74)

where i1 describe the distribution of surface density of the
plate, and reads,

(75)

By definition, the eigenmodes are orthogonal with respect to
the mass and rigidity operators,

~

(76)
)

(r)0n(r), om(r)) = Sum,
<D(r)¢n(r)7¢m(r)> = (1),2n8,,m,

where D describe the distribution of rigidity of the plate,

D(r)=1+[H(r—a)—H(r—>b)|D,, (78)

and d is the Kronecker symbol. The eigenmodes defined here
serve as a basis for the full problem defined in section 2.

SHEREE

Fig. 10. Schematic view of the five layers problem.

Appendix B: Five layers problem: equivalent three layers
problems

Provided that the Young’s modulus of the glue is of the same
order as the other materials, the assumption that the defor-
mation varies linearly with Z is still valid. We have to solve
a problem of a five layer plate, as sketched in Figure 10. The
momentum has now the following expression in Cartesian
coordinates [37],

h0/2+hg+hp
MZ/ oxxZdZ (79)
—ho/2~hg—hp
3*wW 3*wW
= —(DO +Dg +DIP)W - (VODO +Vng +VPD;)W’
(80)
with,
E, (HMH} ., — 2H}
D, = 1—gv§< g2 —I—HgHo—i—Tg (81)
E H,(Hy+ H,)? 2H?3
D, = 1—pv2< o 02 ) + Hy (Ho + Hg) + —F-
P

(82)

The prime is used to avoid confusion with D, defined in the
three layer problem [30]. The momentum then takes the fol-
lowing form in cylindrical coordinates [37],

o*W 1 oW
M: _(D0+D8+D;)W - (V0D0+Vng+VpD;)E@;

In non dimensional form, the continuity equation for the mo-
mentum has the following expression at r = a,

*w 1ow _, 0w
ﬁ"‘vo;yb— _(1+DP+Dg)ﬁ
_ _ 10w
+(V0+D;Vp+Dng);W|a+ =0. (84)

This last expression can be rewritten in the following form,

02w 1ow _0%w
FrR - m G
_ 1ow
+ (VO +ngvpg); E'a* = O, (85)



with,

Dy =D/, +D, (86)
D)V, +Dgv
Vpg = L5 (87)
D), + D,

Hence, the five layer problem can be modelized using the
same equations as presented in section 2, provided that the
following change of parameters is done :

D, — D, (88)

Vp — Vpge (89)

bp — fipg = Hp + g (90)
Hy+H,+H,

Zy — Zpg = % 91)
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