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The effect of spanwise clearance on the critical velocity for fluttering of a cantilevered plate in a channel flow
is addressed experimentally. It is found that the critical velocity is influenced by the presence of the walls
when the ratio between the clearance and the length of the plate C/L is less than 0.1, and slowly converges to
the critical velocity predicted by models considering infinite span plates. These results are in good agreement
with the predictions of a potential flow model taking into account spanwise confinement.
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The rest position of a cantilevered plate interacting
with an axial flow becomes unstable at a critical value
of the velocity. Oscillations of large amplitude are then
observed. This phenomenon, referred to as flutter, is con-
sidered as a model for oscillatory instabilities encountered
in many practical situations, such as snoring1,2, fluid-
elastic instabilities in nuclear engineering3, panel flut-
ter in aeronautics4 or vibrations in the paper industry5.
Plate’s fluttering has also recently been revisited in the
context of energy harvesting of flows using induction6 or
piezoelectricity7,8.

The 2D problem of a beam of finite length and infinite
span in a potential flow has been first solved by Kornecki
et al.4. Many other 2D models and numerical simulations
followed9. As these 2D works always underestimated the
critical velocity when compared to experimental data, a
3D model for the flow was proposed by Eloy et al.10. In-
volving matching slender-body theory to 2D theory, this
model evidenced the influence of the plate’s aspect ratio
on the critical velocity and was found to improve the flut-
ter limit predictions11. It was however admitted that it
is possible to approach the limit predicted by 2D models
by adding horizontal walls near both edges of the plate1.
A few experimental studies1,2,12, although not focused
on this particular effect, investigated such geometries.A
reduction of the critical velocity was found but not im-
portant enough to reach the 2D limit, raising the question
of the validity of the above mentioned assumption. This
motivated the development of a 3D model taking into ac-
count the effect of spanwise boundaries, as proposed by
Doaré et al.13. This model involves a matching between
extended versions of the slender-body and 2D theories
that take into account the spanwise confinement. The
main result of the latter work is that the 2D limit is in-
deed reached when the gap tends to zero, but with such
a slow convergence that it should be almost impossible
to attain this limit experimentally. Hence it is now nec-
essary to assess the validity of this improved 3D model
with new experimental data. Even if the 2D limit is in-
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deed impossible to reach, asymptotic behavior could be
verified. This is the objective of the experimental work
presented here. In the following the 3D model of Eloy et
al.10 will be referred to as the 3D∞ model, as it considers
a 3D unbounded flow. The 3D model of Doaré et al.13

will be referred to as the 3Dc model, as it considers a 3D
flow with a clearance c between the plate and the wall.

The organisation of the letter is as follows: firstly, the
experimental setup is described. Secondly, experimental
results of critical velocities as function of various param-
eters are presented and finally a discussion of the results
is given.

The experimental setup is sketched on Fig. 1. It con-
sists of a plexiglass rectangular wind tunnel of 10cm
width and 4cm height connected upstream and down-
stream to a circular section of 9cm internal radius
through smooth convergent and divergent. At the down-
stream end, a centrifugal fan regulated by a frequency in-
verter drives the flow and the upstream circular section is
connected to a convergent with a honeycomb screen. The
height of the wind tunnel can be decreased by adding two
additional plexiglass plates (see Fig. 1c). When smaller
and more precise variations are desired, successive layers
of adhesive tapes are added on both walls.

A mast is fixed in the wind tunnel and two steel plates
are clamped in the mast. Mylar sheets are tightened be-
tween the steel plates so that the effective position of the
clamped end of the flag under test is the downstream
end of the steel plates. The Mylar sheets have a surface
density of 0.21kg.m−2. The value of their flexural rigid-
ity D has been evaluated by measuring the first mode
oscillation frequency of the flags in still air and has been
found to be D = 8 × 10−4m2.kg.s−2. It should be noted
that although the Mylar sheets under study are formally
plates, they will be often be referred to as ’flags’, due to
their fluttering nature.

The flow velocity data of the present paper come from
two sensors: a static-pitot tube and a hot-wire, placed at
the exact inlet of the rectangular test section, as shown
in Fig. 1. At this position, the channel is always of 4cm
height. Hence, when the flag is in a smaller channel (as in
Fig. 1c), the velocity is estimated by assuming that the
flow profile is constant and by invoking conservation of
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FIG. 1. Sketch view of the experimental setup; (a), top view; (b), side view; (c), side view with additionnal plexiglass plates
and adhesive tapes to decrease the channel width.

the flow rate. The unsteady deflection of the flag is mea-
sured with a laser displacement sensor (Keyence LK-G37)
at an arbitrary position. Time series of the displacement
are analysed in realtime using Labview software to com-
pute the rms value of the plate’s deflection.

The boundary layer thickness on the upper and lower
walls of the channel has been quantified by performing
flow profile measurements at different values of the inlet
flow velocity. At the pitot tube’s location, the boundary
layer is so small that it is not perceptible. The constant
flow profile assumption is hence fully satisfied here. At
a location near the flag’s clamp, for the range of flow ve-
locities of interest in the following, a boundary layer can
be clearly evidenced. Its displacement length14 is found
to be comprised between δ = 0.7mm and δ = 1.2mm and

it scales as U
−1/2
∞ , indicating a Blasius-type boundary

layer14. Consequently, for the smallest channel heights
considered in the present paper (∼ 2cm), considering a
constant velocity profile may induce an underestimation
of approximately 10% on the velocity in the middle of
the channel.

Let R be the rms value of the unsteady deflection of
the flag measured by the laser sensor. It is plotted as
function of the flow velocity for two different sets of the
geometrical parameters H , L, C on Fig. 2. These fig-
ures illustrate two typical behaviors of the flag when the
flow velocity is varied. In both cases, at a value of the
velocity below the critical velocity, random vibrations in-
duced by unsteadiness of the flow around the plate are
observed, resulting in a value of R around 4mm. In case
(a), R starts to increase at U ∼ 15m/s and slowly satu-
rates to an approximate value of 6mm when U is further
increased. The value of R follows the same path when
U is decreased, suggesting a supercritical-type bifurca-
tion. Conversely, case (b) displays a different behaviour:
R jumps abruplty at U ∼ 11m/s and saturates around
11mm. The path followed for decreasing velocities is dif-
ferent and restabilization occurs around 10.5m/s. This
hysteretic behaviour suggests a subcritical-type bifurca-
tion. This discrepancy between different sets of parame-
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FIG. 2. Typical evolution of the rms level of the displacement,
measured at an arbitrary point near the clamped end of the
plate; (◦), increasing velocity; (�), decreasing velocity; L =
86mm (a), H = 15mm, C = 12mm; (b), H = 8mm, C =
16mm.

ters has already been observed by various authors, both
numerically15–17 and experimentally11. However, it was
observed in the literature that even in the hysteretic case,
the amplitude as function of the flow velocity is well fit-
ted by a square root law, suggesting that the transition
is supercritical11. In the experiments reported here, the
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FIG. 3. Evolution of the non-dimensional critical flow velocity
for flutter instability U

∗ as function of the aspect ratio h of the
plate; (o), experimental data; (−−−), 3Dc model; (−−), 3D∞

model; (· · ·), 2D model (infinite span). The experimental
value of c is plotted as reference above.

hysteresis was rarely perceptible, and was at most of 10%.
It was thus decided to retain the increasing value of the
critical velocity and plot the results with error bars of
10% in the following to take into account this hysteresis
effect as well as uncertainities in the measurements and
the underestimation of the velocity due to the boundary
layer.
Before addressing further experiments, let us introduce

the non-dimensional parameters that will be used. When
dealing with an infinite span flag, only two parameters
are necessary to fully characterize the problem, namely
the mass-ratio and the non-dimensional flow velocity,

M∗ =
ρfL

M
, U∗ =

√

M

D
LU, (1)

where ρf is the fluid’s density and M is the plate’s sur-
face density. Finite width and spanwise confinement are
taken into account trough the the aspect ratio10 h and
the channel clearance13 c respectively. Their expressions
are,

h =
H

L
, c =

C

L
. (2)

A first set of experiments has been performed with
flags of 8.2cm length (M∗ = 0.48) and different widths.
In a channel of 2.2cm height, for each of these flags, the
critical velocity for apparition of flutter instability is mea-
sured. The resulting value of the non-dimensional critical
velocity U∗ is plotted as function of h on Fig. 3 and com-
pared with the theoretical value predicted by the three
models (2D, 3D∞ and 3Dc). For reference, the value
of c is plotted above as function of h. As emphasized
in a previous article, the 3Dc model tends to the 3D∞
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FIG. 4. Evolution of the non-dimensional critical flow velocity
for flutter instability U

∗ as function of the non-dimensional
gap c for three different plates. Plate 1: M∗ = 0.48, h = 0.16,
(o), experiment; (−−), 3Dc model. Plate 2: M

∗ = 0.48,
h = 0.2, (�), experiment; (− · −·), 3Dc model. Plate 3:
M

∗ = 0.53, h = 0.43, (△), experiment; (−−−), 3Dc model.
Thin lines indicate the values given by the 3D∞ model while
the dotted line indicate the value given by the 2D model for
M

∗ = 0.5. Insert: U
∗

− U2D plotted as function of cc in a
log-log scale, showing that it is governed by a power law of
the form c

0.15.

model when c is large, while it reaches the 2D-model
when c → 0. The experimental data follows the 3D-
models when h is increased up to ∼ 0.15. Above this
value, the two 3D-models depart from each other and
the experimental data seem to lie in between the two.
This scarcity of results does not permit to confirm the
validity of the 3Dc model over the 3D∞ model.
A second set of experiments is now presented. Here,

only the gap c is varied, as opposed to the previous ex-
periments. It is achieved by varying the channel height,
while the flag geometry is kept constant. Three flags
have been studied (Flag 1: H = 1.35cm, L = 8.2cm;
Flag 2: H = 1.65cm, L = 8.2cm; Flag 3: H = 3.9cm,
L = 9.1cm). The resulting evolution of U∗ as function
of c is plotted in Fig. 4 and again compared with the
three models. The behavior of the critical velocity as
function of c measured experimentally is correctly repro-
duced by the 3Dc model. A slight discrepancy is visible
for h = 0.16 and h = 0.2: the model seem to underes-
timate the critical velocity by 10%-15%. In the insert
of Fig. 4, the difference between the critical velocity and
that predicted by the 2D model is plotted as function
of c. A power law c0.15 is clearly evidenced for the 3Dc

model, and the experimental data follow this asymptotic
behavior.
In the experiments described above, c = 10−2 corre-
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sponds to C ∼ 1mm, which is the typical size of the
displacement length of the boundary layer. Our experi-
mental data exhibit a decrease of the critical velocity in
the range c ∈ [10−3, 10−1]. This would suggest that the
decreasing of the critical flow velocity, observed on Fig. 4
when c is decreased, occurs when the flag’s edges enter
the boundary layer. One may then wonder if it is a coin-
cidence or if the boundary layer can have such influence
on the critical velocity. Three effects of the boundary
layer may be distinguished. The first two are viscous
effects. In this region of the flow the fluid’s viscosity
plays an important role and this may have two opposite
consequences. Firstly, viscous friction may stabilize the
plate and thus increase the critical velocity. Note that
viscous induced damping may also have a destabilizing
effect, but at high values of the mass ratio not explored
in the present analysis8,18. Secondly, due to the viscos-
ity, the effective clearance gap may be smaller than its
actual value, thus giving something closer to the 2D case
and consequently a lower critical velocity. However, these
two opposite effects of the viscosity may be small in prac-
tice, because they are effective in the flow direction, but
not that important in the direction perpendicular to the
flow. The 2D-flag case can be seen as a situation where
fluid circulation around the flag in a plane perpendicular
to the main flow is not possible. This circulation is not
precluded by the presence of a boundary layer, hence its
influence should be small in practice. The last effect is
a consequence of the reduction of the axial flow velocity
in the boundary layer. Indeed, one may consider that
locally, the linearization of the pressure perturbation as-
sociated to a small perturbation of the flag’s deflection
can be separated into three contributions, an added mass
term scaling as ρ, a Coriolis term scaling as ρu and a
rigidity term, scaling as ρu2, u being the local axial mean
flow velocity19. When u locally decreases in the bound-
ary layer, the aerodynamic reaction due to the Coriolis
and rigidity terms decrease as well, and their destabiliz-
ing effect should be lowered. Consequently, the presence
of the boundary layer should be stabilizing. This might
explain the slight discrepancy between the experimental
data and the model at h = 0.16 and h = 0.2. At h = 0.43,
the influence of the boundary layer may be smaller be-
cause it is relatively smaller than the flag’s height in this
case.
In conclusion, we have presented experimental results

on the effect of the spanwise clearance on the flutter
critical velocity of a cantilevered plate in an axial flow.
The experimental results show a good agreement with
a model derived in a previous paper13. Velocity profiles
and boundary layer thickness have been measured, show-
ing that in the experiments, the gap sizes of interest, i.e.
sizes small enough for the critical flow velocity to be sig-
nificantly affected by the presence of the wall, are of com-
parable magnitude as the boundary layer. It was shown
that the dominant effect of the boundary layer should be
stabilization, so that the destabilization observed when c
decrease can only be explained by a blockage effect in a

purely potential flow model. Natural extensions of this
work include the study of the influence of the other walls
of the channel, and a more detailed study of the bound-
ary layer. For instance, a new set of experiments, con-
sisting in varying the boundary layer thickness while the
other parameters are kept constant could be performed
to properly assess the hypothesis of negligible viscous ef-
fects.
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